Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

UNIDAD IZTAPALAPA

DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍA

Entropías de la información de Shannon y Fisher para el átomo de hidrógeno libre y confinado en dos dimensiones

> Esta disertación se presenta por: Carlos Alberto Ruiz Estañón Para obtener el grado de: Maestro en ciencias (Física)

Asesor: Dr. Norberto Aquino Aquino

Jurado calificador:

Presidente: Dr. Victor David Granados Garcia Secretario: Dr. Norberto Aquino Aquino Vocal: Dr. Rodolfo Octavio Esquivel Olea

Anidformade

Ciudad de México, 23 de Julio del 2019

DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍA

Entropías de la información de Shannon y Fisher para el átomo de hidrógeno libre y confinado en dos dimensiones

Esta disertación se presenta por: Carlos Alberto Ruiz Estañón Para obtener el grado de: Maestro en ciencias (Física)

Asesor: Dr. Norberto Aquino Aquino

Jurado calificador:

Presidente: Dr. Victor David Granados Garcia Secretario: Dr. Norberto Aquino Aquino Vocal: Dr. Rodolfo Octavio Esquivel Olea

Ciudad de México, 23 de Julio del 2019

Abstract

The fundamental interest of this work is to study the hydrogen atom in two dimensions (AH-2D), not from a spectroscopic approach but from an entropic approach. It presents the entropy study by Shannon $(S(\vec{\rho}))$ and information by Fisher $(F(\vec{\rho}))$ for free and confined AH-2D by varying the confinement radii; It is interesting to note that these entropies of information are commonly called global (Shannon) and local (Fisher). Both conjugated spaces were analyzed (space of configuration and space of moments). It is fundamental to note that the physical information thrown by both quantities $(S(\vec{\rho}) \neq F(\vec{\rho}))$ are complementary to understand the behavior of this system.

It is well known that the solution for this confined system can not be obtained in an analytical way, which is why the work proceeds from a variational approach. The fundamental state (1s) and first excited states (2s, 2p and 3d) by the so-called direct variational method (MVD), and the eigenvalues were obtained by using first order perturbation theory for the 1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d y 4d states. The previous results were compared with those already published in the literature [**9**; **12**] that shows a high accuracy for the calculations.

Finally, the generalized Heisenberg uncertainty principle was studied for the states analyzed by the MVD (1s, 2s, 2p y 3d), which shows particularly interesting results since it can be seen that there are confinement radii for which the system presents a minimum (a clear consequence of confinement) in the different states analyzed.

Resumen

El interés fundamental de este trabajo es estudiar el átomo de hidrógeno en dos dimensiones (AH-2D) no desde un enfoque espectroscópico sino desde un enfoque entrópico. Se presenta el estudio de la entropía de Shannon $(S(\vec{\rho}))$ y la información de Fisher $(F(\vec{\rho}))$ para el AH-2D libre y confinado, variando el radio de confinamiento; es interesante notar que estas entropías de la información son comúnmente referidas como globales (Shannon) y locales (Fisher). Se analizaron ambos espacio conjugados (espacio de configuración y espacio de momentos) es fundamental notar que la información física que arrojan ambas cantidades $(S(\vec{\rho}) \ y \ F(\vec{\rho}))$ son complementarias para entender el comportamiento de este sistema.

Como bien sabemos la solución para dicho sistema confinado no puede obtenerse en forma exacta, es por tal motivo que procedemos desde un enfoque variacional. Estudiamos el estado fundamental (1s) y primeros estados excitados (2s, 2p y 3d) por el llamado método variacional directo (MVD), así mismo, se obtuvieron los valores propios utilizando teoría de perturbaciones a primer orden para los estados 1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d y 4d. Los resultados anteriores se compararon con los ya reportados en la literatura [**9**; **12**] mostrando una alta precisión de los cálculos.

Finalmente se estudió el principio de incertidumbre de Heisenberg generalizado para los estados analizados por el MVD (1s, 2s, 2p y 3d) lo cual muestra resultados particularmente interesantes ya que se puede apreciar que hay radios de confinamiento para los cuales el sistema presenta mínimos (una clara consecuencia del confinamiento) en los diferentes estados analizados.

Agradecimientos

Quiero agradecer el apoyo y confianza de mi madre que durante todo este proceso siempre estuvo presente; el esfuerzo que hizo por sacarme adelante siendo mi principal motivación desde que inicie mis estudios. A mis hermanos Jonathan y David por acompañarme en esas noches de estudio y sus palabras que me alentaban, por todas esas veces que conversaba de física y les transmitida tanta felicidad que me escuchaban solo porque les gustaba verme feliz no porque les interesará la física jaja... Le estoy increíblemente agradecido a la vida por que si me encuentro donde estoy ahora es porque la vida me a regalado una muy buena suerte y me ha enseñado a valorar cada momento.

Al Dr. Norberto Aquino Aquino por haberme dirigido en el desarrollo de este trabajo, por su paciencia en todos esos momentos que me resolvía dudas y sobre todo por haberme enseñado a interpretar la física de los resultados de este trabajo. Por su amistad y calidez como persona.

Al CONACYT por la beca de manutención y la beca mixta que me otorgó para fortalecer mi formación y permitirme realizar una estancia de investigación en la universidad de Granada, España.

A la universidad autónoma metropolitana por permitirme la oportunidad de continuar con mis estudios. Por otorgarme una beca de apoyo por transporte aéreo y poder viajar a la universidad de Granada.

Al Dr. Jesús Sanchez-Dehesa y colaboradores por haberme recibido y tratado tan bien durante mi estancia de investigación. Sobre todo por enseñarme la gran importancia que tienen las investigaciones hoy en día las medidas entrópicas.

A todos mis amigos que siempre creyeron en mi y me motivaron para continuar esforzándome, por el tiempo que me dedicaron.

Índice general

1	Objetivos				
	1.1	Gener	ales	1	
		1.1.1	Particulares	1	
2	Met	odolog	ía	3	
3	Mét	odos aj	proximados	5	
	3.1	Teoría	de perturbaciones independiente del tiempo	5	
		3.1.1	Teoría de perturbaciones de estados no degenerados	6	
		3.1.2	Teoría de perturbaciones de estados degenerados	6	
	3.2	El prir	ncipio variacional lineal	7	
	3.3	El prir	ncipio variacional directo	7	
4	Átoi	mo hid	rogenoide libre en dos dimensiones	9	
	4.1	La ecu	ación de Schrödinger	9	
		4.1.1	Solución de la ecuación angular	11	
		4.1.2	Solución de la ecuación radial	12	
		4.1.3	La función de onda completa	16	
	4.2	Átomo	o de hidrógeno en tres dimensiones	17	
5	El á	tomo d	e hidrógeno confinado al interior de una caja circular	21	
	5.1	El áto	mo de hidrógeno 2D confinado. Teoría de perturbaciones a		
		prime	r orden	21	
	5.2	El átor	mo de hidrógeno confinado en dos dimensiones. Enfoque varia-		
		cional		25	
		5.2.1	El átomo de hidrógeno confinado en dos dimensiones. Método		
			variacional directo	26	
		5.2.2	Estado 1s	26	
		5.2.3	Estado 2s	31	
		5.2.4	Estado 2p	33	
		5.2.5	Estado 3d	34	
		5.2.6	Funciones propias en el espacio de configuración para el átomo		
			de hidrógeno confinado en dos dimensiones	38	

6	Funciones de onda en el espacio de momentos para el átomo de hi-					
	drógeno libre y confinado en dos dimensiones					
	6.1	Funciones de onda del átomo de hidrógeno libre en dos dimensiones	42			
		6.1.1 Funciones propias en el espacio de momentos para el átomo				
		de hidrógeno libre en dos dimensiones	47			
	6.2	Funciones de onda del átomo de hidrógeno confinado en dos dimen-				
		siones	48			
7	Entr	opía de Shannon para el átomo de hidrógeno en dos dimensiones	53			
	7.1	Introducción	53			
	7.2	Entropía de Shannon para el átomo de hidrógeno libre en dos dimen-				
		siones	55			
	7.3	Entropía de Shannon para el átomo de hidrógeno confinado en dos				
		dimensiones	56			
8	Info	rmación de Fisher para el átomo de hidrógeno en dos dimensiones	67			
	8.1	Introducción	67			
	8.2	Información de Fisher para el átomo de hidrógeno libre en dos dimen-				
		siones	68			
	8.3	Información de Fisher para el átomo de hidrógeno confinado en dos				
		dimensiones	69			
9	Principio de incertidumbre de Heisenberg generalizado para el AHC-2D					
	9.1	El principio de incertidumbre de Heisenberg	81			
		9.1.1 Principio de incertidumbre de Heisenberg generalizado	81			
		9.1.2 Principio de incertidumbre de Heisenberg para el AHC-2D	82			
10 Conclusiones						
Bibliografía						
11	11 Apéndices					
	11.1	Apéndice A: Función de onda para el átomo de hidrógeno confinado				
		en una región circular	99			
		11.1.1 Solución de la ecuación radial	99			
	11.2	Apéndice B: Unidades atómicas	101			
	11.3	Apéndice C: Interpolación Polinomial de Lagrange	102			
	11.4	Apéndice D: Aproximaciones de derivadas en términos de posiciones				
		centrales	104			
		11.4.1 Tres posiciones	104			
	11.5	Apéndice E: Elementos de matriz	105			

1

Objetivos

1.1 Generales

- Estudiar la entropía de Shannon y la información Fisher para el átomo de hidrógeno (AH) libre (entiéndase como sistema libre al no estar confinado por una barrera de potencial) y confinado en dos dimensiones (2D).
- Estudiar el principio de incertidumbre de Heisenberg generalizado para el átomo de hidrógeno confinado en dos dimensiones (AHC-2D).

1.1.1 Particulares

- Calcular la entropía de Shannon para el AHC-2D en el espacio de configuración y de los momentos para el estado base y primeros estados excitados (2s, 2p y 3d).
- Analizar el principio de incertidumbre de Biatynicki-Birula y Mycielski y comparar el valor que establece este principio con los resultados obtenidos con las estados calculados.
- Calcular la información de Fisher para el AHC-2D en el espacio de configuración y de los momentos para el estado base y primeros estados excitados (2s, 2p y 3d).
- Analizar el principio de incertidumbre del producto de las informaciones de Fisher en el espacio de configuración y de los momentos y comparar el valor que establece este principio con los resultados obtenidos con los estados calculados.

Metodología

- Obtener las funciones propias del AH-2D como sistema libre en el espacio de configuración y en el espacio de los momentos a través de la transformada de Fourier (TF) en forma analítica.
- Obtener las funciones propias del AHC-2D en el espacio de configuración, utilizando el método variacional directo (MVD) y el método de teoría de perturbaciones a primer orden independiente del tiempo.
- Obtener la fuerza por unidad de longitud (perímetro) para el AHC-2D.
- Aplicar el método de teoría de perturbaciones a primer orden para el estado base y algunos estados excitados (2s, 3s, 4s, 2p, 3p, 4p, 3d y 4d) del AHC-2D, obteniendo el comportamiento de la energía variando los radios de confinamiento.
- Aplicar el MVD al estado base y algunos estados excitados (2s, 2p y 3d) del AHC-2D, obteniendo el comportamiento de la energía variando los radios de confinamiento.
- Calcular la TF en forma numérica para el AHC-2D. Desarrollo de programas computacionales en Mathematica [1].

Métodos aproximados

Como es bien sabido, solo un número muy limitado de sistemas cuánticos admiten una solución analítica, para el resto, se hace uso de métodos aproximados. En este capítulo consideramos los métodos de aproximación: teoría de perturbaciones independientes del tiempo a primer orden y el método variacional (en la forma mas breve posible, ya que hay una bibliografía muy extensa [2-4] donde se encuentra explicada toda la teoría y ese no es el objetivo de este trabajo).

3.1 Teoría de perturbaciones independiente del tiempo

La teoría de perturbaciones trata básicamente en la suposición de que el problema que deseamos resolver es solo, ligeramente diferente de un problema semejante que se puede resolver en forma exacta. Entonces la teoría de perturbaciones usa las soluciones exactas conocidas para obtener soluciones aproximadas del problema perturbado [**2**]. Este método es más adecuado cuando el hamiltoniano \hat{H} es muy cercano a un hamiltoniano \hat{H}_0 que se puede resolver exactamente. En este caso, \hat{H} se puede dividir en dos partes independientes del tiempo

$$\hat{H} = \hat{H}_0 + \hat{H}_p, \tag{3.1}$$

donde \hat{H}_p (\hat{H}_p es llamado la perturbación) es muy pequeño comparado con \hat{H}_0 (\hat{H}_0 es conocido como el hamiltoniano no perturbado del sistema). Nuestra tarea es relacionar los eigenvalores desconocidos y los eigenestados del sistema perturbado con los eigenvalores conocidos y los eigenestados del sistema no perturbado. Para ayudar a hacerlo, imaginaremos que la perturbación se aplica gradualmente, dando un cambio continuo desde el sistema no perturbado hasta el perturbado. Matemáticamente, esto corresponde a insertar un parámetro en el hamiltoniano, de modo que podemos escribir \hat{H}_p en términos de un parámetro adimensional real λ que es muy pequeño en comparación con la unidad [3]:

$$\hat{H}_p = \lambda \hat{H}'_p, \qquad (\lambda \ll 1), \tag{3.2}$$

por lo tanto, el problema de eigenvalores da,

$$\left(\hat{H}_{0} + \lambda H_{p}^{\prime}\right) \left|\psi_{n}\right\rangle = E_{n} \left|\psi_{n}\right\rangle.$$
(3.3)

En lo que sigue vamos a considerar dos casos separados dependiendo de si las soluciones exactas de \hat{H}_0 son degeneradas o no degeneradas [2].

3.1.1 Teoría de perturbaciones de estados no degenerados

En este caso consideramos que \hat{H}_0 no tiene eigenvalores degenerados; es decir, por cada eigenvalor $E_n^{(0)}$ solo corresponde un eigenestado $|\phi_n\rangle$:

$$\hat{H}_0 \left| \phi_n \right\rangle = E_n^{(0)} \left| \phi_n \right\rangle, \tag{3.4}$$

donde los eigenvalores exactos $E_n^{(0)}$ y eigenestados exactos $|\phi_n\rangle$ son conocidas.

La idea principal consiste en suponer que los eigenvalores perturbados y los eigenestados se pueden expandir en series de potencias en el parámetro λ , lo cual quiere decir simplemente que debido a la dependencia de los eigenvalores y los eigenestados en λ ($\psi = \psi(\lambda)$ y $E = E(\lambda)$) podemos hacer una expansión en series de Taylor [**3**].

La energía a primer orden queda determinada por:

$$E_n = E_n^{(0)} + \langle \phi_n | \hat{H}_p | \phi_n \rangle \tag{3.5}$$

3.1.2 Teoría de perturbaciones de estados degenerados

Si los estados no perturbados están degenerados, esto es, si dos (o más) estados diferentes (ψ_n y $\psi_{n'}$) comparten la misma energía, la teoría de perturbaciones mostrada en la sección anterior falla [**3**].

Estados con degeneración doble

Suponemos que:

$$H_0 |\psi_n^{(0)}\rangle = E_n^{(0)} |\psi_n^{(0)}\rangle, \quad H_0 |\psi_{n'}^{(0)}\rangle = E_n^{(0)} |\psi_{n'}^{(0)}\rangle, \quad \mathbf{y} \quad \langle \psi_n^{(0)} |\psi_{n'}^{(0)}\rangle = \delta_{nn'}. \tag{3.6}$$

Alguna combinación lineal de estos estados,

$$|\psi^{(0)}\rangle = \alpha \,|\psi^{(0)}_n\rangle + \beta \,|\psi^{(0)}_{n'}\rangle \tag{3.7}$$

es todavía un eigenestado de $H^{(0)}$ con el mismo eigenvalor $E_n^{(0)}$,

$$H_0 |\psi^{(0)}\rangle = E_n^{(0)} |\psi^{(0)}\rangle.$$
(3.8)

De lo anterior, la energía corregida a primer orden queda determinada por

$$E_{n\pm}^{(1)} = \frac{1}{2} \left[W_{nn} + W_{n'n'} \pm \sqrt{(W_{nn} - W_{n'n'})^2 + 4|W_{nn'}|^2} \right]$$
(3.9)

donde, $W_{n'n} = \langle \psi_{n'}^{(0)} | H'_p | \psi_n^{(0)} \rangle$ y $W_{nn'} = \langle \psi_n^{(0)} | H'_p | \psi_{n'}^{(0)} \rangle$. Por lo que la energía a primer orden para estados degenerados queda determinada por:

$$E_n = E_n^{(0)} + \lambda E_{n\pm}^{(1)} \tag{3.10}$$

3.2 El principio variacional lineal

Supongamos que deseamos calcular la energía de estado fundamental E_0 para un sistema descrito por el hamiltoniano H, pero no puede resolver la ecuación de Schrödinger (independiente del tiempo). Elija cualquier función normalizada. El teorema variacional nos dice lo siguiente:

$$E_0 \le \langle \psi | H | \psi \rangle \equiv \langle H \rangle \tag{3.11}$$

Es decir, el valor de expectación de H en el estado ψ (presumiblemente incorrecto) seguramente sobrestima la energía del estado base E_0 . Por supuesto, si ψ resulta ser uno de los estados excitados, obviamente, $\langle H \rangle$ superará a E_0 ; pero el teorema dice que lo mismo vale para cualquier ψ en absoluto [4].

3.3 El principio variacional directo

El método variacional directo fue propuesto y usado con anterioridad por Gorecki y Byers-Brown [**5**] es desarrollado para tratar sistemas cuánticos confinados Marin y Cruz [**6**; **7**], la idea principal del método es tomar una función de prueba utilizando la solución a la ecuación de Schrödinger (ψ) para el caso libre y conjuntamente tomar el producto por una función de corte (χ) que se anula en la frontera para sistemas de potencial infinito. Matemáticamente esto se puede representar como sigue:

$$\Psi(\vec{r},\alpha_i) = \psi(\vec{r},\alpha_i)\chi(\vec{r}) \tag{3.12}$$

donde los α_i son un conjunto de parámetros variacionales. Con esta función de prueba la ec. (3.11) se minimiza el valor esperado de la energía con respecto a los parámetros variacionales

$$\frac{\partial \langle H \rangle}{\partial \alpha_i} = 0, \tag{3.13}$$

para obtener la energía y la función de onda óptimas.

4

Átomo hidrogenoide libre en dos dimensiones

En esta capítulo revisaremos en detalle la solución de la ecuación de Schrödinger para el AH-2D libre, la cual ya ha sido estudiada ampliamente en la literatura [**8-9**]. El potencial de interacción entre el electrón y el núcleo es coulombiano: inversamente proporcional a la distancia electrón-núcleo. En el pasado esto ha ocasionado confusiones innecesarias, se arguye que este potencial, al no obedecer la ley de Gauss en dos dimensiones, no puede ser el adecuado, y que en su lugar debe incluirse un potencial que varía como el logaritmo de la distancia de las cargas. Si bien es cierto que el potencial que se utiliza no es, sin duda alguna, una solución de la ley de Gauss en 2D, también debe quedar claro que esto es completamente irrelevante para la situación que interesa: se considera un sistema tridimensional cuya dinámica esta restringida a regiones planas, bidimensionales. La dimensionalidad del sistema debe entenderse con base en el número de restricciones impuestas a un sistema inmerso en tres dimensiones. El utilizar un potencial logarítmico correspondería, en este caso, a estudiar la interacción entre lineas de carga, infinitas y paralelas, con una densidad de carga constante, que al mismo tiempo viven en una región tridimensional [**9**].

4.1 La ecuación de Schrödinger

La ecuación de Schrödinger independiente del tiempo tiene la forma

$$\hat{H}\Psi = E\Psi,\tag{4.1}$$

donde \hat{H} es el operador hamiltoniano, E y Ψ la energía y función de onda del estado, respectivamente.

Para el átomo hidrógeno el hamitoniano es:

$$\begin{split} \hat{H} &= \hat{T} + \hat{V} \\ &= \frac{1}{2\mu} \left\{ \hat{P}_x^2 + \hat{P}_y^2 \right\} + V(x, y) \\ &= -\frac{\hbar^2}{2\mu} \left\{ \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right\} + V(x, y), \end{split}$$
(4.2)

donde μ es la masa reducida

$$\mu = \frac{m_e M}{me + M},\tag{4.3}$$

y V(x, y) es el potencial Coulombiano

$$V(x,y) = -\frac{Ze^2}{\sqrt{x^2 + y^2}} .$$
(4.4)

Considerando que la masa del núcleo (protón) es infinita, la masa reducida es

$$\mu = \frac{m_e M}{m_e + M} = \frac{m_e M}{M(m_e/M + 1)} \to m_e.$$
 (4.5)

En coordenadas polares el potencial Coulombiano toma una forma muy simple

$$V(\rho) = -\frac{Ze^2}{\rho},\tag{4.6}$$

lo cual permite aplicar el método de separación de variables. En estas variables la ecuación de Schrödinger para el átomo de hidrógeno es

$$-\frac{\hbar^2}{2m_e}\nabla^2\psi(\rho,\phi) + V(\rho)\psi(\rho,\phi) = E\psi(\rho,\phi).$$
(4.7)

Donde ∇^2 es el operador Laplaciano en coordenadas polares:

$$\nabla^2 = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}.$$
(4.8)

Cabe señalar que ρ es la distancia del electrón al núcleo, +Ze es la carga nuclear, y m_e es la masa del electrón; de esta manera se propone una solución de la forma de producto como se muestra,

$$\psi(\rho,\phi) = R(\rho)\Phi(\phi). \tag{4.9}$$

De lo cual, sustituyendo (4.9) en (4.7)

$$-\frac{\hbar^2}{2m_e}\left\{\frac{\partial^2}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2}\right\}R(\rho)\Phi(\phi) - \frac{Ze^2}{\rho}R(\rho)\Phi(\phi) = ER(\rho)\Phi(\phi),$$
(4.10)

multiplicando por $-2m_e\rho^2/\hbar^2$, dividiendo por (4.9) y haciendo un poco de álgebra llegamos a la siguiente ecuación en derivadas totales

$$\frac{\rho^2}{R(\rho)} \left\{ \frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} \right\} R(\rho) + \frac{2m_e \rho^2}{\hbar^2} \left[\frac{Ze^2}{\rho} + E \right] = -\frac{1}{\Phi(\phi)} \frac{\mathrm{d}^2}{\mathrm{d}\phi^2} \Phi(\phi), \qquad (4.11)$$

igualando a una contante de separación m^2

$$\frac{\rho^2}{R(\rho)} \left\{ \frac{d^2}{d\rho^2} + \frac{1}{\rho} \frac{d}{d\rho} \right\} R(\rho) + \frac{2m_e \rho^2}{\hbar^2} \left[\frac{Ze^2}{\rho} + E \right] = -\frac{1}{\Phi(\phi)} \frac{d^2}{d\phi^2} \Phi(\phi) = m^2, \quad (4.12)$$

así, se obtienen las siguientes ecuaciones para la función de onda angular y la función de onda radial respectivamente; ecuación angular

$$\frac{d^2\Phi}{d\phi^2} + m^2\Phi = 0, \tag{4.13}$$

ecuación radial

$$\left\{\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho}\frac{\mathrm{d}}{\mathrm{d}\rho}\right\}R(\rho) + \left[\frac{2m_e}{\hbar^2}\left[\frac{Ze^2}{\rho} + E\right] - \frac{m^2}{\rho^2}\right]R(\rho) = 0.$$
(4.14)

Dado que la ecuación diferencial $(R(\rho))$ depende de m solamente a través de m^2 , y en consecuencia, tan solo de |m|, por lo que los niveles energéticos para m y -mestán degenerados para toda $m \neq 0$. De esta manera se ha conseguido reducir el problema a una sola ecuación, pero a costa de introducir un potencial centrífugo que depende del valor del momento angular, m^2/ρ^2 , que junto con el potencial Coulombiano produce un potencial efectivo atractivo que puede sostener estados ligados, que en el caso clásico corresponden a orbitas cerradas [**9**].

4.1.1 Solución de la ecuación angular

La solución de (4.13) es de la forma $e^{im\phi}$, la cual cumple con condiciones de frontera periódicas $\Phi(\phi) = \Phi(\phi + 2\pi)$, entonces,

$$e^{im\phi} = e^{im(\phi+2\pi)} \rightarrow e^{im2\pi} = 1 \Rightarrow m = 0, \pm 1, \pm 2, ...,$$
 (4.15)

por lo tanto,

$$\Phi_m(\phi) = A e^{im\phi}, \qquad m = 0, \pm 1, \pm 2, \cdots.$$
 (4.16)

Normalización de la ecuación angular

$$1 = \int_0^{2\pi} \Phi_m^*(\phi) \Phi_m(\phi) \mathrm{d}\phi = |A|^2 \int_0^{2\pi} e^{-im\phi} e^{im\phi} \mathrm{d}\phi = |A|^2 2\pi,$$
(4.17)

se sigue que,

$$A = \frac{1}{\sqrt{2\pi}},\tag{4.18}$$

finalmente llegamos a las soluciones normalizadas para la función de onda angular,

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}, \qquad m = 0, \pm 1, \pm 2, \dots$$
(4.19)

La solución (4.19) es también la eigenfunción del momento angular a lo largo de la dirección z

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi},\tag{4.20}$$

que conmuta con el hamiltoniano. Por lo tanto m es un buen número cuántico.

4.1.2 Solución de la ecuación radial

Analicemos el comportamiento asintótico de las soluciones a la ec. (4.14). Observamos que cuando:

$$\rho \to \infty \Rightarrow \frac{1}{\rho} \to 0,$$
(4.21)

de esta manera (4.14) se reduce a:

$$\frac{d^2}{d\rho^2}R(\rho) + \frac{2m_e E}{\hbar^2}R(\rho) = 0,$$
(4.22)

haciendo el cambio

$$E = -\frac{\hbar^2}{2m_e\alpha^2} \to \frac{2m_eE}{\hbar^2} = -\frac{1}{(2\alpha)^2}$$
 (4.23)

у

$$\rho = \alpha x, \tag{4.24}$$

así, (4.22) se reescribe como:

$$\frac{d^2}{d\rho^2}R(\rho) - \frac{1}{(2\alpha)^2}R(\rho) = 0,$$
(4.25)

con lo cual, obtenemos como solución general:

$$R(\rho) = Ae^{\rho/2\alpha} + Be^{-\rho/2\alpha}, \qquad (4.26)$$

una solución físicamente aceptable se obtiene al hacer A = 0, debido a que $R(\rho) \rightarrow \infty$ cuando $\rho \rightarrow \infty$; usando (4.24) finalmente obtenemos

$$R(\rho) = Be^{-x/2} \approx e^{-x/2}.$$
(4.27)

Si realizamos el cambio

$$\lambda = \frac{2m_e \alpha Z e^2}{\hbar^2},\tag{4.28}$$

y haciendo uso de (4.23) y (4.24), la ec. radial (4.14) se escribe como:

$$\left\{\frac{d^2}{dx^2} + \frac{1}{x}\frac{d}{dx} - \frac{m^2}{x^2} + \frac{\lambda}{x} - \frac{1}{4}\right\}R(x) = 0.$$
(4.29)

La solución general a la ec. (4.29) se propone como (con f = f(x)):

$$R(x) = e^{-x/2} f, (4.30)$$

$$R'(x) = e^{-x/2} \left\{ f' - \frac{1}{2}f \right\},$$
(4.31)

$$R''(x) = e^{-x/2} \left\{ f'' - f' + \frac{1}{4}f \right\},$$
(4.32)

con f(x) una función auxiliar que debe satisfacer la ecuación diferencial resultante, después de sustituir (4.30) en (4.29) se obtiene:

$$e^{-x/2}\left\{f''-f'+\frac{1}{4}f\right\}+\frac{1}{x}e^{-x/2}\left\{f'-\frac{1}{2}f\right\}+\left\{-\frac{m^2}{x^2}+\frac{\lambda}{x}-\frac{1}{4}\right\}e^{-x/2}f=0, \quad (4.33)$$

lo cual conduce a la siguiente ecuación,

$$f'' + \left(\frac{1}{x} - 1\right)f' + \left[-\frac{m^2}{x^2} + \frac{1}{x}\left(\lambda - \frac{1}{2}\right)\right]f = 0.$$
 (4.34)

Esta ultima ecuación tiene una singularidad al origen, por lo que ahora analizaremos el comportamiento al origen y la forma de las soluciones físicamente aceptables; proponemos (con h = h(x)):

$$f(x) = x^{\gamma}h, \tag{4.35}$$

$$f'(x) = x^{\gamma} \left\{ h' + \gamma x^{-1} h \right\},$$
(4.36)

$$f''(x) = x^{\gamma} \left\{ h'' + 2\gamma x^{-1} h' - \gamma x^{-2} h + \gamma^2 x^{-2} h \right\},$$
(4.37)

sustituyendo (4.35) en (4.34),

$$x^{\gamma} \left\{ h^{''} + 2\gamma x^{-1} h^{'} - \gamma x^{-2} h + \gamma^{2} x^{-2} h \right\} + \left(\frac{1}{x} - 1 \right) x^{\gamma} \left\{ h^{'} + \gamma x^{-1} h \right\} + \left[-\frac{m^{2}}{x^{2}} + \frac{1}{x} \left(\lambda - \frac{1}{2} \right) \right] x^{\gamma} h = 0,$$
(4.38)

la cual conduce a

$$h'' + 2\gamma x^{-1}h' - \gamma x^{-2}h + \gamma^2 x^{-2}h + \left(\frac{1}{x} - 1\right) \left\{h' + \gamma x^{-1}h\right\} + \left[-\frac{m^2}{x^2} + \frac{1}{x}\left(\lambda - \frac{1}{2}\right)\right]h = 0,$$
(4.39)

multiplicando por x^2 ,

$$h''x^{2} + 2\gamma xh' - \gamma h + \gamma^{2}h + \left(\frac{1}{x} - 1\right)\left\{h' + \gamma x^{-1}h\right\}x^{2} + \left[-\frac{m^{2}}{x^{2}} + \frac{1}{x}\left(\lambda - \frac{1}{2}\right)\right]hx^{2} = 0,$$
(4.40)

entonces, cuando $x \ \rightarrow \ 0,$ obtenemos:

$$\gamma^2 h - m^2 h = 0 \Rightarrow \gamma^2 = m^2, \tag{4.41}$$

así,

$$\gamma = m \ \mathbf{y}, \ \gamma = -m \ ; \ \mathbf{con:} \ m = 0, 1, 2, \cdots,$$
 (4.42)

eligiendo como solución $\gamma=m,$ ya que $\gamma=-m$ diverge al origen, entonces

$$f(x) = x^{|m|} h(x).$$
(4.43)

Por consiguiente, la solución de la ecuación (4.30) tiene la forma:

$$R(x) = e^{-x/2} x^{|m|} h(x).$$
(4.44)

A partir de la ecuación anterior podemos obtener la solución general; la función h(x) debe satisfacer una ecuación diferencial que obtendremos al derivar (4.44),

$$R'(x) = e^{-x/2} \left[x^{|m|} h' + |m| x^{|m|-1} h - \frac{1}{2} x^{|m|} h \right],$$
(4.45)

$$R''(x) = e^{-x/2} \left\{ x^{|m|} h'' + \left[2|m|x^{|m|-1} - x^{|m|} \right] h' + \left[|m|(|m|-1)x^{|m|-2} - |m|x^{|m|-1} + \frac{1}{4}x^{|m|} \right] h \right\},$$
(4.46)

sustituyendo (4.44) en la ecuación (4.29), al factorizar el termino común $e^{-x/2}x^{|m|}$ y hacer un poco de álgebra se obtiene,

$$xh'' + (2|m| + 1 - x)h' - (-\lambda + |m| + 1/2)h = 0.$$
 (4.47)

La solución de la ecuación (4.47), es regular en x = 0, esta ecuación es la función hipergeométrica confluente o funciones de Kummer [**10**].

$$h(x) = {}_{1}F_{1}(-\lambda + |m| + 1/2, 2|m| + 1, x).$$
(4.48)

Podemos relacionar la función hipergeométrica confluente con los polinomios asociados de Laguerre a través de [**10**]:

$${}_{1}F_{1}(a,b,z) = \frac{N!}{(\tau+1)} {}_{N}L_{N}^{(\tau)}(x),$$
(4.49)

con,

$$a = -N,$$

$$b = \tau + 1,$$

$$z = x,$$

(4.50)

por lo que,

$$N = \lambda - |m| - 1/2,$$

$$\tau = 2|m|,$$
(4.51)

para que la función de onda esté normalizada a la unidad N debe ser un entero mayor o igual que cero, pues de otra forma diverge en una forma físicamente inaceptable, pues ya no es del tipo cuadrado integrable, por lo que obtenemos,

$${}_{1}F_{1}(\lambda - |m| - 1/2, 2|m| + 1, x) = B_{\lambda m} L_{\lambda - |m| - 1/2}^{2|m|}(x),$$
(4.52)

tenemos que λ depende de la energía a través del factor de escala α ec. (4.28), por lo cual encontramos en consecuencia que las energías están dadas por,

$$E_n = -\frac{\hbar^2}{8m_e\alpha^2} = -\frac{m_eZ^2e^4}{2\hbar^2(n-\frac{1}{2})^2}, \quad n = 1, 2, 3, \cdots,$$
(4.53)

donde se ha definido,

$$n = N + |m| + 1, N \ge 0, n \ge |m| + 1,$$
 (4.54)

ya que $n \ge 1$, $n = 1, 2, 3, \cdots$, $|m| = 0, 1, 2, \cdots, n-1$; directamente de (4.53) se encuentra el factor de escala,

$$\alpha_n = \frac{\hbar^2}{2m_e Z e^2} \left(n - \frac{1}{2} \right). \tag{4.55}$$

Además de (4.51) y (4.54) se encuentra que $\lambda = n - 1/2$, por lo tanto al usar (4.24) obtenemos,

$$R_{nm}(\rho) = B_{nm} \left(\frac{\rho}{\alpha_n}\right)^{|m|} L_{n-|m|-1}^{2|m|} \left(\frac{\rho}{\alpha_n}\right).$$
(4.56)

Normalización de la función de onda radial

$$1 = \int_{0}^{\infty} \left[B_{nm} e^{-\rho/2\alpha_{n}} \left(\frac{\rho}{\alpha_{n}} \right)^{|m|} L_{n-|m|-1}^{2|m|} \left(\frac{\rho}{\alpha_{n}} \right) \right]^{*} \times \left[B_{nm} e^{-\rho/2\alpha_{n}} \left(\frac{\rho}{\alpha_{n}} \right)^{|m|} L_{n-|m|-1}^{2|m|} \left(\frac{\rho}{\alpha_{n}} \right) \right] \rho d\rho$$

$$= |B_{nm}|^{2} \int_{0}^{\infty} e^{-\rho/\alpha_{n}} \left(\frac{\rho}{\alpha_{n}} \right)^{2|m|} \left[L_{n-|m|-1}^{2|m|} \left(\frac{\rho}{\alpha_{n}} \right) \right]^{2} \rho d\rho,$$
(4.57)

haciendo el cambio de variable,

$$t = \frac{\rho}{\alpha_n} \rightarrow \mathrm{d}t = \frac{1}{\alpha_n} \mathrm{d}\rho,$$
 (4.58)

se obtiene,

$$1 = |B_{nm}|^2 \alpha_n^2 \int_0^\infty e^{-t} t^{2|m|+1} \left[L_{n-|m|-1}^{2|m|}(t) \right]^2 \mathrm{d}t.$$
(4.59)

Identificando una relación de suma importancia que cumplen los polinomios asociados de Laguerre,

$$\langle L_q^p | x | L_{q'}^p \rangle = \int_0^\infty e^{-x} x^{p+1} L_q^p(x) L_{q'}^p(x) \, \mathrm{d}x = \frac{\Gamma(q+p+1)}{q!} (2q+p+1) \delta_{qq'}, \quad (4.60)$$

donde

$$\delta_{qq'} = \begin{cases} 1 & \text{si } q = q' \\ 0 & \text{si } q \neq q', \end{cases}$$

$$(4.61)$$

es la delta de Kronecker. De esta forma (4.59) queda de la forma,

$$1 = |B_{nm}|^{2} \alpha_{n}^{2} \frac{\Gamma(n+|m|-1+1)}{(n-|m|-1)!} (2n-1)$$

= $|B_{nm}|^{2} \alpha_{n}^{2} \frac{(n+|m|-1)!}{(n-|m|-1)!} (2n-1)$
 $\Rightarrow B_{nm} = \frac{1}{\sqrt{2n-1}\alpha_{n}} \sqrt{\frac{(n-|m|-1)!}{(n+|m|-1)!}}.$ (4.62)

Se hizo uso de un resultado particular de la función gamma: $\Gamma(\beta + 1) = \beta!$. Por lo que obtenemos las eigenfunciones normalizadas para la función de onda radial:

$$R_{nm}(\rho) = \frac{1}{\sqrt{2n-1}\alpha_n} \sqrt{\frac{(n-|m|-1)!}{(n+|m|-1)!}} \left(\frac{\rho}{\alpha_n}\right)^{|m|} L_{n-|m|-1}^{2|m|} \left(\frac{\rho}{\alpha_n}\right).$$
(4.63)

4.1.3 La función de onda completa

Finalmente, la función de onda completa queda determinada por el producto de la función de onda angular y la función de onda radial.

Eigenfunciones normalizadas del átomo hidrogenoide libre en dos dimensiones:

$$\Psi_{nm}(\rho,\phi) = \frac{1}{\sqrt{2\pi}\alpha_n} \sqrt{\frac{(n-|m|-1)!}{(2n-1)(n+|m|-1)!}} e^{-\rho/2\alpha_n} \times \left(\frac{\rho}{\alpha_n}\right)^{|m|} L_{n-|m|-1}^{2|m|} \left(\frac{\rho}{\alpha_n}\right) e^{im\phi}.$$
(4.64)

La forma de estas eigenfunciones es marcadamente similar a sus contrapartes tridimensionales por el tipo de funciones involucradas. Cabe remarcar que en el caso bidimensional el factor de escala α_n depende linealmente del número cuántico principal *n*, pero que no es directamente proporcional a *n* misma, como sucede en el caso tridimensional, excepto cuando *n* es mucho mayor que 1/2 [**9**].

4.2 Átomo de hidrógeno en tres dimensiones

Se tiene que la solución para el átomo de hidrógeno en tres dimensiones está dada por:

$$\psi_{n\ell m}(\rho,\theta,\phi) = Y_{\ell}^{m}(\theta,\phi)R_{n\ell}(\rho) .$$
(4.65)

donde $Y_{\ell}^{m}(\theta, \phi)$ son los armónicos esféricos y $R_{n\ell}(\rho)$ la función de onda radial. Los números cuánticos varían de acuerdo a lo siguiente:

$$n = 1, 2, 3, \cdots,$$

$$\ell = 0, 1, 2, \cdots, n - 1,$$

$$m = 0, \pm 1, \pm 2, \pm 3, \cdots, \pm \ell.$$
(4.66)

En este caso realizamos una comparativa sobre las funciones de onda radiales y las densidades de probabilidad para el caso en dos y tres dimensiones respectivamente. Las densidades de probabilidad nos dan información física interesante de dichos sistemas, tal análisis se puede apreciar en las figuras [3.1-3.6].

Las primeras funciones de onda radial son bien conocidas en la literatura [8; 11].

$$\begin{array}{ll} 2 \text{ D} & 3 \text{ D} \\ R_{10} = \beta_1 e^{-\beta_1 \rho/2} & R_{10} = 2e^{-\rho} \\ R_{20} = \frac{\beta_2}{\sqrt{3}} \left(1 - \beta_2 \rho\right) e^{-\beta_2 \rho/2} & R_{20} = \frac{1}{\sqrt{2}} \left(1 - \frac{1}{2}\rho\right) e^{-\rho/2} \\ R_{21} = \frac{\beta_2^2}{\sqrt{6}} \rho e^{-\beta_2 \rho/2} & R_{21} = \frac{1}{2\sqrt{6}} \rho e^{-\rho/2} \\ R_{30} = \frac{\beta_3}{2\sqrt{5}} \left(2 - 4\beta_3 \rho + \beta_3^2 \rho^2\right) e^{-\beta_3 \rho/2} & R_{30} = \frac{2}{3\sqrt{3}} \left(1 - \frac{2}{3}\rho + \frac{2}{27}\rho^2\right) e^{-\rho/3} \\ R_{31} = \frac{\beta_3^2}{\sqrt{30}} \rho \left(3 - \beta_3 \rho\right) e^{-\beta_3 \rho/2} & R_{31} = \frac{8}{27\sqrt{6}} \rho \left(1 - \frac{1}{6}\rho\right) e^{-\rho/3} \\ R_{32} = \frac{\beta_3^3}{\sqrt{5!}} \rho^2 e^{-\beta_3 \rho/2} & R_{32} = \frac{4}{81\sqrt{30}} \rho^2 e^{-\rho/3} \end{array}$$

con: $\beta_n = \frac{2}{n-1/2}$ u.a.

Figura 4.1: Puede observarse en la Figura 3.1a las funciones de onda radial para el estado base del átomo de hidrógeno 2D y 3D. La información física puede apreciarse al analizar la probabilidad radial figura 3.1b, donde el máximo de la probabilidad radial para el caso de 2D (línea roja) se localiza en la posición 0.25 u.a. y el máximo en el caso de 3D (línea azul) en 1 u.a.. Además el valor esperado de la posición del electrón para el caso de 2D está en 0.5 u.a. y para el caso en 3D es 1.5 u.a.; la mayor cercanía del electrón al núcleo, en el caso 2D, explica porque la energía de amarre es mayor en el caso de 2D ($E_{10} = -2,0$ u.a.) que en el caso de 3D ($E_{10} = -0,5$ u.a.). La cual es 4 veces menor en el caso 2D.

Figura 4.2: En la Figura 3.2a puede observarse que hay un nodo (donde las funciones radiales se hacen cero, la relevancia de dicho nodo aparece al analizar la probabilidad radial donde vemos que dicho nodo se convierten en un mínimo) el cual es mas cercano al núcleo en 2D. La probabilidad radial puede observarse en 3.2b aquí tenemos dos máximos de mayor probabilidad de encontrar al electrón para el caso en 2D resultan en las posiciones 0.20096 y 2.79904 y para el caso de 3D en 0.76393 y 5.23607 u.a. respectivamente.

Figura 4.3: En la Figura 3.3a puede observarse la función de onda radial para el caso en 2D y 3D. La probabilidad radial puede observarse en la Figura 3.3b aquí la mayor probabilidad de encontrar al electrón para el caso en 2D resulta en la posición 2.25000 y para el caso de 3D en 4.00000 u.a. respectivamente.

Figura 4.4: En la Figura 3.4a se observa que hay dos nodos (donde las funciones radiales se hacen cero, la relevancia de dichos nodos aparece al analizar la probabilidad radial donde vemos que dichos nodos se convierten en mínimos). La probabilidad radial puede observarse en la Figura 3.4b aquí tenemos tres máximos de mayor probabilidad de encontrar al electrón para el caso en 2D resultan en las posiciones 0.19847, 2.23145 y 8.82008 y para el caso de 3D en 0.74003, 4.18593 y 13.07400 u.a. respectivamente.

Figura 4.5: En la Figura 3.5a se puede observar que hay un nodo (donde las funciones radiales se hacen cero, la relevancia de dicho nodo aparece al analizar la probabilidad radial donde vemos que dicho nodo se convierten en un mínimo). La probabilidad radial puede observarse en la Figura 3.5b aquí tenemos dos máximos de mayor probabilidad de encontrar al electrón para el caso en 2D resultan en las posiciones 1.69281 y 8.30719 y para el caso de 3D en 3.00000 y 12.00000 u.a. respectivamente.

Estado 3d

Figura 4.6: Puede observarse en 3.6a que la función de onda radial para el caso en 2D y 3D vale cero en el origen, pero la función de onda radial para el caso de 2D el electrón esta mas ligado al núcleo. La probabilidad radial puede observarse en 3.6b aquí la mayor probabilidad de encontrar al electrón para el caso en 2D resultan en la posición 6.25000 y para el caso de 3D en 9.00000 u.a. respectivamente.

5

El átomo de hidrógeno confinado al interior de una caja circular

En este capítulo se procede a obtener los eigenvalores para el AHC-2D; en este caso el núcleo se encuentra en el centro de un disco de radio ρ_0 y el electrón se mueve como una partícula libre en el interior de dicho disco confinado por una barrera de potencial de altura infinita (Véase Figura 11.1), es decir, que las condiciones de frontera tipo Dirichlet imponen que ($\rho = \rho_0, \phi$) = 0 [**9**]. Se procede a estudiar dicho modelo utilizando primero teoría de perturbaciones a primer orden y posteriormente utilizando el método variacional directo.

5.1 El átomo de hidrógeno 2D confinado. Teoría de perturbaciones a primer orden

En este capítulo emplearemos los resultados obtenidos para el átomo confinado en una caja circular (Véase Apéndice A) para calcular algunas energías del AHC-2D. El hamiltoniano se puede escribir como (en unidades atómicas $e = \hbar = m_e = 1$):

$$H = H_0 - \frac{1}{\rho},$$
 (5.1)

donde H_0 es el hamiltoniano de la partícula sin confinar discutido en el capítulo 3 del cual se conocen las funciones y valores propios, y el término Coulombiano $1/\rho$ se puede tratar como una perturbación.

De este modo procedemos sabiendo que tenemos degeneración doble para una n dada y $m \neq 0$. Por lo cual aplicaremos teoría de perturbaciones para estados degenerados a primer orden, lo cual muestra que al realizar el cálculo de los elementos de matriz (Véase apéndice C), que la corrección en la energía a primer orden para estados no degenerados, esta dada por:

$$E_{nm} = E_{nk}^{0} - \frac{2}{\rho_0 |J_{|k|+1}(x_{|k|n})|^2} \int_0^1 \left[J_{|k|}(x_{|k|n}u) \right]^2 \mathrm{d}u \tag{5.2}$$

donde $E_{nk}^0 = \frac{\hbar^2}{2m_e} \left(\frac{x_{|k|n}}{\rho_0}\right)^2$. Por lo tanto la energía corregida a primer orden para el estado base y algunos estados excitados está dada por:

$$\begin{split} E_{10}(\rho_{0}) &= \frac{\hbar^{2} x_{01}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{1}^{2}(x_{01})} \int_{0}^{1} \left[J_{0}(x_{01}u)\right]^{2} du, \\ E_{20}(\rho_{0}) &= \frac{\hbar^{2} x_{02}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{1}^{2}(x_{02})} \int_{0}^{1} \left[J_{0}(x_{02}u)\right]^{2} du, \\ E_{30}(\rho_{0}) &= \frac{\hbar^{2} x_{03}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{1}^{2}(x_{03})} \int_{0}^{1} \left[J_{0}(x_{03}u)\right]^{2} du, \\ E_{40}(\rho_{0}) &= \frac{\hbar^{2} x_{04}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{1}^{2}(x_{04})} \int_{0}^{1} \left[J_{0}(x_{04}u)\right]^{2} du, \\ E_{21}(\rho_{0}) &= \frac{\hbar^{2} x_{11}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{2}^{2}(x_{11})} \int_{0}^{1} \left[J_{1}(x_{11}u)\right]^{2} du, \\ E_{31}(\rho_{0}) &= \frac{\hbar^{2} x_{12}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{2}^{2}(x_{12})} \int_{0}^{1} \left[J_{1}(x_{13}u)\right]^{2} du, \\ E_{41}(\rho_{0}) &= \frac{\hbar^{2} x_{21}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{2}^{2}(x_{13})} \int_{0}^{1} \left[J_{2}(x_{21}u)\right]^{2} du, \\ E_{32}(\rho_{0}) &= \frac{\hbar^{2} x_{21}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{3}^{2}(x_{21})} \int_{0}^{1} \left[J_{2}(x_{21}u)\right]^{2} du, \\ E_{42}(\rho_{0}) &= \frac{\hbar^{2} x_{22}^{2}}{2m_{e} \rho_{0}^{2}} - \frac{2}{\rho_{0} J_{3}^{2}(x_{22})} \int_{0}^{1} \left[J_{2}(x_{22}u)\right]^{2} du. \end{split}$$

Las integrales pueden evaluarse numéricamente, y finalmente podemos escribir las energías a primer orden para el estado base y algunos estados excitados como:

$$E_{10}(\rho_{0}) = \frac{2.89159}{\rho_{0}^{2}} - \frac{3.51351}{\rho_{0}},$$

$$E_{20}(\rho_{0}) = \frac{15.23560}{\rho_{0}^{2}} - \frac{4.35763}{\rho_{0}},$$

$$E_{30}(\rho_{0}) = \frac{37.44350}{\rho_{0}^{2}} - \frac{4.81084}{\rho_{0}},$$

$$E_{40}(\rho_{0}) = \frac{69.52010}{\rho_{0}^{2}} - \frac{5.12170}{\rho_{0}},$$

$$E_{21}(\rho_{0}) = \frac{7.3010}{\rho_{0}^{2}} - \frac{2.0540}{\rho_{0}},$$

$$E_{31}(\rho_{0}) = \frac{24.60922}{\rho_{0}^{2}} - \frac{2.62570}{\rho_{0}},$$

$$E_{41}(\rho_{0}) = \frac{51.74972}{\rho_{0}^{2}} - \frac{2.98776}{\rho_{0}},$$

$$E_{32}(\rho_{0}) = \frac{13.18730}{\rho_{0}^{2}} - \frac{1.72272}{\rho_{0}},$$

$$E_{42}(\rho_{0}) = \frac{35.42499}{\rho_{0}^{2}} - \frac{2.16790}{\rho_{0}}.$$

Puede apreciarse que para radios de confinamiento grandes los valores propios tienden a cero, como era de esperarse. Los valores propios para diferentes radios de

22

confinamiento se reportan en la Tabla 5.1 donde se reportan los estados E_{10} , E_{20} , E_{30} , E_{40} , E_{21} , E_{31} , E_{41} , E_{32} y E_{42} .

Finalmente en la Figura 5.1 podemos observar el comportamiento de la energía para el estado base y algunos estados excitados para diferentes radios de confinamiento ρ_0 . Uno puede cerciorarse de dichos resultados comparándolos con los reportados en la literatura utilizando otro método [**12**].

Figura 5.1: Variación de la energía para los estados: E_{10} , E_{20} , E_{30} , E_{40} , E_{21} , E_{31} , E_{41} , E_{32} y E_{42} como función del radio de confinamiento ρ_0 .

$ ho_0$	E_{10}	E_{20}	E_{30}	E_{40}
0.50000	4.53934	52.22714	140.15232	267.83700
0.60000	2.17634	35.05839	95.99165	184.57522
0.70000	0.88190	24.86787	69.54267	134.56104
0.80000	0.12622	18.35858	52.49191	102.22303
0.90000	-0.33403	13.96757	40.88116	80.13650
1.00000	-0.62192	10.87797	32.63266	64.39840
1.30000	-0.99170	5.66312	18.45527	37.19638
1.60000	-1.06641	3.22788	11.61959	23.95522
$ ho_0$	E_{21}	E_{31}	E_{41}	
0.50000	25.09600	93.18548	201.02336	
0.60000	16.85722	63.98277	138.76962	
0.70000	11.96571	46.47189	101.34344	
0.80000	8.84031	35.16978	77.12423	
0.90000	6.73135	27.46430	60.56880	
1.00000	5.24700	21.98352	48.76196	
1.30000	2.74011	12.54189	28.32285	
1.60000	1.56820	7.97191	18.34738	
$ ho_0$	E_{32}	E_{42}		
0.50000	49.30376	137.36416		
0.60000	33.76018	94.78958		
0.70000	24.45182	69.19889		
0.80000	18.45175	52.64167		
0.90000	14.36648	41.32577		
1.00000	11.46458	33.25709		
1.30000	6.47796	19.29391		
1.60000	4.07458	12.48294		

Tabla 5.1: Valores propios dados en unidades atómicas (u.a.) para los niveles de energía: $E_{10}(1s), E_{20}(2s), E_{30}(3s), E_{40}(4s), E_{21}(2p), E_{31}(3p), E_{41}(4p), E_{32}(3d) y E_{42}(4d)$ para diferentes radios de confinamiento ρ_0 (u.a.).

5.2 El átomo de hidrógeno confinado en dos dimensiones. Enfoque variacional

El problema del AHC-2D mediante paredes impenetrables, esta descrito por la ecuación de Schrödinger (ec. (4.7)), donde el potencial $V(\rho)$ es ahora,

$$V(\rho) = \begin{cases} +\infty, & \rho \ge \rho_0, \\ -\frac{1}{\rho}, & \rho < \rho_0. \end{cases}$$
(5.5)

La función de onda que es solución de (4.7) con el potencial (5.5) debe satisfacer la condición de frontera tipo Dirichlet

$$\psi(\rho = \rho_0, \phi) = 0. \tag{5.6}$$

Las eigenfunciones de este problema siguen siendo de la misma forma que para el caso libre, esto es: $\psi(\rho, \phi) = R(\rho)\Phi(\phi)$; la solución angular está dada por $\Phi(\phi) = \frac{e^{im\phi}}{\sqrt{2\pi}}$. Dichas eigenfunciones cumplirán con las condiciones de frontera cuando las eigenfunciones radiales contengan una función de corte.

Las eigenfunciones radiales satisfacen la ecuación radial de Schrödinger en dos dimensiones (en unidades atómicas $e = \hbar = m_e = 1$):

$$-\frac{1}{2}\left\{\frac{d^2}{d\rho^2} + \frac{1}{\rho}\frac{d}{d\rho} - \frac{m^2}{\rho^2}\right\}R'_{nm}(\rho) + V(\rho)R'_{nm}(\rho) = ER'_{nm}(\rho).$$
(5.7)

Las funciones de onda del problema de campo central son de la forma:

$$\psi_{nm}(\rho,\phi) = R_{nm}(\rho) \frac{e^{im\phi}}{\sqrt{2\pi}},\tag{5.8}$$

observemos lo siguiente:

$$\langle \psi_{nm}(\rho,\phi) | \psi_{nm}(\rho,\phi) \rangle = \langle \Phi_m(\phi) R_{nm}(\rho) | \Phi_m(\phi) R_{nm}(\rho) \rangle$$

$$= \underbrace{\langle \Phi_m(\phi) | \Phi_m(\phi) \rangle}_{=1} \langle R_{nm}(\rho) | R_{nm}(\rho) \rangle .$$

$$(5.9)$$

Además, se puede apreciar que el hamiltoniano es un hamiltoniano radial $H = H_{\rho}$, esto quiere decir que,

$$\langle \psi_{nm}(\rho,\phi)|H_{\rho}\psi_{nm}(\rho,\phi)\rangle = \langle \Phi_{m}(\phi)R_{nm}(\rho)|H_{\rho}\Phi_{m}(\phi)R_{nm}(\rho)\rangle$$
$$= \underbrace{\langle \Phi_{m}(\phi)|\Phi_{m}(\phi)\rangle}_{=1} \langle R_{nm}(\rho)|H_{\rho}R_{nm}(\rho)\rangle$$
$$= \langle R_{nm}(\rho)|H_{\rho}R_{nm}(\rho)\rangle$$
(5.10)

Por tal motivo, solo nos enfocaremos en la función de onda radial.

5.2.1 El átomo de hidrógeno confinado en dos dimensiones. Método variacional directo

Las funciones de onda radiales (exactas) se pueden escribir como

$$R_{nm}(\rho) = N_{nm} e^{-\beta_n \rho/2} \left(\beta_n \rho\right)^{|m|} L_{n-|m|-1}^{2|m|} \left(\beta_n \rho\right)$$
(5.11)

donde $\beta_n = \frac{2Z}{n-1/2}$ y N_{nm} denota la constante de normalización. Para encontrar soluciones aproximadas para la función de onda radial en el caso confinado, usaremos la función de corte $\chi^{(\rho_0)}(\rho) = \left(1 - \frac{\rho}{\rho_0}\right)$. De esta manera las funciones de prueba estarán dadas por

$$R_{nm}^{(\rho_0)}(\rho;\alpha_j) = \psi_{nm}(\rho;\alpha_j) \,\chi^{(\rho_0)}(\rho)$$
(5.12)

donde α_j es un parámetro variacional y

$$R_{nm}(\rho;\alpha_j) = A_{nm}(\alpha_j)e^{-\alpha_j\rho} (\alpha_j\rho)^{|m|} L_{n-|m|-1}^{2|m|} (\alpha_j\rho).$$
(5.13)

5.2.2 Estado 1s

De (5.13) obtenemos que la función de onda radial para el estado base va como:

$$R_{10}(\rho) = A_{10}e^{-\alpha_1\rho} \left(1 - \frac{\rho}{\rho_0}\right).$$
(5.14)

La constante de normalización se obtiene demandando que:

$$\langle R_{10}(\rho)|R_{10}(\rho)\rangle = 1,$$
 (5.15)

$$1 = \int_{0}^{\rho_{0}} \left[A_{10} e^{-\alpha_{1}\rho} \left(1 - \frac{\rho}{\rho_{0}} \right) \right]^{*} \left[A_{10} e^{-\alpha_{1}\rho} \left(1 - \frac{\rho}{\rho_{0}} \right) \right] \rho d\rho$$

= $|A_{10}|^{2} \int_{0}^{\rho_{0}} e^{-2\alpha_{1}\rho} \left(1 - \frac{\rho}{\rho_{0}} \right)^{2} \rho d\rho$ (5.16)
= $|A_{10}|^{2} \left[\frac{1}{\rho_{0}^{2}} \int_{0}^{\rho_{0}} e^{-2\alpha_{1}\rho} \rho^{3} d\rho - \frac{2}{\rho_{0}} \int_{0}^{\rho_{0}} e^{-2\alpha_{1}\rho} \rho^{2} d\rho + \int_{0}^{\rho_{0}} e^{-2\alpha_{1}\rho} \rho d\rho \right],$

integrando por partes, obtenemos

$$1 = |A_{10}|^2 \left[\frac{3 - 4\rho_0 \alpha_1 + 2\rho_0^2 \alpha_1^2 - e^{-2\alpha_1 \rho_0} (3 + 2\rho_0 \alpha_1)}{8\rho_0^2 \alpha_1^4} \right],$$
 (5.17)

entonces,

26

$$|A_{10}|^2 = \frac{8\rho_0^2 \alpha_1^4}{3 - 4\rho_0 \alpha_1 + 2\rho_0^2 \alpha_1^2 - e^{-2\alpha_1 \rho_0} (3 + 2\rho_0 \alpha_1)}.$$
(5.18)

Para el hamiltoniano tenemos,

$$\langle R_{10}(\rho)|\hat{H}|R_{10}(\rho)\rangle = \langle R_{10}(\rho)|\hat{T}|R_{10}(\rho)\rangle + \langle R_{10}(\rho)|\hat{V}|R_{10}(\rho)\rangle,$$
(5.19)

donde, el primer término corresponde a la energía cinética y el segundo a la energía potencial.

Energía cinética

$$\begin{split} \langle T \rangle &= -\frac{\hbar^2}{2m} |A_{10}|^2 \int_0^{\rho_0} e^{-\alpha_1 \rho} \left(1 - \frac{\rho}{\rho_0} \right) \left[\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} \right] e^{-\alpha_1 \rho} \left(1 - \frac{\rho}{\rho_0} \right) \rho \mathrm{d}\rho \\ &= -\frac{\hbar^2}{2m} |A_{10}|^2 \left\{ \frac{\alpha_1^2}{\rho_0^2} \int_0^{\rho_0} e^{-2\alpha_1 \rho} \rho^3 \mathrm{d}\rho - \left(\frac{2\alpha_1^2}{\rho_0} + \frac{3\alpha_1}{\rho_0^2} \right) \int_0^{\rho_0} e^{-2\alpha_1 \rho} \rho^2 \mathrm{d}\rho + \\ &+ \left(\frac{3\alpha_1}{\rho_0} + \alpha_1^2 + \frac{\alpha_1}{\rho_0} + \frac{1}{\rho_0^2} \right) \int_0^{\rho_0} e^{-2\alpha_1 \rho} \rho \mathrm{d}\rho - \left(\alpha_1 + \frac{1}{\rho_0} \right) \int_0^{\rho_0} e^{-2\alpha_1 \rho} \mathrm{d}\rho \right\}, \end{split}$$
(5.20)

integrando por partes, obtenemos

$$\langle T \rangle = -\frac{\hbar^2}{2m} |A_{10}|^2 \left[\frac{\alpha_1^2 e^{-2\alpha_1 \rho_0} (1 + 2\alpha_1 \rho_0 - e^{2\alpha_1 \rho_0} (1 + 2\alpha_1^2 \rho_0^2))}{8\alpha_1^2 \rho_0^2} \right],$$

usando (5.18), y simplificando,

$$\langle T \rangle = -\frac{\hbar^2}{2m} \left[\frac{\alpha_1^2 e^{-2\alpha_1 \rho_0} (1 + 2\alpha_1 \rho_0 - e^{2\alpha_1 \rho_0} (1 + 2\alpha_1^2 \rho_0^2))}{3 - 4\rho_0 \alpha_1 + 2\rho_0^2 \alpha_1^2 - e^{-2\alpha_1 \rho_0} (3 + 2\rho_0 \alpha_1)} \right],$$
(5.21)

Energía potencial

$$\langle V \rangle = -Ze^2 |A_{10}|^2 \int_0^{\rho_0} e^{-2\alpha_1 \rho} \left(1 - \frac{\rho}{\rho_0}\right)^2 d\rho = -Ze^2 |A_{10}|^2 \left[\frac{1}{\rho_0^2} \int_0^{\rho_0} e^{-2\alpha_1 \rho} \rho^2 d\rho - \frac{2}{\rho_0} \int_0^{\rho_0} e^{-2\alpha_1 \rho} \rho d\rho + \int_0^{\rho_0} e^{-2\alpha_1 \rho} d\rho\right],$$
(5.22)

integrando por partes, obtenemos

$$\langle V \rangle = -2Ze^2 |A_{10}|^2 \left[-\frac{-1 + e^{-2\alpha_1\rho_0} + 2\rho_0\alpha_1 - 2\rho_0^2\alpha_1^2}{8\rho_0^2\alpha_1^3} \right],$$
 (5.23)

usando (5.18), y simplificando,

$$\langle V \rangle = 2Ze^2 \left[\frac{\alpha_1 (-1 + e^{-2\alpha_1 \rho_0} + 2\rho_0 \alpha_1 - 2\rho_0^2 \alpha_1^2)}{3 - 4\rho_0 \alpha_1 + 2\rho_0^2 \alpha_1^2 - e^{-2\alpha_1 \rho_0} (3 + 2\rho_0 \alpha_1)} \right],$$
 (5.24)
entonces, el funcional de la energía queda determinada como sigue:

$$E(\alpha_{1};\rho_{0}) = \langle H \rangle = -\frac{\hbar^{2}}{2m} \left[\frac{\alpha_{1}^{2}e^{-2\alpha_{1}\rho_{0}}(1+2\alpha_{1}\rho_{0}-e^{2\alpha_{1}\rho_{0}}(1+2\alpha_{1}^{2}\rho_{0}^{2}))}{3-4\rho_{0}\alpha_{1}+2\rho_{0}^{2}\alpha_{1}^{2}-e^{-2\alpha_{1}\rho_{0}}(3+2\rho_{0}\alpha_{1})} \right] + 2Ze^{2} \left[\frac{\alpha_{1}(-1+e^{-2\alpha_{1}\rho_{0}}+2\rho_{0}\alpha_{1}-2\rho_{0}^{2}\alpha_{1}^{2})}{3-4\rho_{0}\alpha_{1}+2\rho_{0}^{2}\alpha_{1}^{2}-e^{-2\alpha_{1}\rho_{0}}(3+2\rho_{0}\alpha_{1})} \right],$$
(5.25)

para encontrar el parámetro α que hace mínima la energía obtenemos

$$\frac{\mathrm{d}E(\alpha_1;\rho_0)}{\mathrm{d}\alpha_1} = 0,\tag{5.26}$$

para el átomo de hidrógeno Z = 1, obtenemos

$$-\left(2e^{-2\rho_{0}\alpha_{1}}\left(3-\rho_{0}-2e^{2\rho_{0}\alpha_{1}}\left(3+4\rho_{0}^{4}\alpha_{1}^{4}+\rho_{0}^{3}\alpha_{1}^{2}\left(-3+4\alpha_{1}\right)+\rho^{2}\alpha_{1}\left(-1+6\alpha_{1}\right)-\rho_{0}\left(1+6\alpha_{1}\right)\right)\right)$$

$$+e^{4\rho_{0}\alpha_{1}}\left(3+2\rho_{0}^{3}\left(1-8\alpha_{1}\right)\alpha_{1}^{2}+4\rho_{0}^{4}\alpha_{1}^{4}+2\rho_{0}^{2}\alpha_{1}\left(-1+12\alpha_{1}\right)-\rho_{0}\left(1+12\alpha_{1}\right)\right)\right)\times$$

$$\times\frac{1}{-3-2\rho_{0}\alpha_{1}+e^{2\rho_{0}\alpha_{1}}\left(3-4\rho_{0}\alpha_{1}+2\rho_{0}^{2}\alpha_{1}^{2}\right)}=0.$$
(5.27)

Esta expresión no se puede resolver en forma analítica para encontrar el valor del parámetro α_1 .

El procedimiento que se procede a seguir para la obtención del parámetro α_1 se realiza en forma numérica mediante el programa Mathematica [1]; se define un radio de confinamiento y la función de onda para poder obtener la integral variacional. Posteriormente se obtiene el parámetro α_1 que hace mínima la energía. Sustituimos el valor de α_1 en el funcional de la energía y, así, se obtiene el valor de minimización de la energía. Finalmente se obtiene la constante de normalización (5.18) para diferentes radios de confinamiento ρ_0 . Este procedimiento se realiza para cada estado correspondiente.

En la Tabla de figuras 5.2 podemos observar el comportamiento de la energía como función del parámetro α_1 para diferentes radios de confinamiento.

En la Tabla de figuras 5.3 se puede apreciar como se comporta la función de onda radial cuando se confina en diferentes radios de confinamiento ρ_0 , donde para radios de confinamiento muy pequeños la función se comporta casi linealmente y va perdiendo su linealidad conforme aumenta el radio de confinamiento. Dicho análisis servirá para obtener en estados excitados de energía el valor del parámetro variacional y en consecuencia el valor de minimización de la energía.

En la Tabla de figuras 5.4 se puede apreciar como se comporta la probabilidad radial para diferentes radios de confinamiento ρ_0 .

Finalmente en la figura 5.2 se puede apreciar el comportamiento de la energía para diferentes radios de confinamiento ρ_0 en escala logarítmica para poder observar mejor el comportamiento.

Tabla 5.2: Energía mínima para el estado base como función del parámetro α_1

Tabla 5.3: Función de onda radial para el estado base, donde se fijan diferentes radios de corte ρ_0 .

 $(c) \rho_0 = 2 \quad (u.a.) \qquad (d) \rho_0 = 6 \quad (u.a.)$ **Tabla 5.4:** Probabilidad radial para el estado base, donde se fijan diferentes radios de corte ρ_0 .

Figura 5.2: Variación de la energía del estado base (E_{10}) como función del radio de confinamiento ρ_0 .

Tabla 5.5: Eigenvalores del estado base (E_{10}) en unidades atómicas para diferentes radios de confinamiento ρ_0 (u.a.), los resultados obtenidos pueden compararse con los obtenidos por teoría de perturbaciones y puede observarse que estos muestran una buena precisión.

$\rho_0(u.a.)$	α_1	<i>E</i> ₁₀ (u.a.)	$A_{10}(\alpha_1)$
0.50000	0.37083	3.92586	7.45140
0.60000	0.50958	1.53084	6.50054
0.70000	0.61909	0.21363	5.84214
0.80000	0.71070	-0.56133	5.36772
0.90000	0.79063	-1.03983	5.01692
1.00000	0.86247	-1.34601	4.75326
1.30000	1.04698	-1.77456	4.28537
1.60000	1.19906	-1.91438	4.08264
1.80000	1.28508	-1.95294	4.01996
2.00000	1.35954	-1.97315	3.98805
3.00000	1.59782	-1.99719	3.96973
4.00000	1.71242	-1.99939	3.98133
6.00000	1.81754	-1.99991	3.99191
8.00000	1.86639	-1.99997	3.99558
10.00000	1.89460	-1.99999	3.99724
15.00000	1.93099	-1.99999	3.99880
20.00000	1.94870	-1.99999	3.99934
25.00000	1.95917	-1.99999	3.99957
30.00000	1.96609	-1.99999	3.99970
40.00000	1.97468	-1.99999	3.99984
50.00000	1.97979	-1.99999	3.99990
60.00000	1.98319	-1.99999	3.99992
$\parallel \infty$	2.00000	-2.00000	4.0000

5.2.3 Estado 2s

Para el estado 2s obtenemos de (5.13) que la función de onda radial está dada en términos de dos parámetros variacionales (α_2, β) dada como sigue:

$$R_{20}(\rho) = A_{20} \left(1 - \frac{\rho}{\rho_0} \right) [1 - \rho\beta] e^{-\alpha_2 \rho}.$$
 (5.28)

Para la obtención del parámetro β partimos del hecho de que las funciones de onda de los estados 1s y 2s son ortogonales,

$$\langle R_{10}|R_{20}\rangle = \int_0^{\rho_0} R_{10}(\rho;\alpha_1)R_{20}(\rho;\alpha_2)\rho d\rho = 0,$$
 (5.29)

de donde se sigue que,

$$\int_{0}^{\rho_{0}} \left(1 - \frac{\rho}{\rho_{0}}\right) \left[1 - \rho\beta\right] \left(1 - \frac{\rho}{\rho_{0}}\right) e^{-\alpha_{1}\rho} e^{-\alpha_{2}\rho} \rho \mathrm{d}\rho = 0, \tag{5.30}$$

de lo cual obtenemos,

$$\beta(\alpha_1, \alpha_2) = \frac{\int_0^{\rho_0} e^{-(\alpha_1 + \alpha_2)\rho} \left(1 - \frac{\rho}{\rho_0}\right)^2 \rho d\rho}{\int_0^{\rho_0} e^{-(\alpha_1 + \alpha_2)\rho} \left(1 - \frac{\rho}{\rho_0}\right)^2 \rho^2 d\rho},$$
(5.31)

para un valor dado del radio de confinamiento, el valor de α_1 está dado en la Tabla 5.5. Es importante señalar que:

$$1 - \beta \rho^* = 0 \to \rho^* = \frac{1}{\beta},$$
 (5.32)

donde ρ^* es la posición del nodo.

De esta manera obtenemos los parámetros β y consecuentemente α_2 que minimizan la energía. Los valores de la energía de este estado para diferentes radios de confinamiento ρ_0 puede apreciarse en la Tabla 5.6 y el comportamiento de la energía como función del radio de confinamiento se puede observar en la Figura 5.3.

Tabla 5.6: Se presentan los eigenvalores del estado E_{20} para diferentes radios de confinamiento ρ_0 (u.a.), los resultados obtenidos pueden compararse con los obtenidos por teoría de perturbaciones y puede observarse que estos muestran una buena precisión.

ρ_0 (u.a.)	α_2	$E_{20}(u.a.)$	$\beta^{-1}(\alpha, \alpha_2)$	$A_{20}(\alpha, \alpha_2)$
0.50000	0.07785	56.01640	0.19554	13.78460
0.60000	0.00495	37.37040	0.23265	11.18890
0.70000	0.00181	26.31850	0.26799	7.44417
0.80000	-0.16033	19.27500	0.30609	7.73780
0.90000	-0.05313	14.60420	0.33660	5.96518
1.00000	0.09623	11.33490	0.36284	6.49544
1.30000	0.14914	5.81833	0.44345	4.84771
1.60000	0.22675	3.28143	0.50610	3.88292
1.80000	0.26236	2.31032	0.54040	3.39939
2.00000	0.28952	1.65148	0.56964	3.00432
3.00000	0.36007	0.30176	0.66440	1.81616
4.00000	0.38921	-0.03841	0.71200	1.27626
6.00000	0.43169	-0.19213	0.75005	0.86241
8.00000	0.47969	-0.21631	0.75754	0.75856
10.00000	0.52228	-0.22080	0.75651	0.74424
15.00000	0.58144	-0.22210	0.75274	0.75598
20.00000	0.60697	-0.22219	0.75138	0.76250
25.00000	0.62074	-0.22221	0.75082	0.76536
30.00000	0.62934	-0.22221	0.75054	0.76682
40.00000	0.63950	-0.22222	0.75028	0.76820
50.00000	0.64531	-0.22222	0.75018	0.76880
60.00000	0.64907	-0.22222	0.75014	0.76915
∞	0.66666	-0.22222	0.75000	0.76980

Figura 5.3: Variación de la energía del estado E_{20} como función del radio de confinamiento ρ_0 .

5.2.4 Estado 2p

Para el estado 2p la función de onda radial está dada por:

$$R_{21}(\rho) = A_{21}\rho \left(1 - \frac{\rho}{\rho_0}\right) e^{-\alpha_3\rho}.$$
(5.33)

Los resultados obtenidos se pueden apreciar en la tabla 5.7 y el comportamiento de la energía como función del radio de confinamiento ρ_0 en escala logarítmica para apreciar mejor el comportamiento de la energía en la Figura 5.4.

Figura 5.4: Variación de la energía del estado base E_{21} como función del radio de confinamiento.

Tabla 5.7: Se presentan los eigenvalores del estado E_{21} para diferentes radios de confinamiento ρ_0 (u.a.), los resultados obtenidos pueden compararse con los obtenidos por teoría de perturbaciones y puede observarse que estos muestran una buena precisión.

ρ_0 (u.a.)	$lpha_3$	$E_{21}(u.a.)$	$A_{21}(\alpha_3)$
0.50000	0.90008	25.48515	39.81960
0.60000	0.79265	17.10328	28.03920
0.70000	0.71639	12.12701	20.89080
0.80000	0.65963	8.94756	16.22250
0.90000	0.61588	6.80218	13.00240
1.00000	0.58124	5.29221	10.68520
1.30000	0.51103	2.74203	6.60879
1.60000	0.46936	1.54967	4.56680
1.80000	0.45047	1.08564	3.72306
2.00000	0.43624	0.76587	3.11370
3.00000	0.40334	0.08023	1.64184
4.00000	0.40114	-0.11005	1.11766
6.00000	0.43357	-0.20310	0.77125
8.00000	0.48262	-0.21842	0.69900
10.00000	0.52493	-0.22129	0.69496
15.00000	0.58250	-0.22214	0.71077
20.00000	0.60746	-0.22220	0.71787
25.00000	0.62102	-0.22221	0.72094
30.00000	0.62952	-0.22221	0.72254
40.00000	0.63959	-0.22221	0.72403
50.00000	0.64536	-0.22221	0.72466
60.00000	0.64911	-0.22222	0.72503
$ \infty$	0.66666	-0.22222	0.72564

5.2.5 Estado 3d

Finalmente consideramos el estado 3d, la función de onda radial está dada por:

$$R_{32}(\rho) = A_{32}\rho^2 \left(1 - \frac{\rho}{\rho_0}\right) e^{-\alpha_4 \rho}.$$
(5.34)

Los resultados obtenidos se pueden apreciar en la tabla 5.8 y el comportamiento de la energía como función del radio de confinamiento ρ_0 en escala logarítmica se muestra en la figura 5.5.

Finalmente presentamos todos los estados (1s, 2s, 2p y 3d) en la figura 5.6 para una visión general del comportamiento de la energía como función del radio de confinamiento, así, como los respectivos valores del parámetro variacional α_j que hacen mínima la energía (tabla 5.6), dichos resultados pueden ser comparados con los reportados en la literatura por N. Aquino y E. Castaño (tabla 5.10), en donde se aprecia que el estado 3d es nuevo utilizando el método variacional directo.

ρ_0 (u.a.)	α_4	$E_{32}(u.a.)$	$A_{32}(\alpha_4)$
0.50000	2.12431	49.80890	205.09000
0.60000	1.79203	34.09951	119.64600
0.70000	1.55479	24.69224	75.95740
0.80000	1.37696	18.62865	51.30090
0.90000	1.23874	14.50030	36.32580
1.00000	1.12824	11.56791	26.69980
1.30000	0.89911	6.52929	12.45880
1.60000	0.75637	4.10112	6.85343
1.80000	0.68789	3.12980	4.89614
2.00000	0.63328	2.44530	3.63129
3.00000	0.47129	0.88537	1.17586
4.00000	0.39282	0.38292	0.54478
6.00000	0.32026	0.06512	0.19793
8.00000	0.29116	-0.02496	0.10503
10.00000	0.28090	-0.05741	0.06966
15.00000	0.29318	-0.07730	0.04474
20.00000	0.32144	-0.07961	0.04284
25.00000	0.34220	-0.07991	0.04401
30.00000	0.35501	-0.07997	0.04491
40.00000	0.36900	-0.07999	0.04580
50.00000	0.37636	-0.07999	0.04617
60.00000	0.38089	-0.07999	0.04636
∞	0.40000	-0.08000	0.04673

Tabla 5.8: Se presentan los eigenvalores del estado E_{32} para diferentes radios de confinamiento ρ_0 (u.a.), los resultados obtenidos pueden compararse con los obtenidos por teoría de perturbaciones y puede observarse que estos muestran una buena precisión.

Figura 5.5: Variación de la energía del estado base E_{32} como función del radio de confinamiento.

<u> </u>
e confinamiento ,
de
radios
ara diferentes
Б
$' E_{3,2}$
$E_{2,0}$)
$E_{2,1}$
$E_{1,0}$
estados
los
para i
alores
Eigenvo
6
ы.
Tabla

E ₃₂ (u.a.)	49.80890	34.09951	24.69224	18.62865	14.50030	11.56791	6.52929	4.10112	3.12980	2.44530	0.88537	0.38292	0.06512	-0.02496	-0.05741	-0.07730	-0.07961	-0.07991	-0.07997	-0.07999	-0.07999	-0.07999	-0.08000
α_3	2.12431	1.79203	1.55479	1.37696	1.23874	1.12824	0.89911	0.75637	0.68789	0.63328	0.47129	0.39282	0.32026	0.29116	0.28090	0.29318	0.32144	0.34220	0.35501	0.36900	0.37636	0.38089	0.40000
<i>E</i> ₂₀ (u.a.)	56.01640	37.37040	26.31850	19.27500	14.60420	11.33490	5.81833	3.28143	2.31032	1.65148	0.30176	-0.03841	-0.19213	-0.21631	-0.22080	-0.22210	-0.22219	-0.22221	-0.22221	-0.22222	-0.22222	-0.22222	-0.22222
$\beta^{-1}(\alpha, \alpha_4)$	0.19554	0.23265	0.26799	0.30609	0.33660	0.36284	0.44345	0.50610	0.54040	0.56964	0.66440	0.71200	0.75005	0.75754	0.75651	0.75274	0.75138	0.75082	0.75054	0.75028	0.75018	0.75014	0.75000
α_2	0.07785	0.00495	0.00181	-0.16033	-0.05313	0.09623	0.14914	0.22675	0.26236	0.28952	0.36007	0.38921	0.43169	0.47969	0.52228	0.58144	0.60697	0.62074	0.62934	0.63950	0.64531	0.64907	0.66666
$E_{21}(u.a.)$	25.48515	17.10328	12.12701	8.94756	6.80218	5.29221	2.74203	1.54967	1.08564	0.76587	0.08023	-0.11005	-0.20310	-0.21842	-0.22129	-0.22214	-0.22220	-0.22221	-0.22221	-0.22221	-0.22221	-0.22222	-0.22222
α_3	0.90008	0.79265	0.71639	0.65963	0.61588	0.58124	0.51103	0.46936	0.45047	0.43624	0.40334	0.40114	0.43357	0.48262	0.52493	0.58250	0.60746	0.62102	0.62952	0.63959	0.64536	0.64911	0.66666
<i>E</i> ₁₀ (u.a.)	3.92586	1.53084	0.21363	-0.56133	-1.03983	-1.34601	-1.77456	-1.91438	-1.95294	-1.97315	-1.99719	-1.99939	-1.99991	-1.99997	-1.99999	-1.99999	-1.99999	-1.99999	-1.99999	-1.99999	-1.99999	-1.99999	-2.00000
α_1	0.37083	0.50958	0.61909	0.71070	0.79063	0.86247	1.04698	1.19906	1.28508	1.35954	1.59782	1.71242	1.81754	1.86639	1.89460	1.93099	1.94870	1.95917	1.96609	1.97468	1.97979	1.98319	2.00000
$\rho_0(u.a.)$	0.50000	0.60000	0.70000	0.80000	0.90000	1.00000	1.30000	1.60000	1.80000	2.00000	3.00000	4.00000	6.00000	8.00000	10.00000	15.00000	20.00000	25.00000	30.00000	40.00000	50.00000	60.00000	8

Figura 5.6: Variación de la energía para los estados 1s, 2s, 2p y 3d como función del radio de confinamiento ρ_0 , donde puede observarse que al imponer el confinamiento se rompe la degeneración accidental de los estados 2s y 3d.

 Tabla 5.10: Eigenvalores del átomo de hidrógeno bidimensional confinado reportados por N.

 Aquino y E. Castaño[2], donde emplearon el MVD.

ρ_0 (u.a.)	α_1	<i>E</i> ₁₀ (u.a.)	$lpha_3$	$E_{21}(u.a.)$	α_2	β^{-1}	E_{20}
0.5000	0.3709	3.9259	0.9000	25.4852	0.0383	0.1059	56.0947
1.0000	0.8624	-1.3460	0.5812	5.2922	0.0350	0.3651	11.3237
2.0000	1.3595	-1.9732	0.4361	0.7659	0.2895	0.5697	1.6515
4.0000	1.7124	-1.9994	0.4011	-0.1101	0.3893	0.7120	-0.0384
6.0000	1.8176	-1.9999	0.4335	-0.2031	0.4317	0.7500	-0.1921
8.0000	1.8663	-2.0000	0.4825	-0.2184	0.4797	0.7576	-0.2163
10.0000	1.8946	-2.0000	0.5249	-0.2213	0.5222	0.7565	-0.2208
15.0000	1.9310	-2.0000	0.5825	-0.2221	0.5814	0.7527	-0.2221
20.0000	1.9487	-2.0000	0.6074	-0.2222	0.6069	0.7514	-0.2222
25.0000	1.9592	-2.0000	0.6209	-0.2222	0.6207	0.7503	-0.2222
30.0000	1.9661	-2.0000	0.6295	-0.2222	0.6293	0.7502	-0.2222
40.0000	1.9747	-2.0000	0.6397	-0.2222	0.6395	0.7502	-0.2222
50.0000	1.9798	-2.0000	0.6454	-0.2222	0.6452	0.7501	-0.2222
60.0000	1.9831	-2.0000	0.6491	-0.2222	0.6489	0.7500	-0.2222
$ \infty $	2.0000	-2.00000	0.66666	-0.22222	0.6666	0.7500	-0.2222

5.2.6 Funciones propias en el espacio de configuración para el átomo de hidrógeno confinado en dos dimensiones

Para la obtención de las gráficas de la densidad de probabilidad ($|\psi_{nm}(\rho, \phi)|^2$) se puede observar que al realizar el producto de $e^{im\phi}$ por su complejo conjugado se reduce a la unidad la dependencia angular. Como el sistema presenta degeneración para $m \neq 0$, entonces, para tener una visualización gráfica de la parte angular, lo que hacemos es construir una nueva función de onda, que puede ser expresada como la suma de los estados degenerados o bien la resta de estos estados.

$$\psi_{nm}^{\pm}(\rho,\phi) = R_{nm}(\rho) \frac{1}{\sqrt{2\pi}} (e^{im\phi} \pm e^{-im\phi})$$
 (5.35)

Al considerar la suma de los estados degenerados y normalizar nuevamente la parte angular, la función de onda queda reescrita como sigue,

$$\psi_{nm}^{+}(\rho,\phi) = R_{nm}(\rho) \frac{1}{\sqrt{2}} \cos m\phi$$
 (5.36)

En la tabla de figuras 5.11 se pude apreciar el comportamiento de la densidad de probabilidad para el estado base (sin normalizar) para diferentes radios de confinamiento ρ_0 . Donde se utilizó un factor de escala *A* para poder ver mejor los detalles del comportamiento de la función de onda.

En la tabla de figuras 5.12 se pude apreciar el comportamiento de la densidad de probabilidad para el estado 2s (sin normalizar) para diferentes radios de confinamiento ρ_0 . Donde se utilizo un factor de escala *A* para poder ver mejor los detalles del comportamiento de la función de onda, aquí se pude apreciar que hay un nodo radial y este se puede distinguir claramente siguiendo las lineas rojas.

En la tabla de figuras 5.13 se pude apreciar el comportamiento de la densidad de probabilidad para el estado 2p (sin normalizar) para diferentes radios de confinamiento ρ_0 . Donde se utilizo un factor de escala *A* para poder ver mejor los detalles del comportamiento de la función de onda, aquí se pude apreciar que hay un nodo radial y un angular; estos se pueden distinguir claramente siguiendo las lineas rojas y verdes respectivamente.

Finalmente en la tabla de figuras 5.14 se pude apreciar el comportamiento de la densidad de probabilidad para el estado 3d (sin normalizar) para diferentes radios de confinamiento ρ_0 . Donde se utilizo un factor de escala *A* para poder ver mejor los detalles del comportamiento de la función de onda, aquí se pude apreciar que hay un nodo radial y dos nodos angulares; estos se pueden distinguir claramente siguiendo las lineas rojas y verdes respectivamente.

(c) $\rho_0 = 2$ (u.a.). A=1.5 (d) $\rho_0 = 6$ (u.a.). A=3 **Tabla 5.11:** Densidad de probabilidad para el estado base ($|\psi_{10}(\rho, \phi)|^2$), sin normalizar. A=escalamiento.

(c) $\rho_0 = 2$ (u.a.). A=2 (d) $\rho_0 = 6$ (u.a.). A=4 Tabla 5.12: Densidad de probabilidad para el estado 2s ($|\psi_{20}(\rho, \phi)|^2$), sin normalizar. A=escalamiento.

(c) $\rho_0 = 2$ (u.a.). A=5 (d) $\rho_0 = 6$ (u.a.). A=5 Tabla 5.13: Densidad de probabilidad para el estado 2p ($|\psi_{21}(\rho, \phi)|^2$), sin normalizar: A=escalamiento.

(a) $ho_0=0.5$ (u.a.). A=35.4

(b) $ho_0 = 1$ (u.a.). A=15

(c) $\rho_0 = 2$ (u.a.). A=6 (d) $\rho_0 = 6$ (u.a.). A=2 Tabla 5.14: Densidad de probabilidad para el estado 3d ($|\psi_{32}(\rho, \phi)|^2$), sin normalizar: A=escalamiento.

6

Funciones de onda en el espacio de momentos para el átomo de hidrógeno libre y confinado en dos dimensiones

La funciones de onda en el espacio de momentos son de suma importancia ya que en algunos casos arrojan mas información física que en el espacio de configuración y permiten un mejor entendimiento de los sistemas cuánticos. En este caso interesa conocer las funciones de onda en el espacio de momentos, ya que estamos interesados en conocer la entropía de Shannon, así, como la información de Fisher en el espacio de momentos.

La manera de obtener la función de onda en el espacio de momentos es mediante una transformada de Fourier (TF) de la función de onda en el espacio de configuración. A continuación se detalla la manera de obtener dicha TF.

Para una función $f(\vec{s})$, con: $\vec{s} = (s_x, s_y)$ se define su TF como la función dada por la siguiente ecuación:

$$F(\vec{k}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\vec{s}) e^{-i\vec{k}\cdot\vec{s}} \mathrm{d}\vec{s}.$$
 (6.1)

El teorema de Fourier nos dice que a partir de la TF de una función siempre se puede recuperar la función original mediante la siguiente ecuación:

$$f(\vec{s}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(\vec{k}) e^{-i\vec{k}\cdot\vec{s}} \mathrm{d}\vec{k}.$$
 (6.2)

El teorema de Parseval demuestra que la TF es unitaria; es decir, la integral del cuadrado de una función es igual a la integral del cuadrado de su transformada.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(\vec{s})|^2 \vec{s} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |F(\vec{k})|^2 \vec{k}$$
(6.3)

6.1 Funciones de onda del átomo de hidrógeno libre en dos dimensiones

La función de onda para el átomo de hidrógeno libre en 2D la podemos escribir como:

$$\psi_{nm}(\rho,\phi) = \frac{N}{\sqrt{2\pi}} R_{nm}(\rho) \exp(im\phi)$$
(6.4)

donde N es la constante de normalización de la función $R_{nm}(\rho)$ y $1/\sqrt{2\pi}$ es la normalización de la parte angular. La función de onda en el espacio de los momentos $\phi_{nm}(p, \phi_p)$ se obtiene a través de la siguiente TF

$$\phi_{nm}(p,\phi_p) = \frac{1}{2\pi} \int_{\rho=0}^{\infty} \int_{\phi=0}^{2\pi} \psi_{nm}(\rho,\phi) \exp(-i\vec{p}\cdot\vec{\rho})\rho d\rho d\phi$$

$$= \frac{N}{(2\pi)^{3/2}} \int_{0}^{\infty} R_{nm}(\rho)\rho d\rho \left[\int_{0}^{2\pi} \exp(im\phi) \exp(-i\vec{p}\cdot\vec{\rho})d\phi\right]$$
(6.5)

al realizar el producto punto obtenemos: $\vec{p} \cdot \vec{\rho} = p\rho \cos(\phi_p - \phi)$ siendo ϕ el ángulo en el espacio de configuración y ϕ_p el ángulo en el espacio de momentos y, adicionalmente hacemos uso de la formula de Euler ($\exp\{im\phi\} = \cos(m\phi) + i \sin(m\phi)$), por lo cual

$$\begin{aligned} \phi_{nm}(p,\phi_p) &= \\ &= \frac{N}{(2\pi)^{3/2}} \int_0^\infty R_{nm}(\rho) \rho d\rho \left[\int_0^{2\pi} [\cos(m\phi) + i \sin(m\phi)] \exp\{-ip\rho\cos(\phi_p - \phi)\} d\phi \right] \\ &= \frac{N}{(2\pi)^{3/2}} \int_0^\infty R_{nm}(\rho) \rho d\rho \left[\int_0^{2\pi} \exp\{-ip\rho\cos(\phi_p - \phi)\}\cos(m\phi) d\phi + \\ &+ i \int_0^{2\pi} \exp\{-ip\rho\cos(\phi_p - \phi)\}\sin(m\phi) d\phi \right] \end{aligned}$$
(6.6)

Sabemos de Rey Pastor [18] que

42

$$\begin{cases} \cos(m\varphi) \\ \sin(m\varphi) \end{cases} J_m(kr) = \frac{1}{2\pi i^m} \int_0^{2\pi} \exp(-ikr\cos(\varphi - t)) \begin{cases} \cos(mt) \\ \sin(mt) \end{cases} dt$$
 (6.7)

así, obtenemos para la primer integral que,

$$\int_0^{2\pi} \exp\{-ip\rho\cos(\phi_p - \phi)\}\cos(m\phi)\mathrm{d}\phi = i^m 2\pi J_m(p\rho)\cos(m\phi_p)$$
(6.8)

y de forma similar para la segunda integral obtenemos

$$\int_0^{2\pi} \exp\{-ip\rho\cos(\phi_p - \phi)\}\sin(m\phi)\mathrm{d}\phi_p = i^m 2\pi J_m(p\rho)\sin(m\phi_p)$$
(6.9)

de este modo la ecuación (6.6) se reescribe como:

$$\phi_{nm}(p,\phi_p) = \frac{N}{(2\pi)^{3/2}} \int_0^\infty R(\rho)\rho d\rho \left[i^m 2\pi J_m(p\rho)\cos(m\phi_p) + ii^m 2\pi J_m(p\rho)\sin(m\phi_p)\right]$$
(6.10)

después de factorizar el término común $i^m 2\pi J_m(p\rho)$ y usar la fórmula de Euler, finalmente llegamos a la TF para el AH no confinado en 2D,

$$\phi_{nm}(p,\phi_p) = \frac{Ni^m}{(2\pi)^{1/2}} e^{im\phi_p} \int_0^\infty R_{nm}(\rho) J_m(p\rho) \rho d\rho;$$
(6.11)

la integral que aparece en (6.11) es llamada la transformada de Hankel de $R_{nm}(\rho)$ y es definida formalmente por [13]:

$$\mathscr{H}_{nm}\{R_{nm}(\rho)\} = \int_0^\infty R_{nm}(\rho) J_m(p\rho) \rho \mathrm{d}\rho.$$
(6.12)

Tenemos que para estados con $m \neq 0$ el sistema presenta degeneración doble. Por lo cual para los estados con $m = -1, -2, \cdots$, utilizamos la propiedad de las funciones Bessel

$$J_{-m} = (-1)^m J_m, (6.13)$$

de tal modo que la TF queda determinada por:

$$\phi_{nm}(p,\phi_p) = \frac{Ni^m(-1)^m}{(2\pi)^{1/2}} e^{im\phi_p} \int_0^\infty R_{nm}(\rho) J_m(p\rho) \rho \mathrm{d}\rho, \tag{6.14}$$

donde n es el número cuántico principal y, m es el número cuántico de momento angular. Esta función ya está normalizada de acuerdo con el teorema de Parseval. Las funciones de onda en el espacio de momentos para el estado base y primeros estados excitados están dadas por:

$$\phi_{10}(p,\phi_p) = \frac{N}{(2\pi)^{1/2}} \int_0^\infty R_{10}(\rho) J_0(p\rho) \rho \mathrm{d}\rho, \tag{6.15}$$

$$\phi_{20}(p,\phi_p) = \frac{N}{(2\pi)^{1/2}} \int_0^\infty R_{20}(\rho) J_0(p\rho) \rho \mathrm{d}\rho, \tag{6.16}$$

$$\phi_{30}(p,\phi_p) = \frac{N}{(2\pi)^{1/2}} \int_0^\infty R_{30}(\rho) J_0(p\rho) \rho \mathrm{d}\rho, \tag{6.17}$$

$$\phi_{21}(p,\phi_p) = \frac{Ni}{(2\pi)^{1/2}} e^{i\phi_p} \int_0^\infty R_{21}(\rho) J_1(p\rho) \rho \mathrm{d}\rho, \tag{6.18}$$

$$\phi_{31}(p,\phi_p) = \frac{Ni}{(2\pi)^{1/2}} e^{i\phi_p} \int_0^\infty R_{31}(\rho) J_1(p\rho) \rho \mathrm{d}\rho, \tag{6.19}$$

$$\phi_{32}(p,\phi_p) = \frac{N}{(2\pi)^{1/2}} e^{2i\phi_p} \int_0^\infty R_{32}(\rho) J_2(p\rho)\rho \mathrm{d}\rho.$$
(6.20)

A continuación se detalla el procedimiento para obtener las funciones de onda para los estados 1s, 2s, 3s, 2p, 3p y 3d. Tomemos la funciones de onda radiales para el caso libre en 2D (Ver capítulo 4).

Estado base

$$\phi_{10}(p,\phi_p) = \frac{\beta_1}{(2\pi)^{1/2}} \int_0^\infty e^{-(\beta_1/2)\rho} J_0(p\rho)\rho \mathrm{d}\rho, \tag{6.21}$$

podemos usar lo siguiente [19]:

$$\int_0^\infty e^{-at} J_m(bt) t^{m+1} \mathrm{d}t = \frac{2a(2b)^m \Gamma(m+3/2)}{(a^2+b^2)^{m+3/2} (\pi)^{1/2}},\tag{6.22}$$

tomando el casom=0

$$\int_0^\infty e^{-at} J_0(bt) t \mathrm{d}t = \frac{a}{[a^2 + b^2]^{3/2}}.$$
(6.23)

Así, usando (6.23) en la ec. (6.21) obtenemos:

$$\phi_{10}(p,\phi_p) = \frac{\beta_1}{(2\pi)^{1/2}} \frac{(\beta_1/2)}{[(\beta_1/2)^2 + p^2]^{3/2}}.$$
(6.24)

Estados excitados

Estado 2s:

$$\begin{split} \phi_{20}(p,\phi_p) &= \frac{1}{(2\pi)^{1/2}} \frac{\beta_2}{3^{1/2}} \int_0^\infty \left(1 - \beta_2 \rho\right) e^{-(\beta_2/2)\rho} J_0(p\rho) \rho \mathrm{d}\rho \\ &= \frac{1}{(2\pi)^{1/2}} \frac{\beta_2}{3^{1/2}} \bigg\{ \int_0^\infty e^{-(\beta_2/2)\rho} J_0(p\rho) \rho \mathrm{d}\rho - \beta_2 \int_0^\infty e^{-(\beta_2/2)\rho} J_0(p\rho) \rho^2 \mathrm{d}\rho \bigg\}, \end{split}$$

$$(6.25)$$

notemos que el valor de la segunda integral no se puede obtener mediante la ec. (6.22), para poder obtener la solución de dicha integral tomamos la derivada paramétrica de la ec. (6.22) respecto del parámetro a,

$$\int_{0}^{\infty} e^{-at} J_{m}(bt) t^{m+2} dt = -\frac{2(2b)^{m} \Gamma(m+3/2)}{(a^{2}+b^{2})^{m+3/2} (\pi)^{1/2}} + \frac{4a^{2}(2b)^{m} \Gamma(m+3/2)}{(a^{2}+b^{2})^{m+5/2} (\pi)^{1/2}} (m+3/2)$$
$$= \frac{2a(2b)^{m} \Gamma(m+3/2)}{(a^{2}+b^{2})^{m+3/2} (\pi)^{1/2}} \left[-\frac{1}{a} + \frac{2a(m+3/2)}{a^{2}+b^{2}} \right],$$
(6.26)

es importante señalar que la integral anterior no se encuentra reportada en la literatura. Tomando el caso m = 0,

$$\int_0^\infty e^{-at} J_0(bt) t^2 \mathrm{d}t = \frac{3a^2}{[a^2 + b^2]^{5/2}} - \frac{1}{[a^2 + b^2]^{3/2}}.$$
(6.27)

Así, usando (6.23) y (6.27) en la ec. (6.25) obtenemos:

$$\begin{split} \phi_{20}(p,\phi_p) &= \\ &= \frac{1}{(2\pi)^{1/2}} \frac{\beta_2}{3^{1/2}} \bigg\{ \frac{(\beta_2/2)}{[(\beta_2/2)^2 + p^2]^{3/2}} - \beta_2 \left[\frac{3(\beta_2/2)^2}{[(\beta_2/2)^2 + p^2]^{5/2}} - \frac{1}{[(\beta_2/2)^2 + p^2]^{3/2}} \right] \bigg\}. \end{split}$$

$$(6.28)$$

Estado 3s:

$$\begin{split} \phi_{30}(p,\phi_p) &= \frac{1}{(2\pi)^{1/2}} \frac{\beta_3}{2*5^{1/2}} \int_0^\infty (2-4\beta_3\rho+\beta_3^2\rho^2) e^{-(\beta_3/2)\rho} J_0(p\rho)\rho d\rho \\ &= \frac{1}{(2\pi)^{1/2}} \frac{\beta_3}{2*5^{1/2}} \Big\{ 2\int_0^\infty e^{-(\beta_3/2)\rho} J_0(p\rho)\rho d\rho \\ &- 4\beta_3 \int_0^\infty e^{-(\beta_3/2)\rho} J_0(p\rho)\rho^2 d\rho + \beta_3^2 \int_0^\infty e^{-(\beta_3/2)\rho} J_0(p\rho)\rho^3 d\rho \Big\}, \end{split}$$
(6.29)

en este caso observamos que el valor de la tercera integral no se puede obtener mediante la ec. (6.22) o (6.26), por lo cual tomamos la derivada paramétrica de la ec. (6.26) respecto del parámetro a,

$$\begin{split} &\int_{0}^{\infty} e^{-at} J_{m}(bt) t^{m+3} \mathrm{d}t = \\ &= -\frac{12a(2b)^{m} \Gamma(m+3/2)}{(a^{2}+b^{2})^{m+5/2} (\pi)^{1/2}} (m+3/2) + \frac{8a^{3}(2b)^{m} \Gamma(m+3/2)}{(a^{2}+b^{2})^{m+7/2} (\pi)^{1/2}} (m+3/2) (m+5/2) \\ &= \frac{2a(2b)^{m} \Gamma(m+3/2)}{(a^{2}+b^{2})^{m+3/2} (\pi)^{1/2}} \left[-\frac{6(m+3/2)}{a^{2}+b^{2}} + \frac{4a^{2}(m+3/2)(m+5/2)}{(a^{2}+b^{2})^{2}} \right], \end{split}$$

$$(6.30)$$

la integral anterior no se encuentra reportada en la literatura. Tomando el caso $m=0,\,$

$$\int_0^\infty e^{-at} J_0(bt) t^3 \mathrm{d}t = \frac{15a^3}{[a^2 + b^2]^{7/2}} - \frac{9a}{[a^2 + b^2]^{5/2}}$$
(6.31)

Así, usando (6.23), (6.27) y (6.31) en la ec. (6.29) obtenemos:

$$\begin{split} \phi_{30}(p,\phi_p) &= \frac{1}{(2\pi)^{1/2}} \frac{\beta_3}{2*5^{1/2}} \bigg\{ \frac{2(\beta_3/2)}{[(\beta_3/2)^2 + p^2]^{3/2}} - 4\beta_3 \bigg[\frac{3(\beta_3/2)^2}{[(\beta_3/2)^2 + p^2]^{5/2}} - \\ &- \frac{1}{[(\beta_3/2)^2 + p^2]^{3/2}} \bigg] + \beta_3^2 \bigg[\frac{15(\beta_3/2)^3}{[(\beta_3/2)^2 + p^2]^{7/2}} - \frac{9(\beta_3/2)}{[(\beta_3/2)^2 + p^2]^{5/2}} \bigg] \bigg\} \end{split}$$
(6.32)

Estado 2p:

$$\phi_{21}(p,\phi_p) = \frac{ie^{i\phi_p}}{(2\pi)^{1/2}} \frac{\beta_2^2}{6^{1/2}} \int_0^\infty e^{-(\beta_2/2)\rho} J_1(p\rho)\rho^2 \mathrm{d}\rho.$$
(6.33)

Tomando el caso m = 1 en (6.22), obtenemos:

$$\int_0^\infty e^{-at} J_1(bt) t^2 \mathrm{d}t = \frac{3ab}{[a^2 + b^2]^{5/2}},\tag{6.34}$$

por lo tanto usando (6.34) en (6.33), se obtiene:

$$\phi_{21}(p,\phi_p) = \frac{ie^{i\phi_p}}{(2\pi)^{1/2}} \frac{\beta_2^2}{6^{1/2}} \frac{3(\beta_2/2)p}{[(\beta_2/2)^2 + p^2]^{5/2}}.$$
(6.35)

Estado 3p:

$$\begin{split} \phi_{31}(p,\phi_p) &= \frac{ie^{i\phi_p}}{(2\pi)^{1/2}} \frac{\beta_3^2}{\sqrt{30}} \int_0^\infty (3-\beta_3\rho) e^{-(\beta_3/2)\rho} J_1(p\rho) \rho^2 d\rho \\ &= \frac{ie^{i\phi_p}}{(2\pi)^{1/2}} \frac{\beta_3^2}{\sqrt{30}} \bigg\{ 3 \int_0^\infty e^{-(\beta_3/2)\rho} J_1(p\rho) \rho^2 d\rho - \beta_3 \int_0^\infty e^{-(\beta_3/2)\rho} J_1(p\rho) \rho^3 d\rho \bigg\}. \end{split}$$
(6.36)

La segunda integral puede obtenerse fácilmente después de considerar el caso m = 1 en (6.26), la cual da:

$$\int_0^\infty e^{-at} J_1(bt) t^3 \mathrm{d}t = \frac{3ab}{[a^2 + b^2]^{5/2}} \left[-\frac{1}{a} + \frac{5a}{a^2 + b^2} \right],\tag{6.37}$$

por lo cual, usando (6.34) y (6.37) en (6.36) se obtiene:

$$\begin{split} \phi_{31}(p,\phi_p) &= \\ &= \frac{ie^{i\phi_p}}{(2\pi)^{1/2}} \frac{\beta_3^2}{\sqrt{30}} \Big\{ \frac{9(\beta_3/2)p}{[(\beta_3/2)^2 + p^2]^{5/2}} - \frac{3\beta_3(\beta_3/2)p}{[(\beta_3/2)^2 + p^2]^{5/2}} \left[-\frac{1}{(\beta_3/2)} + \frac{5(\beta_3/2)}{(\beta_3/2)^2 + p^2} \right] \Big\}. \end{split}$$

$$(6.38)$$

Estado 3d:

$$\phi_{32}(p,\phi_p) = \frac{e^{2i\phi_p}}{(2\pi)^{1/2}} \frac{\beta_3^3}{\sqrt{5!}} \int_0^\infty e^{-\beta_3\rho/2} J_2(p\rho)\rho^3 \mathrm{d}\rho.$$
(6.39)

La integral pue de obtenerse fácilmente después de considerar el caso m=2 en (6.22), la cual da:

$$\int_0^\infty e^{-at} J_2(bt) t^3 \mathrm{d}t = \frac{15ab^2}{[a^2 + b^2]^{7/2}},\tag{6.40}$$

por lo tanto, usando (6.40) en (6.39), se obtiene:

$$\phi_{32}(p,\phi_p) = \frac{e^{2i\phi_p}}{(2\pi)^{1/2}} \frac{\beta_3^3}{\sqrt{5!}} \frac{15(\beta_3/2)p^2}{[(\beta_3/2)^2 + p^2]^{7/2}}.$$
(6.41)

6.1.1 Funciones propias en el espacio de momentos para el átomo de hidrógeno libre en dos dimensiones

Para la obtención de las gráficas de $|\phi_{nm}(p,\phi_p)|^2$ realizamos un procedimiento semejante al de las funciones de onda en el espacio de configuración, por lo cual, construimos una nueva función de onda que puede ser expresada como la suma de los estados degenerados o bien la resta de éstos estados.

$$\phi_{nm}(p,\phi_p) = \frac{Ni^m}{(2\pi)^{1/2}} \int_0^\infty R_{nm}(\rho) J_m(p\rho) \rho \mathrm{d}\rho (e^{im\phi_p} \pm e^{-im\phi_p})$$
(6.42)

Al considerar la suma de los estados degenerados y normalizar la parte angular, la función de onda queda reescrita como sigue

$$\phi_{nm}^+(p,\phi_p) = \frac{Ni^m}{2}\cos\left(m\phi_p\right)\int_0^\infty R_{nm}(\rho)J_m(p\rho)\rho \mathrm{d}\rho \tag{6.43}$$

De esta manera podemos obtener las funciones de onda completas en el espacio de momentos. Además podemos aprovechar para graficar adicionalmente las funciones de onda exactas (ec. (4.64)) en el espacio de configuración y de momentos para poder observar su comportamiento.

Tabla 6.1: Comparación de la densidad de probabilidad para el estado base y primer estado excitado en el espacio de momentos (a), (c) y en el espacio de configuración (b), (d). Sin normalizar y con A=escalamiento.

(g) $|\phi_{21}(p,\phi_p)|^2$. A=6 (h) $|\psi_{21}(\rho,\phi)|^2$. A=2 **Tabla 6.2:** Comparación de la densidad de probabilidad para los estados excitados 3s y 2p en el espacio de momentos (e), (g) y en el espacio de configuración (f), (h). Sin normalizar y con A=escalamiento.

6.2 Funciones de onda del átomo de hidrógeno confinado en dos dimensiones

Siguiendo un procedimiento semejante al caso libre se llega a las siguientes expresiones para la transformada de Fourier para el átomo de hidrógeno confinado en dos dimensiones. Por lo cual para el estado base y primeros estados excitados se tienen las siguientes TF:

$$\phi_{10}(p) = \frac{N}{(2\pi)^{1/2}} \int_0^{\rho_0} R_{10}(\rho) J_0(p\rho) \rho \mathrm{d}\rho, \tag{6.44}$$

$$\phi_{20}(p) = \frac{N}{(2\pi)^{1/2}} \int_0^{\rho_0} R_{20}(\rho) J_0(p\rho) \rho \mathrm{d}\rho, \tag{6.45}$$

$$\phi_{21}(p,\phi_p) = \frac{Ni}{(2\pi)^{1/2}} e^{i\phi_p} \int_0^{\rho_0} R_{21}(\rho) J_1(p\rho) \rho d\rho,$$
(6.46)

$$\phi_{32}(p,\phi_p) = \frac{N}{(2\pi)^{1/2}} e^{2i\phi_p} \int_0^{\rho_0} R_{32}(\rho) J_2(p\rho) \rho \mathrm{d}\rho, \tag{6.47}$$

donde R_{nm} son las funciones de onda en el espacio de configuración, N la constante de normalización, ρ_0 el radio de confinamiento y $J_m(\rho p)$ las funciones de Bessel respectivamente. Las funciones de onda anteriores están en términos de integrales que se obtienen en forma "numérica" ya que no es posible obtenerlas en forma

(r) $|\phi_{31}(p,\phi_p)|^2$. A=35.4 (s)

(s) $|\psi_{31}(
ho,\phi)|^2$. A=15

(t) $|\phi_{32}(p,\phi_p)|^2$. A=6 (u) $|\psi_{32}(\rho,\phi)|^2$. A=2 **Tabla 6.3:** Comparación de la densidad de probabilidad para los estados excitados 3p y 3den el espacio de momentos (r), (t) y en el espacio de configuración (s), (u). Sin normalizar y con A=escalamiento.

analítica. A continuación se describe el procedimiento.

Lo que se hace es buscar un polinomio de interpolación de Lagrange (Véase Apéndice C) que se ajuste sobre la función de onda.

Veamos el caso del estado base ($\phi_{10}(p)$). Partimos de definir los parámetros: la función de onda radial $R_{10}(\rho)$ (ec. (5.14)), el radio de confinamiento (ρ_0), el parámetro variacional (α_1) y la constante de normalización N; se procede a graficar el comportamiento de la función $\phi_{10}(p)$, la cual muestra que para valores cercano al origen (0-2 u.a.) esta función de onda es suave y no presenta oscilaciones, mientras que para valores alrededor de 2 u.a. en adelante presenta oscilaciones. Lo primero a considerar es que esta función de onda está definida en todo el espacio de momentos, aunque en el espacio de configuración este confinada; es por esto que tenemos que tener cuidado al calcular el polinomio de interpolación, se tiene que elegir un valor adecuado hasta donde se interpolará dicho polinomio. Para esto sabemos que la función de onda en todo el espacio esta normalizada a la unidad

$$\int_{0}^{2\pi} \int_{0}^{\infty} |\phi_{nm}(\vec{p})|^2 p \mathrm{d}p \mathrm{d}\phi_p = 1,$$
(6.48)

la normalización anterior la podemos evaluar en un intervalo diferente, como por ejemplo:

$$\int_{0}^{2\pi} \int_{0}^{50} |\phi_{10}(p)|^2 p \mathrm{d}p \mathrm{d}\phi_p = 0.9999, \tag{6.49}$$

es así, que podemos buscar polinomios de interpolación hasta un valor finito en el espacio de momentos. Lo siguiente que se hace es utilizar el método de interpolación de Lagrange el cual ya está precargado en el programa Mathematica; para ello es necesario definir una malla de puntos dados por $(p,\phi_{10}(p))$, en nuestro caso se decidió ocupar puntos igualmente espaciados debido al comportamiento oscilante de la función de onda. Como bien se menciono, la función de onda es altamente oscilante para $\sim p \geq 2$ u.a., por lo cual el polinomio de interpolación se debe realizar a intervalos cerrados utilizando el menor número de puntos (esto se debe a que el polinomio de interpolación de Lagrange es oscilante si la cantidad de puntos es alta). En todos los casos se utilizaron los intervalos que se muestran en la tabla 6.4. Finalmente obtenemos polinomios de interpolación sobre cada intervalo que servirán para calcular directamente la entropía se Shannon como se muestra en el siguiente capítulo.

Tabla 6.4: Intervalos y separación entre puntos de la malla sobre la cual se construyo el
polinomio de interpolación para el estado base utilizando un radio de confinamiento
de 0.5 u.a..

Intervalo	Separación entre puntos (u.a.)	Grado del polinomio	Error (u.a.)
[0, 0.5]			10^{-13}
[0.5, 1]	0.1	5	10^{-13}
[1, 1.5]			10^{-12}
[1.5, 2]			10^{-12}
[2, 4]			10^{-8}
[4, 6]	0.4	5	10^8
[6, 8]			10^{-8}
[8, 10]			10^{-7}
[10, 16]			10^{-4}
[16, 22]			10^{-4}
[22, 28]			10^{-4}
[28, 34]			10^{-6}
	1	6	•
			•
[64, 70]			10^{-6}

Podemos calcular el error cometido al interpolar el polinomio. Una forma muy sencilla de hacerlo es calcular el valor absoluto de la diferencia entre la función $\phi_{10}(p)$ y el polinomio de interpolación como se muestra:

$$Error = \int_{0}^{2\pi} \int_{p_{i}}^{p_{f}} |\phi_{nm}(p) - I_{k}(p)| p \mathrm{d}p \mathrm{d}\phi_{p},$$
(6.50)

donde, $I_k(p)$ es el polinomio de interpolación de grado k y $[p_i, p_f]$ el rango donde se interpola; en la tabla 6.4 se puede apreciar el error cometido para un radio de confinamiento de 0.5 u.a..

Entropía de Shannon para el átomo de hidrógeno en dos dimensiones

En este capítulo procederemos a estudiar la entropía de Shannon para el AH2D primero como sistema libre para los estados 1s, 2s, 3s, 2p, 3p y 3d; posteriormente se estudiará como sistema confinado variando el radio de confinamiento para los estados 1s, 2s, 2p y 3d.

El estudio de este sistema nos permite resaltar la posible interpretación que la entropía de Shannon puede adoptar, tales como: la localización o deslocalización de la densidad de probabilidad en ambos espacios conjugados.

7.1 Introducción

La construcción del concepto de entropía de Shannon es dado inicialmente dentro de la estructura de la teoría matemática de la comunicación o teoría de la información, fue introducido por el matemático Claude E. Shannon a finales de los años 40 [14]. En el contexto de la teoría de la información, la entropía proporciona una medida de incertidumbre en una distribución de probabilidad determinada, recibiendo el título de entropía de Shannon o entropía de la información.

En la teoría de la información clásica, la entropía es una medida de incertidumbre asociada a una variable aleatoria. La entropía de Shannon clásica, cuantifica el valor esperado de la información contenida en un mensaje, generalmente en unidades de bits aunque también se suele utilizar los *nats* como medida de información. En otras palabras es una medida del promedio de la información contenida en un mensaje, que se pierde cuando no se conoce el valor de la variable aleatoria.

A menudo ocasiona confusiones pensar que por estar utilizando un entropía clásica sobre un sistema cuántico ya se debe referir a éstos sistemas dentro del contexto de teoría de la información cuántica. Pero esto realmente no es así, ya que en la teoría de la información cuántica la "entropía de Shannon cuántica" que en realidad ésta es la entropía de Neumann, se utiliza la matriz de densidad en vez de la densidad de probabilidad. La entropía de Shannon clásica a su vez juega un papel importante en una amplia gama de aplicaciones para sistemas atómicos y moleculares [20] libres como, por ejemplo, en la medición del grado de correlación electrónica [21],

en el estudio de la energía cinética del sistema [22], en la medición de la calidad de una base de funciones [23], en la caracterización de procesos químicos [37], entre otras. La importancia de la entropía de Neumann radica particularmente en la computación cuántica en donde la codificación y la transmisión de información es uno de los objetivos preponderantes.

La entropía de Shannon en el espacio de configuración puede asociarse a la incertidumbre de determinar la posición de la partícula en el espacio; en otras palabras, tenemos tal cantidad indicando el grado de localización (deslocalización) de una determinada partícula en el espacio. Por otro lado, tenemos la entropía de Shannon en el espacio de los momentos, que puede ser asociada a la incertidumbre de determinar el momento de una determinada partícula.

Las entropías de Shannon en el espacio de configuración y de los momentos se definen como:

$$S_r = -\int \rho(\vec{r}) \ln[\rho(\vec{r})] \mathrm{d}\vec{r}; \qquad (7.1)$$

$$S_p = -\int \gamma(\vec{p}) \ln[\gamma(\vec{p})] d\vec{p}; \qquad (7.2)$$

donde $\rho(\vec{r}) = |\Psi(\vec{r})|^2$ y $\gamma(\vec{p}) = |\phi(\vec{p})|^2$ son las densidades de probabilidad, mientras que ψ y ϕ son las funciones de onda en el espacio de configuración y de los momentos, respectivamente. Además, esta medida de la información cumple la siguiente relación de incertidumbre de posición-momento desarrollada por I. Bialynicki-Birula y J. Mycielski (BBM) [15]

$$S_r + S_p \ge D(1 + \ln \pi), \tag{7.3}$$

donde D es la dimensionalidad del sistema. Esta relación de incertidumbre basada en la entropía de Shannon es una formalización matemática más apropiada del principio de incertidumbre posición-momento, que expresa que la incertidumbre total en posición y momento es necesariamente mayor o igual que el valor $D(1+\ln \pi)$ para cualquier estado cuántico del sistema. Una cantidad que está estrechamente relacionada con la entropía de Shannon que describe más adecuadamente el grado de localización (deslocalización) de la nube electrónica en un sistema corresponde a la potencia de entropía de Shannon, en el espacio de configuración y de los momentos se definen como:

$$J_r = \frac{1}{2\pi \exp} \exp[\frac{2}{D}S_r],\tag{7.4}$$

$$J_p = \frac{1}{2\pi \exp} \exp[\frac{2}{D} S_p].$$
 (7.5)

7.2 Entropía de Shannon para el átomo de hidrógeno libre en dos dimensiones

En esta sección se presentan los resultados de las entropías de Shannon para el caso libre. En la literatura se encuentra reportado el cálculo de las entropías de Shannon para un átomo de hidrógeno en D dimensiones [**16**], lo cual nos permitirá comparar nuestros resultados. Cabe mencionar que estos cálculos son evaluados en forma numérica ya que no es posible obtenerlos en forma analítica.

Las entropías de Shannon para el estado base y primeros estados excitados (2s, 3s, 2p, 3p y 3d) en el espacio de configuración y de los momentos son obtenidas a partir de las siguientes expresiones:

$$S_r = -\int_0^{2\pi} \int_0^\infty |\psi_{nm}(\vec{\rho})|^2 \log(\psi_{nm}(\vec{\rho})|^2) \rho d\rho d\phi,$$
(7.6)

$$S_p = -\int_0^{2\pi} \int_0^\infty |\phi_{nm}(\vec{p})|^2 \log(\phi_{nm}(\vec{p})|^2) p \mathrm{d}p \mathrm{d}\phi_p, \tag{7.7}$$

donde $\psi_{nm}(\vec{p})$ esta dada por (4.64) y $\phi_{nm}(\vec{p})$ por (6.24), (6.28), (6.32), (6.35), (6.38) y (6.41), respectivamente. Las expresiones anteriores se evaluaron en forma numérica utilizando Mathematica, obteniendo los resultados que se muestran en la tabla 7.1. En la figura 7.1 se compararon nuestros resultados con los reportados en la literatura [**16**] para los tres primeros estados sin nodos.

Cabe resaltar el signo negativo para los estados 3s y 3p en el espacio de los momentos, lo cual como sabemos no esta justificado para la entropía de Shannon clásica. Pero sí lo está cuando la función de onda no esta normalizada, siendo está la razón por la cual se justifica el signo negativo en dicha entropía de Shannon en el espacio de los momentos.

Todas las cantidades están dadas en unidades atómicas; sin embargo, en otras unidades la densidad de probabilidad debe ser escrita explícitamente como $a_0^2 \rho(\vec{r})/(Ne)$ con elemento de volumen $d\vec{r}/a_0^2$. Por esta razón, las medidas de información son no adimensionales.

Estados	S_r	S_p	$S_r + S_p$	J_r	J_p
1s	1.06529	3.33788	4.40317	0.16989	1.64872
2s	4.74606	0.20870	4.95476	6.74082	0.07213
3s	6.58429	-0.77089	5.81339	42.36860	0.02708
2p	4.54203	1.26555	5.80760	5.49677	0.20756
3p	6.50964	-0.29886	6.21078	39.32140	0.04342
3d	6.24718	0.20113	6.44832	30.24430	0.7159

 Tabla 7.1: Entropías de Shannon para AH2D libre para el estado base y primeros estados excitados.

Figura 7.1: Entropías de Shannon para AH2D libre para los tres primeros estados sin nodos, se compraran los resultados obtenidos en esta sección con los reportados en la literatura [16] (cruces rojas).

7.3 Entropía de Shannon para el átomo de hidrógeno confinado en dos dimensiones

En este caso la manera de obtener las entropías de Shannon en el espacio de configuración es semejante al caso libre, ya que se conocen explícitamente las funciones de onda variacionales, por lo que procedemos a calcular

$$S_{r} = -\int_{0}^{2\pi} \int_{0}^{\rho_{0}} |\psi_{nm}(\vec{\rho}, \alpha_{j})|^{2} \log(\psi_{nm}(\vec{\rho}, \alpha_{j})|^{2}) \rho d\rho d\phi,$$
(7.8)

donde $\psi_{nm}(\vec{\rho}, \alpha_j)$ es la función de onda variacional (ver sección 4.2.1). En el espacio de momentos la función de onda es obtenida mediante un polinomio de interpolación (Ver Sección 5.2); cabe mencionar que se podrían calcular las entropías de Shannon en el espacio de momentos si se definen las funciones de onda (6.15)-(6.20) y posteriormente hacer el cálculo de la entropía que indica la ec. (7.2), pero esto equivale a un tiempo de computo mucho mayor que como se procedió. A continuación se describe el procedimiento.

Veamos el caso del estado base. Partimos de utilizar los mismos intervalos para los cuales se calcularon los polinomios de interpolación (ver tabla 6.4), los cuales serán los limites de integración sobre (7.2) como se muestra

$$S_p = -\int_0^{2\pi} \int_{p_i}^{p_f} |I_k(p)|^2 \log(|I_k(p)|^2) p \mathrm{d}p \mathrm{d}\phi_p.$$
(7.9)

donde $I_k(p)$ es el polinomio de interpolación.

De lo cual, obtuvimos una entropía de Shannon para cada intervalo. Finalmente lo que se hace es sumar estas entropías de cada intervalo. Este procedimiento se realizo para diferentes radios de confinamiento obtenido los resultados que se muestran en la tabla 7.2. De modo semejante se obtuvieron los resultados para los estados 2s (ver tabla 7.3), 2p (ver tabla 7.4) y 3d (ver tabla 7.5).

En la figura 7.2 puede apreciarse el comportamiento de la entropía de Shannon para el estado base, donde vemos claramente que para radios de confinamiento mayores a 4 u.a. la entropía en ambos espacios conjugados tienen un comportamiento asintótico hasta el sistema libre, puede apreciarse que en todo momento la entropía en el espacio de configuración es menor y ésta es cada vez menor a medida que se aumenta el confinamiento, lo cual era de esperarse, ya que el electrón está muy localizado. Lo que llama mas la atención es que en la relación de incertidumbre $(S_r + S_p)$ aparece un mínimo alrededor de 1 u.a.

En la figura 7.3 puede apreciarse el comportamiento de la entropía de Shannon para el estado 2*s*, donde vemos que para radios de confinamiento mayores a 15 u.a. la entropía en ambos espacios conjugados tienen un comportamiento asintótico hasta el sistema libre, en este caso hay una entropía menor en el espacio de momentos para radios de 3 u.a. en adelante; mientras que para radios menores a 3 u.a. puede apreciarse que la entropía en el espacio de configuración es menor, además en la relación de incertidumbre ($S_r + S_p$) aparece un máximo alrededor de 1.6 u.a.

En la figura 7.4 puede apreciarse el comportamiento de la entropía de Shannon para el estado 2p, donde vemos claramente que para radios de confinamiento mayores a 10 u.a. la entropía en ambos espacios conjugados tienen un comportamiento asintótico hasta el sistema libre, en este caso hay una entropía menor en el espacio de momentos para radios de 4 u.a. en adelante; mientras que para radios menores a 4 u.a. puede apreciarse que la entropía en el espacio de configuración es menor, además en la relación de incertidumbre ($S_r + S_p$) aparece un mínimo alrededor de 1.8 u.a.

Finalmente en la figura 7.5 puede apreciarse el comportamiento de la entropía de Shannon para el estado 3d donde vemos que para radios de confinamiento mayores a 20 u.a. la entropía en ambos espacios conjugados tienen un comportamiento asintótico hasta el sistema libre, en este caso hay una entropía menor en el espacio de momentos para radios de 3 u.a. en adelante; mientras que para radios menores a 3 u.a. puede apreciarse que la entropía en el espacio de configuración es menor, en este caso la relación de incertidumbre $(S_r + S_p)$ crece suavemente entre 0.5 y 20 u.a..

$ ho_0$ (u.a.)	S_r	S_p	$S_r + S_p$
0.50000	-0.9274	5.2831	4.3557
0.60000	-0.6035	4.9500	4.3465
0.70000	-0.3396	4.6789	4.3363
0.80000	-0.1207	4.4551	4.3344
0.90000	0.0628	4.2685	4.3313
1.00000	0.2177	4.1122	4.3299
1.30000	0.5529	3.7804	4.3333
1.60000	0.7529	3.5908	4.3437
1.80000	0.8375	3.5141	4.3516
2.00000	0.8960	3.4632	4.3592
3.00000	1.0126	3.3716	4.3842
4.00000	1.0408	3.3530	4.3938
6.00000	1.0561	3.3434	4.3995
8.00000	1.0605	3.3407	4.4012
10.00000	1.0623	3.3396	4.4019
15.00000	1.0640	3.3385	4.4025
20.00000	1.0646	3.3382	4.4028
25.00000	1.0648	3.3380	4.4028
30.00000	1.0650	3.3380	4.4030
40.00000	1.0651	3.3379	4.4030
50.00000	1.0651	3.3378	4.4029
60.00000	1.0652	3.3378	4.4030
∞	1.0652	3.3378	4.4030

Tabla 7.2: Se presentan las entropías de Shannon para el estado base en el espacio de configu-
ración y de los momentos variando el radio de confinamiento ρ_0 .

Figura 7.2: Entropía de Shannon para el estado base en función del radio de confinamiento ρ_0

ρ_0 (u.a.)	S_r	S_p	$S_r + S_p$
0.5000	-0.9528	6.6007	5.6475
0.6000	-0.5452	6.2292	5.6840
0.7000	-0.2058	5.9184	5.7126
0.8000	-0.1301	5.6250	5.4949
0.9000	0.3718	5.3963	5.7681
1.0000	0.5721	5.2046	5.7767
1.3000	1.1622	4.6609	5.8231
1.6000	1.6209	4.2235	5.8444
1.8000	1.8813	3.9625	5.8438
2.0000	2.1122	3.7206	5.8328
3.0000	2.9585	2.7231	5.6816
4.0000	3.5031	1.9780	5.4901
6.0000	4.1579	1.0715	5.2294
8.0000	4.4788	0.5990	5.0788
10.0000	4.6165	0.3823	4.9988
15.0000	4.7091	0.2518	4.9609
20.0000	4.7290	0.2283	4.9573
25.0000	4.7362	0.2199	4.9561
30.0000	4.7397	0.2159	4.9556
40.0000	4.7427	0.2125	4.9552
50.0000	4.7440	0.2110	4.9550
60.0000	4.7447	0.2103	4.9550
∞	4.7460	0.2087	4.9547

Tabla 7.3: Se presentan las entropías de Shannon para el estado 2s en el espacio de configura-
ción y de los momentos variando el radio de confinamiento ρ_0 .

Figura 7.3: Entropía de Shannon para el estado 2s en función del radio de confinamiento ρ_0

ρ_0 (u.a.)	S_r	S_p	$S_r + S_p$
0.5000	-0.5525	6.0061	5.4536
0.6000	-0.1908	5.6444	5.4596
0.7000	0.1144	5.3386	5.4530
0.8000	0.3785	5.0740	5.4525
0.9000	0.6109	4.8409	5.4518
1.0000	0.8185	4.6326	5.4511
1.3000	1.3331	4.1164	5.4495
1.6000	1.7374	3.7108	5.4482
1.8000	1.9650	3.4843	5.4465
2.0000	2.1674	3.2828	5.4493
3.0000	2.9285	2.5264	5.4549
4.0000	3.4374	2.0400	5.4774
6.0000	4.0475	1.5057	5.5532
8.0000	4.3290	1.3212	5.6502
10.0000	4.4414	1.2750	5.7164
15.0000	4.5135	1.2645	5.7780
20.0000	4.5288	1.2650	5.7938
25.0000	4.5343	1.2653	5.7998
30.0000	4.5371	1.2654	5.8025
40.0000	4.5395	1.2655	5.8050
50.0000	4.5404	1.2655	5.8059
60.0000	4.5404	1.2655	5.8059
∞	4.5420	1.2655	5.8075

Tabla 7.4: Se presentan las entropías de Shannon para el estado 2p en el espacio de configura-
ción y de los momentos variando el radio de confinamiento ρ_0 .

Figura 7.4: Entropía de Shannon para el estado 2p en función del radio de confinamiento ρ_0
ρ_0 (u.a.)	S_r	S_p	$S_r + S_p$
0.5000	-0.5202	6.4372	5.9170
0.6000	-0.1561	6.0747	5.9186
0.7000	0.1515	5.7677	5.9192
0.8000	0.4180	5.5016	5.9196
0.9000	0.6530	5.2668	5.9198
1.0000	0.8631	5.0569	5.9200
1.3000	1.3860	4.5348	5.9208
1.6000	1.7993	4.1241	5.9234
1.8000	2.0334	3.8906	5.9240
2.0000	2.2427	3.6815	5.9242
3.0000	3.0457	2.8874	5.9331
4.0000	3.6114	2.3153	5.9267
6.0000	4.3970	1.5580	5.9550
8.0000	4.9360	1.0487	5.9847
10.0000	5.3304	0.6866	6.0170
15.0000	5.9128	0.2625	6.1754
20.0000	6.1272	0.1859	6.3131
25.0000	6.1933	0.1857	6.3790
30.0000	6.2162	0.1907	6.4070
40.0000	6.2331	0.1954	6.4285
50.0000	6.2385	0.1973	6.4358
60.0000	6.2416	0.1981	6.4397
∞	6.2471	0.2011	6.4483

Tabla 7.5: Se presentan las entropías de Shannon para el estado 3d en el espacio de configura-
ción y de los momentos variando el radio de confinamiento ρ_0 .

Figura 7.5: Entropía de Shannon para el estado 3d en función del radio de confinamiento ρ_0

Información de Fisher para el átomo de hidrógeno en dos dimensiones

la información de Fisher de posición está estrechamente conectada a la energía cinética debido a su dependencia del gradiente de la distribución, enfatizando así su carácter local; es decir, mide la concentración espacial puntual de la nube de probabilidad electrónica y cuantifica el contenido de gradiente de la distribución de electrones En este capítulo estudiamos la información de Fisher para el AH2D, es adecuado estudiar los mismos estados en el caso libre y el confinado.

La entropía de Shannon y la información de Fisher se pueden utilizar para estimar el grado de localización (deslocalización) de un sistema mecánico cuántico tanto en posición como en el espacio de momentos con una diferencia notable ya que la entropía de Shannon es una medida global de la densidad, mientras que la información de Fisher es una medida local de la densidad.

8.1 Introducción

El concepto de información de Fisher fue introducido por primera vez en la estimación estadística de variables aleatorias unidimensionales [24], pero actualmente está desempeñando un papel cada vez mas importantes en numerosos campos [32], en sistemas atómicos y moleculares bajo campos eléctricos y magnéticos externos intensos [35]. La información de Fisher es una medida punto a punto de la distribución de la nube electrónica ya que es un gradiente funcional de $\rho(\vec{r})$. Se interpreta como una medida de la tendencia al desorden. Lo que quiere decir que cuanto mayor sea esta cantidad, más ordenado será la distribución.

En el espacio de configuración y de momentos se definen por [31]:

$$F_r = \int_0^\infty \frac{|\vec{\nabla}\rho(\vec{r})|^2}{\rho(\vec{r})} \mathrm{d}\vec{r},\tag{8.1}$$

$$F_p = \int_0^\infty \frac{|\vec{\nabla}\gamma(\vec{p})|^2}{\gamma(\vec{p})} \mathrm{d}\vec{p}$$
(8.2)

donde $\rho(\vec{r}) = |\Psi(\vec{r})|^2$ y $\gamma(\vec{p}) = |\phi(\vec{p})|^2$ son las densidades de probabilidad, mientras que el producto de las informaciones de ambos espacios conjugados ($F_r F_p$) cumplen

una relación de incertidumbre de posición-momento para *funciones de onda reales y densidades continuas* [17]:

$$F_r F_p \ge 2D^2 \tag{8.3}$$

con *D* la dimensión del sistema. Además se conoce que la información de Fisher y la potencia entrópica de Shannon cumplen una desigualdad [**33-34**]; en el espacio de configuración y de momentos están dadas por:

$$F_r \times J_r \ge D,\tag{8.4}$$

$$F_p \times J_p \ge D,\tag{8.5}$$

donde J_r y J_p son la potencia entrópica de Shannon en el espacio de configuración y de momentos, respectivamente.

8.2 Información de Fisher para el átomo de hidrógeno libre en dos dimensiones

La información de Fisher para el estado base y primeros estados excitados (2s, 3s 2p, 3p y 3d) en el espacio de configuración y de momentos se obtienen a partir de las siguientes expresiones:

$$F_r = \int_0^{2\pi} \int_0^\infty \frac{|\vec{\nabla}|\psi_{nm}(\vec{\rho})|^2|^2}{|\psi_{nm}(\vec{\rho})|^2} \rho \mathrm{d}\rho \mathrm{d}\phi,$$
(8.6)

$$F_p = \int_0^{2\pi} \int_0^\infty \frac{|\vec{\nabla}|\psi_{nm}(\vec{p})|^2|^2}{|\psi_{nm}(\vec{p})|^2} p \mathrm{d}p \mathrm{d}\phi_p, \tag{8.7}$$

donde $\psi_{nm}(\vec{p})$ esta dada por (4.64) y $\phi_{nm}(\vec{p})$ por (6.24), (6.28), (6.32), (6.35), (6.38) y (6.41), respectivamente. Las expresiones anteriores se evaluaron en forma numérica utilizando Mathematica [1], obteniéndose los resultados que se muestran en la tabla 8.1, donde puede observarse que los valores obtenidos son consistentes con las relaciones de incertidumbre (8.3)-(8.5).

 Tabla 8.1: Información de Fisher para el estado base y primeros estados excitados

Estados	F_r	F_p	$F_r J_r$	$F_p J_p$	$F_r F_p$
1s	16.0000	1.5000	2.7182	2.4730	24.0000
2s	1.7777	58.2000	11.9836	4.2220	103.4621
3s	0.6400	412.5000	27.1160	11.1724	264.0000
2p	0.5925	18.0000	3.2572	3.73614	_
3p	0.3840	200.0000	15.0994	8.6848	_
3d	0.1280	62.5000	3.8712	4.4746	_

8.3 Información de Fisher para el átomo de hidrógeno confinado en dos dimensiones

En este caso la manera de obtener la información de Fisher en el espacio de configuración es semejante al caso libre, ya que se conocen explícitamente las funciones de onda variacionales, por lo que es sencillo calcular

$$F_r = \int_0^{2\pi} \int_0^{\rho_0} \frac{|\vec{\nabla}|\psi_{nm}(\vec{\rho},\alpha_j)|^2|^2}{|\psi_{nm}(\vec{\rho},\alpha_j)|^2} \rho \mathrm{d}\rho \mathrm{d}\phi,$$
(8.8)

donde $\psi_{nm}(\vec{\rho}, \alpha_j)$ es la función de onda variacional (ver sección 4.2.1). Por otro lado, en el espacio de momentos la información de Fisher está dada por la ec. (8.2), la manera de proceder para obtener éste valor es diferente ya que como podemos observar tenemos un funcional del gradiente de la densidad. Por lo que no podemos usar directamente el método de interpolación (Ver Sección 5.2) para obtener la función de onda, ya que la derivada no es continua [**36**] en los puntos donde se unen los polinomios de interpolación. Este problema puede resolverse fácilmente si realizamos primero la derivada de la densidad, tomemos como ejemplo el estado base

$$F_p^{1s} = \int_0^{2\pi} \int_0^\infty \frac{|\vec{\nabla}|\psi_{10}(p;\alpha_1)|^2|^2}{|\psi_{10}(p;\alpha_1)|^2} p \mathrm{d}p \mathrm{d}\phi_p, \tag{8.9}$$

donde,

$$\vec{\nabla} |\psi_{10}(p;\alpha_1)|^2 = \frac{\partial}{\partial p} \left| \frac{N}{(2\pi)^{1/2}} \int_0^\infty R_{10}(\rho) J_0(p\rho) \rho d\rho \right|^2$$

= $2 \frac{N}{(2\pi)^{1/2}} \int_0^\infty R_{10}(\rho) J_0(p\rho) \rho d\rho \times \frac{\partial}{\partial p} \frac{N}{(2\pi)^{1/2}} \int_0^\infty R_{10}(\rho) J_0(p\rho) \rho d\rho$
= $\frac{2}{(2\pi)^{1/2}} \psi_{10}(p,\alpha_1) \times \underbrace{N \int_0^\infty R_{10}(\rho) (-\rho) J_1(p\rho) \rho d\rho}_{I_k^{1s}(p)},$
(8.10)

donde $R_{10}(\rho)$ esta dada por (5.14), sustituyendo (8.10) en (8.9) e integrando la parte angular, obtenemos:

$$F_p^{1s} = 4 \int_{p_i}^{p_f} |I_k^{1s}(p)|^2 p \mathrm{d}p,$$
(8.11)

donde $I_k^{1s}(p)$ es el polinomio de interpolación; siguiendo el mismo procedimiento que se muestra en la sección 5.2 con p_i y p_f dados por los intervalos de la malla para los cuales se calcularon los polinomios de interpolación (ver tabla 6.4).

De modo similar, la información de Fisher para los primeros estados excitados están dados por:

$$F_p^{2s} = 4 \int_{p_i}^{p_f} |I_k^{2s}(p)|^2 p \mathrm{d}p, \qquad (8.12)$$

$$F_p^{2p} = 4 \int_{p_i}^{p_f} |I_k^{2p}(p)|^2 p \mathrm{d}p,$$
(8.13)

$$F_p^{3d} = 4 \int_{p_i}^{p_f} |I_k^{3d}(p)|^2 p \mathrm{d}p.$$
(8.14)

con:

$$I_k^{2s}(p) = N \int_{p_i}^{p_f} R_{20}(\rho)(-\rho) J_1(p\rho)\rho d\rho,$$
(8.15)

$$I_k^{2p}(p) = N \int_{p_i}^{p_f} R_{21}(\rho) \left[\frac{1}{2} \rho J_0(p\rho) - \rho J_2(p\rho) \right] \rho \mathrm{d}\rho,$$
(8.16)

$$I_k^{3d}(p) = N \int_{p_i}^{p_f} R_{32}(\rho) \left[\frac{1}{2} \rho J_1(p\rho) - \rho J_3(p\rho) \right] \rho \mathrm{d}\rho,$$
(8.17)

donde $R_{20}(\rho)$, $R_{21}(\rho)$ y $R_{32}(\rho)$ están dadas por (5.28), (5.33) y (5.34), respectivamente. La información de Fisher total se obtiene al sumar cada intervalo. Este procedimiento se realizó para diferentes radios de confinamiento obtenido los resultados que se muestran en la tabla 8.2 para el estado base, en la tabla 8.3 para el estado 2s, en la tabla 8.4 para el estado 2p y en la tabla 8.5 para el estado 3d.

En la figura 8.1 puede apreciarse el comportamiento de la información de Fisher para el estado base. Se observa claramente que para radios de confinamiento mayores a 4 u.a. la información de Fisher en ambos espacios conjugados tiende asintóticamente a la del sistema libre, puede apreciarse que en todo momento F_r es mayor que F_p , lo que quiere decir que tiene un mayor orden la distribución en el espacio de configuración; en el espacio de momentos la distribución pasa de un estado de alto desorden a un estado de alto orden a medida que crece el radio de confinamiento. Lo cual era de esperarse. Lo que llama mas la atención es que en la relación de incertidumbre ($F_r \times F_p$) aparece un *mínimo* alrededor de 1 u.a, este mínimo se aprecia de igual manera en la relación de incertidumbre de Shannon (figura 7.2). En la figura 8.2 puede apreciarse el comportamiento de la información de Fisher para el estado 2*s*. Se observa que para radios de confinamiento mayores a 15 u.a. la

información de Fisher en ambos espacios conjugados tiende asintóticamente a la del sistema libre, mientras que para radios menores a 3 u.a. puede apreciarse que F_r es mayor que F_p , lo que quiere decir que tiene un mayor orden la distribución en el espacio de configuración; en el espacio de momentos la distribución pasa de un estado de alto desorden a un estado de alto orden a medida que crece el radio de confinamiento. Además en la relación de incertidumbre ($F_r \times F_p$) aparece un *máximo* alrededor de 1.3 u.a., este *máximo* esta muy cercano al que se puede apreciar en la relación de incertidumbre de Shannon que aparece alrededor de 1.6 u.a. (figura 7.3).

En la figura 8.3 puede apreciarse el comportamiento de la información de Fisher

para el estado 2p. Se observa que para radios de confinamiento mayores a 10 u.a. la información de Fisher en ambos espacios conjugados tiende asintóticamente a la del sistema libre, mientras que para radios menores a 3 u.a. puede apreciarse que F_r es mayor que F_p , lo que quiere decir que tiene un mayor orden la distribución en el espacio de configuración; en el espacio de momentos la distribución pasa de un estado de alto desorden a un estado de alto orden a medida que crece el radio de confinamiento. Además, el comportamiento de la relación de incertidumbre ($F_r \times F_p$) decrece suavemente entre 0.5 y 10 u.a.

En la figura 8.4 puede apreciarse el comportamiento de la información de Fisher para el estado 3d, se observa que para radios de confinamiento mayores a 20 u.a. la información de Fisher en ambos espacios conjugados tiende asintóticamente a la del sistema libre, mientras que para radios menores a 3 u.a. puede apreciarse que F_r es mayor que F_p , lo que quiere decir que tiene un mayor orden la distribución en el espacio de configuración; en el espacio de momentos la distribución pasa de un estado de alto desorden a un estado de alto orden a medida que crece el radio de confinamiento, en el espacio de momentos presenta un máximo alrededor de 16 u.a., es importante señalar que no hay una justificación física que justifique la aparición de este máximo. Además, el comportamiento de la relación de incertidumbre ($F_r \times F_p$) decrece suavemente entre 0.5 y 20 u.a.

ρ_0 (u.a.)	F_r	F_p	$F_r \times F_p$
0.5000	99.0540	0.1874	18.5667
0.6000	70.6677	0.2588	18.2895
0.7000	53.7006	0.3368	18.0912
0.8000	42.8299	0.4190	17.9479
0.9000	35.5123	0.5036	17.8858
1.0000	30.4065	0.5889	17.9073
1.3000	22.1083	0.8284	18.3152
1.6000	18.6961	1.0222	19.1121
1.8000	17.5870	1.1216	19.7263
2.0000	16.9500	1.1994	20.3307
3.0000	16.1014	1.3876	22.3428
4.0000	16.0199	1.4447	23.1449
6.0000	16.0022	1.4789	23.6665
8.0000	16.0005	1.4889	23.8246
10.0000	16.0002	1.4932	23.8920
15.0000	15.9999	1.4971	23.9538
20.0000	16.0000	1.4983	23.9742
25.0000	15.9999	1.4989	23.9832
30.0000	15.9999	1.4992	23.9880
40.0000	16.0000	1.4995	23.9928
50.0000	16.0000	1.4997	23.9952
60.0000	15.9999	1.4997	23.9958
∞	16.0000	1.5000	24.0000

Tabla 8.2: Información de Fisher para el estado base en el espacio de configuración y de los
momentos variando el radio de confinamiento ρ_0 .

Figura 8.1: Información de Fisher para el estado base variando el radio de confinamiento ρ_0

$ ho_0$ (u.a.)	F_r	F_p	$F_r F_p$
0.50000	543.7550	0.3089	168.0170
0.60000	374.0950	0.4616	172.6905
0.70000	273.1610	0.6423	175.4775
0.80000	204.7470	0.8868	181.5723
0.90000	161.6850	1.1300	182.7154
1.00000	131.9730	1.3805	182.1900
1.30000	75.9581	2.4131	183.2953
1.60000	48.7097	3.7210	181.2498
1.80000	37.5458	4.7584	178.6591
2.00000	29.5833	5.8863	174.1365
3.00000	11.4313	12.6324	144.4048
4.00000	5.8764	20.4476	120.1593
6.00000	2.6839	35.9296	96.4339
8.00000	1.9642	46.8607	92.0456
10.00000	1.8018	52.4332	94.4746
15.00000	1.7665	56.6351	100.0487
20.00000	1.7705	57.6345	102.0448
25.00000	1.7731	58.0109	103.8632
30.00000	1.7746	58.1900	103.2657
40.00000	1.7760	58.3493	103.6284
50.00000	1.7767	58.4164	103.7884
60.00000	1.7771	58.4508	104.8729
∞	1.7777	58.5000	103.9954

Tabla 8.3: Información de Fisher para el estado 2s en el espacio de configuración y de los
momentos variando el radio de confinamiento ρ_0 .

Figura 8.2: Información de Fisher para el estado base variando el radio de confinamiento ρ_0

$ ho_0$ (u.a.)	F_r	F_p	$F_r \times F_p$
0.50000	144.4020	0.1902	27.4709
0.60000	99.7876	0.2715	27.0987
0.70000	72.9541	0.3668	26.7633
0.80000	55.5843	0.4773	26.5355
0.90000	43.7071	0.5986	26.1646
1.00000	35.2340	0.7304	25.7370
1.30000	20.5593	1.2098	24.8733
1.60000	13.3925	1.7946	24.0353
1.80000	10.4926	2.2281	23.3791
2.00000	8.4308	2.7043	22.8002
3.00000	3.6291	5.5307	20.0719
4.00000	2.0192	8.7201	17.6077
6.00000	0.9785	14.4456	14.1350
8.00000	0.7110	17.3532	12.3392
10.00000	0.6375	18.1085	11.5447
15.00000	0.6033	18.0871	10.9119
20.00000	0.5975	18.0107	10.7616
25.00000	0.5954	17.9914	10.7124
30.00000	0.5944	17.9878	10.6930
40.00000	0.5935	17.9871	10.6768
50.00000	0.5931	17.9866	10.6689
60.00000	0.5930	17.9871	10.6664
∞	0.5925	18.0000	10.6650

Tabla 8.4: Información de Fisher para el estado 2p en el espacio de configuración y de los
momentos variando el radio de confinamiento ρ_0 .

Figura 8.3: Información de Fisher para el estado base variando el radio de confinamiento ρ_0

$ ho_0$ (u.a.)	F_r	F_p	$F_r \times F_p$
0.5000	203.3080	0.1763	35.8432
0.6000	140.7610	0.2532	35.6406
0.7000	103.1050	0.3418	35.2412
0.8000	78.7012	0.4424	34.8174
0.9000	61.9952	0.5628	34.8909
1.0000	50.0641	0.6946	34.7745
1.3000	29.3545	1.1490	33.7306
1.6000	19.2020	1.7222	33.0698
1.8000	15.0793	2.1831	32.9196
2.0000	12.1396	2.6825	32.5644
3.0000	5.2322	5.8301	30.5042
4.0000	2.8543	9.9673	28.4496
6.0000	1.1958	20.6009	24.6345
8.0000	0.6388	32.6060	20.8287
10.0000	0.3946	44.9664	17.7437
15.0000	0.1871	65.2573	12.2096
20.0000	0.1440	65.9017	9.4898
25.0000	0.1345	63.5151	8.5427
30.0000	0.1315	62.1244	8.1693
40.0000	0.1295	61.7320	7.9942
50.0000	0.1288	61.5861	7.9322
60.0000	0.1285	61.5403	7.9078
∞	0.1280	62.5000	8.0000

Tabla 8.5: Información de Fisher para el estado 3d en el espacio de configuración y de los
momentos variando el radio de confinamiento ρ_0 .

Figura 8.4: Información de Fisher para el estado base variando el radio de confinamiento ρ_0

9

Principio de incertidumbre de Heisenberg generalizado para el AHC-2D

En este capítulo procederemos a estudiar el principio de incertidumbre de Heisenberg generalizado (PIHG) para el AH-2D como sistema confinado variando el radio de confinamiento para los estados 1s, 2s, 2p y 3d.

9.1 El principio de incertidumbre de Heisenberg

El principio de incertidumbre de Heisenberg [**25-26**] establece la imposibilidad con precisión arbitraria de conocer a un mismo tiempo la posición y el momento de una partícula, matemáticamente esto se expresa de la siguiente manera:

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}.\tag{9.1}$$

donde: Δx es la incertidumbre de encontrar a la partícula en la posición x y Δp_x es la incertidumbre de encontrar a la partícula con momento p_x .

9.1.1 Principio de incertidumbre de Heisenberg generalizado

El principio de incertidumbre de Heisenberg posteriormente se generalizo por Robertson [**29**], el cual se puede escribir como:

$$(\Delta \hat{A})^2 (\Delta \hat{B})^2 \ge \left(\frac{1}{2i} \left\langle [\hat{A}, \hat{B}] \right\rangle \right)^2 \tag{9.2}$$

donde \hat{A} y \hat{B} son operadores hermitianos. Asociando los operadores $\hat{A} = \hat{X}$ y $\hat{B} = \hat{P}_x$, obtenemos directamente de (9.2):

$$(\Delta x)^2 (\Delta p_x)^2 \ge \frac{\hbar^2}{4}.$$
(9.3)

donde $(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2 \mathbf{y} (\Delta p_x)^2 = \langle p_x^2 \rangle - \langle p_x \rangle^2$ son las varianzas, imponiendo la condición $\langle x \rangle = 0 \mathbf{y} \langle p_x \rangle = 0$ [**30**], la ec. (9.3) se reescribe como:

$$\langle x^2 \rangle \langle p_x^2 \rangle \ge \frac{\hbar^2}{4}.$$
 (9.4)

Para un sistema de dimensión *D* el principio de incertidumbre de posición-momento **[27-28; 31]** se reescribe como:

$$\langle q^2 \rangle \langle p_q^2 \rangle \ge \frac{D^2}{4}.$$
 (9.5)

donde D es la dimensionalidad del sistema (en unidades atómicas $e = m_e = \hbar = 1$).

9.1.2 Principio de incertidumbre de Heisenberg para el AHC-2D

A continuación se presentan los resultados obtenidos para el principio de incertidumbre de Heisenberg generalizado para los estados 1s, 2s, 2p y 3d variando el radio de confinamiento.

La expresiones a evaluar para el estado base y primeros estados excitados están dadas por:

$$\langle \rho^2 \rangle = \int_0^{2\pi} \int_0^{\rho_0} \psi_{nm}(\vec{\rho}, \alpha_j) \rho^2 \psi_{nm}^*(\vec{\rho}, \alpha_j) \rho \mathrm{d}\rho \mathrm{d}\phi$$
(9.6)

donde $\psi_{nm}(\vec{\rho}, \alpha_j)$ es la función de onda variacional (ver sección 4.2.1). Para el calculo de $\langle p^2 \rangle$, partimos de la siguiente expresión:

de donde obtenemos:

$$\langle p^2 \rangle = 2E + 2 \langle \rho^{-1} \rangle. \tag{9.8}$$

Ésta última expresión ya había sido evaluada al calcular la energía del sistema, ver sección 4.2.1, donde los valores de E para los estados 1s, 2s, 2p y 3d están dados en las tablas 5.5, 5.6, 5.7 y 5.8, respectivamente, y

$$\langle \rho^{-1} \rangle = \int_0^{2\pi} \int_0^{\rho_0} \psi_{nm}(\vec{\rho}, \alpha_j) \psi^*_{nm}(\vec{\rho}, \alpha_j) \mathrm{d}\rho \mathrm{d}\phi.$$
(9.9)

Las expresiones anteriores se evaluaron en forma numérica utilizando Mathematica, obteniendo los resultados que se muestran en la tabla 9.1 para el estado base, en la tabla 9.2 para el estado 2s, en la tabla 9.3 para el estado 2p y en la tabla 9.4 para el estado 3d.

En la figura 9.1 puede apreciarse el comportamiento del PIHG para el estado base, donde vemos que para radios de confinamiento mayores a 10 u.a. PIHG tiene un comportamiento asintótico hasta el sistema libre, además alrededor de un radio de confinamiento de 0.9 u.a. se encuentra un *mínimo* (Lo cual se puede observar en la tabla 9.1), es en ese mínimo donde tanto la incertidumbre de encontrar al electrón como la incertidumbre del momento radial (el cual como bien sabemos es una cantidad observable) son mínimas.

En la figura 9.2 puede apreciarse el comportamiento del PIHG para el estado 2s, donde vemos que para radios de confinamiento mayores a 20 u.a. el PIHG tiene un comportamiento asintótico hasta el sistema libre, además alrededor de un radio de confinamiento de 1.3 u.a. se encuentra un *máximo* y un *mínimo* alrededor de 8 u.a. (Lo cual se puede observar en la tabla 9.2), es en ese mínimo donde tanto la incertidumbre de encontrar al electrón como la incertidumbre del momento radial (el cual como bien sabemos es una cantidad observable) son mínimas.

En la figura 9.3 puede apreciarse el comportamiento del PIHG para el estado 2p, donde vemos que para radios de confinamiento mayores a 40 u.a. el PIHG tiene un comportamiento asintótico hasta el sistema libre, además alrededor de un radio de confinamiento de 5 u.a. se encuentra un *mínimo* (Lo cual se puede observar en la tabla 9.3), es en ese mínimo donde tanto la incertidumbre de encontrar al electrón como la incertidumbre del momento radial (el cual como bien sabemos es una cantidad observable) son mínimas.

En la figura 9.4 del PIHG para el estado 3d, donde vemos que para radios de confinamiento mayores a 50 u.a. el PIHG tiene un comportamiento asintótico hasta el sistema libre, además alrededor de un radio de confinamiento de 12 u.a. se encuentra un *mínimo* (Lo cual se puede observar en la tabla 9.4), es en ese mínimo donde tanto la incertidumbre de encontrar al electrón como la incertidumbre del momento radial (el cual como bien sabemos es una cantidad observable) son mínimas.

$ ho_0$ (u.a.)	$\langle \rho^{-1} \rangle$	$\langle \rho^2 \rangle$	$\langle p^2 \rangle$	$\left< \rho^2 \right> \left< p^2 \right> \ge 1$
0.5000	8.4558	0.0468	24.7635	1.1612
0.6000	7.3026	0.0647	17.6669	1.1435
0.7000	6.4989	0.0842	13.4251	1.1304
0.8000	5.9150	0.1047	10.7075	1.1219
0.9000	5.4788	0.1259	8.8780	1.1180
1.0000	5.1468	0.1471	7.6016	1.1187
1.3000	4.5381	0.2070	5.5270	1.1446
1.6000	4.2514	0.2556	4.6740	1.1948
1.8000	4.1511	0.2804	4.3964	1.2329
2.0000	4.0919	0.2998	4.2375	1.2704
3.0000	4.0098	0.3468	4.0253	1.3963
4.0000	4.0018	0.3612	4.0049	1.4468
5.0000	4.0005	0.3669	4.0015	1.4685
6.0000	4.0002	0.3697	4.0006	1.4792
8.0000	4.0000	0.3722	4.0001	1.4891
10.0000	4.0000	0.3733	4.0000	1.4933
15.0000	3.9999	0.3743	3.9999	1.4972
20.0000	4.0000	0.3746	4.0000	1.4984
25.0000	3.9999	0.3747	3.9999	1.4990
30.0000	3.9999	0.3748	4.0000	1.4993
40.0000	4.0000	0.3749	4.0000	1.4996
50.0000	4.0000	0.3749	4.0000	1.4998
60.0000	3.9999	0.3749	3.9999	1.4998

Tabla 9.1: Estado base. Variación del principio de incertidumbre de Heisenberg para diferentes
radios de confinamiento ρ_0

Figura 9.1: Estado base. Principio de incertidumbre de Heisenberg para diferentes radios de confinamiento ρ_0 .

$ ho_0$ (u.a.)	$\langle \rho^{-1} \rangle$	$\langle \rho^2 \rangle$	$\langle p^2 \rangle$	$\left< \rho^2 \right> \left< p^2 \right> \ge 1$
0.5000	11.7277	0.0771916	135.488	10.4585
0.6000	9.39503	0.115217	93.5309	10.7764
0.7000	7.82682	0.160849	68.2906	10.9845
0.8000	6.30867	0.223317	51.1673	11.4266
0.9000	5.60545	0.283068	40.4193	11.4414
1.0000	5.16368	0.344076	32.9972	11.3535
1.3000	3.67643	0.607094	18.9895	11.5284
1.6000	2.80729	0.935147	12.1774	11.3877
1.8000	2.38291	1.19068	9.38646	11.1763
2.0000	2.04643	1.47204	7.39583	10.8870
3.0000	1.12716	3.15836	2.85783	9.0260
4.0000	0.77296	5.10747	1.46912	7.5034
6.0000	0.52763	8.97174	0.67100	6.0200
8.0000	0.46184	11.7163	0.49106	5.7534
10.0000	0.44602	13.1131	0.45045	5.9068
15.0000	0.44292	14.1643	0.44165	6.2556
20.0000	0.44351	14.4092	0.44265	6.3782
25.0000	0.44386	14.5004	0.4433	6.4280
30.0000	0.44404	14.544	0.44367	6.4527
40.0000	0.44422	14.5829	0.44401	6.4750
50.0000	0.44431	14.5992	0.44418	6.4846
60.0000	0.44436	14.6077	0.44428	6.4899

Tabla 9.2: Estado 2s. Variación del principio de incertidumbre de Heisenberg para diferentes
radios de confinamiento ρ_0

Figura 9.2: Estado 2s. Principio de incertidumbre de Heisenberg para diferentes radios de confinamiento ρ_0 .

$ ho_0$ (u.a.)	$\langle \rho^{-1} \rangle$	$\left<\rho^2\right>$	$\langle p^2 \rangle$	$\left< \rho^2 \right> \left< p^2 \right> \ge 1$
0.5000	4.2737	0.0816	59.5177	4.8610
0.6000	3.5753	0.1169	41.3573	4.8387
0.7000	3.0766	0.1584	30.4074	4.8165
0.8000	2.7028	0.2057	23.3009	4.7946
0.9000	2.4123	0.2589	18.4290	4.7729
1.0000	2.1800	0.3179	14.9445	4.7515
1.3000	1.6985	0.5280	8.8811	4.6893
1.6000	1.3987	0.7851	5.8968	4.6301
1.8000	1.2549	0.9810	4.6812	4.5924
2.0000	1.1404	1.1950	3.8126	4.5563
3.0000	0.8022	2.4942	1.7649	4.4022
4.0000	0.6414	4.0467	1.0627	4.3005
5.0000	0.5531	5.6550	0.7524	4.2552
6.0000	0.5032	7.1327	0.6002	4.2812
8.0000	0.4600	9.2101	0.4832	4.4506
10.0000	0.4485	10.2064	0.4544	4.6385
15.0000	0.4447	10.9320	0.4451	4.8665
20.0000	0.4445	11.1012	0.4446	4.9357
25.0000	0.4444	11.1634	0.4444	4.9618
30.0000	0.4444	11.1941	0.4444	4.9756
40.0000	0.4444	11.2213	0.4444	4.9877
50.0000	0.4444	11.2321	0.4444	4.9919
60.0000	0.4444	11.2379	0.4444	4.9946

Tabla 9.3: Estado 2p. Variación del principio de incertidumbre de Heisenberg para diferentes
radios de confinamiento ρ_0

Figura 9.3: Estado 2p. Principio de incertidumbre de Heisenberg para diferentes radios de confinamiento ρ_0 .

ρ_0 (u.a.)	$\langle \rho^{-1} \rangle$	$\langle \rho^2 \rangle$	$\langle p^2 \rangle$	$\left< \rho^2 \right> \left< p^2 \right> \ge 1$
0.5000	3.5257	0.101245	106.669	10.7997
0.6000	2.9418	0.145516	74.0828	10.7802
0.7000	2.5249	0.197683	54.4343	10.7607
0.8000	2.2122	0.257699	41.6817	10.7414
0.9000	1.969	0.325514	32.9386	10.7220
1.0000	1.7744	0.401079	26.6847	10.7027
1.3000	1.3705	0.673767	15.7996	10.6453
1.6000	1.1181	1.01436	10.4386	10.5886
1.8000	0.9967	1.27844	8.25312	10.5511
2.0000	0.8996	1.57162	6.68994	10.5140
3.0000	0.6089	3.4578	2.98855	10.3338
4.0000	0.4642	5.99842	1.69431	10.1632
6.0000	0.3213	12.756	0.77290	9.8591
8.0000	0.2521	21.1674	0.45436	9.6176
10.0000	0.2130	30.3752	0.31132	9.4565
15.0000	0.1713	50.4412	0.18809	9.4875
20.0000	0.1618	59.9235	0.16457	9.8620
25.0000	0.1603	63.0152	0.16091	10.1398
30.0000	0.1600	64.1381	0.16016	10.2728
40.0000	0.1599	64.9532	0.15998	10.3912
50.0000	0.1599	65.2308	0.15992	10.4317
60.0000	0.1599	65.3725	0.15995	10.4566

Tabla 9.4: Estado 3d. Variación del principio de incertidumbre de Heisenberg para diferentes
radios de confinamiento ρ_0

Figura 9.4: Estado 3d. Principio de incertidumbre de Heisenberg para diferentes radios de confinamiento ρ_0 .

10

Conclusiones

Se obtuvieron los resultados del comportamiento de la entropía de Shannon para el AHC-2D para los estados 1s, 2s, 2p y 3d en el espacio de configuración y de los momentos variando el radio de confinamiento, la manera de construir las funciones de onda es utilizando el método variacional directo. Donde pudo apreciarse para el estado base alrededor de radios de confinamiento menores que 6 u.a. la entropía de Shannon en el espacio de momentos presenta un comportamiento asintótico ascendente, lo cual indica que a medida que el confinamiento aumenta se tiene menos conocimiento de la velocidad de la nube electrónica y por ende se tiene más localizada la distribución de la nube electrónica. Además, de modo semejante para los estados se cumple el principio de incertidumbre de BBM el cual indica que $S_{\rho} + S_{p} \geq 2(1 + \ln \pi) = 4.2894$ para cualquier estado. Incluso este valor estuvo muy cerca de alcanzarse para el estado base, en el cual se presento un mínimo alrededor de 1 u.a. y este alcanza un valor igual a 4.3299.

Cabe resaltar la negatividad de los valores de la entropía de Shannon para radios de confinamiento entre 0.5-0.8 u.a. para los estados 1s y 2s, de modo similar entre 0.5-0.6 u.a. para los estados 2p y 3d, dichas funciones de onda están normalizadas para estos radios de confinamiento, lo cual como bien sabemos la entropía de Shannon clásica no puede ser negativa si las funciones de onda están normalizadas. Otra justificación que se puede tomar en consideración el comportamiento del logaritmo para valores menores que la unidad que como bien sabemos es menor que cero.

De modo semejante, se obtuvieron los resultados del comportamiento de la información de Fisher para el AHC-2D para los estados 1s, 2s, 2p y 3d en el espacio de configuración y de los momentos variando el radio de confinamiento, Donde pudo apreciarse para el estado base alrededor de radios de confinamiento menores que 2 u.a. la información de Fisher en el espacio de configuración presenta un comportamiento asintótico ascendente "casi exponencial", lo cual indica un alto grado de orden sobre la distribución de la nube electrónica a medida que el confinamiento aumenta, y consecuentemente se tiene menor orden en la distribución de la velocidad de la nube electrónica, de modo semejante para los estados excitados (2s, 2p y 3d) se puede observar el mismo comportamiento que en el estado base alrededor de radios de confinamiento menores a 3 u.a. En el caso de la información de Fisher el significado físico de máximos en el espacio de momentos representa una tendencia a que cambie la estructura a un estado mas estable o en su caso inestable. El estado 3d en el espacio de momentos presenta un máximo alrededor de 16 u.a., es importante señalar que no hay una justificación física que justifique la aparición de este máximo, de igual manera cabe señalar la relevancia de utilizar la información de Fisher para analizar sistemas que ya han sido estudiados ampliamente en la literatura. Además, de modo semejante al analizar la relación de incertidumbre para la información de Fisher, el cual indica que $F_{\rho} * F_{p} \ge 4D^{2} = 16$, válida únicamente para estados s (funciones de onda reales), este valor estuvo cerca de alcanzarse para el estado base, en el cual se presento un mínimo alrededor de 0.9 u.a. y éste alcanza un valor igual a 17.8858. En ambos casos se ve reflejada la validez y precisión de los resultados presentados utilizando el método que se siguió en este trabajo.

Finalmente, por completitud se analizó el principio de incertidumbre de Heisenberg generalizado para los mismos estados (1s, 2s, 2p y 3d) donde resaltan la aparición de mínimos y máximos. Para el estado base se pudo apreciar un mínimo alrededor de un radio de confinamiento de 1 u.a. el cual se presenta en las relaciones de incertidumbre de Shannon y Fisher, para el estado 2s aparece un máximo alrededor de 1.3 u.a. y un mínimo alrededor de 8 u.a. mismos que se perciben en la relación de incertidumbre de la información de Fisher, para el estado 2p se pudo apreciar un mínimo alrededor de un radio de confinamiento de 5 u.a. y para el estado 3d aparece un mínimo alrededor de 12 u.a..

Bibliografía

- [1] Wolfram Research, Inc., Mathematica, Version 11.0.0.0, Champaign, IL (2016).
- [2] N. Zettili, *Quantum Mechanics: Concepts and Applications*, (Wiley, UK, Second Edition, 2009), Pages 489-491.
- [3] Ira N. Levine, *Quantum Chemistry*, (Pearson, New York, fifth Edition, 2014), pages 232-235.
- [4] David J. Griffiths, *Introduction to Quantum Mechanics*, (Prentice Hall, First Edition, 1994), Pages 227-229.
- [5] J. Gorecki and W. B. Brown, J. Phys. B: At. Mol. Opt. Phys., 20 5953 (1987).
- [6] J. L. Marín and S. A. Cruz, On the use of direct variational methods to study confined quantum systems, *Am. J. Phys.* **59**, 931 (1991).
- [7] J. L. Marín and S. A. Cruz, Enclosed quantum systems: use of the direct variational method, *J. Phys. B: At. Mol. Opt. Phys.*, **24**, 2899 (1991).
- [8] X. L. Yang *et al.*, Analytic solution of a two-dimensional hydrogen atom. I Nonrelativistic, *Phys. Rev A*, **43**, 1186 (1991).
- [9] N. Aquino y E. Castaño, Efectos de confinamiento en átomos hidrogenoides bidimensionales, *Revista Mexicana de Física*, **44**, 628 (1998).
- [10] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, Chapter 13, (Dover, New York, Ninth Edition, 1970).
- [11] Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms, (Springer-Verlag, Berlin, Gottingen, Heidelberg, 1957), Page 15.

- [12] N. Aquino, G. Campoy y A. Flores-Riveros, Accurate Energy Eigenvalues and Eigenfunctions for the Two-Dimensional Confined Hydrogen Atom, *International Journal of Quantum Chemistry*, **103**, 267–277 (2005).
- [13] Lokenath Debnath and Dambaru Bhatta, *Integral Transforms and Their Applications*, (Taylor & Francis Group, Second Edition, 2007), Pages 315-317.
- [14] C. E. Shannon, A Mathematical Theory of Communication, *Bell Syst. Tech. J.*, 27, 379 (1948).
- [15] I. Bialynicki-Birula and J. Mycielski, Uncertainty Relations for Information Entropy in Wave Mechanics, *Commun. Math. Phys.*, **44**, 129 (1975).
- [16] R. J. Yáñez, W. Van Assche and J. S. Dehesa, Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom, *Phys. Rev A*, **50**, 3065 (1994).
- [17] P. Sánchez-Moreno, A. R. Plastino, and J. S. Dehesa, A quantum uncertainty relation based on Fisher's information, *J. Phys. A: Math. Theor.*, 44, 065301 (2011).
- [18] J. Rey Pastor y A de Castro Brzezicki, *Funciones de Bessel, teoría matemática y aplicaciones a la ciencia y a la técnica*, (DOSSAT S.A., 1958), Pág. 188.
- [19] G. N. Watson, A Treatise on the Theory of Bessel Functions, (Cambridge University Press, 1922), pág. 386.
- [20] K. D. Sen, *Statistical Complexity: Applications in Electronic Struture*, (Springer: Dordrecht, 2011).
- [21] Sagar, Robin P., and Hô, Minhhuy, Shannon Entropies of Atomic Basins and Electron Correlation Effects, *Journal of the Mexican Chemical Society*, **52**(1), 60-66 (2008).
- [22] Massen, S. E. and C. P. Panos, A link of information entropy and kinetic energy for quantum many body systems, *Phys. Lett. A*, **65**, 280 (2001).
- [23] Gadre S. R., Sears S. B., Chakravorty S. J. and Bendale R. D., Some novel characteristics of atomic information entropies., *Phys. Rev. A, At., Mol., Opt. Phys*, 32, 2602 (1985).

- [24] R. A. Fisher, On the mathematical foundation of theoretical statistics, *Philosophical transations of the Royal Society*, **222**, 309-368 (1922).
- [25] W. Heisenberg, Zeitschrift für, Physik A, 43, 172 (1927).
- [26] E. H. Kennard, Zeitschrift für, Physik, 44, 326 (1927).
- [27] S. Zozor, M. Portesi, P. Sanchez-Moreno, and J. S. Dehesa, Position-momentum uncertainty relations based on moments of arbitrary order, *Physical Review A*, 83, 052107 (2011).
- [28] J. C. Angulo, Information entropy and uncertainty in D-dimensional many-body systems, *Physical Review A*, **50**, 311-313, (1994).
- [29] H.P.Robertson, The Uncertainty Principle, Phys. Rev, 34, 163 (1929).
- [30] S.H. Patil and K.D. Sen, Uncertainty relations for modified isotropic harmonic oscillator and Coulomb potentials, *Phys. Lett. A*, **362**, 109-114 (2006).
- [31] P. Sánchez-Moreno, R. González-Férez, and J. S. Dehesa, Improvement of the Heisenberg and Fisher-information-based uncertainty relations for Ddimensional central potentials, *New Journal of Physics*, 8:130 (2006).
- [32] J. S. Dehesa, S. López-Rosa, A. Martínez-Finkelshtein, and R. J. Yañez, Information theory of D-dimensional hydrogenic systems: Application to circular and Rydberg states, *International Journal of Quantum Chemistry*, 110:1529-1548, (2010).
- [33] B. R. Frieden, *Science from Fisher Information*, (Cambridge University Press, Cambridge, 2004).
- [34] J. C. Angulo, J. Antolín and R. O. Esquivel, Atomic and molecular complexities: Their physical and chemical interpretations. In K. D. Sen, editor, *Statistical Complexities. Applications in Electronic Structure*, (chapter 6. Springer, Berlin, 2011).
- [35] S. López-Rosa, J. C. Angulo and J. Antolín, Rigorous properties and uncertaintylike relationships on product-complexity measures: Application to atomic systems, *Physica A: Statistical Mechanics and its Applications*, 388:2081-2091 (2009).

- [36] R. Gonzales-Férez & J. S. Dehesa, Characterization of atomic avoided crossings by means of Fisher's information, *Eur. Phys. J. D.*, **32**, (2005)
- [37] Richaerd Spivak, *Cálculo infinitesimal*, (Reverté S.A., segunda edición, 1997), Pág. 197.
- [38] Flores-Gallegos, N. Em Advances in Quantum Mechanics; Bracken, P., ed.; InTech, 2013, cap. 29, doi: 10.5772/54329; Esquivel, R. O.; Flores- Gallegos, N.; Iuga, C.; Carrera, E. M.; Angulo, J. C.; Antolín, J.; *Phys. Lett. A*, 374, 948, (2010).

Apéndices

11

11.1 Apéndice A: Función de onda para el átomo de hidrógeno confinado en una región circular

11.1.1 Solución de la ecuación radial

La simetría del problema permite utilizar el método de separación de variables, obteniendo las mismas ecuaciones diferenciales para ρ y ϕ que en el caso libre pero con Z = 0. Las soluciones son del tipo $\Psi = R(\rho)\Phi(\phi) \operatorname{con} \Phi(\phi) = \frac{1}{\sqrt{2\pi}}e^{im\phi}$, de este modo la única ecuación que cambia es la correspondiente a la ecuación radial, la cual es la siguiente:

Figura 11.1: Representación del modelo, en el cual una carga +Ze se encuentra colocada en el centro de una caja circular de radio ρ_0 y una carga -e se mueve alrededor de la primera (figura del lado izquierdo), en la figura del lado derecho se puede apreciar el potencial de confinamiento de tipo impenetrable para radios mayores que ρ_0 .

$$\frac{\hbar^2}{2m_e} \left\{ \frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} - \frac{m^2}{\rho^2} \right\} R(\rho) = ER(\rho), \tag{11.1}$$

al multiplicar por $-2m_e\rho^2/\hbar^2$ se obtiene,

$$\left\{\rho^2 \frac{d^2}{d\rho^2} + \rho \frac{d}{d\rho} - m^2 + \frac{2m_e E}{\hbar^2} \rho^2\right\} R(\rho) = 0,$$
(11.2)
la cual es la ecuación de Bessel, cuya solución general es:

$$R(\rho) = A_2 J_{|m|}(x_{|m|n} \frac{\rho}{\rho_0}) + B_2 Y_{|m|}(x_{|m|n} \frac{\rho}{\rho_0})$$
(11.3)

donde $x_{|m|n}$ es el n-ésimo cero de la función de Bessel de orden |m|. $J_{|m|}$ y $Y_{|m|}$ son las funciones de Bessel de primera y segunda clase respectivamente. Como bien sabemos la función $Y_{|m|}$ no es acotada en el origen, mientras que $J_{|m|}$ si lo es. Por lo cual, para construir funciones de onda físicamente admisibles, debe hacerse $B_2 = 0$ en la ecuación anterior. Además en general la constante A_2 depende del número cuántico de momento angular m

$$R_{nm}(\rho) = A_m J_{|m|}(x_{|m|n} \frac{\rho}{\rho_0}).$$
(11.4)

La función de onda completa queda determinada por el producto de (4.19) y (11.4)

$$\Psi_{nm}(\rho,\phi) = A'_m J_{|m|}(x_{|m|n}\frac{\rho}{\rho_0})e^{im\phi}.$$
(11.5)

La constante de normalización se obtiene demandando que:

$$1 = \int_{0}^{2\pi} \int_{0}^{\rho_{0}} \left[A'_{m} J_{|m|}(x_{|m|n} \frac{\rho}{\rho_{0}}) e^{im\phi} \right]^{*} \left[A'_{m} J_{|m|}(x_{|m|n} \frac{\rho}{\rho_{0}}) e^{im\phi} \right] \rho d\rho d\phi$$

= $2\pi |A'_{m}|^{2} \int_{0}^{\rho_{0}} \left[J_{|m|}(x_{|m|n} \frac{\rho}{\rho_{0}}) \right]^{2} \rho d\rho,$ (11.6)

haciendo el cambio de variable,

$$u = \frac{\rho}{\rho_0} \rightarrow \mathrm{d}u = \frac{1}{\rho_0} \mathrm{d}\rho,$$
 (11.7)

se obtiene,

$$1 = 2\pi |A'_{m}|^{2} \rho_{0}^{2} \int_{0}^{1} \left[J_{|m|}(x_{|m|n}u) \right]^{2} u \mathrm{d}u.$$
(11.8)

Usando la relación de ortogonalidad,

$$\int_0^1 J_\nu(x_n x) J_\nu(x_m x) x \mathrm{d}x = \frac{1}{2} [J'_\nu(x_n)]^2 \delta_{n,m},$$
(11.9)

podemos escribir la relación anterior de una manera equivalente usando: $J'_{\nu}(x_n) = -J_{\nu+1}(x_n)$. Con lo que (11.8) queda como,

$$1 = 2\pi |A'_{m}|^{2} \rho_{0}^{2} \frac{1}{2} [-J_{|m|+1}(x_{|m|n})]^{2} \quad \Rightarrow \quad A'_{m} = \frac{\sqrt{2}}{\sqrt{2\pi\rho_{0}} |J_{|m|+1}(x_{|m|n})|}.$$
 (11.10)

Por lo tanto, las eigenfunciones de onda normalizadas van como:

$$\Psi_{nm}(\rho,\phi) = \frac{\sqrt{2}}{\sqrt{2\pi\rho_0}|J_{|m|+1}(x_{|m|n})|} J_{|m|}(x_{|m|n}\frac{\rho}{\rho_0})e^{im\phi}.$$
(11.11)

Además, las energías propias son,

$$E_{nm} = \frac{\hbar^2}{2m_e} \left(\frac{x_{|m|n}}{\rho_0}\right)^2$$
(11.12)

La degeneración para una *n* dada es igual a 2 para toda $m \neq 0$. Es importante notar que cuando $\rho_0 \rightarrow \infty$ las energías forman un continuo y cuando $\rho_0 \rightarrow 0$ las energías divergen, y que en todo caso son positivas. Las energías propias en términos de los ceros de las funciones Bessel es algo delicado que necesita un poco de atención para entenderlas; el comportamiento puede observarse en la Tabla 11.1.

-				
E_{nk}	E_{10}	E_{20}	E_{30}	• • •
E_{nm}	$E_{10}(1s)$	$E_{20}(2s)$	$E_{30}(3s)$	•••
E_{nk}	E_{11}	E_{21}	E_{31}	
E_{nm}	$E_{21}(2p)$	$E_{31}(3p)$	$E_{41}(4p)$	• • •
E_{nk}	E_{12}	E_{22}	E_{32}	
$\begin{array}{c} E_{nk} \\ \hline E_{nm} \end{array}$	$E_{12} = E_{32}(3d)$	E_{22} $E_{42}(4d)$	$E_{32} = E_{52}(5d)$	•••
				· · · · · · ·

Tabla 11.1: Energías propias E_{nm} en términos de los ceros de las funciones de Bessel E_{nk} .

El conjunto de funciones obtenidas en esta sección puede utilizarse como una base para diagonalizar directamente problemas de otro tipo, tales como cuando el electrón se ve afectado por campos externos o por otras cargas presentes en el sistema.

11.2 Apéndice B: Unidades atómicas

Las unidades atómicas (a.u.) forman un sistema de unidades conveniente para en física atómica y molecular. Los valores numéricos de las siguientes cuatro constantes físicas definen la unidad:

- Radio de Bohr , a₀
- Masa del electrón, m_e
- Carga elemental, e
- Constante de Planck, $\hbar = \frac{h}{2\pi}$

En este sistema de unidades la energía se mide en Hartrees aunque frecuentemente se utiliza el Rydberg como unidad de energía, de este modo,

$$\frac{\hbar^2}{2m_e} = \frac{1}{2}$$
Hartree = 1Rydberg (11.13)

11.3 Apéndice C: Interpolación Polinomial de Lagrange

Como es bien sabido la expansión polinomial de Taylor de una función f(x) es una buena aproximación si tomamos un número suficiente de términos. Por otra parte si conocemos el valor de una función en un número dado de puntos del dominio, podemos construir una función suave que interpole estos puntos. Este es el *polinomio de interpolación de Lagrange*.

Tomemos por ejemplo el caso simple de dos puntos: dados los valores de f(x) en x_0 y x_1 , el polinomio de primer grado que toma los valores de f(x) en los puntos dados es:

$$p_1(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) f(x_0) + \left(\frac{x - x_0}{x_1 - x_0}\right) f(x_1), \tag{11.14}$$

el cual toma los valores $(x_0, f(x_0))$ y $(x_1, f(x_1))$.

Geométricamente (ver Figura 2), está claro que esta es la única línea recta que pasa por los dos puntos (x_0 , $f(x_0)$) y (x_1 , $f(x_1)$). Podemos construir fácilmente un polinomio de grado mayor a uno que pase a través de estos dos puntos, sin embargo un polinomio tal no es único. Generalizando lo anterior al caso en el cual conocemos

Figura 11.2: Interpolación Lineal

los valores de una función f(x) en n + 1 puntos distintos $\{x_0, x_1, ..., x_n\}$ buscamos construir un polinomio que tome los mismos valores que f(x) en dichos n + 1 puntos.

Estos puntos, no necesariamente son equidistantes. En este caso podemos escribir nuestro polinomio como:

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n \tag{11.15}$$

que al imponer la condición $p_n(x_r) = f(x_r)$, r = 0, 1, ..., n, obtenemos n + 1 ecuaciones lineales en los n + 1 coeficientes $\{a_0, a_1, ..., a_n\}$. A menos que n sea pequeño, puede resultar engorroso resolver este sistema de ecuaciones. Por ello se sigue un enfoque diferente basado en una generalización de la ecuación (11.14). Tomemos $p_n(x)$ en la forma

$$p_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + \dots + L_n(x)f(x_n)$$
(11.16)

La condición que el polinomio tome los mismos valores que la función f(x) en $\{x_0, x_1, ..., x_n\}$, es satisfecha si,

$$L_i(x_j) = \delta_{ij}, \quad 0 \le i \le n \tag{11.17}$$

donde

$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$
(11.18)

es la delta de Kronecker. Consideremos por ejemplo la expresión para $L_0(x)$. La condición (11.17) implica que $L_0(x_i) = 0$ para i = 1, 2, 3, ...n. Con ello podemos escribir $L_0(x)$ como:

$$L_0(x) = C(x - x_1)(x - x_2) \cdots (x - x_n), \qquad (11.19)$$

donde *C* es una constante. Para fijar el valor de esta constante utilizamos la condición que $L_0(x_0) = 1$, por los cual

$$1 = C(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n).$$
(11.20)

Finalmente la expresión para $L_0(x)$ es

$$L_0(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n)},$$
(11.21)

que puede ser escrito de manera compacta como:

$$L_0(x) = \prod_{j=1}^n \left(\frac{x - x_j}{x_0 - x_j}\right),$$
(11.22)

De manera similar se obtienen todos los coeficientes $L_i(x)$ del polinomio $p_n(x)$ (Eq. (11.16)). Estos son:

$$L_{i}(x) = \prod_{\substack{j=1\\j\neq i}}^{n} \left(\frac{x - x_{j}}{x_{i} - x_{j}} \right),$$
(11.23)

En la ecuación (11.23) el producto es tomado sobre todos los valores de j de 0 a n excepto en i = j. De la ecuación (11.23) puede verse que $L_i(x) = 0$ para todos los valores $\{x_0, x_1, ..., x_n\}$, excepto para $x = x_i$, cuando L_i toma el valor de 1. Esto cumple con el requisito de la ecuación (11.17) y el polinomio de interpolación se puede escribir en la forma:

$$p_n(x) = \sum_{i=0}^n L_i(x) f(x_i).$$
(11.24)

Esto se conoce como polinomio de interpolación de Lagrange, en honor al matemático francés-italiano J. L. Lagrange (1736-1813).

11.4 Apéndice D: Aproximaciones de derivadas en términos de posiciones centrales

11.4.1 Tres posiciones

Sea

$$f(x+h) \approx f(x) + hf'(x) + \frac{h^2}{2}f''(x) + O(h^3)$$
(11.25)

у

$$-f(x-h) \approx -f(x) + hf'(x) - \frac{h^2}{2}f''(x) - O(h^3)$$
(11.26)

sumando (11.25) con (11.26)

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$
(11.27)

De la expresión anterior podemos obtener la fuerza necesaria por unidad de perímetro para confinar el átomo de hidrógeno en una región circular plana. Esto es,

$$F = \left[-\frac{\partial E_{10}}{\partial \rho_c} \right]_{\rho_c = \rho_0} \tag{11.28}$$

entonces

$$\zeta = \frac{F}{2\pi\rho_0} \tag{11.29}$$

De este modo tomando la expresión anterior la derivada de la energía estará dada como sigue:

$$\left[\frac{\partial E_{10}^{i}}{\partial \rho}\right]_{\rho=\rho_{0}} = \frac{E_{10}(\rho_{0}+h) - E_{10}(\rho_{0}-h)}{2h}$$
(11.30)

h es el espaciamiento entre $\rho_0 - 1$ y ρ_0 así, como de ρ_0 y $\rho_0 + 1$. Lo cual implica que mientras más grande sea h más pequeño será el error.

Error $1 * 10^{-9}$ u.a.		
$ ho_0$ (u.a.)	$F/2\pi r_0$ (Hartree/u.a. ²)	(N/m)
0.50000	10.36112	1.61312×10^{4}
0.60000	4.58971	7.14567×10^{3}
0.70000	2.25290	3.50753×10^{3}
0.80000	1.19327	1.85779×10^{3}
0.90000	0.66864	10.41000×10^{2}
1.00000	0.39108	6.08871×10^{2}
1.30000	0.09320	1.45102×10^{2}
1.60000	0.02629	4.09305×10^{1}
1.80000	0.01207	1.87917×10^{1}
2.00000	0.00579	9.01441×10^{1}
3.00000	0.00027	4.20361×10^{1}
4.00000	0.00003	0.46706

Tabla 11.2: Variación de la fuerza sobre perímetro para diferentes radios de confinamiento ρ_0

11.5 Apéndice E: Elementos de matriz

Elementos de matriz $W_{n'n}$, $W_{nn'}$, W_{nn} y $W_{n'n'}$ para estados doblemente degenerados para AHC-2D. En este caso

$$\Psi_{nm}(\rho,\phi) = \frac{\sqrt{2}}{\sqrt{2\pi\rho_0}|J_{|m|+1;n}(x_{|m|n})|} J_{|m|}(x_{|m|n}\frac{\rho}{\rho_0})e^{im\phi}.$$
(11.31)

De este modo, usando la perturbación $H^{(1)}=-1/\rho,$

$$\begin{split} W_{n'n} &= \langle n'|H^{(1)}|n\rangle = \int_{0}^{2\pi} \int_{0}^{\rho_{0}} \left[\frac{\sqrt{2}}{\sqrt{2\pi\rho_{0}}|J_{|m'|+1}(x_{|m'|n})|} J_{|m'|}(x_{|m'|n}\frac{\rho}{\rho_{0}})e^{im'\phi} \right]^{*} \times \\ &\times \left(-\frac{1}{\rho} \right) \left[\frac{\sqrt{2}}{\sqrt{2\pi\rho_{0}}|J_{|m|+1}(x_{|m|n})|} J_{|m|}(x_{|m|n}\frac{\rho}{\rho_{0}})e^{im\phi} \right] \mathrm{d}\rho \mathrm{d}\phi \\ &= -\frac{2}{\rho_{0}^{2}|J_{|m'|+1;n}(x_{|m'|n})||J_{|m|+1}(x_{|m|n})|} \times \\ &\times \int_{0}^{\rho_{0}} \underbrace{\frac{1}{2\pi} \int_{0}^{2\pi} e^{i(m-m')\phi} \mathrm{d}\phi}_{\delta(m'-m)} \left[J_{|m|}(x_{|m|n}\frac{\rho}{\rho_{0}}) \right]^{2} \mathrm{d}\rho, \end{split}$$

en este caso los estados m y m' siempre son diferentes ya que son los elementos de matriz fuera de la diagonal, y debido a la presencia de la delta de Dirac se sigue por la propiedad de la Delta que: $\delta(m' - m) = 0$ (para $m' - m \neq 0$). En consecuencia:

$$W_{n'n} = \langle n' | H^{(1)} | n \rangle = 0, \qquad (11.32)$$

de modo semejante,

$$W_{nn'} = \langle m | H^{(1)} | m' \rangle = -\frac{2}{\rho_0^2 |J_{|m|+1;n}(x_{|m|n})| |J_{|m'|+1;n}(x_{|m'|n})|} \\ \times \int_0^{\rho_0} \underbrace{\frac{1}{2\pi} \int_0^{2\pi} e^{i(m'-m)\phi} d\phi}_{\delta(m-m')} \left[J_{|m|}(x_{|m|n}\frac{\rho}{\rho_0}) \right]^2 d\rho \quad (11.33) \\ = 0.$$

Elementos de matriz sobre la diagonal, en este caso tenemos que $W_{n'n'} = W_{nn}$, entonces,

$$W_{nn} = \int_{0}^{\rho_{0}} \int_{0}^{2\pi} \left[\frac{\sqrt{2}}{\sqrt{2\pi\rho_{0}} |J_{|m|+1}(x_{|m|n})|} J_{|m|}(x_{|m|n}\frac{\rho}{\rho_{0}}) e^{im\phi} \right]^{*} \times \\ \times \left(-\frac{1}{\rho} \right) \left[\frac{\sqrt{2}}{\sqrt{2\pi\rho_{0}} |J_{|m|+1}(x_{|m|n})|} J_{|m|}(x_{|m|n}\frac{\rho}{\rho_{0}}) e^{im\phi} \right] \rho d\rho d\phi \qquad (11.34) \\ = -\frac{2}{\rho_{0}^{2} |J_{|m|+1}(x_{|m|n})|^{2}} \int_{0}^{\rho_{0}} \left[J_{|m|}(x_{|m|n}\frac{\rho}{\rho_{0}}) \right]^{2} d\rho,$$

y usando el cambio de variable que se realizó en (11.7),

$$W_{n'n'} = W_{nn} = -\frac{2}{\rho_0 |J_{|m|+1}(x_{|m|n})|^2} \int_0^1 \left[J_{|m|}(x_{|m|n}u) \right]^2 \mathrm{d}u.$$
(11.35)

Se puede apreciar que la teoría de perturbaciones del caso doblemente degenerado se reduce a un caso sin degeneración.

Índice de figuras

- 4.1 Puede observarse en la Figura 3.1a las funciones de onda radial para el estado base del átomo de hidrógeno 2D y 3D. La información física puede apreciarse al analizar la probabilidad radial figura 3.1b, donde el máximo de la probabilidad radial para el caso de 2D (línea roja) se localiza en la posición 0.25 u.a. y el máximo en el caso de 3D (línea azul) en 1 u.a.. Además el valor esperado de la posición del electrón para el caso de 2D está en 0.5 u.a. y para el caso en 3D es 1.5 u.a.; la mayor cercanía del electrón al núcleo, en el caso 2D, explica porque la energía de amarre es mayor en el caso de 2D ($E_{10} = -2,0$ u.a.) que en el caso de 3D ($E_{10} = -0,5$ u.a.). La cual es 4 veces menor en el caso 2D. 18
- 4.3 En la Figura 3.3a puede observarse la función de onda radial para el caso en 2D y 3D. La probabilidad radial puede observarse en la Figura 3.3b aquí la mayor probabilidad de encontrar al electrón para el caso en 2D resulta en la posición 2.25000 y para el caso de 3D en 4.00000 u.a. respectivamente.
- 4.4 En la Figura 3.4a se observa que hay dos nodos (donde las funciones radiales se hacen cero, la relevancia de dichos nodos aparece al analizar la probabilidad radial donde vemos que dichos nodos se convierten en mínimos). La probabilidad radial puede observarse en la Figura 3.4b aquí tenemos tres máximos de mayor probabilidad de encontrar al electrón para el caso en 2D resultan en las posiciones 0.19847, 2.23145 y 8.82008 y para el caso de 3D en 0.74003, 4.18593 y 13.07400 u.a. respectivamente. 19

4.5	En la Figura 3.5a se puede observar que hay un nodo (donde las fun- ciones radiales se hacen cero, la relevancia de dicho nodo aparece al analizar la probabilidad radial donde vemos que dicho nodo se convier- ten en un mínimo). La probabilidad radial puede observarse en la Figura 3.5b aquí tenemos dos máximos de mayor probabilidad de encontrar al electrón para el caso en 2D resultan en las posiciones 1.69281 y 8.30719 y para el caso de 3D en 3.00000 y 12.00000 u.a. respectivamente	20
4.6	Puede observarse en 3.6a que la función de onda radial para el caso en 2D y 3D vale cero en el origen, pero la función de onda radial para el caso de 2D el electrón esta mas ligado al núcleo. La probabilidad radial puede observarse en 3.6b aquí la mayor probabilidad de encontrar al electrón para el caso en 2D resultan en la posición 6.25000 y para el caso de 3D en 9.00000 u.a. respectivamente.	20
5.1	Variación de la energía para los estados: E_{10} , E_{20} , E_{30} , E_{40} , E_{21} , E_{31} ,	
	E_{41} , E_{32} y E_{42} como función del radio de confinamiento ρ_0	23
5.2	Variación de la energía del estado base (E_{10}) como función del radio de confinamiento e	20
53	Variación de la energía del estado E_{22} como función del radio de confi-	30
0.0	namiento ρ_0 .	33
5.4	Variación de la energía del estado base E_{21} como función del radio de	
	confinamiento	33
5.5	Variación de la energía del estado base E_{32} como función del radio de	
	confinamiento.	35
5.6	Variación de la energía para los estados 1s, 2s, 2p y 3d como función	
	del radio de confinamiento ρ_0 , donde puede observarse que al imponer el confinamiento se rompe la degeneración accidental de los estados 2s	
	v 3d.	37
	,	0,
7.1	Entropías de Shannon para AH2D libre para los tres primeros estados	
	sin nodos, se compraran los resultados obtenidos en esta sección con	56
72	Entropía de Shannon para el estado base en función del radio de confi-	50
,	namiento ρ_0	59
7.3	Entropía de Shannon para el estado $2s$ en función del radio de confina-	
	miento ρ_0	61
7.4	Entropía de Shannon para el estado $2p$ en función del radio de confina-	
	miento ρ_0	63
7.5	Entropia de Shannon para el estado $3d$ en función del radio de confina-	65
	$\min \rho_0 \dots \dots$	05
8.1	Información de Fisher para el estado base variando el radio de confina-	
	miento ρ_0	73

8.2	Información de Fisher para el estado base variando el radio de confina-	
	miento ρ_0	75
8.3	Información de Fisher para el estado base variando el radio de confina-	
	miento ρ_0	77
8.4	Información de Fisher para el estado base variando el radio de confina-	
	miento ρ_0	79
9.1	Estado base. Principio de incertidumbre de Heisenberg para diferentes	
	radios de confinamiento ρ_0	85
9.2	Estado 2s. Principio de incertidumbre de Heisenberg para diferentes	
	radios de confinamiento ρ_0	87
9.3	Estado 2p. Principio de incertidumbre de Heisenberg para diferentes	
	radios de confinamiento ρ_0	89
9.4	Estado 3d. Principio de incertidumbre de Heisenberg para diferentes	
	radios de confinamiento ρ_0	91
11.1	Representación del modelo, en el cual una carga $+Ze$ se encuentra	
	colocada en el centro de una caja circular de radio ρ_0 y una carga $-e$ se	
	mueve alrededor de la primera (figura del lado izquierdo), en la figura	
	del lado derecho se puede apreciar el potencial de confinamiento de	
	tipo impenetrable para radios mayores que ρ_0	99
11.2	Interpolación Lineal	102

Índice de tablas

5.1	Valores propios dados en unidades atómicas (u.a.) para los niveles de	
	energía: $E_{10}(1s)$, $E_{20}(2s)$, $E_{30}(3s)$, $E_{40}(4s)$, $E_{21}(2p)$, $E_{31}(3p)$, $E_{41}(4p)$,	
	$E_{32}(3d)$ y $E_{42}(4d)$ para diferentes radios de confinamiento ρ_0 (u.a.)	24
5.2	Energía mínima para el estado base como función del parámetro $lpha_1$	29
5.3	Función de onda radial para el estado base, donde se fijan diferentes	
	radios de corte ρ_0 .	29
5.4	Probabilidad radial para el estado base, donde se fijan diferentes radios	
	de corte ρ_0	30
5.5	Eigenvalores del estado base (E_{10}) en unidades atómicas para diferentes	
	radios de confinamiento $ ho_0$ (u.a.), los resultados obtenidos pueden	
	compararse con los obtenidos por teoría de perturbaciones y puede	
	observarse que estos muestran una buena precisión	31
5.6	Se presentan los eigenvalores del estado E_{20} para diferentes radios de	
	confinamiento $ ho_0$ (u.a.), los resultados obtenidos pueden compararse	
	con los obtenidos por teoría de perturbaciones y puede observarse que	
	estos muestran una buena precisión.	32
5.7	Se presentan los eigenvalores del estado E_{21} para diferentes radios de	
	confinamiento ρ_0 (u.a.), los resultados obtenidos pueden compararse	
	con los obtenidos por teoría de perturbaciones y puede observarse que	
	estos muestran una buena precisión.	34
5.8	Se presentan los eigenvalores del estado E_{32} para diferentes radios de	
	confinamiento $ ho_0$ (u.a.), los resultados obtenidos pueden compararse	
	con los obtenidos por teoría de perturbaciones y puede observarse que	
	estos muestran una buena precisión.	35
5.9	Eigenvalores para los estados $E_{1,0}$, $E_{2,1}$, $E_{2,0}$ y $E_{3,2}$ para diferentes	
	radios de confinamiento ρ_0	36
5.10	Eigenvalores del átomo de hidrógeno bidimensional confinado reporta-	
	dos por N. Aquino y E. Castaño[2], donde emplearon el MVD	37
5.11	Densidad de probabilidad para el estado base ($ \psi_{10}(\rho,\phi) ^2$), sin norma-	
	lizar. A=escalamiento	39
5.12	Densidad de probabilidad para el estado 2s ($ \psi_{20}(ho,\phi) ^2$), sin normalizar.	
	A=escalamiento	39
5.13	Densidad de probabilidad para el estado 2p ($ \psi_{21}(\rho,\phi) ^2$), sin normali-	
	zar. A=escalamiento	40

5.14	Densidad de probabilidad para el estado 3d ($ \psi_{32}(\rho, \phi) ^2$), sin normali- zar. A=escalamiento.	40
6.1	Comparación de la densidad de probabilidad para el estado base y primer estado excitado en el espacio de momentos (a), (c) y en el espacio de configuración (b), (d). Sin normalizar y con A=escalamiento.	47
6.2	Comparación de la densidad de probabilidad para los estados excita- dos $3s$ y $2p$ en el espacio de momentos (e), (g) y en el espacio de configuración (f), (h). Sin normalizar y con A=escalamiento	48
6.3	Comparación de la densidad de probabilidad para los estados exci- tados $3p$ y $3d$ en el espacio de momentos (r), (t) y en el espacio de configuración (s), (u). Sin normalizar y con A=escalamiento	49
6.4	Intervalos y separación entre puntos de la malla sobre la cual se cons- truyo el polinomio de interpolación para el estado base utilizando un radio de confinamiento de 0.5 u.a	50
7.1	Entropías de Shannon para AH2D libre para el estado base y primeros estados excitados	55
7.2	Se presentan las entropías de Shannon para el estado base en el espacio de configuración y de los momentos variando el radio de confinamiento	
7.3	$ \rho_0 $	58
7.4	$ \rho_0 $	60
7.5	$ \rho_0 $	62 64
0 1	Información de Ficher para el estado base y primeros estados eveitados	60
8.1 8.2	Información de Fisher para el estado base en el espacio de configuración v de los momentos variando el radio de confinamiento ρ_0 , a constante en el espacio de configuración	72
8.3	Información de Fisher para el estado $2s$ en el espacio de configuración y de los momentos variando el radio de confinamiento ρ_0	74
8.4	Información de Fisher para el estado $2p$ en el espacio de configuración y de los momentos variando el radio de confinamiento ρ_0	76
8.5	Información de Fisher para el estado $3d$ en el espacio de configuración y de los momentos variando el radio de confinamiento ρ_0	78
9.1	Estado base. Variación del principio de incertidumbre de Heisenberg para diferentes radios de confinamiento ρ_0	84

9.2	Estado 2s. Variación del principio de incertidumbre de Heisenberg para	
	diferentes radios de confinamiento ρ_0	86
9.3	Estado 2p. Variación del principio de incertidumbre de Heisenberg para	
	diferentes radios de confinamiento ρ_0	88
9.4	Estado 3d. Variación del principio de incertidumbre de Heisenberg para	
	diferentes radios de confinamiento ρ_0	90
11.1	Energías propias E_{nm} en términos de los ceros de las funciones de	
	Bessel E_{nk}	101
11.2	Variación de la fuerza sobre perímetro para diferentes radios de confi-	
	namiento ρ_0	.05

ACTA DE EXAMEN DE GRADO

No. 00077 Matrícula: 2171803162

ENTROPÍAS DE LA INFORMACIÓN En la Ciudad de México, se presentaron a las 12:00 horas DE SHANNON Y FISHER PARA EL ÁTOMO DE HIDRÓGENO LIBRE Y del día 23 del mes de julio del año 2019 en la Unidad Iztapalapa de la Universidad Autónoma Metropolitana, los suscritos miembros del jurado: CONFINADO EN DOS DIMENSIONES. DR. VICTOR DAVID GRANADOS GARCIA DR. RODOLFO OCTAVIO ESQUIVEL OLEA DR. NORBERTO AQUINO AQUINO Bajo la Presidencia del primero y con carácter de Secretario el último, se reunieron para proceder al Examen de Grado cuya denominación aparece al margen, para la obtención del grado de: MAESTRO EN CIENCIAS (FISICA) DE: CARLOS ALBERTO RUIZ ESTAÑON y de acuerdo con el artículo 78 fracción III del Reglamento de Estudios Superiores de la Universidad Autónoma Metropolitana, los miembros del jurado resolvieron: CARLOS ALBERTO RUIZ ESTAÑON ALUMNO Aprobar REVISÓ Acto continuo, el presidente del jurado comunicó al interesado el resultado de la evaluación y, en caso aprobatorio, le fue tomada la protesta. MTRA ROSALIA SEBRANO DE LA PAZ DIRECTORA DE SISTEMAS ESCOLARES PRESIDENTE DIRECTOR DE LA DIVISIÓN DE CBI Ba branadi DR. VICTOR DAVID GRANADOS GARCIA DR. JESUS ALBERTO OCHOA TAPIA SECRETARIO /OCAL Im qui qui DR. NORBERTO AQUINO AQUINO DR. RODOLFO OCTAVIO ESQUIVEL OLEA