Dimensión de ideales en álgebras de grupo, y códigos de grupo Pubblico Deposited

En este trabajo se determinan algunas cotas y relaciones para la dimensión de ideales principales en álgebras de grupo analizando polinomios mínimos de representaciones regulares. Estos resultados son utilizados, primero, en el contexto de álgebras de grupo semisimples, para calcular, para cualquier código abeliano, un elemento con peso de Hamming igual a su dimensión. Luego, para obtener cotas de la distancia mínima de ciertos códigos MDS. Una relación entre una clase de códigos de grupo y códigos MDS es presentada. Se exponen ejemplos ilustrando los resultados principales.

Le relazioni

In Impostazione amministrativa:

descrizioni

nome attributoValori
Creador
Contributori
Tema
Editor
Idioma
Identificador
Parola chiave
Año de publicación
  • 2020
Tipo de Recurso
Derechos
División académica
Línea académica
Licencia
Ultima modifica: 12/13/2023
citazioni:

EndNote | Zotero | Mendeley

Elementi