El semigrupo cuántico de exclusión asimétrica Público Deposited
Usando el enfoque de Chebotarev [6], construimos el semigrupo mínimo en un álgebra de von Neumann arbitraria A~ B (h), y discutimos condicio-nes necesarias y suficientes para su conservatividad. Nuestro Teorema 2.5.3 generaliza, al caso de un álgebra de von Neumann arbitraria, condiciones ne-cesarias y suficientes de conservatividad bien conocidas en el caso B (h) , vea [14], [6]. En el Teorema 2.4.7 hemos generalizado el criterio de E . B. Davies [11] y una condición necesaria y suficiente para conservatividad obtenida no hace mucho por Fagnola-Rebolledo [16] y García-Quezada [24]. Con dos hipótesis menos restrictivas que la condición utilizada por Ac-cardi y Kozyrev en [2], a las cuales llamamos decaimiento polinomial y de-caimiento exponencial, (3.4) y (3.5) respectivamente, probamos que se siguen obteniendo generadores de semigrupos dinámicos cuánticos de Markov para la clase de sistemas cuánticos cuasi-genéricos deducida por Accardi-Kozyrev en [2]. En la parte final de este trabajo empleamos otro modelo de los últimos investigadores [2], para construir el semigrupo dinámico cuántico de exclusión asimétrica asociado a un modelo de conductividad eléctrica en un retículo. Obtuvimos estados diagonales (o clásicos) invariantes bajo la acción de es-te semigrupo y mostramos que corresponden con medidas invariantes de un proceso de exclusión clásico, de una clase más general que los procesos de ex-clusión estudiados por Liggett [30]. También demostramos que el semigrupo cuántico de exclusión asimétrica satisface una condición de balance detalla-do cuántico para cualquier estado invariante fiel y que todo estado inicial es conducido por el semigrupo a un estado de equilibrio.
Relacionamentos
No conjunto administrativo: |
---|
Descrições
Nome do Atributo | Valores |
---|---|
Creador | |
Colaboradores | |
Tema | |
Editor | |
Idioma | |
Identificador | |
Palavra-chave | |
Año de publicación |
|
Tipo de Recurso | |
Derechos | |
División académica | |
Línea académica | |
Licencia |