Universidad Autónoma Metropolitana Unidad Iztapalapa

Economía del bienestar y asignación de recursos: un caso de estudio para México (2006)

IDÓNEA COMUNICACIÓN DE RESULTADOS QUE PARA OBTENER EL GRADO DE MAESTRO EN ESTUDIOS SOCIALES DENTRO DE LA LÍNEA DE ECONOMÍA SOCIAL

PRESENTA
LUIS ARTURO CASTRO VALLEJO

ASESOR MTRO. HÉCTOR CERVINI ITURRE Con fundamento en los artículos 21 y 27 de la Ley Federal del Derecho de Autor y como titular de los derechos moral y patrimonial de la obra titulada *Economía del bienestar y asignación de recursos: un caso de estudio para México (2006)*, otorgo de manera gratuita y permanente a la Universidad Autónoma Metropolitana Unidad Iztapalapa y a la Coordinación de Servicios Documentales (CSD) Biblioteca; autorización para que fijen la obra en cualquier medio, incluido el electrónico, y la divulguen entre sus usuarios, profesores, estudiantes o terceras personas, sin que pueda percibir por tal divulgación una contraprestación.

FECHA
FIRMA

LUIS ARTURO CASTRO VALLEJO

Dedico este modesto esfuerzo con cariño especial a mi abuela Francisca y a mi padre.

Agradezco a la Universidad Autónoma Metropolitana Unidad Iztapalapa, por brindarme la oportunidad de cursar una maestría de excelencia académica con reconocimiento internacional y con profesores de primer nivel.

También, agradezco al Centro de Estudios para la Preparación y Evaluación Socioeconómica de Proyectos (CEPEP), por facilitarme información que fue necesaria para la evaluación socioeconómica del proyecto de inversión pública. Por otra parte, agradezco a la Secretaría de Comunicaciones y Trasportes (SCT) y a la Secretaría de Hacienda y Crédito Público (SHCP), por la información proporcionada y por las facilidades otorgadas.

De manera particular, hago un reconocimiento especial al Mtro. Héctor Cervini, mi asesor de tesis, por su orientación y por compartir sus conocimientos. Un agradecimiento al Dr. Ignacio Llamas y a la Dra. Nora Garro, por sus comentarios y recomendaciones, lo cual me ayudo a aclarar dudas.

Asimismo, un reconocimiento a mis amigos Leodegario Gutiérrez quien de alguna manera me ayudó a alcanzar este objetivo.

A mi Alma Mater la Universidad Autónoma Metropolitana Unidad Azcapotzalco.

Los errores son responsabilidad del autor.

Índice

		Pág.		
CAPÍTULO I INTRODUCCIÓN				
CÁF	PITULO II PROBLEMA DE INVESTIGACIÓN	4		
CAF	PÍTULO III MARCO TEÓRICO	11		
	Fundamentos teóricos del análisis costo - beneficio	11		
	Eficiencia económica, distribución del ingreso y el mecanismo del			
·-	mercado	12		
	3.2.1 Norma de eficiencia: óptimo de Pareto	12		
	3.2.2 Eficiencia en la producción	13		
	3.2.3 Eficiencia en el intercambio	14		
	3.2.4 Asignación eficiente	16		
3.3	Óptimo de Pareto y la función de bienestar social	18		
3.4	Asignación y eficiencia determinadas en el mercado	20		
	3.4.1 Fallas de mercado	23		
3.5	Fallas de mercado, eficiencia económica y decisiones colectivas	24		
	3.5.1 Eficiencia en presencia de bienes públicos	25		
	3.5.2 Condiciones de eficiencia para bienes públicos puros	26		
	3.5.3 Financiamiento obligatorio	30		
3.6	Eficiencia en presencia de externalidades	31		
	3.6.1 Internalización de efectos externos	33		
	a) Internalización a través de la negociación b) Internalización a través de la intervanción del gebierne.	34		
27	 b) Internalización a través de la intervención del gobierno Principios del análisis costo - beneficio 	34 36		
3.1	3.7.1 Etapas del análisis costo - beneficio	38		
	a) Identificación y cuantificación de costos y beneficios	38		
	b) Valoración de costos y beneficios	39		
	c) Comparación de costos y beneficios	40		
	d) Selección del proyecto	41		
3.8	Análisis costo - eficiencia	41		
3.9	Efectos de la asignación de proyectos públicos	42		
	3.9.1 El excedente del consumidor	42		
	3.9.2 Variaciones compensatoria y equivalente	45		
	3.9.3 El excedente del productor	47		
	Beneficios y costos de un proyecto público	48		
3.11	Efectos de un proyecto público	49		
	3.11.1 Efectos reales	49		
	3.11.2 Efectos externos	51		
	3.11.3 Efectos intangibles	54		
	Análisis por efectos redistributivos	55		
3.13	Precios sociales	59		
CAF	PÍTULO IV HIPÓTESIS DE TRABAJO	61		
4.1	Operacionalidad de las hipótesis	61		
4.2	Estructura de la evaluación socioeconómica de proyectos de infraestructura vial interurbanos	63		
	4.2.1 Antecedentes generales	63		
	4.2.2 Situación actual	65		

		Situación sin proyecto Situación con proyecto	67 68		
		Evaluación social del proyecto	69		
		Criterios de evaluación e indicadores de rentabilidad	70		
		Análisis de sensibilidad	73		
		Conclusiones del estudio de evaluación social y recomendaciones	73		
4.3		dología para la evaluación de proyectos de infraestructura vial			
		rbanos	74		
	4.3.1	Clasificación de los proyectos carreteros	76		
	4.3.2	Identificación de beneficios sociales	77		
	4.3.3	Beneficios directos en proyectos de ampliación	77		
		Beneficios directos en proyectos de mejoramiento	79		
		Beneficios indirectos en proyectos de ampliación y mejoramiento Beneficios directos e indirectos en proyectos de construcción de	80		
		nuevas rutas	81		
		Cuantificación y valoración de beneficios sociales	85		
		Identificación de costos sociales	86		
	4.3.9	Identificación simultánea de beneficios y costos sociales para un	00		
4.4	Cuant	proyecto carretero de ampliación ificación y valoración de costos sociales	88 92		
		V UN CASO DE ESTUDIO HIPOTÉTICO: EVALUACIÓN			
		ONÓMICA A NIVEL PERFIL DEL PROYECTO "AMPLIACIÓN DE			
		ETERA ARCADIA – LACONIA DEL TRAMO CD. PARAÍSO A STA.			
		RA EL AÑO 2006"	93		
		n del proyecto y objetivos del proyecto y del estudio	93		
		Ubicación geográfica y origen del proyecto	93		
		Descripción del proyecto	94		
		Objetivo del proyecto y objetivos del estudio	94		
5.2		ción actual y sin proyecto	95		
	5.2.1	Carretera de cuota	95		
		a) Oferta	95		
		b) Demanda	98		
		 Aforos vehiculares 	99		
		 Composición del flujo vehicular 	99		
		 Comportamiento horario del flujo vehicular 	101		
		 Tasa de ocupación de los vehículos 	102		
	5.2.2	Interacción entre oferta y demanda	103		
		a) Velocidades de operación	103		
		b) Costos generalizados de viaje	105		
		c) Proyección del TDPA	108		
	5.2.3	Carretera libre	109		
		a) Oferta	109		
		b) Demanda	109		
		Aforos vehiculares	110		
		Composición del flujo vehicular	110		
		Tasa de ocupación de los vehículos	111		
		Velocidades de operación	111		
- ^	0:4	Proyección del TDPA	112 113		
5.3	.3 Situación con proyecto				

	5.3.1	Descripción del proyecto	113		
		a) Oferta	113		
		Inversión	114		
		b) Demanda	114		
		Flujo Vehicular	115		
	5.3.2	Interacción entre oferta y demanda	117		
		a) Velocidades de recorrido	118		
		b) Costos generalizados de viaje (CGV)	118		
		c) Ahorros en CGV	119		
5.4		dología de evaluación	121		
	5.4.1	Identificación de beneficios sociales	123		
		a) Beneficios directos	124		
		b) Beneficios indirectos	124		
		c) Beneficios intangibles por disminución en el número de			
	5 4 0	accidentes	125		
	5.4.2	Identificación de costos sociales	125		
		a) Costos de inversión	125		
	E. alia	b) Costos de mantenimiento	126		
5.5		ación socioeconómica	126 126		
	5.5.1	Cuantificación y valoración de beneficios y costos a) Beneficios	126		
		b) Costos	128		
5.6	Parár	netros de evaluación social	128		
		idores de evaluación social	129		
0.7		Momento óptimo de entrada en operación	129		
		Valor actual neto social y tasa interna de retorno	130		
5.8		sis de sensibilidad	131		
		VI CONCLUSIONES Y RECOMENDACIONES	133		
		usiones	133		
6.2	Reco	mendaciones	134		
Bibl	iografía	a	135		
Ane	xo 1		139		
Ane	xo 2		147		
Apéndice. Sección A					
Apéndice. Sección B					
Apéndice. Sección C					
Apéndice. Sección D					
•		Sección E	190		
•					

CAPÍTULO I INTRODUCCIÓN

El problema de la asignación de recursos, en cualquier economía, se debe a que existen necesidades ilimitadas y escasos recursos con usos alternativos. Los recursos no son suficientes para satisfacer todas las necesidades y, debido a que existe un costo de oportunidad de los recursos, éstos pueden utilizarse para satisfacer distintas necesidades; por lo tanto, hay que tomar decisiones sobre cuáles necesidades se deben satisfacer y en qué medida.

En todas las economías este problema se presenta para toda la sociedad y para solucionarlo se han desarrollado técnicas para ayudar a la toma de decisiones. Uno de los métodos más utilizados y desarrollados actualmente es el análisis costobeneficio (ACB), el cual se usa para evaluar la conveniencia de realizar un proyecto, tomando en cuenta las repercusiones o efectos de las elecciones económicas sobre el bienestar de la sociedad. El ACB es un concepto presente en toda conducta humana y, en consecuencia, en cualquier toma de decisiones.

Un proyecto es todo plan de acción que implica el uso de recursos con el fin de incrementar o mejorar la producción de bienes y servicios, lo que implica costos y un consumo futuro que genera beneficios. En este sentido, un proyecto es un flujo de costos y beneficios en el tiempo, donde el máximo excedente económico se alcanza si los recursos son asignados eficientemente. El ACB considera la enumeración y evaluación de todos los costos y beneficios atribuibles a un proyecto.

A pesar de que el tema del ACB ha tomado importancia sólo en los últimos años, su historia se remonta años atrás. Particularmente en Francia, donde el ensayo clásico de Dupuit (1844) sobre *La Medición de la Utilidad de las Obras Públicas*, dio origen a este análisis. Durante el siglo XX, el ACB adquirió importancia inicialmente en los Estados Unidos; después se extendió a Gran Bretaña y a otros países occidentales durante los años 1960s. El método fue diseñado por Little y Mirrlees (1969); después fue modificado por Dasgupta, Marglin y Sen (1972), Mishan (1975) y Harberger (1973). En su inicio, el ACB fue una extensión de los principios usados por el sector privado para la toma decisiones de inversión; es decir, era una evaluación que medía los costos y beneficios de un proyecto público en términos de su contribución

al bienestar social de un país. De esta manera, si los beneficios sociales del proyecto superaban a sus costos sociales, la recomendación para el gobierno era la de llevar a cabo el proyecto.

En los Estados Unidos la metodología del ACB se desarrolló junto con su creciente adopción por diversas disciplinas y agencias de gobierno. Formalmente, el ACB formó parte de La Ley de Puertos y Ríos de 1902 (*River and Harbor Act of 1902*), donde se exigía el informe de una comisión de ingenieros acerca de la conveniencia de los proyectos sobre puertos y ríos propuestos por el Cuerpo de Ingenieros Militares, en el que debía tomarse en consideración el volumen de comercio beneficiado y el costo.

Posteriormente, en los años 1930s, con el New Deal, surgió la idea de una justificación social de los proyectos mediante La Ley de Defensa Contra las Avenidas de 1936 (*Flood Control Act of 1936*), que autorizó la participación federal en los planes de control de avenidas y donde se establecía que "si los beneficios, quien sea que los recibiera, excedían a los costos estimados, el proyecto debía ejecutarse". La práctica de este análisis se extendió después a otros organismos públicos relacionados con los proyectos de desarrollo hidráulico, donde la finalidad no era sólo justificar los proyectos, sino ayudar a decidir quiénes debían pagarlos.

Al terminar la segunda guerra mundial estos organismos ampliaron el concepto de la siguiente manera:

- i. introduciendo los beneficios y costos secundarios o indirectos, y
- ii. incluyendo los intangibles.

Después, una comisión interministerial redactó el *Libro Verde* (1950), en el que se establecieron los principios generales del análisis costo-beneficio. Desde entonces el interés de los economistas por este análisis ha crecido hasta nuestros días. Esto debido principalmente al creciente número de grandes proyectos de inversión, que absorben una gran cantidad de recursos y provocan repercusiones durante un largo periodo de tiempo, afectando sustancialmente los precios y la producción de otros bienes.

^{1.} Es importante citar este documento por haber introducido dentro del análisis costobeneficio el lenguaje de la teoría económica del bienestar.

Durante los años 1950s y 1960s, aumentaron los proyectos de asistencia de las naciones occidentales a los países menos desarrollados, originando cuestionamientos respecto de los beneficios obtenidos por los proyectos. Como consecuencia, las agencias responsables de la asignación de estos fondos buscaron el método apropiado de evaluación para comparar las alternativas de inversión. De esta manera, surgió un interés particular por el ACB.

Durante los años 1960s, el Sistema de Planificación, Programación y Presupuestación de Estados Unidos incorporó el ACB como una extensión del sistema de análisis dentro del Departamento de Defensa. Después, en los años 1970s, el uso del ACB en el diseño y formulación de políticas dentro de las agencias federales se incrementó considerablemente. Así, la Oficina de Gestión y Presupuesto promovió el uso del ACB como una herramienta de evaluación fundamental. Desde entonces, este análisis quedó estrechamente relacionado con las consecuencias de las decisiones de inversión.

Otra razón del creciente interés de los economistas por el ACB ha sido el rápido desarrollo de nuevos métodos, como es la investigación operativa y el análisis de sistemas, tanto en el sector privado como en el sector público de la economía.

Tal fue la importancia que adquirió el ACB en los Estados Unidos que en el año 1981 el Presidente Reagan dictó un decreto en el cual se requería que toda inversión gubernamental, mayor a 100 millones de dólares, debía ser justificada por medio de un ACB. Este decreto tuvo vigencia durante los doce años de las administraciones de Reagan y de Bush. Posteriormente, aún cuando el requisito de aplicar el ACB dio lugar a una controversia considerable, el Presidente Clinton, al asumir la presidencia en 1993, lo reemplazó por un decreto similar.

CAPÍTULO II PROBLEMA DE INVESTIGACIÓN

El ACB ha sido un campo muy activo de la investigación desde 1960 y su desarrollo se centra en la evaluación de proyectos de inversión del sector público. Este análisis fue recomendado como una herramienta para la evaluación de proyectos a las dependencias del sector público y a algunas agencias internacionales, como es el Banco Mundial, quienes actualmente lo utilizan regularmente en el curso de sus operaciones.

Aunque la mayoría de las decisiones a las que se ha aplicado el ACB se refieren a proyectos de inversión, tales como si un determinado proyecto es o no conveniente, cuál es el mejor entre varios proyectos alternativos, o cuándo emprender un determinado proyecto, se puede, sin embargo, aplicar este análisis en un contexto más amplio.²

El ACB también puede aplicarse con el propósito de modificar leyes o regulaciones, instaurar nuevas medidas de intervención de los precios y a otras cuestiones semejantes. La descripción que mejor caracteriza a la mayoría de los ACB examinados en la literatura es la siguiente: el objetivo es la maximización del valor presente de todos los beneficios, una vez que se descuentan todos los costos, sujetándose a determinadas restricciones. Aunque esta formulación es muy general, no obstante, permite plantear las siguientes preguntas, cuyas respuestas constituyen los principios generales de este análisis:

- ¿Qué costos y qué beneficios deben ser incluidos?
- ¿Cómo deben valorarse?
- ¿Cuál es la tasa de interés a la que deben descontarse?
- ¿Cuáles son las restricciones a las que deben sujetarse?

^{2.} Un proyecto implica costos y beneficios para quien lo realiza. Es por ello que la gran mayoría de las decisiones humanas, si no es que todas, se pueden catalogar como proyectos. Sin embargo, de las miles o millones de decisiones que diariamente se adoptan y se llevan a cabo, existen muchas que son relativamente sencillas, en tanto que otras requieren de un análisis cuidadoso de su probable resultado y, por lo tanto, conviene tomar un cierto tiempo para asegurar, en lo posible, que dadas las circunstancias existentes, los resultados que se obtengan sean los más convenientes. Véase BANOBRAS, 1998.

Para discutir estas interrogantes conviene aclarar que difícilmente se cumplen las condiciones de un máximo bienestar a través de toda la economía, ya que si éstas en realidad se cumplieran y, por tanto, la asignación de los recursos fuese óptima, la tasa marginal social de preferencia en el tiempo y la tasa marginal social de rendimiento de la inversión serían iguales. Esta tasa se utilizaría para comparar beneficios y costos en diferentes momentos del tiempo y para medir el costo de oportunidad de aquella inversión privada a la que se renuncia por la necesidad de proporcionar recursos para los proyectos en cuestión. Sin embargo, no existe ningún tipo de interés que cumpla ambas funciones simultáneamente, pues en un mercado donde existen distorsiones en el consumo y en la producción, los precios privados difieren de los precios sociales.³

Este problema ha sido discutido por varios autores, incluyendo a Eckstein (1958), Steiner (1959), Marglin (1962) y Feldstein (marzo, 1964), quienes argumentan que los costos y beneficios de un proyecto son las corrientes temporales de consumo sacrificado y proporcionado por el proyecto. Esta interpretación surge claramente de los argumentos de Feldstein (1964), sobre el costo de oportunidad social de los fondos transferidos del sector privado al sector público:

"Parte del dinero tomado del sector privado reduce inmediatamente el consumo, mientras que el resto reduce la inversión y, por consiguiente, el consumo futuro. Una libra esterlina transferida del consumo en un año determinado tiene, por definición, un valor social de £ 1 en ese año. Pero una libra transferida de la inversión privada, representa el valor descontado del consumo futuro que habría tenido lugar si se hubiera realizado la inversión. La inversión original engendra una corriente de rentas para los inversionistas y trabajadores. Parte de estas rentas se gasta en consumo y el resto se invierte. Cada una de las inversiones subsiguientes engendra una nueva corriente de rentas y éstas, a su vez, nuevo consumo y nueva inversión. El resultado final es una corriente temporal de consumo global engendrada por la inversión original. El valor presente de esta suma global es el costo de oportunidad social que resulta de la disminución de una libra esterlina en la inversión privada."

^{3.} Los precios sociales o precios sombra reflejan el verdadero costo de oportunidad de los bienes y servicios.

Si se aplica esta interpretación tanto a los costos como a los beneficios, se llega a una complicada expresión del valor presente de los beneficios netos de un proyecto. Según Feldstein (marzo, 1964) es difícil medir estas expresiones, y por ello, esta interpretación sólo sirve hoy como patrón de referencia para juzgar otras vías de ataque del problema. Por lo pronto, el problema surge en la medida en que: a) los beneficios de un proyecto se reinvierten o crean nuevas oportunidades de inversión, o b) parte de los fondos usados para el proyecto se habrían invertido de otra manera o el proyecto hace imposible algún otro proyecto de inversión (mutuamente excluyente). Si no se da ninguna de estas condiciones, es decir, si los beneficios y costos consisten exclusivamente en consumo (directamente proporcionado y excluido, respectivamente, por el proyecto), estas complicaciones no aparecen y el problema se reduce al de elegir la apropiada tasa de descuento de la preferencia social en el tiempo.

La aplicación del ACB no se limita únicamente a la evaluación de proyectos. Este método también puede aplicarse en áreas como la regulación, impuestos y subsidios, planeamiento de la inversión, políticas públicas, entre otras. Además, se han realizado contribuciones con estrecho acercamiento a la teoría del bienestar económico, la teoría del crecimiento económico y a las finanzas públicas. Su desarrollo se debe a las investigaciones subsecuentes publicadas por el Banco Mundial; una de ellas, es el trabajo de Squire y Van der Tak (1975). Desde entonces, se han realizado diversas investigaciones dentro y fuera de esta institución.

El ACB presenta dos limitaciones que deben quedar definidas desde un principio. La primera es que el ACB es un método para tomar decisiones dentro de un marco que tiene que definirse de antemano y que abarca un amplio campo de consideraciones o supuestos, que muchas veces son de carácter político o social. La segunda es que el ACB se usa para evaluar proyectos cuyo objetivo es la producción de bienes o servicios, por lo que hay que determinar un conjunto de precios para la comparación de costos y beneficios. En el caso de la evaluación social de proyectos se deben estimar precios sombra, lo cual implica una de las dificultades más importantes. Asimismo, algunas veces los beneficios no pueden expresarse en unidades monetarias y existe dificultad para medirlos. Por ejemplo, imputar valores a variables nutricionales, educacionales, ambientales o de salud, implicaría que a éstas les sea

asignado un precio. Por lo tanto, estos precios deben ser ideados por los evaluadores con consentimiento de los políticos, con lo que se introducen subjetividades difíciles de controlar.⁴

Existe un debate sobre las dificultades observadas en la aplicación del ACB, la cual generó la aparición de dos corrientes de opinión: a) los que sostienen que el análisis se adapta a los nuevos problemas y, b) los que sostienen que, como los problemas a resolver a través de la política económica son diferentes a los que generaron la aparición del análisis, deben elaborarse otros nuevos.

Al respecto, Belli (1996) concluye que a pesar de las cuestiones que actualmente se tienen en cuenta en los proyectos, y que son distintas a las de hace 30 años, el ACB sigue siendo un método relevante para la evaluación de proyectos.

Por otra parte, Shantayanan, Squire y Suthiwart-Narueput (1997) argumentan que los criterios tradicionales para la evaluación de proyectos fallan en la resolución de dos aspectos fundamentales. El primero es determinar cuándo un proyecto debe quedar a cargo del sector privado o del Estado y, el segundo, es cuál es el efecto que la asistencia financiera externa, asociada al proyecto, tiene sobre el crecimiento del país.

No obstante, Gramlich (2002) argumenta que el ACB es útil en la provisión de un marco para las decisiones de política, dependiendo de las características subyacentes de estas decisiones. Además, establece que si los mercados y los métodos de la evaluación son claros y los periodos son relativamente limitados, como en el caso de los proyectos de ríos y puertos, subsidios, impuestos o tarifas de cambio, el ACB es generalmente capaz de formular decisiones públicas bastante claras. Pero para los programas que implican la investigación de cambio climático u otros tipos de incertidumbre científica extrema, las decisiones se formulan de una manera menos clara. No obstante, afirma que incluso en esas áreas, el ACB es apropiado, pero se debe tener mucho cuidado para asegurarse de que los resultados del análisis no sean empleados inadecuadamente.

7

^{4.} El ACB presenta algunas variantes. Una de ellas es el análisis costo-eficiencia, el cual se aplica a proyectos sociales en los que las variables no pueden ser medidas monetariamente.

Por otra parte, Stockstrom (2004) señala que el ACB compara los costos de un emprendimiento contra sus beneficios; si los costos superan los efectos positivos, se concluye que una política es ineficaz y por eso (económicamente) inútil; y agrega que, si bien esta idea parece muy razonable, tiene varias limitaciones y en sus aplicaciones se apela a algunos trucos para superar problemas que una vez que se descubren obligan a cuestionar la validez de los resultados.

Existe una diversidad de opiniones en torno a la efectividad de la aplicación del ACB, las cuales se han puesto sobre la mesa del debate. Lo cierto es que los gobiernos y las instituciones internacionales que otorgan fondos para la realización de proyectos públicos, siguen recomendando que se realice la respectiva evaluación de los mismos bajo el criterio del ACB.

En este sentido, la asignación del gasto público es una tarea en la que se debe decidir cómo distribuir un monto determinado de gasto entre diferentes destinos, representados cada uno de ellos por varios proyectos de inversión, de tal manera que debe lograrse la utilización eficiente de los recursos. Por tal motivo, el estudio de la vinculación entre la asignación del gasto público y la tasa de crecimiento de la economía adquiere importancia.

El gasto público implica inversión en diversas áreas de la economía con el fin de aumentar la capacidad productiva. El crecimiento económico, como consecuencia de la inversión, depende tanto del volumen de inversión como de la calidad con la que ésta se realiza. De esta manera, la calidad de la inversión requiere de la adecuada selección de los proyectos, por lo que es conveniente elegir sólo aquellas inversiones que sean más rentables para el país.

Por lo tanto, el desarrollo de métodos para asignar el gasto público, de forma tal que se maximice su efecto sobre la tasa de crecimiento de la economía, es una tarea muy compleja. Al respecto, el Banco Mundial en su estudio *Revisión del Gasto Público* (2004), asegura que "en México el gasto público podría volverse más eficiente y orientarse más a favor de los pobres". En este documento, el Banco Mundial argumenta que "más inversión pública no debe obstruir una seria evaluación de la calidad de los proyectos"; además, señala que "hacer que el gasto sea más flexible debería lograrse como resultado de la reasignación del gasto para usos con los que la gente esté de acuerdo y que tienen una prioridad más alta, como son

mejores programas sociales o inversión pública en infraestructura económica esencial".

Asimismo, el Banco Mundial señala que en México antes de la modificación en el proceso de presupuestación en el año 2001, los proyectos de inversión pública se realizaban sin ningún ACB o bajo estudios de baja calidad. También, señala que existía una débil capacidad por parte de la Subsecretaría de Egresos para emprender la evaluación de los proyectos, en donde frecuentemente los costos excedían a los beneficios de los proyectos, debido al descuido y a la insuficiente preparación de los mismos, a la pobre identificación y valoración de costos y beneficios, y a la ausencia de proyecciones.

Como consecuencia, el Banco mundial hace las siguientes recomendaciones:

- i. Para alcanzar cualquier reasignación fundamental del presupuesto es necesario ordenarlo de acuerdo con las prioridades nacionales, lo cual ayudaría, al Presidente y a su gabinete, a fijar las prioridades iniciales del presupuesto.
- ii. Aumentar la eficiencia y transparencia en el manejo del gasto público, para lo cual es conveniente que México enfatice la necesidad de realizar las respectivas evaluaciones del gasto. Para lograr lo anterior, la recomendación es modificar realmente la asignación de los recursos, estableciendo objetivos y creando unidades que coordinen la evaluación de proyectos con las unidades de asignación de los recursos para que las evaluaciones surtan efecto.

Derivado de estas recomendaciones, en el año 2004 se publicó en México el acuerdo por el que se expide el Manual de Normas Presupuestarias para la Administración Pública, dentro del cual el Artículo 75, Fracción II, establece que los nuevos programas y proyectos de inversión realizados por las dependencias del gobierno federal en infraestructura de hidrocarburos, eléctrica, de transporte, incluyendo carreteras, cuyo monto total de inversión sea mayor a 100 millones de pesos, deberán contar con el dictamen favorable de un experto sobre el análisis de factibilidad técnica, económica y ambiental.⁵

9

^{5.} Véase el DOF de fecha viernes 31 de diciembre de 2004.

De esta manera, lograr la eficiente asignación del gasto público plantea un claro problema económico de investigación, el cual queda determinado a continuación:

Realizar la evaluación socioeconómica, a nivel perfil, de un proyecto público (hipotético) carretero para el año 2006, aplicando los fundamentos teórico-metodológicos del análisis costo-beneficio, para lograr la eficiente asignación de los recursos.

Las preguntas de investigación que surgen de este problema son:

¿Cuáles son los fundamentos de orden teórico-metodológico que justifican el análisis costo-beneficio?

¿Cuáles son los costos y los beneficios que deben ser incluidos dentro de la evaluación socioeconómica de un proyecto público carretero?

¿Cuál es el costo social en términos de los recursos que deberán emplearse para que el proyecto público carretero se realice?, es decir, ¿Cuál es el precio que deberá pagar la sociedad por la aplicación del proyecto?

¿Cuáles son los beneficios sociales netos que resultan de la aplicación de un proyecto público carretero?

¿Cuál es el momento óptimo para invertir los recursos eficientemente y cuál es el momento óptimo de entrada en operación del proyecto?

La investigación tiene como propósito responder a las preguntas de investigación planteadas anteriormente y verificar empíricamente si las recomendaciones del Banco Mundial propuestas en su documento *Revisión del Gasto Público* (2004), dan lugar a una mejora del bienestar social en México. Para ello, es necesario establecer los fundamentos teórico-metodológicos que permitan evaluar un proyecto público carretero.

CAPÍTULO III MARCO TEÓRICO

Las decisiones se pueden presentar en forma de proyectos. Por ejemplo, el reemplazo de la maquinaria en una empresa, una importación, una nueva norma ecológica, la construcción de un segundo piso para disminuir la congestión del tránsito vehicular, la dotación de agua potable a una comunidad, la construcción de una nueva carretera, etc.

En este sentido, el ACB no es sólo una herramienta para la toma de decisiones, es también un método que se usa para determinar si existe o no una mejora en el bienestar desde el punto de vista de una comunidad, región o sociedad, derivada de la aplicación de un proyecto. El uso de este método permite lograr la eficiencia económica en la asignación de recursos y maximizar el bienestar social. Particularmente, el ACB es un método desarrollado para evaluar de manera social proyectos y políticas públicas.

Dentro de la metodología del ACB, todas las ganancias y pérdidas potenciales de un proyecto público son identificadas y cuantificadas monetariamente, eliminando las distorsiones del mercado, para determinar si éste es conveniente desde un punto de vista de la sociedad. Es decir, los costos y beneficios se miden en términos de ganancias y pérdidas sociales, ajustando los precios privados a precios sociales. Por el contrario, en un análisis privado o financiero, todos los costos y beneficios relevantes se miden a precios de mercado.

3.1 Fundamentos teóricos del análisis costo-beneficio

El análisis de un proyecto público requiere de un marco conceptual que permita identificar los costos y beneficios para valorarlos desde una perspectiva social. Así, la economía del bienestar y las finanzas públicas proveen los fundamentos teóricos del ACB. Estas dos áreas justifican la intervención del gobierno en una economía de mercado, el grado en que éste puede influir en el sector privado y analizar su impacto en el nivel de bienestar de la sociedad.

El gobierno interviene en la economía debido a fallas de mercado como son la competencia imperfecta, información incompleta, la imposibilidad del sector privado para proveer bienes públicos o la presencia de externalidades. Todas estas fallas impiden que el mercado se desarrolle con una asignación social y normas distributivas. Como proveedor, el gobierno adquiere recursos a través de impuestos o endeudándose y, a su vez, los usa para proveer una variedad de bienes y servicios públicos. Como regulador, interviene cuando el mercado es afectado por externalidades negativas. También, aplica medidas a través de la legislación y regula los precios cuando el mercado privado está dominado por unas pocas firmas que restringen el mecanismo de mercado.

Otro papel que juega el gobierno, es influir en la distribución del ingreso dentro de la sociedad. Aunque esta distribución puede lograrse a través del mercado privado, puede no estar de acuerdo con los niveles deseados por la sociedad. Esto implica que los grupos con escasos recursos estén en desventaja en la generación de un ingreso adecuado. Para reducir la distancia entre aquellos grupos con ingresos bajos y aquellos con ingresos altos, el gobierno implementa medidas correctivas, imponiendo impuestos progresivos y usa estos fondos para realizar transferencias o realizar programas sociales. Todas estas formas de intervención pública tienen un profundo impacto sobre los recursos de la sociedad.

3.2 Eficiencia económica, distribución del ingreso y el mecanismo del mercado

Para establecer los fundamentos teóricos de la evaluación de proyectos públicos, se deben describir las reglas de eficiencia para la toma de decisiones dentro del ACB.

3.2.1 Norma de eficiencia: óptimo de Pareto

Las decisiones de reasignación de recursos en una economía de mercado se basan en la información que genera el mecanismo de precios. De esta manera, cuando los precios varían los productores ajustan su producción y ofrecen una cantidad que maximiza las ganancias, o en su lugar, minimizan los costos. Cuando los precios varían a la alza, una industria en particular puede obtener ganancias extraordinarias y, en consecuencia, las firmas ya establecidas dentro de la

industria aumentan su producción. Esto provoca que nuevas firmas entren a la industria y desvíen recursos que estaban empleados en otras hacia ésta, disminuyendo los usos productivos de esos recursos y provocando una mejora en el bienestar social. Por otro lado, si una industria incurre en pérdidas económicas, las firmas que temporalmente presentan pérdidas contraen su producción y las que en el largo plazo continúan perdiendo se ven obligadas a salir de la industria en busca de ganancias en otra parte de la economía. Este proceso continúa hasta que el mercado tiende a un nivel de asignación donde no es posible lograr una mejora en el bienestar social. Tal asignación en la producción es conocida como óptimo de Pareto.

La definición de eficiencia en el sentido de Pareto es limitada. Esto es, ésta solamente se aplica a las decisiones de reasignación que mejoran el bienestar común de la sociedad, si es que ningún individuo puede mejorar sin que otro empeore. En la mayoría de las situaciones del mundo real, donde quiera que se presenten, una mejora en el bienestar se logra a expensas de que alguien pierda; por lo tanto, las ganancias en el bienestar pueden verse como mejoras potenciales más que como mejoras Pareteanas.

Aquellos individuos que se benefician de una asignación deben ser capaces de compensar a aquellos individuos que incurren en una pérdida de bienestar. Cuando este es el caso, una reasignación de recursos que incrementa el beneficio social neto puede ser juzgada como una mejora en el sentido de Pareto.

3.2.2 Eficiencia en la producción

La eficiencia en la producción se logra cuando se presenta una asignación de recursos en donde no es posible incrementar la producción de un bien sin reducir la producción de algún otro. La asignación eficiente en la producción se ilustra por medio de la curva de la frontera de posibilidades de producción PP en la figura 3.1. La curva PP indica la cantidad máxima que se puede producir de los bienes (X y Y), con una tecnología y una cantidad de recursos dados. Los puntos sobre la frontera, a y b, representan eficiencia en el sentido de Pareto. Aquellos puntos situados debajo de la frontera, como es el punto c, indican que el uso de los recursos es ineficiente. A través de movimientos desde el punto c a cualquiera de

los dos puntos a o b, se puede incrementar la producción de un sector sin reducir la producción en el otro. Por ejemplo, cuando la combinación de la producción cambia de c a b, la producción de X aumenta sin provocar cambios en la producción de Y. Con un movimiento de C a C0, la producción de C1, la producción de C2, la producción de C3, la producción de C4, la producción de C5, la producción de C6, la producción de C7, la producción de C8, la producción de C9, la pr

Figura 3.1 Frontera de posibilidades de producción.

Un movimiento de *a* a *b* puede causar que los niveles en la utilización de los factores se alteren tanto en la producción X como de Y, provocando un aumento en la cantidad producida de X y una disminución en la cantidad producida de Y. La tasa a la que Y se transforma en X es llamada tasa marginal de transformación de Y en X (TMgT_{XY}). Esta tasa está determinada por la pendiente de la curva PP e indica el costo de producir una unidad adicional del bien X.

3.2.3 Eficiencia en el intercambio

Otra condición necesaria para alcanzar una óptima asignación de los recursos, es la presencia de eficiencia en el intercambio. Por lo tanto, para que una asignación

particular sea un óptimo de Pareto, además de cumplirse la eficiencia en la producción, también debe cumplirse la asignación eficiente en el intercambio.

La eficiencia en el intercambio se logra cuando es imposible hacer que un individuo mejore sin que algún otro empeore. En el modelo de dos individuos (A y B) y dos bienes (X y Y), se supone que ambos individuos tienen una función de utilidad que representa las preferencias de su consumo para combinaciones alternativas de X y Y. La pendiente negativa de la función de utilidad mide la tasa de sustitución entre X y Y, es decir, para tener más del bien X, un individuo tiene que disminuir la cantidad que consume del bien Y, si quiere mantener el mismo nivel de utilidad.⁶

La tasa a la que X es sustituida por Y se llama tasa marginal de sustitución técnica de X por Y (TMgST_{XY}). Esta tasa mide la disposición de los individuos para sustituir X por Y, para un determinado nivel de satisfacción. Por ejemplo, si un individuo desea obtener una unidad adicional de X, debe proporcionar algunas unidades de Y, para mantener el mismo nivel de utilidad.

Cuando la $TMgST_{XY}$ de A difiere de la $TMgST_{XY}$ de B, cualquier reasignación de X y Y entre dos individuos puede aumentar el bienestar de uno o de los dos individuos sin que ninguno de ellos empeore. Una asignación eficiente, dada una combinación particular de producción, se puede lograr cuando la $TMgST_{XY}$ de A es igual a la $TMgST_{XY}$ de B. En esta situación, no es posible hacer que A o B mejoren sin que alguno de ellos empeore. Cuando tal asignación se consigue, la eficiencia en el intercambio se logra.

^{6.} Otras combinaciones alternativas producen el mismo nivel de utilidad sobre una misma curva de indiferencia. Una curva de indiferencia representa todas las posibles combinaciones entre dos bienes para las cuales el individuo es indiferente. Véase la sección A del apéndice.

^{7.} Para otras combinaciones de producción se puede conseguir la misma igualdad. Estos puntos quedan representados por la curva de contrato, que muestra todas las posibles combinaciones de X y Y que se pueden asignar entre A y B, para un nivel de producción en particular.

3.2.4 Asignación eficiente

Las condiciones de eficiencia en la producción y en el intercambio deben cumplirse para satisfacer la condición de asignación eficiente; es decir, la tasa a la que un bien se transforma en otro (TMgT), debe ser igual a la tasa a la que los consumidores están dispuestos a sustituir un bien por otro (TMgST). Cabe aclarar que cada uno de los puntos sobre la frontera de posibilidades de producción corresponde a diferentes asignaciones entre los dos individuos, que además satisfacen la condición de eficiencia en el intercambio. Cuando se consideran todos los puntos de esta frontera de posibilidades de producción, el número de asignaciones eficientes posibles es infinito. De esta manera, una canasta de bienes producción eficientemente (un punto en la frontera de posibilidades producción, dada una TMgT) pueden asignarse entre A y B a distintas tasas y, en particular, existe una asignación donde: TMgTxy = TMgSTxy.

En esta asignación se cumplen simultáneamente las condiciones de eficiencia en la producción y en el intercambio. Cuando estas condiciones se consiguen, la tasa a la que los bienes se sustituyen en la producción es igual a la tasa a la que se intercambian en el consumo. Por ejemplo, si TMgT_{XY} es igual a TMgST_{XY}, y ambas son equivalentes a 3/2, significa que dos unidades de X se pueden producir solamente otorgando tres unidades de Y, y los individuos A y B están dispuestos a aceptar dos unidades de X a cambio de tres unidades de Y.

Estas asignaciones forman la *gran frontera de utilidad* (U_FU_F), la cual se muestra en la figura 3.2. Esta frontera se deriva de la frontera de posibilidades de producción, una vez que se dibujan las posibles asignaciones para cada combinación eficiente de producción, especificando solamente los puntos de asignación donde TMgT_{XY} es igual a TMgST_{XY}. Si se toman solamente los puntos en donde se cumplen las condiciones de eficiencia en la producción y en el intercambio, la gran frontera de utilidad representa todas las combinaciones eficientes de bienestar entre A y B.

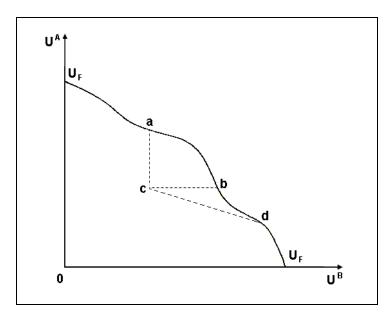


Figura 3.2 Gran frontera de utilidad.

La figura 3.2, muestra que un movimiento de *a* a *b* representa una mejora en el bienestar de B, lo cual sólo es posible a expensas de una disminución en el bienestar de A. En otras palabras, una reasignación de los recursos que provoque un cambio en la combinación de ambos bienes, no beneficiará a B, a menos que haya una disminución en el bienestar de A; en este sentido, se dice que existe una asignación óptima en términos de Pareto.

Los puntos por debajo de la gran frontera de utilidad son ineficientes, ya que aún es posible mejorar el bienestar mediante una reasignación de los recursos para los diferentes niveles sobre la frontera. Por ejemplo, el bienestar representado por el punto c puede mejorar con un movimiento hacia a o b, o a otra posición dentro del rango ab. Es decir, una reasignación dentro del área acb puede incrementar el bienestar de uno o de los dos individuos sin que ninguno empeore.

Sin embargo, una reasignación de recursos que implique un movimiento de *c* a *d* no cumple el criterio de Pareto, puesto que B mejora a expensas de A. Este movimiento es conocido como una *mejora potencial pareteana*, en el sentido que *d* es superior a *c*, y el movimiento hacia *d* es posible en la medida en que B pueda compensar la pérdida de A, como resultado de la reasignación de los recursos.

Este movimiento también es llamado regla de Kaldor-Hicks, y es comúnmente usado en las normas de eficiencia dentro del ACB.⁸

3.3 Óptimo de Pareto y la función de bienestar social

Por medio del uso del criterio del óptimo de Pareto se pueden distinguir las distribuciones de utilidad eficientes de las ineficientes. También es posible jerarquizar dichas distribuciones, las cuales están situadas sobre la gran frontera de utilidad, como superiores a las que se encuentran por debajo de la frontera. Desafortunadamente, el análisis de Pareto no proporciona un marco conceptual para comparar dos soluciones que sean eficientes, ya que las comparaciones envuelven juicios éticos y requieren una formulación de normas sociales distributivas.

La función de bienestar social refleja la ética en la distribución social. En la figura 3.3, se muestran las curvas sociales de indiferencia W_1 , W_2 y W_3 , que representan las combinaciones alternativas de las utilidades individuales para las cuales la sociedad es indiferente. Un movimiento a lo largo de estás curvas no implica un cambio en el bienestar social. 9

De esta forma, si la utilidad de un individuo aumenta, las otras utilidades individuales pueden declinar para mantener constante el nivel de bienestar. Por lo tanto, el bienestar social mejora solamente cuando se pasa a una curva de utilidad más alta, es decir, W_2 representa un mayor nivel de bienestar que W_1 , y W_3 representa un mayor nivel de bienestar que W_2 y W_1 .

Para mayor detalle sobre la función de bienestar social, véase la sección E del apéndice.

^{8.} Véase Kaldor, 1939 y Hicks, 1939.

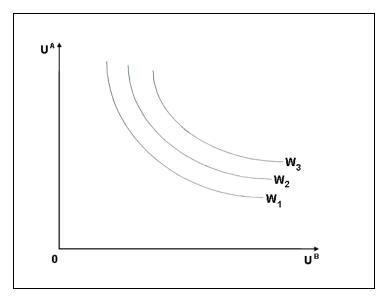
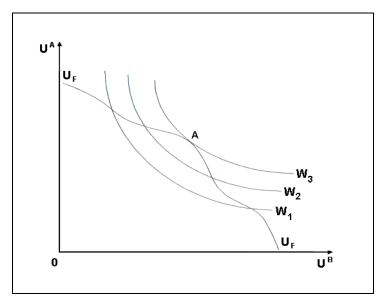



Figura 3.3 Curvas sociales de indiferencia.

Las curvas sociales de indiferencia W_1 , W_2 y W_3 , se presentan junto con la gran frontera de utilidad en la figura 3.4, donde A es un punto de tangencia entre la frontera y la curva de indiferencia social más elevada. La tangencia muestra una situación en la que la sociedad logra alcanzar una máxima asignación óptima de bienestar con base en el criterio de Pareto. Este punto es superior a cualquier otro sobre frontera, por lo tanto, representa una asignación eficiente y equitativa desde el punto de vista de la sociedad.

Figura 3.4 Gran frontera de utilidad y curvas sociales de indiferencia.

Así, una máxima asignación óptima de bienestar de acuerdo con el criterio de Pareto se puede lograr con diferentes niveles de bienestar, es decir, si la utilidad de un individuo aumenta cuando las otras utilidades permanecen constantes, el bienestar social debe mejorar.¹⁰

3.4 Asignación y eficiencia determinadas en el mercado

El primer teorema fundamental de la economía del bienestar se refiere a que el mecanismo de operación del mercado, en un ambiente de competencia perfecta y en ausencia de externalidades, conduce a asignaciones eficientes en el sentido Pareto. Las condiciones para que exista un mercado perfectamente competitivo son:

- i. La libre disposición de información perfecta acerca de las transacciones de mercado, consumidores, propietarios de recursos y la maximización de las firmas; lo cual implica que las firmas determinen el nivel de producción que les da el mayor beneficio neto;
- ii. Existen firmas pequeñas en relación con la totalidad del mercado, por lo que éstas no pueden influir en el precio. Cada firma es un tomador de precios, es decir, cada una ofrece un bien homogéneo a muchos compradores al precio de mercado;
- iii. No existen barreras para entrar o salir de una industria. Los recursos son completamente móviles y las firmas son capaces de entrar libremente si una industria es rentable, o salir si hay expectativas de pérdidas; y
- iv. Todos los factores de producción son de propiedad privada.

20

^{10.} Existen algunas formulaciones que son usadas para analizar una mejora en el bienestar social y éstas involucran temas distribucionales. Dos de ellas son el utilitarismo y la justicia distribucional Rawlsiana. Véase Nicholson, 1997, pag. 543.

Si se supone que estas condiciones se satisfacen, el mecanismo de mercado genera diferentes precios a través de la oferta y la demanda. Por el lado de la demanda, los consumidores escogen niveles de consumo, donde los beneficios que ellos reciben por unidades adicionales de un bien (beneficio marginal), equivalen al precio que existe en el mercado. Por el lado de la oferta, la producción eficiente se consigue en un nivel donde el costo de producir una unidad adicional de un bien (costo marginal), equivale al precio de mercado. De esta manera, a través de la interacción entre la oferta y la demanda, se puede obtener una solución eficiente donde el precio de mercado es igual al beneficio marginal (BMg) y al costo marginal (CMg).

En la figura 3.5, se muestra la función de demanda D con pendiente negativa, que representa el beneficio marginal (BMg), indicando las cantidades que los individuos están dispuestos a comprar a los diferentes precios de mercado. El precio está inversamente relacionado con la cantidad, por lo que, con un precio bajo se demanda una cantidad mayor. Cuando el precio disminuye, los consumidores maximizan su utilidad consumiendo unidades adicionales de un bien hasta el punto donde el precio es igual al beneficio marginal. Por lo tanto, para cada punto sobre la curva de demanda, los individuos maximizan escogiendo niveles de consumo donde el beneficio que éstos reciben de la última unidad del bien que consumen (BMg), es igual al precio que pagan.

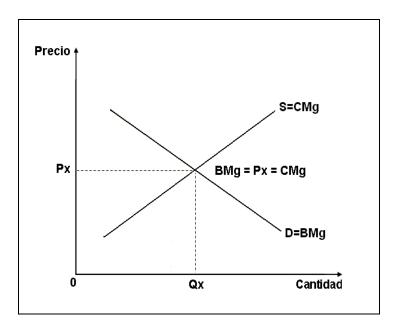


Figura 3.5 Curvas de costo y beneficio marginal.

La curva de oferta S con pendiente positiva, representa el costo marginal (CMg) e indica las cantidades producidas de un bien, las cuales se ofrecen a los diferentes precios de mercado. Esta curva indica que la relación entre el precio y la cantidad es directa, es decir, para cantidades mayores, el costo marginal es mayor y se requieren precios altos para que los productores ofrezcan unidades adicionales. Cuando los precios se incrementan, los productores maximizan los beneficios ofreciendo unidades adicionales del bien hasta el punto donde el precio es igual al costo marginal.

La figura 3.5, muestra que el precio de equilibrio P_X, se obtiene cuando el beneficio marginal es igual al costo marginal. Con este precio de equilibrio, los mercados proveen un nivel de producción Q_x, donde el costo de producir la última unidad adicional equivale a la valoración del consumo marginal de está unidad. Este equilibrio corresponde a la solución de óptimo de Pareto. Cualquier otro nivel de precios es ineficiente y cualquier movimiento que se realice para alcanzar el precio de equilibrio es considerado como una mejora paretiana. Por ejemplo, para niveles de producción por abajo de Q_X, los beneficios esperados de una unidad adicional producida exceden a los costos de producir dicha unidad, por lo tanto, se logran mejoras pareteanas por cada unidad adicional producida, ya que cada una de ellas contribuye más al beneficio total que al costo total. Cualquier combinación de precio y cantidad después de alcanzar el equilibrio es ineficiente, puesto que el costo marginal excede al beneficio marginal y, de este modo, se contribuye más a los costos que a los beneficios. En este sentido, el equilibrio de mercado produce asignaciones eficientes solamente cuando los mercados operan en un ambiente de competencia perfecta, lo cual implica que:

- Los niveles de precios en los mercados de factores y productos se determinen por las fuerzas de la oferta y la demanda,
- ii. Las firmas se muevan fácilmente dentro y afuera de cualquier sector con perfecta movilidad de factores para asegurar el óptimo uso de recursos;
- iii. No exista otra forma que el mecanismo de precios para lograr la racionalidad de los recursos; y

iv. Los precios de los bienes reflejen el costo de oportunidad de los factores empleados en su producción.

La ausencia de cualquiera de estás condiciones que caracteriza una competencia perfecta, puede hacer que el mercado falle para conseguir la eficiencia.

En este punto se centra el debate entre los economistas con respecto a la eficiencia en la asignación de los recursos y de los bienes para el consumo. El problema se presenta debido a que el resultado de una asignación eficiente puede no beneficiar por igual a los consumidores. No obstante, el segundo teorema fundamental de la economía del bienestar indica que cualquier asignación eficiente en el sentido de Pareto puede ser alcanzada realizando una redistribución de la riqueza. En este sentido, una distribución *justa* se puede lograr por medio de la redistribución de las dotaciones iniciales. Así, con un mercado competitivo y a través de la negociación entre los individuos es posible lograr un nuevo óptimo de Pareto.

3.4.1 Fallas de mercado

Uno de los orígenes de las fallas de mercado es la información imperfecta. Normalmente, la información relevante es difícil de obtener y a veces no existe; y si existe, los individuos a veces no están enterados de su disponibilidad. Esto pone limitaciones a la conducta maximizadora del individuo, ya que la información no está disponible para hacer decisiones racionales.

La competencia imperfecta, las barreras a la entrada de una industria como resultado de prácticas monopolísticas y las externalidades, provocan fallas de mercado. Las barreras a la entrada contraen los niveles de producción, mantienen los precios por debajo de los niveles competitivos y conducen a una asignación ineficiente de los recursos. Cuando las externalidades se presentan, los costos marginales excluyen los costos impuestos a terceros o la demanda de mercado deja afuera los beneficios sociales. Cualquiera que sea el caso, los costos marginales sociales se desvían de los beneficios marginales sociales, llevando a una mala asignación de recursos.

Otro origen de las fallas de mercado es la inhabilidad del mercado para asignar recursos en el sector público. Por tal motivo, los bienes públicos requieren de decisiones colectivas para su provisión. A diferencia de un bien privado, un bien público puede estar disponible en una determinada cantidad, independientemente del precio que el individuo esté dispuesto a pagar. De esta manera, el vínculo entre la disposición a pagar y los beneficios esperados se debilita, llevando a la necesidad de un marco teórico alternativo para examinar las cuestiones de eficiencia en el sector público.

Las condiciones del mundo real distorsionan el trabajo del mecanismo de precios y provocan que el mercado se desvíe de su nivel ideal de eficiencia. Debido a que el principal impacto se presenta sobre la estructura de precios, todas estas imperfecciones generan divergencias entre los precios observados y los costos de producción en los mercados de productos y factores, causando una sobre o subutilización de recursos.

Cuando las distorsiones son mínimas, los precios reflejan los verdaderos valores de escasez de los recursos de la sociedad y, en este caso, no es necesario aplicar medidas correctivas. Sin embargo, cuando la economía se aleja de su nivel de equilibrio, la intervención del gobierno se vuelve necesaria. El gobierno, como proveedor de bienes públicos, interviene particularmente en las áreas donde el mercado falla al asignar eficientemente los recursos.

3.5 Fallas de mercado, eficiencia económica y decisiones colectivas

Las condiciones del mundo real requieren de la eficiencia económica por numerosas razones, incluyendo la incapacidad del mercado para proveer adecuadamente bienes públicos, la presencia de externalidades y la tendencia del mercado hacia la competencia imperfecta. El origen de la ineficiencia, en cada caso, es la desviación de los beneficios marginales sociales de los costos marginales sociales de la producción.

En el caso de los bienes públicos, los individuos no revelan adecuadamente sus preferencias. El monto total que éstos están dispuestos a pagar por un bien público puede ser muy pequeño para justificar su provisión. Por lo tanto, si el nivel de producción satisface únicamente las necesidades de aquellos individuos que

han revelado verdaderamente su disposición a pagar por un bien, el beneficio marginal social se desviará del costo marginal social, conduciendo a una subutilización de recursos.

De la misma manera, cuando existen externalidades negativas, los costos marginales privados excluyen los costos que se imponen a terceros y, en el caso de externalidades positivas, el beneficio marginal privado deja fuera los beneficios externos. En ambos casos, los costos marginales sociales se desvían de los beneficios marginales sociales, conduciendo a una sobre o subproducción, lo cual lleva a una mala asignación de recursos. Una situación similar se presenta cuando existe un monopolio, donde el precio del mercado excede el costo marginal, lo cual da lugar a un bajo nivel de competitividad en la producción.

Las distorsiones en los precios causadas por el financiamiento y gasto del gobierno también provocan una mala asignación de recursos. El gasto y las políticas de impuestos usualmente interfieren en el mecanismo de precios y cambian la naturaleza de las decisiones en el mercado privado. Ante estas distorsiones, tanto el gobierno como los elaboradores de políticas públicas trabajan para alcanzar resultados sociales que difícilmente se consiguen a través de las fuerzas del mercado. Al respecto, el gobierno tiene dos objetivos: el primero es mejorar la eficiencia económica en la asignación de recursos y el segundo es conseguir un nivel de bienestar con base en las normas sociales distributivas. Para alcanzar estos objetivos el gobierno provee bienes públicos y regula el mercado.

3.5.1 Eficiencia en presencia de bienes públicos

Los bienes públicos tienen dos características fundamentales: a) ausencia de rivalidad y b) la imposibilidad de excluir a alguien de su consumo, porque esto es muy costoso. La ausencia de rivalidad se presenta cuando un consumidor adicional aumenta el total de los beneficios del consumo en la comunidad, bajo el supuesto de que los costos marginales de producción de los bienes públicos son casi insignificantes y que el costo marginal de proveer estos bienes es nulo. Así, el beneficio social neto del consumo de un individuo adicional es positivo.

Por otra parte, la imposibilidad de excluir a alguien se presenta cuando el consumo de un individuo no evita que otros consuman el mismo bien. Por ejemplo, un

programa de radio público, una vez que está al aire, queda disponible a todos los individuos y su sintonización por parte de un individuo no prohíbe a otros que también escuchen el mismo programa. Por lo tanto, la exclusión del consumo del bien público es muy costosa y no es eficiente. Por ejemplo, para prevenir el acceso a un parque público, se puede requerir de la construcción de una barda y una cerca para excluir a los que no pagan el acceso, además de un guardia para revisar a los visitantes.

Los conceptos de ausencia de rivalidad y exclusión están relacionados en varios sentidos. Muchos bienes que no son exclusivos tampoco son rivales. La defensa nacional es un ejemplo de bienes en los que no es posible la exclusión y en los que aumenta el consumo con un costo marginal igual a cero. Sin embargo, los conceptos no son idénticos y algunos bienes poseen una propiedad, pero no la otra. Por ejemplo, es imposible (o al menos muy costoso) impedir a algunos barcos pescar en el océano, no obstante, la pesca por parte de un barco adicional impone costos sociales en forma de una reducción de una captura para todos.

En este sentido, un bien público *puro* es aquel que una vez que se produce es un bien no rival y no es posible impedir a nadie que lo consuma y se beneficie de él, independientemente de que se pague o no. El principio de exclusión se aplica para algunos bienes públicos como son las carreteras transitadas, los puentes, las playas públicas, entre otros; pero para el caso de bienes públicos puros, el principio de exclusión no puede aplicarse.

3.5.2 Condiciones de eficiencia para bienes públicos puros

La curva de demanda de mercado en el caso de bienes privados se obtiene mediante la suma horizontal de las curvas de demanda de todos lo individuos. Es decir, la cantidad demandada a cada uno de los precios es la suma de las cantidades demandas por todos los individuos. En la figura 3.6 se muestra que al precio P_Z , la cantidad demandada en el de mercado es Z_E , y ésta es igual a la suma horizontal de las cantidades demandas individuales ($Z_A + Z_B + Z_C$). Por lo tanto, la demanda de mercado, D_Z , es igual a la suma de las demandas individuales ($Z_A + Z_B + Z_C$).

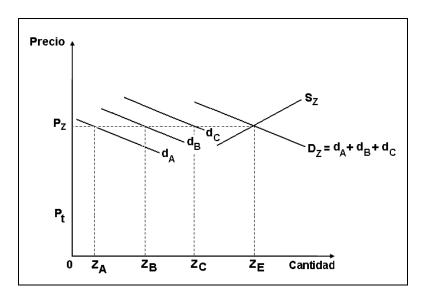


Figura 3.6 Demanda de mercado para bienes privados.

Para analizar las condiciones de eficiencia en la presencia de bienes públicos puros, se puede hacer uso de las curvas de demanda y oferta mostradas en la figura 3.7.

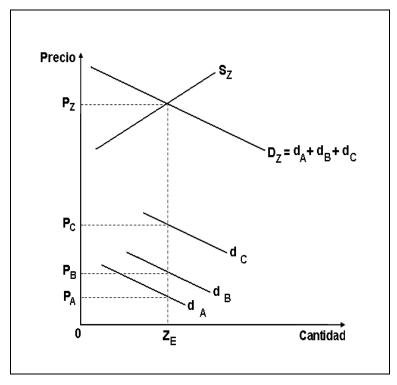


Figura 3.7 Eficiencia con bienes públicos.

La curva de oferta, S_Z , indica los costos marginales de producir unidades adicionales del bien público Z y la curva de demanda, D_Z , muestra las cantidades de Z que los individuos están dispuestos a obtener a los costos alternativos. Bajo el supuesto de que es una comunidad pequeña con tres grupos de ingreso (o tres individuos, para simplificar), los patrones de demanda, d_A , d_B y d_C , representan las disposiciones a pagar de los individuos, para cantidades alternativas del bien. En una situación de equilibrio, el precio del bien, P_Z , es la suma de los precios individuales, P_A , P_B y P_C , los cuales representan la cantidad de unidades monetarias que la sociedad está dispuesta a pagar colectivamente por la cantidad Z_E . Como muestra la figura 3.7, para una cantidad de equilibrio Z_E , los individuos Z_E , los están dispuestos a pagar Z_A , Z_B , Z_B , Z_B , respectivamente.

En el caso de los bienes privados, el mercado determina el precio, pero para el caso de los bienes públicos, la comunidad decide cuánto pagar por una cantidad colectivamente determinada. En otras palabras, la curva de demanda de un bien privado se obtiene de la suma horizontal de las curvas individuales, mientras que la curva de demanda de un bien público se obtiene sumando verticalmente las demandas d_A, d_B y d_C, para cada cantidad, como se muestra en la figura 3.7.

Otra distinción entre un bien privado y un bien público se relaciona con las condiciones de eficiencia. Como se explicó anteriormente, la condición de eficiencia de un bien privado requiere que el beneficio marginal de cada individuo sea igual al precio de mercado. Es decir,

$$BMg_A = BMg_B = BMg_C = P_X$$

Por otra parte, la eficiencia en presencia de un bien público puro requiere tanto del cumplimiento de la condición de eficiencia agregada, como de la condición de eficiencia marginal. Esto es,

$$\sum BMg = CMg = P_Z \tag{1}$$

У

$$BMg_A = P_A$$

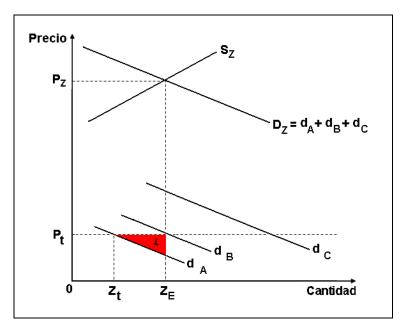
$$BMg_{B} = P_{B}$$

$$BMg_{C} = P_{C}$$
(2)

De acuerdo con la condición de eficiencia agregada (1), el costo de producir Z_E debe ser igual a la suma de los pagos individuales del bien y, a su vez, debe ser igual a la suma de los beneficios individuales. Por otra parte, las condiciones de eficiencia marginal (2) requieren que cada evaluación individual de Z_E sea igual a la cantidad monetaria que el individuo está dispuesto a pagar.

Por lo tanto, si se consideran (1) y (2), la eficiencia en el sentido de Pareto en el sector público es teóricamente posible. Adicionalmente a la provisión óptima de un bien, la cual satisface (1), el método para financiar el bien es también compatible con la solución de libre mercado, para lo cual se cumple (2). Bajo un esquema de financiamiento voluntario, cada individuo contribuye de acuerdo con su propia evaluación marginal y los pagos recibidos de todos los individuos combinan el total P₂.¹¹

Sin embargo, en un mundo real, una cantidad eficiente de un bien público puede no producirse debido a la inadecuada revelación de las preferencias. Esto se debe a que algunos individuos tienden a ser *free riders*, ocultando sus verdaderas preferencias por un bien y evitando los pagos, especialmente cuando el bien se provee a través de un financiamiento voluntario. Cuando este es el caso, la suma de las preferencias reveladas puede ser insignificante para justificar la provisión del bien.


Algunas veces el bien público puede ser producido en cantidades insuficientes y, por lo tanto, la suma de los beneficios privados marginales puede ser tal que sólo justifique el nivel de producción demandado por aquellos individuos que revelaron sus preferencias adecuadamente. No obstante, debido a que el beneficio marginal puede exceder el costo marginal, una asignación puede llevar a la subutilización de los recursos en el sector público.

^{11.} Está forma de financiamiento es conocida como el sistema de impuesto proporcional de Lindahl. Véase Nicholson, 1997, pag. 535.

3.5.3 Financiamiento obligatorio

De acuerdo con el análisis anterior, los proyectos cuyo fin es la producción de bienes públicos cumplen la condición de eficiencia en el sentido de Pareto, sólo cuando en el sistema de impuesto proporcional de Lindahl funciona; esto significa que además de la condición de eficiencia agregada, los pagos individuales por un bien tienen que estar de acuerdo con las preferencias de los votantes.

Alternativamente, las proporciones del impuesto pueden determinarse en cantidades iguales para todos los contribuyentes. Este es el caso de una situación real, donde a cada contribuyente se le carga el mismo monto para el financiamiento del bien público que se provee a la cantidad Z_E , como se muestra en la figura 3.8.

Figura 3.8 Eficiencia con bienes públicos en el sistema de Lindahl.

Para una cantidad Z_E , cada individuo contribuye con 1/3 del costo del bien público. A este precio (impuesto), P_t , sólo la condición de eficiencia marginal del individuo B se satisface. Esto se debe a que Z_E corresponde a un punto donde el beneficio marginal del bien público, para el individuo B, es igual al impuesto.

Los individuos A y C también se benefician del proyecto. Las ganancias se muestran en la figura 3.8. Cuando la producción se incrementa de 0 a Z_t , los tres individuos ganan; cuando la producción se incrementa de Z_t a Z_E , B y C ganan mientras que A incurre en una pérdida representada por el área L. Esta asignación es una mejora potencial paretiana en el sentido de que la implementación del proyecto puede realizarse si C y B transfieren una porción de sus ganancia a A. Al nivel de producción Z_E , la condición de eficiencia agregada se satisface y las ganancias netas son mayores a cero. 12

En las aplicaciones del mundo real, es más conveniente hacer uso de la regla de una mejora potencial paretiana, ya que ésta puede ser suficiente para seleccionar un proyecto sobre la base de la regla de un mayor beneficio neto, sin preocuparse de los pagos compensatorios que se necesitan hacer.

3.6 Eficiencia en presencia de externalidades

Las externalidades son costos y beneficios impuestos a terceros. Éstas no son mal intencionadas y sus efectos no son transportados a través del mecanismo de precios. Algunos ejemplos de costos externos, también llamados externalidades negativas, son los costos asociados con la contaminación industrial del aire producido por una parte del proceso productivo. Cuando existen externalidades negativas, generalmente las firmas no se hacen responsables del daño que ellas causan y los costos de producción excluyen los costos asociados a la contaminación. En estos casos, los individuos afectados por la externalidad pueden no ser compensados por este daño.

El origen del problema de las externalidades negativas se debe a que las leyes de propiedad son inadecuadas, no existen o no son ejecutables. Por ejemplo, en una función de producción

$$Q = f(K, L, E)$$
,

donde K es el capital, L es trabajo y E es un recurso (aire o un río, por ejemplo) que está libremente disponible para los productores, pero no libre desde una

31

^{12.} Véase Gramlich, 1990.

perspectiva social; éste último es sobreutilizado y la producción es operada por arriba de su nivel óptimo social. Esto se muestra en la figura 3.9, donde el costo marginal privado (CMgP) incluye el costo de K, de L y de todos los demás insumos para que los productores hagan los pagos requeridos. Sin embargo, el costo marginal de la externalidad (CMgE), que es el costo asociado a la utilización de E, no se incluye en el CMgP. Por lo tanto, si se reconoce el daño impuesto a terceros como consecuencia de la utilización de E, el costo marginal social (CMgS) difiere del CMgP, provocando que el CMgS sea más alto y que la curva se sitúe por encima y a la izquierda de la curva de CMgP.

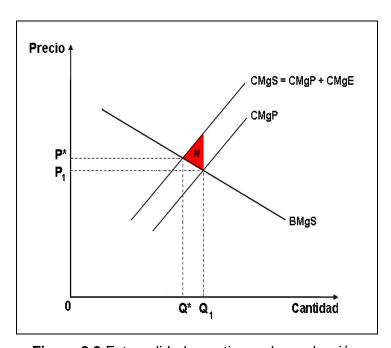


Figura 3.9 Externalidad negativa en la producción.

El nivel óptimo de la producción desde la perspectiva de la empresa es Q₁. Este es el nivel de producción donde el CMgP es igual al beneficio marginal privado BMgP, pero es también el nivel donde el CMgS excede al beneficio marginal social (BMgS), causando ineficiencia en la asignación de los recursos. Idealmente, el nivel de producción debería estar en Q*, donde el CMgS intersecta al BMgS, de acuerdo con una situación consistente con un óptimo social. De esta madera, se consigue el equilibrio cuando los productores se hacen responsables del daño causado.

En este sentido, tanto para el caso de externalidades negativas como para las externalidades positivas, el nivel eficiente de producción Q*, se alcanza una vez que el efecto se ha internalizado. En el caso de las externalidades negativas, significa que los productores paguen para compensar los daños que resultan de una sobreutilización de un recurso. En este caso se puede aplicar un impuesto de la misma magnitud a la externalidad para alcanzar el nivel de óptimo social, con lo cual el área N corresponde a un beneficio neto social por liberación de recursos. En el caso de una externalidad positiva, la curva de CMgS se encuentra por debajo de la curva de CMgP, por lo tanto, el nivel de producción Q* se puede alcanzar por medio de un subsidio o incentivos.

3.6.1 Internalización de efectos externos

Las externalidades pueden internalizarse por mutuo acuerdo de las partes o corregirse a través de la intervención del gobierno. La negociación provee una solución eficiente cuando las partes involucradas en uno o varios problemas de externalidades tienen costos de negociación pequeños. Con este acercamiento entre los individuos involucrados, en un problema de externalidad se puede alcanzar un acuerdo mutuo que es compatible con la solución de libre mercado.

Por lo tanto, la intervención del gobierno llega a ser necesaria solamente cuando dicha negociación falla al corregir el problema. A través de la aplicación de medidas a la producción, las externalidades son controladas al seguir ciertos procesos, tal como el control de la emisión de contaminantes para reducir la probabilidad del daño al medio ambiente; por medio de pagos correctivos (impuesto *pigoviano*) y permisos para contaminar. Asimismo, los productores también requieren o necesitan ser estimulados para moverse hacia niveles eficientes de producción.¹³

^{13.} La solución clásica para resolver el problema de las externalidades es conocida como impuesto *pigoviano*. Véase Nicholson, 1997, pag. 528.

a) Internalización a través de la negociación

De acuerdo con el teorema de Coase, la internalización de las externalidades pueden conseguirse a través de la negociación privada más que con la intervención del gobierno. Lo anterior se logra bajo el supuesto de que la negociación no tiene costos, y si los hubiera la negociación es válida sólo en el caso en el que los beneficios sean superiores a los costos.

Por ejemplo, se puede considerar la situación en donde una planta industrial contamina un río cercano. En está situación, los costos son impuestos al pescador que usa el río. Bajo el supuesto de que el río es propiedad de la planta, el pescador puede intentar negociar con el propietario, esperando que la planta pueda ponerse de acuerdo para no sobreutilizar el río. Bajo la existencia de leyes de propiedad, una solución óptima puede alcanzarse cuando: i) la negociación puede llevarse acabo y prolongarse hasta que el pescador esté dispuesto a perder una cantidad mayor a las ganancias netas que obtiene la planta al contaminar el río, ii) el propietario puede pensar en reducir la producción en tanto la compensación sea mayor que la pérdida neta de realizar esta reducción, y iii) el propietario podrá pagar mientras la compensación sea menor que el costo en el que incurre al contaminar el agua. En estas situaciones, las negociaciones pueden alcanzar eventualmente la solución de óptimo de Pareto.

b) Internalización a través de la intervención del gobierno

El gobierno puede internalizar los efectos externos imponiendo medidas a la producción, impuestos y subsidios, o estableciendo permisos para contaminar. Algunas producciones están obligadas por el gobierno a restringir y monitorear el nivel de contaminación que se genera. Alternativamente, los impuestos pigovianos y los subsidios son asignados por dependencias del gobierno para controlar los efectos externos. Los impuestos son recaudados para minimizar el daño al medio ambiente en el caso de la contaminación del aire y los subsidios se proveen cuando la producción está por debajo del nivel social deseable, como en el caso de la elaboración de vacunas para controlar epidemias.

Los economistas en el sector público aplican impuestos pigovianos por ser más adecuados con la solución del libre mercado que las medidas a la producción. En el caso de externalidades negativas, donde el origen del problema es la disponibilidad de un bien económico que no le cuesta al usuario, la solución es imponer una multa o un impuesto que obligue al usuario a economizar y tratar el recurso como un pago al factor de producción. En el caso de las externalidades positivas, los beneficios son apropiados por terceros, por lo que se deben estimular aquellas producciones que generen este tipo de externalidad, a través de un subsidio que es provisto como una compensación.

Por su parte, el nivel óptimo de abatimiento a la contaminación se logra de dos maneras: recaudando un impuesto pigoviano o estableciendo un permiso de contaminación. La imposición de un impuesto pigoviano se muestra en la figura 3.10, donde la curva con pendiente negativa representa los beneficios marginales sociales (BMgS), que a su vez representa el mejoramiento de la calidad del medio ambiente. Esta curva se dibuja bajo el supuesto de que se recicla o se limpia la primera unidad de contaminación, la cual es socialmente mayor y benéfica que la siguiente unidad. Así, el costo marginal social (CMgS) por reducciones adicionales en la contaminación se representan por una curva de pendiente positiva.

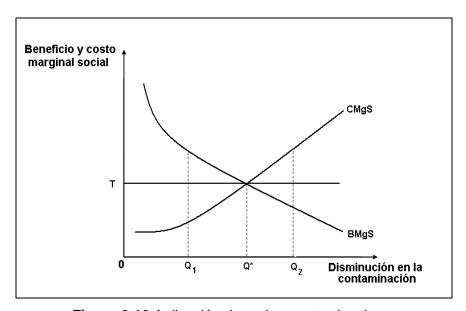


Figura 3.10 Aplicación de un impuesto pigoviano.

El nivel óptimo de abatimiento de la contaminación para la sociedad se alcanza en Q^* , en donde BMgS es igual al CMgS. Este nivel se consigue por medio de un impuesto correctivo ilustrado por la línea horizontal T. Un impuesto aplicado sobre una firma será tratado como el precio del uso de la emisión de aire y forzará a la firma a encontrar el mejor significado de eficiencia para economizar el pago del recurso. La firma puede pagar el impuesto o buscar producciones eficientes alternativas para reducir el nivel de contaminación. Por ejemplo, al nivel de producción Q_1 , las firmas pueden estar mejor que si estas usan un proceso de producción para reducir el nivel de contaminación, ya que a este nivel el monto del impuesto, a causa de la política de abatimiento, excede el valor de la producción anterior. Por otra parte, a un nivel de producción Q_2 los CMgS exceden al impuesto; por lo tanto, las firmas estarán mejor si ellas pagan el impuesto.

Las firmas también pueden acercarse a un nivel de producción Q* por medio de una subasta de permisos de contaminación. La firmas ofrecen por ley contaminar montos iguales al nivel dado de Q*. A este precio óptimo, que corresponde a un nivel óptimo de abatimiento de la contaminación, las firmas pueden elegir pagar por un permiso que les permita contaminar o adoptar un proceso de producción ecológico.

3.7 Principios del análisis costo-beneficio

La condición de una mejora potencial paretiana, también llamada regla de Kaldor-Hicks, ha demostrado ser un criterio más práctico que el óptimo de Pareto. Esta regla justifica cualquier reasignación, siempre y cuando se incrementen los beneficios netos sociales. Así, una reasignación puede mejorar el bienestar social, incluso a pesar de que alguien empeore, pues quienes se benefician pueden compensar a aquellos que pierden y dejarlos al menos en la misma situación en la que se encontraban con la asignación inicial. De esta manera, si la reasignación se realiza, se considera como una mejora potencial paretiana.

La presencia de fallas de mercado es la principal razón por la que el gobierno interviene en el mercado privado. En teoría, cada política de intervención apunta hacia la maximización del bienestar social, con lo que subsecuentemente se alcanzan soluciones de equilibrio, de conformidad con regla de Kaldor-Hicks.¹⁴

En este sentido, se puede abordar el tema de la evaluación social o socioeconómica de proyectos, ya que un proyecto público afecta el bienestar de tres grupos: 1) aquellos individuos que resultarían beneficiados por el proyecto, 2) los contribuyentes que proveen los fondos para el proyecto, y 3) aquellos individuos que incurrirán en pérdidas una vez que el proyecto se ha implementado. Por esta razón, se deben identificar las partes afectadas por el proyecto, calcular sus pérdidas y sus ganancias, y determinar si el proyecto es viable desde el punto de vista de la sociedad.

La evaluación socioeconómica de proyectos tiene como fin determinar si a un país, región o sociedad, en su conjunto, le conviene o no ejecutar un proyecto, para lo cual se deben tener en cuenta todos los costos y beneficios que la sociedad percibe. Por lo tanto, se deben considerar los efectos que el proyecto tendrá sobre terceras personas.¹⁵

La implementación de un nuevo proyecto público requiere de insumos que son recién producidos o bien son atraídos de otros sectores de la economía. Dentro del típico ACB, las valoraciones sociales de estas inversiones son cuantificadas y comparadas en términos monetarios con respecto al total de beneficios esperados provenientes del proyecto. El proceso de evaluación está formado por varias etapas, en cada una de las cuales se pone atención en los beneficios y costos acumulados por distintos grupos en diferentes periodos de tiempo, determinando si existen pérdidas o ganancias como consecuencia de la aplicación del proyecto, además de considerar otros factores que pueden tener un impacto sobre la decisión de llevar a cabo el proyecto. 16

^{14.} Véase Gramlich, 1990.

^{15.} En el caso de la evaluación privada de proyectos, sólo interesa saber si al dueño del proyecto le conviene o no ejecutarlo, sin considerar si hay otras personas o actividades que se vean beneficiadas o afectadas por ello.

^{16.} Véase Layard y Glaister, 1994.

Etapas del análisis costo-beneficio 3.7.1

El ACB se compone de cuatro etapas generales: (a) identificación y cuantificación de costos y beneficios relevantes, (b) valoración de costos y beneficios, (c) comparación de flujos acumulados de costos y beneficios durante la vida del proyecto y, (d) selección del proyecto.

a) Identificación y cuantificación de costos y beneficios

En la primera fase del análisis se deben identificar todos los costos y beneficios atribuibles al proyecto y su relevancia debe ser justificada. Un nuevo proyecto atrae factores de producción empleados en otras áreas de la economía. El traslado de estos factores hacia el nuevo proyecto generará nueva producción y, al mismo tiempo, resulta en una disminución de la producción en cualquier otro lugar de la economía. La tarea en esta etapa del análisis es identificar las pérdidas (costos) y estimar el valor de la producción (beneficios) que se producen por el proyecto.

La principal referencia en la identificación de los costos y beneficios es el criterio de eficiencia de la regla Kaldor-Hicks. Este criterio se satisface siempre y cuando la aplicación de un proyecto maximice los beneficios netos sociales. De acuerdo con esta regla, aquellos individuos que se benefician de un incremento en la producción pueden compensar a aquellos que pierden y permanecer aún en mejor situación que antes de la realización del proyecto.

Una vez identificados todos los costos y beneficios atribuibles al proyecto, éstos deben cuantificarse realizando estimaciones de las cantidades físicas que el proyecto provee. Por ejemplo, cantidad de litros de leche a producir por mes. Por lo tanto, para determinar el beneficio neto derivado de la aplicación de un proyecto en este contexto, las ganancias y las pérdidas de todas las partes afectadas necesitan ser calculadas. Así, el análisis tiene que distinguir los costos y beneficios que son históricos de los que son económicos. 17

Los costos históricos no son atribuibles al proyecto, por lo cual no tienen relevancia. Por ejemplo, la construcción de un centro de recreación se

^{17.} Véase Fontaine, 1999.

considera como un costo histórico puesto que es un gasto que ya ha sido realizado y no entra dentro de las decisiones de expandir o demoler el centro, ya que de ninguna manera es un costo recuperable. En cambio un costo económico es aquel que puede ser recuperable, o mejor dicho evitable, ya que por el solo hecho de no expandir o demoler el centro se pueden evitar costos.

Una forma común de hacer distinción entre costos históricos y económicos es considerar las situaciones con y sin proyecto, es decir, comparar los costos y beneficios en los que se incurre con y sin la aplicación del proyecto. Otra forma de hacer distinción entre estos costos es diferenciando los efectos reales en la producción de los efectos monetarios en la producción derivados del proyecto. Los efectos reales en la producción son cambios en las posibilidades físicas de producción con un subsecuente cambio en el bienestar de la sociedad; mientras que los efectos monetarios, por otra parte, son distributivos y crean ganancias no reales en el bienestar de la sociedad.

De esta manera, se debe tener cuidado en no realizar una doble contabilización de los costos y beneficios, pues únicamente deben considerarse los que son realmente atribuibles a la realización del proyecto.

b) Valoración de costos y beneficios

La valoración de los costos y beneficios es una tarea que requiere extremo cuidado y creatividad. Los elementos tangibles de un proyecto, tales como tierra, trabajo y capital tienen un precio de mercado. Esta información puede obtenerse fácilmente de los mercados competitivos. Normalmente, los precios de mercado representan valores económicos, pero algunas veces estos precios deben usarse con precaución. En ausencia de mercados competitivos, los precios de mercado probablemente no representan los verdaderos valores de escasez de los recursos. Por ejemplo, el precio de mercado del beneficio de un proyecto puede diferir de su costo de producción a causa de la distorsión de un impuesto. Para evitar que los beneficios no sobrestimen los costos del proyecto, pueden usarse los precios sombra, también llamados "precios sociales", que reflejan el verdadero costo de oportunidad de los factores de la producción.

Otro problema que se presenta al momento de medir los costos y los beneficios es la dificultad para valorar elementos intangibles como el tiempo, la moral, factores ambientales, entre otros.

c) Comparación de costos y beneficios

En la tercera fase del análisis del proyecto, se debe calcular el valor presente de los beneficios y costos del proyecto, y subsecuentemente estos deben ser comparados con el valor presente de los costos de inversión. Para llevar a cabo lo anterior, el valor futuro de los beneficios se descuenta a una determinada tasa. La cuestión crítica en esta etapa es escoger una tasa de descuento apropiada. Normalmente, la tasa de descuento usada dentro del ACB es diferente a la usada en el análisis financiero. Esta última es conocida como la tasa de interés de mercado, y se determina en los mercados financieros. Esta tasa difiere de la tasa privada de acuerdo con las preferencias en el tiempo, es decir, cuando por ejemplo el mercado de fondos prestables está distorsionado por un impuesto del gobierno. La tasa de interés de mercado también se desvía de la tasa social de descuento cuando la sociedad y el mercado privado ponderan de manera diferente la inversión.

El propósito de cualquier proyecto privado es la maximización de los beneficios privados y, para esto, es adecuado utilizar la tasa de interés de mercado para descontar los flujos. Sin embargo, en el análisis de proyectos públicos se utiliza la tasa social de descuento, la cual da lugar a una razón costo-beneficio distinta.

Puesto que la implementación de un proyecto público transforma el consumo presente en consumo futuro, la tasa a la que se descuentan los flujos del proyecto debe ser atractiva desde el punto de vista de la sociedad.¹⁸

40

^{18.} Todo proyecto necesita fondos para su financiación y éstos tienen un costo para el país. Por lo que, la tasa social de descuento valora el sacrificio que el país debe hacer anualmente por cada unidad monetaria requerida para financiar un nuevo proyecto. Véase Ferrá, 2000.

d) Selección del proyecto

En la fase final del análisis se jerarquizan los proyectos, tomando en cuenta que existe una cartera de factibles proyectos a realizar. Existen tres criterios diferentes para la selección de proyectos: (a) la razón costo-beneficio, (b) el valor presente neto, y (c) la tasa interna de retorno. De acuerdo con estos tres criterios, el proyecto es aceptado cuando su razón costo-beneficio es mayor a la unidad, su valor presente neto es mayor a cero, o bien, su tasa interna de retorno es más elevada que la tasa de descuento privada, en el caso de proyectos privados, y más elevada que la tasa social de descuento en el caso de proyectos públicos. Adicionalmente, el ranking de los proyectos puede hacerse en un orden que indique cuáles son más convenientes de ejecutar o bien cuáles deben ser ejecutados en primer lugar. Los más convenientes de ejecutar serán aquellos que presenten un valor presente neto más elevado.

3.8 Análisis costo-eficiencia

El ACB supone que la mayor parte de la información está disponible y que los costos y beneficios relevantes pueden medirse en términos monetarios. Sin embargo, cuando la producción de un proyecto no está definida o no puede ser medida en unidades monetarias, el ACB presenta limitaciones. En este caso el evaluador debe considerar un procedimiento alternativo conocido como análisis costo-eficiencia (ACE).

Como una técnica de evaluación, el ACE se usa comúnmente cuando se elige un proyecto que rendiría el mínimo costo de producción para un determinado bien o cuando se selecciona un proyecto que rendiría el máximo de producción para un determinado costo. En el primer caso, el evaluador jerarquiza los proyectos que generan el mismo beneficio en términos de sus costos. En el segundo caso, los proyectos se jerarquizan en términos de las cantidades de producción que éstos pueden rendir con un presupuesto fijo determinado.

El enfoque del ACE, en cualquier caso, es la eficiencia tecnológica y esto es lo que hace la diferencia entre el ACE y el ACB. Debido a que en el ACB, los beneficios están asignados a un valor monetario, su principal preocupación es la eficiencia

económica. No obstante la metodología de análisis usada en el ACE es la misma que se usa para el ACB.

3.9 Efectos de la asignación de proyectos públicos

Existen medidas para evaluar un cambio en el bienestar y éstas se usan para identificar los beneficios netos de un proyecto público. Con ellas se construye un marco analítico para identificar, cuantificar y valorar todos los posibles resultados de asignación de un proyecto público. Estas medidas pueden identificarse por medio de un análisis económico de equilibrio parcial.¹⁹

3.9.1 El excedente del consumidor

El excedente del consumidor es una medida monetaria del beneficio máximo que un individuo puede obtener de un bien a un determinado precio de mercado. Este concepto fue introducido por Jules Dupuit en 1844 y después fue utilizado por Alfred Marshall en 1920. El excedente del consumidor se define como la diferencia entre la cantidad máxima que el individuo está dispuesto a pagar por un bien y el monto que realmente paga.

La figura 3.11, muestra una curva de demanda ordinaria (marshaliana) representada por DD. El área $ODbZ_1$ indica la máxima cantidad que el individuo está dispuesto a pagar por Z_1 unidades y el área OP_1bZ_1 es la cantidad que realmente paga por el bien al precio P1. La diferencia es el área P_1Db , la cual representa el valor total del excedente del consumidor obtenido al consumir Z_1 unidades.

19. El análisis de equilibrio parcial pone atención únicamente en un mercado, bajo el supuesto de que los precios en otros mercados son constantes. El análisis de equilibrio general, por otra parte, considera la relación entre mercados, tomando en cuenta los efectos de los cambios en la demanda y en la oferta en otros mercados.

42

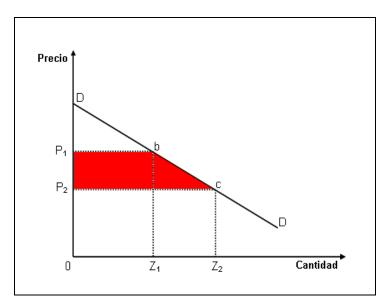


Figura 3.11 Curva de demanda marshaliana.

Si el precio baja a un nivel P_2 , el excedente del consumidor corresponde al área contenida en el triángulo P_2Dc , la cual es mayor que el área P_1Db . La diferencia entre estos dos triángulos P_1bcP_2 , es el excedente del consumidor adicional que resulta de una disminución en el precio.

La figura 3.12, muestra que el excedente del consumidor puede ser \$2 cuando el individuo adquiere dos unidades de bien al precio de \$6 cada una, bajo el supuesto que el individuo está dispuesto a pagar \$8 por la primera y \$6 por la segunda. Al bajar el precio a \$4, el individuo adquirirá tres unidades y el excedente del consumidor se incrementará a \$6. Por lo tanto, el cambio en el excedente del consumidor es \$4.

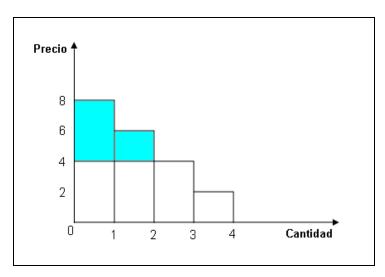


Figura 3.12 Excedente del consumidor.

El excedente del consumidor derivado de una curva de demanda ordinaria no es una medida exacta del efecto en el bienestar por un cambio en el precio. Una curva de demanda ordinaria supone un ingreso monetario constante y, consecuentemente, su uso dentro del análisis es cuestionable. Por definición, un movimiento sobre la curva implica dos efectos: el efecto ingreso y el efecto sustitución. Cuando el precio desciende, ambos efectos permiten que el individuo se mueva a una curva de indiferencia más alta. Por lo tanto, para obtener una medida exacta del efecto en el bienestar por un cambio en el precio, se debe eliminar el efecto ingreso y medir únicamente el efecto sustitución ante un cambio en el precio.

Para eliminar el efecto ingreso, se pueden utilizar curvas de demanda compensada (hicksianas) en lugar de curvas de demanda ordinaria. En la figura 3.13 se representan dos curvas de demanda compensadas, HH y H'H', respectivamente, que permiten al individuo mantener el mismo nivel de utilidad ante un cambio en el precio. Estas curvas suponen un ingreso real constante y sólo miden el efecto sustitución ante un cambio en el precio. Para el caso de bienes normales, las curvas de demanda compensada son más inelásticas que la curva de demanda ordinaria DD. El área bajo la curva DD, P_1abP_2 , representa la valoración del individuo ante un cambio en el precio, así como el cambio en el ingreso real del individuo. El área debajo de la curva HH, P_1acP_2 , y el área debajo de la curva HH, P_1acP_2 , y el área debajo de la curva HH, P_1acP_2 , y son

medidas precisas de la variación en el bienestar del consumidor por un cambio en el precio.²⁰

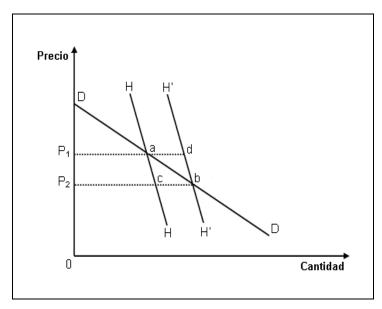


Figura 3.13 Curvas de demanda compensada.

3.9.2 Variaciones compensatoria y equivalente

Mediante las curvas de demanda compensada de la figura 3.13, se pueden indicar medidas de variación compensatoria y equivalente.

a) La variación compensatoria (VC) indica la cantidad que un individuo está dispuesto a pagar (aceptar), por una disminución o aumento en el precio, para mantener su nivel de utilidad. En el caso en el que el precio disminuye de P₁ a P₂, la variación compensatoria queda indicada por el área P₁acP₂ debajo de la curva HH, en la figura 3.13. Para el caso en el que el precio aumenta de P₂ a P₁, esta variación está representada por el área P₁dbP₂ debajo de la curva H'H'.

^{20.} Para un análisis de las demandas ordinarias y compensadas, así como de los efectos ingreso y sustitución, véanse las secciones B y C del apéndice.

b) La variación equivalente (VE), por otra parte, es la cantidad que se necesita para compensar al individuo que se abstiene de comprar un bien a un precio más bajo, o la cantidad máxima que el individuo está dispuesto a pagar para ser eximido de un precio alto y mantener el mismo nivel de ingreso real después del aumento en el precio. El área P₁dbP₂ es la cantidad de dinero que se necesita para compensar a un individuo que se abstiene de comprar el bien a un precio más bajo y no empeorar su situación. En consecuencia, el individuo acepta la oportunidad de comprar el bien a un precio de P₂ siempre y cuando reciba una suma de dinero que pueda mantenerlo al menos tan bien como antes del cambio en el precio. Una VE, en el caso de un incremento en el precio, queda representada por el área P₁acP₂, que indica la máxima cantidad que el individuo está dispuesto a pagar por ser eximido de un precio alto, como es en este caso P₁.

Las variaciones compensatorias y equivalentes juegan un papel importante en la estimación de los beneficios y costos dentro de la evaluación de proyectos. Estas son simples medidas de la disposición a pagar (DP) de un individuo por un cambio en el precio o la disposición a aceptar (DA) un cambio en el precio. Cuando se presenta una disminución en el precio o una mejora del bienestar, VE representa la disposición a aceptar una cantidad de ingreso en vez de un cambio en el precio o una mejora en el bienestar. VC, por otra parte, representa la cantidad que el individuo está dispuesto a pagar para mantener un precio bajo o la mejora en el bienestar.

Cuando hay un incremento en el precio o una pérdida del bienestar, VE se convierte en una medida de DP, indicando la cantidad que el individuo está dispuesto a pagar para ser eximido del cambio. En este caso, VC representa la cantidad que el individuo está dispuesto a aceptar y estar de esta manera de acuerdo con el cambio. Entonces, para medir las ganancias en el bienestar, se puede usar VE con (DA) o VC con (DP); y para medir pérdidas en el bienestar, se puede usar VE con (DP) o VC con (DA).²¹

^{21.} Para un análisis más detallado de las VC y VE, véase la sección D del apéndice.

3.9.3 El excedente del productor

Para el análisis del excedente del productor, se supone que el costo de proveer una unidad adicional de un bien es constante. Dentro de un rango relevante de la producción, el costo unitario y el costo marginal es el mismo, y ambos son iguales al precio recibido para cada cantidad producida. Bajo este supuesto, unidades adicionales de un bien son proveídas al mismo precio.

Cuando el costo marginal se incrementa la producción también se incrementa y la curva de oferta toma una forma estándar. Lo anterior se muestra en la figura 3.14, mediante una línea con pendiente positiva representada por S=CMg. Si el costo marginal es igual a P₁ el nivel de producción es igual a Q₁, y cuando el precio se incrementa, la producción se incrementa hasta que el costo marginal es nuevamente igual al precio. Se puede observar que cuando el precio es P₁, todas las unidades dentro del rango de producción que va del origen hasta Q₁ se ofrecen al precio P₁; de esta manera, el productor devenga sumas adicionales por encima del respectivo costo marginal hasta que éste ofrece la cantidad Q₁. Esto es lo que se llama excedente del productor, el cual queda indicado por el área *A*. Así, el excedente del productor es la diferencia entre el precio de mercado y la cantidad que el oferente está dispuesto a aceptar para proveer el bien.²²

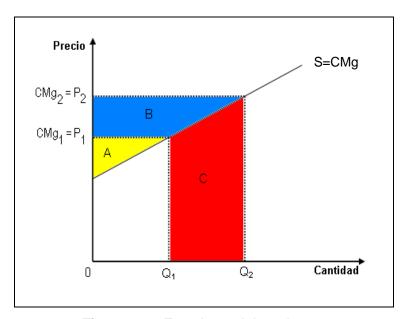


Figura 3.14 Excedente del productor.

47

^{22.} Véase Mishan, 1975.

Cuando el precio se incrementa, el excedente del productor aumenta; cuando el precio desciende, el excedente del productor disminuye. Si el precio aumenta a P_2 , el nuevo precio excede el costo marginal correspondiente a Q_1 y esto provoca que la producción se expanda hasta el nivel Q_2 , donde el precio una vez más es igual al costo marginal. El área C es el cambio en el costo total variable y el área B es el incremento en el excedente del productor.

En ausencia de distorsiones o fallas de mercado, la curva de oferta representa el costo de oportunidad de proveer una unidad adicional de un bien, o en su caso, si la curva indica la oferta de un factor de producción, ésta representa el costo de oportunidad de emplear una unidad adicional de ese factor. Es decir, el costo de oportunidad, o precio sombra, indica en cuánto aumenta el beneficio al emplear una unidad adicional de ese factor. Por lo tanto, el excedente del productor, en cualquier caso, es la diferencia entre el valor de mercado del factor de producción y su costo de oportunidad.

3.10 Beneficios y costos de un proyecto público

El principal propósito de un proyecto público es incrementar el nivel de su producción directa. Por ejemplo, un proyecto de una autopista mejora la eficiencia del flujo vehicular y disminuye los costos de los usuarios dentro de un trayecto específico. Un proyecto agroindustrial, para mejorar la calidad del procesamiento, probablemente incremente el excedente agrícola en una región. Como estos ejemplos, existe una variedad de proyectos públicos que dan lugar a un flujo de beneficios y costos a través del tiempo.

Los beneficios de un proyecto, desde el punto de vista de una sociedad, están determinados por el valor que tienen para ésta los bienes y servicios que el proyecto pondrá a su disposición. A su vez, el proyecto utilizará recursos productivos (insumos) que dejarán de estar disponibles para cualquier otro uso. Los costos del proyecto estarán determinados por el costo de oportunidad (o costo alternativo) de los recursos productivos empleados en el proyecto. Los beneficios y costos de un proyecto se determinan aplicando el concepto de costo de oportunidad, que no es más que el costo económico de los recursos. El costo de oportunidad indica el valor que se pierde si los recursos productivos son

empleados en la mejor alternativa posible, en cualquier otro lugar de la economía. Así, los recursos productivos que se emplearán en un proyecto se dejarán de usar en esa mejor alternativa y, por lo tanto, se perderán los beneficios que ésta alternativa ofrece.

Los beneficios y costos de un proyecto público se descuentan utilizando la tasa social de descuento. De esta manera, se toma en cuenta el costo de oportunidad que tiene para la sociedad cada unidad monetaria requerida para financiar el proyecto.

3.11 Efectos de un proyecto público

Identificar los efectos que ocasiona un proyecto público, sirve para evitar la doble contabilización de beneficios y costos, y para considerar únicamente aquellos que son atribuibles al proyecto. Los efectos que un proyecto provoca son tres: a) efectos reales (directos e indirectos), b) efectos externos (reales o pecuniarios), y c) efectos intangibles.

3.11.1 Efectos reales

Dentro de la evaluación socioeconómica de proyectos los efectos reales son beneficios y costos directos o indirectos. Para estimar los beneficios directos se valoran las unidades de bienes o servicios, por unidad de tiempo, que el proyecto produce. Así, los beneficios directos representan el verdadero valor que tienen para la sociedad los bienes y servicios que producirá el proyecto. De la misma manera, la valoración de los costos directos se realiza considerando las unidades de cada insumo, por unidad de tiempo, que el proyecto usará. De esta forma, se toma en cuenta el verdadero costo que para la sociedad tiene la utilización de dichos insumos.

Por otra parte, un proyecto puede ocasionar efectos reales indirectos, esto es, beneficios y costos derivados del efecto que el proyecto tiene en otros mercados de bienes relacionados con el bien que producirá el proyecto y también en aquellos mercados de insumos que el proyecto usará. En otras palabras, el proyecto afecta los mercados de bienes sustitutos y de bienes complementarios. En este sentido, la demanda de los bienes relacionados se ve afectada, puesto

que el proyecto provoca cambios en los precios del bien que produce y en los precios de los insumos que utiliza.

Los efectos reales directos e indirectos, se pueden analizar utilizando el concepto de excedente del consumidor, mediante curvas de demanda ordinaria o curvas de demanda compensada. Por ejemplo, bajo el supuesto de que no existen imperfecciones de mercado y que la producción se realiza en un medio de costo constante, el efecto real de un proyecto se muestra en la figura 3.15, usando una curva de demanda ordinaria.

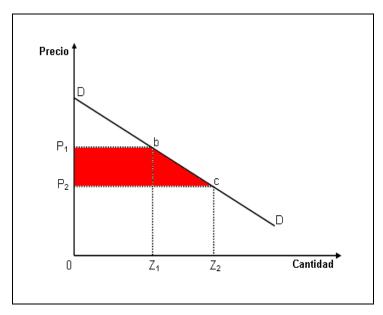


Figura 3.15 Efecto real de un proyecto.

El beneficio total de un proyecto público al nivel de producción Z_1 es el área $0DbZ_1$, con costos totales determinados por el rectángulo $0P_1bZ_1$. El beneficio neto generado está determinado por el triángulo P_1Db , que es el excedente del consumidor.

De manera alternativa, si se ejecuta un proyecto que tiene como efecto disminuir el precio del bien que éste producirá, es decir, si el precio disminuye de P_1 a P_2 , entonces el área P_1bcP_2 , es la variación en el excedente del consumidor como consecuencia de la aplicación del proyecto y se convierte en la medida de los beneficios del mismo. Esto es una típica representación de los beneficios de un proyecto bajo el supuesto de costos constantes.

Cuando la curva de oferta tiene pendiente positiva (costos crecientes), los beneficios del proyecto consisten tanto en un excedente del consumidor, como en un excedente del productor. Esto se muestra en la figura 3.16 por medio de las áreas A y B, respectivamente. Así, en el caso en el que los costos son crecientes, un proyecto disminuye los costos marginales y desplaza la curva de oferta de S a S'. Esto hace que el precio disminuya de P_1 a P_2 y que el consumo se incremente de Z_1 a Z_2 . El resultado de la disminución en el precio y el aumento en el consumo es un incremento en el excedente del consumidor y en el excedente del productor. La suma de estos cambios es el incremento neto que resulta de los beneficios combinados y corresponde al área C.

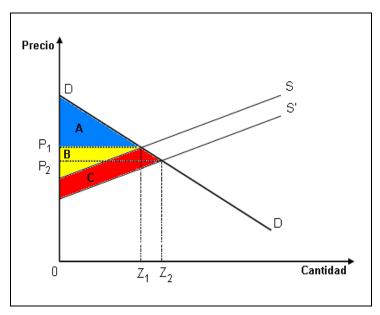


Figura 3.16 Efectos reales de un proyecto.

3.11.2 Efectos externos

Además de los efectos reales de la producción, los efectos externos de un proyecto, mejor conocidos como externalidades, también deben ser considerados cuidadosamente. Existen efectos externos reales y pecuniarios. Los efectos externos reales implican cambios en las posibilidades de producción física total en los mercados primarios y secundarios, alterando el beneficio total de la sociedad. Los efectos externos pecuniarios, por otra parte, resultan principalmente de los

cambios en los precios relativos, tanto en el mercado de factores como en el mercado de bienes, y consideran sólo resultados distributivos.

Las externalidades pueden ser positivas o negativas, es decir, son costos o beneficios impuestos sobre terceros. Un costo externo en el caso de un ejemplo de transporte, se debe al aumento en el volumen de tráfico que causa probablemente daño ambiental, tal como el incremento de ruido y la contaminación del aire. Otro ejemplo, es el beneficio externo de una nueva carretera que podría incrementar la eficiencia en el transporte y su impacto sobre los niveles de productividad en otras regiones. La omisión de estos efectos puede provocar que se sobrestimen o subestimen los costos o los beneficios del proyecto.

En la figura 3.17 se muestra la subestimación de los beneficios causada por un efecto externo real positivo, dónde D y D' son las curvas de demanda para un nuevo bien público, sin y con beneficios externos, respectivamente.

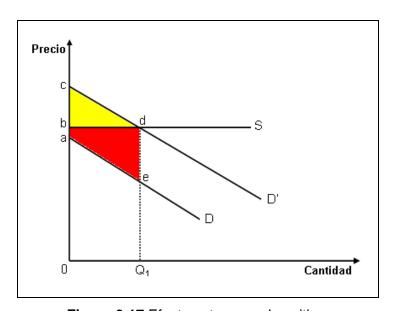


Figura 3.17 Efecto externo real positivo.

Si se realiza la evaluación con base en la curva de demanda primaria D, que excluye los efectos externos positivos, entonces la razón beneficio/costo podría subestimar su rentabilidad social y probablemente resultaría en un rechazo del proyecto, lo que puede causar a su vez la subutilización de los recursos públicos. En la figura 3.17, los costos son iguales al área $0bdQ_1$, por lo que, si se toma en cuenta la curva de demanda D, los beneficios son iguales al área $0aeQ_1$ y el

resultado es un efecto neto negativo equivalente al área *abde*. Pero, si se toma en cuenta la curva de demanda D' se tendría un efecto neto positivo igual al área *bcd*.

Es importante identificar estos excedentes, ya que su omisión puede desviar los resultados de un ACB y llevar a una mala asignación de los recursos. Para mostrar los efectos externos se debe hacer uso del excedente del consumidor como se muestra en la figura 3.18.

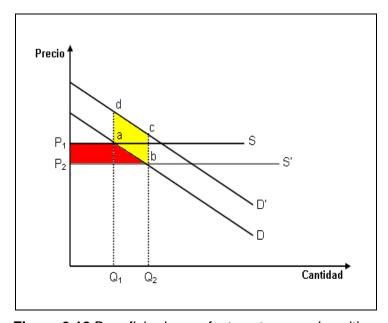


Figura 3.18 Beneficio de un efecto externo real positivo.

Suponiendo el caso de una industria con costos constantes, la producción sin proyecto es Q_1 , la cual queda determinada por la intersección de la curva de oferta horizontal, S, y la curva de demanda sin beneficios externos, D. Ahora bien, la ejecución de un proyecto desplaza hacia abajo la curva de oferta de S a S', generando ahorro de costos y excedente adicional ante un nuevo y más bajo precio, P_2 . De esta manera, el área P_1abP_2 representa los beneficios directos del proyecto. Pero si se toma en cuenta la curva de demanda que incorpora los beneficios externos D', el área abcd muestra el beneficio externo adicional que se genera por la realización del proyecto. Por lo tanto, para determinar la rentabilidad de este proyecto, ambas áreas deben ser estimadas e incluidas en el análisis.

Los efectos externos reales no deben confundirse con los efectos externos pecuniarios. Los efectos externos pecuniarios, también llamados efectos secundarios, son ganancias y pérdidas de los productores que emplean o producen insumos, o bienes que son idénticos o están estrechamente relacionados con los usados o producidos bajo consideración del proyecto.²³

Por ejemplo, la implementación de un proyecto puede dar como resultado un incremento en el precio de un insumo que el mismo proyecto utiliza, una disminución en el precio del bien que produce el proyecto, una reducción en el precio de bienes sustitutos o un incremento en el precio de bienes complementarios. Tales efectos son resultado principalmente de cambios en los precios relativos en los mercados privados e implican únicamente efectos redistributivos. Entonces, puede no haber ganancias netas sociales cuando todas las pérdidas y ganancias secundarias derivadas de un proyecto están combinadas. De esta manera, un flujo de ganancias secundarias asociadas a un proyecto puede contrarrestar un flujo de pérdidas en cualquier otro lugar de la economía. Por lo tanto, los efectos secundarios necesitan ser estudiados cuidadosamente debido a que la decisión de incluirlos en el análisis depende de la naturaleza del medio económico específico donde el proyecto está bajo consideración.

3.11.3 Efectos intangibles

Finalmente, existen beneficios y costos asociados a la ejecución de un proyecto que son difíciles de identificar, cuantificar o valorar monetariamente. Por ejemplo, un proyecto público carretero puede afectar el medio ambiente y reducir el número de muertes, lo cual es difícil de medir debido a que habría subjetividades al momento de asignar un valor al medio ambiente o al valor de las vidas humanas. Sin embargo, los efectos intangibles deben tomarse en cuenta en la decisión de ejecutar o no el proyecto, ya que afectan el bienestar social.

54

^{23.} Véase McKean, 1958.

3.12 Análisis por efectos redistributivos

El análisis abordado hasta el momento, identifica los efectos que un proyecto tiene sobre la disponibilidad de bienes y servicios desde el punto de vista de la sociedad, es decir, sólo se han analizado los efectos reales, o mejor dicho, lo que la sociedad gana como consecuencia de la realización del proyecto. No obstante, cuando se ejecuta un proyecto, es posible identificar quiénes son los que se benefician y quiénes son los que pierden, y en qué medida. Este tipo de análisis se realiza a través de los efectos redistributivos de un proyecto.

Los participantes en el mercado son los que pueden percibir los beneficios y costos de un proyecto. Por lo tanto, los implicados son: los consumidores, el dueño del proyecto, otros productores, el sector público (en el caso de que existan impuestos o subsidios) y terceros (en el caso de que existan efectos externos).

Para analizar los efectos redistributivos, se presenta un caso concreto en el que un proyecto producirá un bien doméstico X, en una cantidad \overline{X} , con un impuesto al consumo t_C , por unidad, y un efecto externo positivo al consumo sobre terceros, E_C^+ . Además, se hace el supuesto de que las curvas de oferta y demanda son líneas rectas con elasticidades normales en el tramo relevante. El proyecto reduce los precios de oferta y de demanda, incrementa la cantidad ofrecida total, disminuye la cantidad ofrecida de otros productores del mismo bien y aumenta el consumo. Este caso se presenta en la figura 3.19.

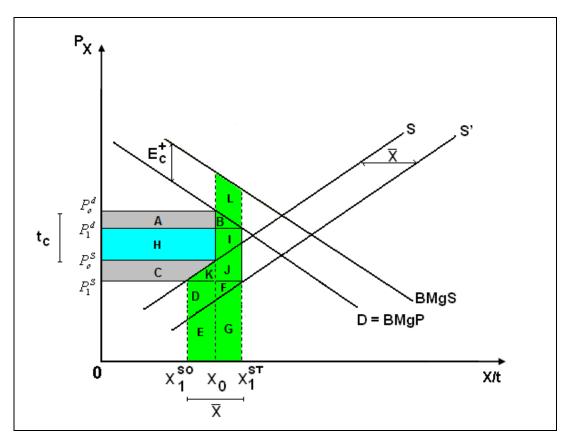


Figura 3.19 Efectos redistributivos de un proyecto.

Los efectos distributivos para este caso concreto son:

i) El precio de demanda del bien X disminuye de P_o^d a P_1^d , por lo tanto, los consumidores de X incrementan su excedente por un valor igual a la suma de las áreas (A+B), valor que algebraicamente se puede expresar como:

$$\frac{(P_o^d - P_1^d)(X_1^{ST} + X_0)}{2}$$

ii) El precio de oferta del bien X disminuye de P_o^S a P_1^S . Esto provoca que el excedente de los otros productores del bien X disminuya por un valor igual al área C, valor que algebraicamente se puede expresar como:

$$\frac{(P_o^S - P_1^S)(X_0 + X_1^{SO})}{2}$$

iii) La recaudación del sector público tiene una variación debido a que aumenta la cantidad consumida del bien X. Por lo tanto, se debe valorar la variación en la recaudación sin y con proyecto. Esto es, el gobierno pierde la recaudación que tiene sin proyecto, la cual es igual al área (A+H); y gana la recaudación que tiene con proyecto, que es igual a la suma de las áreas (H+C+I+J+K). Si el impuesto es una cantidad fija por unidad, la diferencia es una variación positiva igual al área (I+J). Esto es igual al monto del impuesto por unidad multiplicado por el incremento en la cantidad consumida del bien X:

$$(P_1^d - P_1^s)(X_1^{ST} - X_0)$$

iv) El dueño del proyecto obtiene ingresos por la venta de \overline{X} unidades que produce el proyecto, lo cual representa el valor privado de la producción. Estos ingresos son iguales a la suma de las áreas (D+E+F+G), que puede expresarse como:

$$\overline{X} * P_1^S$$

v) Finalmente, existe un beneficio para quienes consumen la producción adicional del bien X, debido a la externalidad positiva. Este beneficio tiene un valor igual al área L y puede expresarse algebraicamente como:

$$(X_1^{ST} - X_0) * \left[\frac{(P_1^d + P_0^d)}{2} + E_C^+ \right]$$

Debe quedar claro que la externalidad positiva existe en el mercado antes de la realización del proyecto y el beneficio que se genera está asociado al mayor consumo como consecuencia del proyecto. No obstante, el proyecto en sí mismo puede o no generar una externalidad negativa o positiva. El ejemplo de la figura 3.19 considera que el proyecto no genera externalidades.

De acuerdo con los efectos redistibutivos, se pueden analizar tanto los grupos que perciben beneficios como los grupos que perciben costos, con el fin de calcular el efecto neto sobre la sociedad como resultado de la ejecución del proyecto. Los efectos se presentan en el cuadro 3.1.

Cuadro 3.1 Efectos redistributivos de un proyecto para cada grupo

Grupos	Concepto	Áreas	Efecto
Consumidores del bien X	Incremento en el excedente del consumidor	A+B	Beneficio
Otros productores del bien X	Disminución en el excedente del productor	С	Costo
Sector público	Incremento de la recaudación	(H+C+I+J+K) - (A+H)	Beneficio
Dueño del proyecto	Mayor ingreso por ventas	D+E+F+G	Beneficio
Quienes perciben la externalidad	Mayor beneficio marginal	L	Beneficio

La suma de las áreas descritas en el cuadro anterior, da lugar al valor del aumento del consumo y al valor de los recursos liberados por la menor producción de los otros productores. De esta manera, las áreas que resultan de la compensación son las mismas que se identifican mediante el análisis de efectos reales y el resultado de la suma de dichas áreas es lo que se conoce como *Valor Social de la Producción (VSP)*. Por lo tanto, el VSP se puede identificar en la figura 3.19 y es igual a la suma de las áreas:

$$VSP = A + B - C + D + E + F + G + C + I + J + K - A + L$$

 $VSP = L + B + I + J + F + G + K + D + E$

3.13 Precios sociales

Cuando los precios se utilizan para intercambiar bienes libremente se llaman precios de mercado. Sin embargo, las fallas de mercado producen ineficiencia en la determinación de los precios.

Los precios sociales o precios sombra reflejan el verdadero valor de escasez de los recursos para la sociedad. Estos precios representan el costo de oportunidad de producir o consumir una mercancía, aun cuando ésta no sea intercambiada en el mercado o no tenga un precio de mercado. El precio social de un bien, servicio, insumo o factor productivo, es igual al precio de mercado corregido por un factor de ajuste que representa las distorsiones e imperfecciones del mercado.

Para calcular precios sociales se pueden emplear técnicas de programación para la solución de problemas de maximización o el método de las distorsiones. Las técnicas de programación consisten en representar el funcionamiento de la economía de un país a través de relaciones entre las variables económicas consideradas como relevantes, bajo ciertas restricciones. De esta manera, se maximizan los valores representativos de estas variables. Así, los precios sociales son el conjunto de precios que hacen posible la maximización. Los programas de programación lineal permiten resolver un problema dual y obtener los precios sociales. Por otra parte, el método de las distorsiones consiste en la estimación de los precios sociales a partir de los precios de mercado observados. Para hacer las estimaciones se identifican y analizan las fuentes de distorsión existentes y se realizan las correcciones pertinentes para llegar al precio social que se busca.

Desde la perspectiva social, lo que interesa son los costos y los beneficios para la economía en su conjunto, y éstos pueden diferir de los privados porque: a) los precios de mercado no reflejan el costo o valor social de los bienes y servicios (bienes públicos, monopolios, regulaciones, impuestos, etc.) o b) una parte de los costos o los beneficios recae sobre terceros (externalidades). ²⁴

El objetivo de la evaluación social de proyectos es valorar tanto los bienes y servicios producidos (beneficios) como los insumos y recursos de capital utilizados

59

^{24.} Véase Fontaine, 1999.

(costos), de acuerdo con su valor económico, que es independiente de la forma en que los percibe quien realiza el proyecto.²⁵

La evaluación social de un proyecto de inversión debe considerar que si éste se ejecuta implica que el gobierno utilice recursos adicionales para tal fin. Estos recursos tienen un costo desde el punto de vista de la sociedad. Por lo tanto, es necesario utilizar una tasa social de descuento para descontar los beneficios y costos que el un proyecto generará. Esto permite que el rendimiento de cada proyecto sea por lo menos igual al costo social de los recursos utilizados en su realización.²⁶

^{25.} Véase González, 1995.

^{26.} Véase Cervini, 1995.

CAPÍTULO IV HIPÓTESIS DE TRABAJO

Para someter a verificación empírica el fundamento teórico del análisis costobeneficio, se plantean dos hipótesis de trabajo:

Hipótesis 1:

En una situación en la que los costos generalizados de viaje (CGV) son elevados para la sociedad, la inversión en un proyecto público carretero se justifica sólo si los beneficios sociales exceden a los costos sociales.²⁷

Hipótesis 2:

En un proyecto público carretero que tiene como objetivo la disminución de los CGV, existe un momento óptimo para invertir eficientemente los recursos y un momento óptimo para la entrada en operación del proyecto.

La operacionalidad de estas hipótesis se verificará mediante un caso de estudio que consiste en la evaluación de un proyecto público (hipotético) carretero para el año 2006.

4.1 Operacionalidad de las hipótesis

Un proyecto público carretero requiere de una metodología que permita su evaluación. Dentro de esta metodología, un proyecto se refiere a una acción o decisión que genera beneficios y costos en diferentes momentos del tiempo. Así, un proyecto se define como "una propuesta de acción que implica la utilización de un conjunto determinado de recursos para el logro de ciertos resultados esperados". ²⁸

^{27.} Los CGV se componen por el costo de operación de los vehículos (combustible, neumáticos, lubricantes, refacciones, etc.), así como el costo de oportunidad del tiempo de las personas al viajar y de la carga transportada.

^{28.} Véase Sanin, 1995.

Cuando un proyecto se lleva a cabo se utilizan recursos productivos, provocando costos, a fin de obtener un beneficio que solucione o aminore una carencia, o bien, que aumente o mejore la producción de algún bien o servicio. En este sentido, un proyecto puede ser una obra de infraestructura, un programa de acciones, una sola acción, un programa de trabajo, etc.

Para realizar una adecuada formulación y evaluación de proyectos, es conveniente establecer un esquema de razonamiento, que permita tener cierto orden, con el fin estimar indicadores. De manera particular, la evaluación de cualquier proyecto requiere de:

- 1. Definir cuál es el problema a solucionar o la necesidad a satisfacer.
- Definir las posibles soluciones al problema, para lo cual hay que tener en cuenta las factibilidades técnica, de mercado, legal, administrativa, ambiental y financiera.
- Definir la situación actual, es decir, la situación que prevalecería si no se realiza el proyecto.
- 4. Definir la situación sin proyecto (situación actual), que se logra cuando se realizan mejoras en el uso de los recursos sin realizar el proyecto. Las medidas de optimización son acciones o pequeños proyectos que tienen como finalidad no atribuirle al proyecto beneficios o costos que legítimamente no le corresponden.
- 5. Definir la situación con proyecto, para lo cual debe explicarse claramente en qué consiste el proyecto y lo que se espera que suceda en caso de que éste se realice. Además, se deben tomar en cuenta diversas alternativas al proyecto.
- Identificar los beneficios y costos atribuibles al proyecto. Aquí se debe tener extrema precaución en determinar cuáles son los beneficios y costos que ocurrirían en las situaciones sin y con proyecto.

- 7. Cuantificar los beneficios y costos del proyecto. Esto consiste en estimar las cantidades físicas que serán producidas y consumidas, y que darán lugar a los costos y beneficios del proyecto.
- Valorar los beneficios y costos cuantificados. Esto requiere de la asignación de valores monetarios a los beneficios y costos cuantificados, para lo cual hay que tomar en cuenta el concepto de costo de oportunidad.
- Calcular los indicadores de rentabilidad. Estos indicadores son el valor actual neto (VAN), la tasa interna de retorno (TIR), la tasa de rentabilidad inmediata (TRI) y el costo anual equivalente (CAE).

4.2 Estructura de la evaluación socioeconómica de proyectos de infraestructura vial interurbanos

La evaluación socioeconómica de un proyecto carretero consiste en la identificación, cuantificación y valoración de todos los costos y beneficios asociados a la construcción, mantenimiento y uso de la ruta, para las situaciones sin y con proyecto. La realización de un proyecto carretero tiene como principal objetivo disminuir los costos generalizados de viaje en los que incurren sus usuarios y debe considerar los siguientes puntos:

4.2.1. Antecedentes generales

El propósito de este apartado, es presentar de manera breve la ubicación geográfica, la problemática que dio origen al proyecto, las alternativas de solución planteadas, el objetivo del proyecto y de la evaluación.

Ubicación geográfica y origen del proyecto

En este apartado es conveniente presentar un mapa actualizado que ubique la localización del proyecto. Este mapa deberá describir la ruta del proyecto, rutas relevantes alternas, longitud del proyecto, características particulares del mismo y las distancias entre las principales ciudades y localidades.

Por otra parte, se deberá describir la problemática por la cual se desea ejecutar el proyecto. La problemática que justifica la ejecución de un proyecto carretero es:

- i) Que las rutas utilizadas actualmente para trasladarse, entre un origen y un destino, estén construidas sobre terrenos accidentados. Esto provoca que velocidades de circulación sean relativamente bajas con respecto a los límites permitidos, lo cual incrementa los CGV.
- ii) Que el flujo vehicular o tránsito diario promedio anual (TDPA) de las carreteras existentes sea elevado con respecto a su capacidad de diseño, con lo cual existan periodos de congestión durante el día, o en algunos días de la semana, o en temporadas específicas durante el año. La congestión provoca disminución en la velocidad de circulación y origina incrementos en los CGV.

Descripción del proyecto

La descripción del proyecto consiste en:

- i) Señalar si el proyecto consiste en la construcción de un libramiento, la ampliación de tramos específicos, la construcción de una nueva ruta, el mejoramiento del trazo actual de una ruta, mejoramiento de la carpeta de rodadura, reposición de la carpeta de rodadura, construcción de puentes, etc.
- ii) Mencionar quien es el promotor del proyecto.
- iii) Si la carretera será de cuota o libre, además de otras características relevantes.

Objetivos del proyecto y del estudio

En este apartado deberá señalarse el objetivo del proyecto. Además, deberán señalarse los objetivos del estudio y si éste será a nivel perfil, prefactibilidad o factibilidad. ²⁹

También, es conveniente mencionar si se aplicará el principio de separabilidad de proyectos y los indicadores de rentabilidad que se calcularán. Asimismo, deberá mencionarse si la evaluación económica del proyecto será social o privada, o incluye ambas.³⁰

4.2.2 Situación actual

En este apartado se deben describir las condiciones de oferta y demanda para red vial relevante, así como la interacción entre éstas.³¹

Condiciones de oferta

El análisis de la oferta consiste básicamente en la descripción de los siguientes puntos:

 i) Características físicas y geométricas de la red vial relevante: tipo de terreno, es decir, si es plano, lomerío o montañoso, número de carriles de circulación, ancho de corona, acotamientos, tipo de superficie de rodadura, tipo y

Un estudio a nivel perfil es preliminar y no demanda mucho tiempo o dinero, sino más bien sólo implica conocimientos técnicos que permitan, a grandes rasgos, determinar la factibilidad del proyecto; además, contará con estimaciones burdas de los costos y beneficios, incluyendo rangos de variación de los mismos. Un estudio a nivel prefactibilidad demanda tiempo y dinero para realizar investigaciones más profundas que las realizadas por un estudio a nivel de perfil. El estudio a nivel de factibilidad se realiza con mayor profundidad que los dos anteriores y procura disminuir el rango de variación en los montos de los costos y beneficios.

^{30.} La tramificación de proyectos carreteros se justifica por motivos de demanda o por motivos de oferta o costo. En este sentido, la separabilidad de proyectos permite determinar el tamaño óptimo de un proyecto. Véase Fontaine, 1999.

^{31.} La red vial relevante está conformada por la ruta del proyecto y por las rutas en las que se modifican los flujos vehiculares y los CGV, como consecuencia de la ejecución del proyecto.

condiciones actuales de la superficie de rodadura, pendientes, curvatura horizontal promedio y altitud del terreno; y

ii) Tramificación por oferta. En el caso en el que la ruta del proyecto presenta pendientes variadas con distintos tipos de terreno, se debe llevar a cabo una tramificación debido a que los costos son diferentes en cada tramo.

Condiciones de demanda

El análisis de la demanda requiere de mayor cuidado y consiste en describir lo siguiente:

- i) Flujo vehicular o tránsito diario promedio anual (TDPA) de la red vial relevante, lo que incluye el análisis del flujo vehicular por sentido de circulación y su crecimiento en el tiempo;³²
- ii) Composición vehicular, es decir, por cuántos vehículos ligeros, autobuses y camiones de carga está integrado el flujo vehicular actual de la red vial relevante;
- iii) Comportamiento del flujo vehicular. Aquí se debe periodizar la demanda de acuerdo con su comportamiento estacional, diario u horario;
- iv) Tasa de ocupación por tipo de vehículo, que se refiere al número promedio de personas que viaja en cada vehículo;
- v) Tramificación por demanda. Debido a que el flujo vehicular puede variar entre en un origen y un destino por la presencia de puntos generadores o atractores de tránsito, es conveniente llevar a cabo una tramificación; y
- vi) Proyección del flujo vehicular. Se refiere al crecimiento del TPDA dentro del horizonte de evaluación.

Interacción entre la oferta y la demanda

Dentro del análisis de la interacción entre la oferta y la demanda se deben describir los siguientes puntos:

^{32.} En México, la Secretaría de Comunicaciones y Transportes (SCT) publica los Datos Viales que contienen el TDPA para la mayoría de las carreteras libres y de cuota.

- i) Velocidades promedio de circulación para cada tipo de vehículo y por sentido de circulación. El método más recomendado para la toma de velocidades es el de seguimiento de placas; ³³
- ii) Costos generalizados de viaje (CGV). Para hacer estos cálculos se utiliza el modelo computacional VOC – MEX 3.0, el cual es un submodelo del HDM – III, desarrollado por el Banco Mundial, adaptado y calibrado para México por la Secretaría de Comunicaciones y Transportes (SCT); y
- iii) Accidentes vehiculares. Es conveniente obtener estadísticas acerca del número de accidentes que ocurren el la red vial relevante, así como el monto de los daños materiales y las causas que provocan dichos accidentes. Sin embargo, en México son pocas las estadísticas disponibles, por lo que es difícil valorar los beneficios asociados a la disminución de accidentes.

4.2.3 Situación sin proyecto

La situación sin proyecto corresponde a la situación actual optimizada durante el horizonte de evaluación. Las medidas de optimización tienen como finalidad no atribuirle al proyecto beneficios o costos que no le corresponden o que se pueden obtener por una vía más económica. Estas medidas consideran inversiones de bajo costo comparadas con el costo total de inversión del proyecto. Las medidas de optimización son "pequeños proyectos" o adecuaciones administrativas que permiten eliminar las ineficiencias en la operación de la situación actual.

En el caso de proyectos carreteros, las medidas de optimización tienen como finalidad el mejoramiento o la restitución del nivel de servicio de las carreteras. Con ello, se evita la contabilidad de beneficios que no son verdaderamente atribuibles al proyecto. Así, se obtiene la situación sin proyecto que es la que se debe comparar con la situación con proyecto.

^{33.} El método de placas consiste en colocar dos brigadas, integradas por al menos dos personas, por sentido de circulación en cada uno de los tramos en que se realice la medición. En el trabajo de campo las brigadas se ubicaron al final de cada tramo, de tal suerte que una persona tomó la lectura de la placa y la otra, con cronómetro en mano, la hora de lectura. Con la información recabada, se empatan las placas y se calculan las velocidades promedio a partir de la distancia y el tiempo cronometrado.

Optimización de la situación actual

Las medidas de optimización dependen de las condiciones actuales de las carreteras y algunas de éstas pueden ser:

- i) Mejoramiento de las condiciones de la carpeta de rodadura, que consiste prácticamente en la corrección del índice de rugosidad internacional (IRI). Este mejoramiento se realiza mediante un riego de sello o un bacheo, con lo que se logra reducir el IRI hasta un nivel de 3.5;³⁴ y
- ii) Mejoramiento de la señalización horizontal (letreros) y vertical (sobre la carpeta de rodadura), que consiste en el mantenimiento de los señalamientos existentes y colocación de otros nuevos, así como el repintado de las líneas divisorias y laterales sobre la carpeta de rodadura.

Estas medidas de optimización permiten eficientar el desempeño del flujo vehicular al aumentar las velocidades de circulación y disminuir los CGV; además, se deben conservar durante el horizonte de evaluación, lo que implica costos de mantenimiento. Una vez aplicadas las medidas de optimización, se deben calcular nuevamente los CGV, tomando en cuenta las nuevas velocidades mejoradas con respecto a la situación actual y el IRI corregido.

4.2.4 Situación con proyecto

En este apartado debe describirse en qué consiste el proyecto propuesto, para lo cual se deben describir las condiciones de oferta y demanda en la situación con proyecto. Además, debe señalarse la respectiva tramificación del trayecto, las velocidades estimadas de circulación (que se espera mejoren con respecto a la situación sin proyecto). También debe hacerse un análisis comparativo de los CGV de las situaciones sin y con proyecto para obtener los respectivos ahorros en los CGV.

^{34.} Este índice constituye una medida de rugosidad, entendida como las deformaciones verticales de la superficie de un camino con respecto a la superficie plana, mismas que afectan la dinámica del vehículo, la calidad de viaje y el drenaje superficial del camino, en un tramo homogéneo de la carretera. De acuerdo con el Instituto Mexicano del Transporte (IMT), la escala de medición es: de 1 a 3.9 bueno, de 4 a 4.6 regular y mayor a 4.6 malo. Véase Arriaga, et al,1998.

4.2.5 Evaluación social del proyecto

En este apartado se identifican, cuantifican y valoran los costos y beneficios sociales del proyecto carretero. Los beneficios de un proyecto carretero son crecientes en el tiempo debido al crecimiento de la población y del ingreso, lo que incrementa el número de viajes en el futuro. Además, se considera que el monto de la inversión se mantiene constante en términos reales. Por lo tanto, el propósito es calcular la tasa de rentabilidad inmediata (TRI) para garantizar la maximización del valor actual neto (VAN), y con ello determinar el momento óptimo de invertir y el momento óptimo de entrada en operación del proyecto. Esto implica que el VAN no sea el único criterio para aceptar o rechazar el proyecto.

Identificación, cuantificación y valoración de costos

En cuanto a la identificación, cuantificación y valoración de costos, se consideran los siguientes:

- i) Costos de inversión que consisten en todos los costos de construcción de la carretera; lo cual incluye, los costos de la obra, costos de mano de obra y costos por derecho de vía;
- ii) Costos de operación y mantenimiento. Los costos de operación se presentan únicamente en el caso de carreteras de cuota, y éstos corresponden a los costos en los que se incurre en las casetas de cobro por concepto de pago de servicios (agua, electricidad, etc.) y el pago a los empleados. Los costos de mantenimiento corresponden a los costos de conservación de la carretera como son la señalización, el riego de sello, la sobrecarpeta y la reconstrucción; y
- iii) Costos por molestias. Estos costos se deben a que durante el tiempo de construcción de la obra se genera mayor congestión vehicular que incrementa los CGV.

Con los costos de operación y mantenimiento se puede obtener una anualidad o un costo anual equivalente (CAE), para poder comparar anualmente los costos con los beneficios durante el horizonte de evaluación.

Por otra parte, la identificación, cuantificación y valoración de beneficios de un proyecto carretero, corresponde básicamente a al ahorro en los CGV como resultado de la comparación de las situaciones sin y con proyecto. Estos ahorros se deben a que la sociedad percibirá menores costos de operación vehicular y menores tiempos de recorrido como resultado de la ejecución del proyecto. Además, se pueden generar beneficios por mayor consumo de viajes y por mayor seguridad vial.³⁵

4.2.6 Criterios de evaluación e indicadores de rentabilidad

Como ya se mencionó, los beneficios de un proyecto carretero son crecientes en el tiempo, por lo que el VAN es regularmente positivo. No obstante, en este tipo de proyectos el criterio no es determinar si se ejecuta o no el proyecto, sino determinar cuál es el momento óptimo de inversión y de entrada en operación del mismo. Por lo tanto, la TRI es el indicador que se utiliza en estos casos, donde el momento óptimo de entrada en operación del proyecto se presenta cuando el beneficio social neto anual del año t es mayor o igual al costo de oportunidad social de la inversión. Éste último es una anualidad de la inversión, es decir, es igual al costo anual equivalente (CAE) de los recursos que se invertirán en la obra. De esta forma, si la inversión se realiza en más de un periodo, se deberán capitalizar los montos de inversión hasta el año en que se termina la construcción del proyecto.

En la figura 4.1 se presenta gráficamente el momento óptimo de entrada en operación de un proyecto.

^{35.} Los beneficios de un proyecto carretero se analizarán detalladamente en la sección 4.3, correspondiente a la metodología para la evaluación de proyectos de infraestructura vial interurbanos.

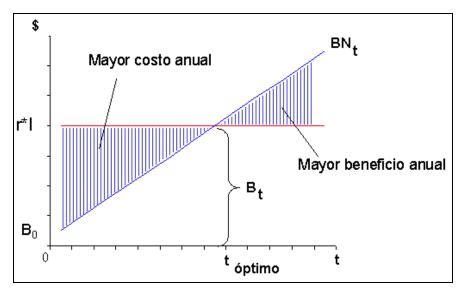


Figura 4.1 Momento óptimo de entrada en operación del proyecto.

La expresión algebraica de la TRI es

$$TRI = \frac{(B_t - C_t)}{I} = \frac{BN_t}{I}$$

donde:

 BN_t = beneficios netos en el periodo t.

 B_t = beneficios totales del periodo t,

 C_t = costos totales en el periodo t,

I = valor capitalizado o futuro de la inversión total en el año en que se termina la construcción del proyecto.

Por lo tanto, si el proyecto tiene vida infinita, el costo de oportunidad de la inversión se obtiene multiplicando la tasa social de descuento por el monto capitalizado de los recursos invertidos.³⁶

36. La tasa social de descuento utilizada para evaluar proyectos sociales en México es la establecida por la Unidad de Inversiones de la Secretaría de Hacienda y Crédito Público (SHCP), y es igual a 12 por ciento anual.

El criterio de decisión es:

si $r * I > BN_t$ \Rightarrow se posterga el proyecto.

si $r * I \le BN_{t}$ \implies momento óptimo de entrada en operación del proyecto.

donde:

 r^* = tasa social de descuento.

No obstante, si el proyecto tiene vida finita entonces el costo de oportunidad de la inversión se obtiene mediante la siguiente expresión:

$$I\left[\frac{r^*}{1-(1+r^*)^{-n}}\right]$$

En consecuencia, si el momento óptimo de entrada en operación del proyecto es el año t y la construcción dura z años, la inversión deberá comenzar en el año t-z. Asimismo, puede calcularse la inversión máxima que el proyecto puede considerar, dividiendo los beneficios netos del proyecto en el año t entre la tasa social de descuento.

Otros indicadores de rentabilidad que son de utilidad para hacer cálculos y comparar los costos con los beneficios de un proyecto son:

i) Para el valor actual neto (VAN)

$$VAN = \sum_{t=0}^{n} \frac{(B_{t} - C_{t})}{(1 + r^{*})^{t}}$$

donde:

 B_t = beneficios totales del periodo t,

 C_t = costos totales en el periodo t,

 r^* = tasa social de descuento,

n = número de años del horizonte de evaluación, y

t= año calendario, en donde el año 0 será el inicio de las erogaciones del gasto de inversión.

ii) Tasa interna de retorno (TIR)

$$\sum_{t=0}^{n} \frac{(B_t - C_t)}{(1+\rho)^t} = 0$$

donde:

ρ es la TIR,

 B_t = beneficios totales del periodo t,

 C_t = costos totales en el periodo t,

iii) Costo anual equivalente (CAE) para un VAN de un proyecto que dura "n" años

$$CAE = VAC \left[\frac{r * (1 + r^*)^n}{(1 + r^*)^n - 1} \right]$$

donde:

VAC es el valor actual de los costos de inversión, operación y mantenimiento, r^* = tasa social de descuento,

n = número de periodos de vida útil del proyecto.

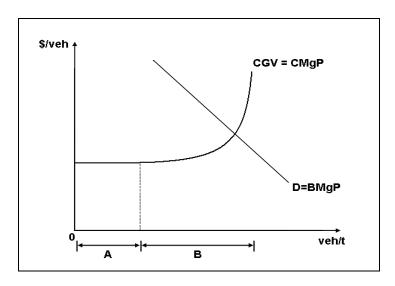
La alternativa que más conviene será aquella con menor CAE.

4.2.7 Análisis de sensibilidad

El análisis de sensibilidad consiste en la evaluación social del proyecto aplicando cambios en una sola variable a la vez. Las variables que pueden modificarse son la inversión, el TPDA y el periodo de construcción. Este análisis tiene como propósito verificar la rentabilidad del proyecto ante cambios en estas variables.

4.2.8 Conclusiones del estudio de evaluación social y recomendaciones

En este apartado se deben señalar las principales conclusiones del estudio de evaluación. Esto es, indicar si conviene llevar a cabo la construcción del proyecto carretero en el corto plazo o conviene postergar su inversión. Otra conclusión es la de proponer que se realice un estudio a nivel de prefactibilidad y calcular con mayor detalle los indicadores de rentabilidad.


Asimismo, se deberán señalar las recomendaciones del estudio, como obtener con mayor detalle los costos de inversión del proyecto, ya que un cambio de estas cifras puede modificar de manera importante la conclusión de cuándo iniciar la construcción del proyecto. Finalmente, se deberán mencionar las principales limitaciones del estudio de evaluación.

4.3 Metodología para la evaluación de proyectos de infraestructura vial interurbanos

En este apartado se establecen los fundamentos metodológicos para llevar a cabo la evaluación de proyectos de infraestructura vial interurbanos. Como ya se explicó, un proyecto carretero tiene como principal objetivo disminuir los costos generalizados de viaje (CGV) en que incurren sus usuarios al viajar entre un cierto origen-destino. Estos CGV están compuestos por el costo del tiempo de los usuarios al viajar y por el costo de operación de los vehículos.

La figura 4.2 muestra el mercado de transporte para una vía en la situación sin proyecto. En el eje vertical se mide el costo de transitar por la vía, es decir, el CGV, y en el eje horizontal se mide la cantidad de viajes por unidad de tiempo (horas o días). La curva de demanda D representa la máxima disposición a pagar por viajar en esta vía y el área debajo de ésta curva mide el beneficio privado que se obtiene por el consumo de viajes. Por lo tanto, el beneficio marginal privado (BMgP) es el beneficio que se obtiene al consumir un viaje adicional por esta vía. Por otra parte, la curva de oferta S representa los costos privados y el área debajo de esta curva es el costo privado por transitar en esta vía; en consecuencia, el costo marginal privado (CMgP) representa el costo de consumir un viaje adicional.³⁷

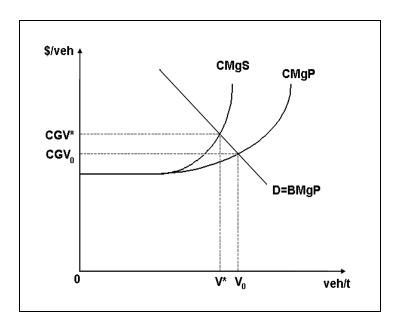

^{37.} Para simplificar el análisis, se supone que la curvas de demanda que se presentan en las figuras de este apartado, son líneas rectas con pendientes normales.

Figura 4.2 Mercado de transporte en la situación sin proyecto.

En la figura 4.2 se observa que la curva de CMgP presenta dos partes. La primera parte de esta curva es completamente elástica (zona A) y representa la capacidad vial en la que no existe congestión vehicular, es decir, la carretera puede admitir la entrada de un vehículo adicional sin que éste provoque un efecto negativo a los demás vehículos que se encuentran transitando por esta vía, lo que significa que no existe incremento en los costos debido a una disminución de la velocidad. La segunda parte de esta curva es creciente (zona B) y significa que a medida que se realiza un mayor número de viajes por unidad de tiempo, el CGV se incrementa, pues la vía comienza a congestionarse. A partir de este punto la curva de costo marginal deja de ser horizontal y se convierte en exponencial.

Cuando existe congestión vehicular en una carretera, la incorporación de un vehículo adicional provoca un efecto externo negativo sobre los demás usuarios que ya transitaban por la vía debido a que la congestión se incrementa y provoca reducción de velocidad, mayor emisión de contaminantes, etc., lo que origina incrementos en los CGV. La distorsión del mercado a causa de la externalidad negativa, provoca que el costo marginal social (CMgS) sea mayor al CMgP, ya que el CMgS toma en cuenta la externalidad causada al resto de los vehículos. En la figura 4.3 se muestra la distorsión en el mercado de transporte.

Figura 4.3 Externalidad negativa por la presencia de congestión vehicular.

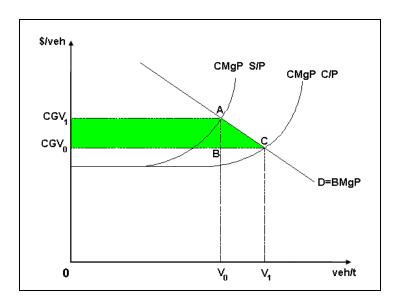
En la figura 4.3, el equilibrio de mercado se encuentra en la intersección de la curva de CMgP con la curva de BMgP, donde la cantidad de viajes es V_0 y el costo que percibe cada vehículo es igual a CGV_0 . Sin embargo, el equilibrio óptimo para la sociedad se encuentra donde la curva de CMgS se intersecta con la curva de BMgP, con lo cual el número de viajes realizados debe ser igual a V^* y el costo por transitar en esta vía sería igual a CGV^* . En esta situación se puede aplicar un impuesto pigoviano para internalizar el efecto externo negativo e inducir un comportamiento consistente con el óptimo social; esto equivale a la aplicación de un peaje que iguale el CMgP con el CMgS.

4.3.1 Clasificación de los proyectos carreteros

Los proyectos carreteros son de tres tipos:

- a) Proyectos de ampliación: permiten reducir la congestión vehicular al incrementar la capacidad de la infraestructura actual de una carretera y su principal objetivo es disminuir los CGV.
- b) Proyectos de mejoramiento: persiguen mejorar las condiciones físicas y geométricas de la infraestructura actual y su objetivo es la reducción de los

- CGV. Estos proyectos pueden mejorar el trazo del camino, de la carpeta de rodadura, e incluso, pueden reponer la carpeta asfáltica.
- c) Construcción de nuevas rutas: consisten en la construcción de nuevas carreteras que permitan la comunicación entre cierto origen-destino. Regularmente, las nuevas carreteras consideran longitudes más cortas, así como mejor trazo y carpeta de rodado que las rutas alternativas existentes.


4.3.2 Identificación de beneficios sociales

Los beneficios sociales que se generan con la ejecución de un proyecto carretero son directos e indirectos. Los directos son los que perciben los usuarios del proyecto y los indirectos son los que perciben los usuarios que circulan por rutas alternativas o complementarias a las del proyecto, pero que se benefician o perjudican con su ejecución.

Los beneficios del proyecto están dados por los ahorros en los CGV como resultado del incremento en la velocidad. Estos ahorros se calculan obteniendo el diferencial de los CGV entre las situaciones sin y con proyecto. Además de estos ahorros, pueden generarse beneficios por la disminución de accidentes y daños materiales de los vehículos y de la infraestructura. Por otra parte, pueden generarse beneficios asociados a la menor emisión de contaminantes.

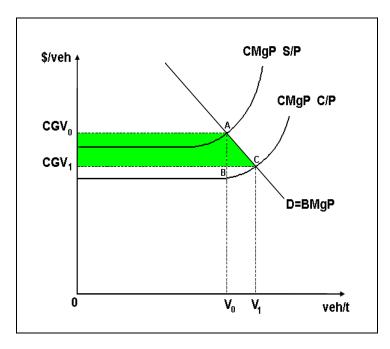
4.3.3 Beneficios directos en proyectos de ampliación

Los beneficios directos de un proyecto de ampliación se muestran gráficamente en la figura 4.4, donde la ejecución del proyecto provoca el desplazamiento de la curva de CMgP hacia la derecha, a partir del punto donde la presencia de congestión hace que los CGV sean crecientes. Este desplazamiento provoca que la parte de la curva de CMgP donde no existe congestión (parte elástica de la curva), se prolongue hasta un punto donde nuevamente el crecimiento del flujo vehicular provoca congestión y, por lo tanto, los CGV comiencen a ser crecientes.

Figura 4.4 Beneficios directos de un proyecto de ampliación.

En la figura 4.4 se observa que en la situación sin proyecto el equilibrio de mercado se encuentra donde las curvas BMgP y CMgP S/P se intersectan. A este nivel, la cantidad de vehículos que transita por la vía es igual a V_0 (que representa el tránsito normal) con un costo igual a CGV_0 .³⁸ Cuando entra en operación el proyecto, los costos disminuyen hasta CGV_1 , y la cantidad de vehículos que transita por la vía se incrementa hasta V_1 . Por lo tanto, se generan beneficios para el tránsito normal equivalentes al área CGV_0ABCGV_1 .

La disminución en los CGV incentiva a otros usuarios para que utilicen la ruta del proyecto, incrementándose por consiguiente el número de vehículos que transitan por ella de V_0 a V_1 . Este tránsito adicional, desviado o generado, percibe un beneficio equivalente al área del triángulo ABC, bajo el supuesto de que los CGV en la ruta alternativa son iguales a CGV_0 .


^{38.} Tránsito normal es el tránsito de corto y largo itinerario que actualmente circula por una vía.

^{39.} Tránsito desviado es aquel tránsito que se cambia de la ruta alternativa a la ruta del proyecto, pero conserva su origen – destino. El tránsito generado corresponde a aquellos vehículos que en la situación sin proyecto no transitaban entre ese par origen-destino, pero que debido al proyecto se ven incentivados a hacerlo.

El beneficio directo total del proyecto de ampliación es igual a la suma de las dos áreas descritas anteriormente, es decir, el beneficio que percibe el tránsito normal más el beneficio que percibe el tránsito desviado y generado.⁴⁰

4.3.4 Beneficios directos en proyectos de mejoramiento

En el caso de proyectos de mejoramiento, aun en el caso en que no exista congestión vehicular, se presenta una disminución en los CGV como consecuencia de la realización del proyecto, cualquiera que sea el número de viajes realizados. Este efecto se refleja con un desplazamiento hacia abajo de la curva CMqP, como se muestra en la figura 4.5.

Figura 4.5 Beneficios directos de un proyecto de mejoramiento.

La figura 4.5 muestra que en la situación sin proyecto la cantidad de vehículos que circulan por la vía es igual a V₀, con costos iguales a CGV₀. Al entrar en operación el proyecto de mejoramiento, la curva de CMgP S/P se desplaza hacia abajo y el nuevo equilibrio se encuentra donde la curva de BMgP se intersecta con la nueva

79

^{40.} El tránsito adicional puede estimarse con base en alguno de los métodos de asignación de tránsito en carreteras. Para consultar algunos métodos véase Girardotti, 2003.

curva CMgP C/P. De esta forma, disminuyen los costos hasta CGV₁ y el tránsito normal en esta carretera percibe beneficios equivalentes al área CGV_0ABCGV_1 .

Al igual que en el caso de un proyecto de ampliación, la disminución de los CGV provoca que los usuarios de otras vías tengan un incentivo para utilizar la ruta del proyecto. Así, el número de vehículos aumenta de V₀ a V₁ y, el beneficio para el tránsito adicional estaría representado por el área del triángulo *ABC*. El beneficio directo total del proyecto de ampliación es igual a la suma de las dos áreas descritas anteriormente, es decir, el beneficio que percibe el tránsito normal más el beneficio que percibe el tránsito desviado y generado.

4.3.5 Beneficios indirectos en proyectos carreteros de ampliación y mejoramiento

Los beneficios indirectos de proyectos de ampliación y mejoramiento en carreteras están asociados con los usuarios de rutas alternativas a la vía del proyecto, es decir, en rutas que son sustitutas a la ruta del proyecto. Esto ocurre porque al entrar el proyecto en operación disminuyen los CGV y algunos vehículos que anteriormente circulaban por una ruta alternativa se ven incentivados a desviarse a la ruta del proyecto, provocando a su vez una disminución de los CGV en la ruta alternativa debido a la disminución de la demanda.

La figura 4.6 muestra gráficamente el comportamiento de los beneficios indirectos en una ruta alternativa. En esta gráfica se observa que en equilibrio, en la situación sin proyecto, la cantidad de vehículos que circula en esta vía es V₀ y el costo es igual a CGV₀. Cuando entra en operación el proyecto, la demanda de esta ruta disminuye y pasa de D S/P a D C/P, con lo que, la cantidad de vehículos que ahora circulará por esta vía es V₁ con un costo igual a CGV₁. Si se parte del supuesto de que los CGV, en la situación sin proyecto, en la ruta del proyecto y en la ruta alternativa son iguales, el desplazamiento de la curva de demanda hacia la izquierda en la ruta alternativa provoca que los CGV disminuyan en esta ruta exactamente en la misma magnitud en que lo hacen en la ruta del proyecto y, en efecto, el desplazamiento debe ser de tal magnitud que el nuevo GCV sea igual en ambas carreteras, puesto que de lo contrario habría incentivos para que el flujo vehicular continúe desviándose hacia la carretera del proyecto. Por lo tanto, una

disminución de \$1.00 en el CGV en la ruta del proyecto implica una disminución de \$1.00 en el CGV de la ruta alternativa.



Figura 4.6 Beneficios indirectos en la ruta alternativa.

La disminución en la cantidad de vehículos que transitan por esta vía $(V_0 - V_1)$, es igual al número de vehículos que se desvía a la ruta del proyecto. Esta disminución genera un beneficio para el tránsito normal que se queda transitando esta vía equivalente al área CGV_0ABCGV_1 , mientras que el beneficio para el tránsito desviado corresponde al área ABC. Es importante tener cuidado para no hacer una doble contabilización de los beneficios que percibe el tránsito desviado, ya que éstos pueden cuantificarse y valorarse en esta gráfica o en la gráfica de la ruta del proyecto, lo cual es equivalente, pues los CGV disminuyen en la misma magnitud.

4.3.6 Beneficios directos e indirectos en proyectos de construcción de nuevas rutas

Los proyectos de construcción de nuevos trazos en carreteras tienen como principal objetivo disminuir los CGV entre un cierto origen-destino. Esto quiere decir que los vehículos que transitan por una nueva ruta observan menores costos de operación y las personas que viajan en dichos vehículos tienen ahorros en tiempo.

En la figura 4.7 se presenta la situación sin proyecto de una carretera (ruta actual) que presenta congestión vehicular, donde el equilibrio se encuentra en la intersección de la curva de BMgP S/P con la curva de CMgP (en la parte en la que los costos son crecientes debido a la congestión). En este punto los costos son iguales a CGV_0 y el número de viajes es igual a V_0 . El área sombreada de la gráfica indica el costo total en el que se incurre cuando transitan por la ruta actual V_0 vehículos a un costo de CGV_0 .

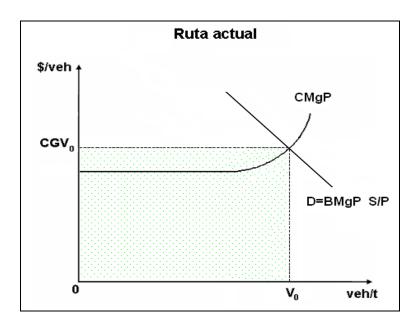


Figura 4.7 Costos generalizados de viaje de la ruta actual.

En la figura 4.8 se presentan dos gráficas, la primera muestra la situación con proyecto de la carretera actual y la segunda muestra la nueva ruta o ruta del proyecto una vez que ésta entra en operación.

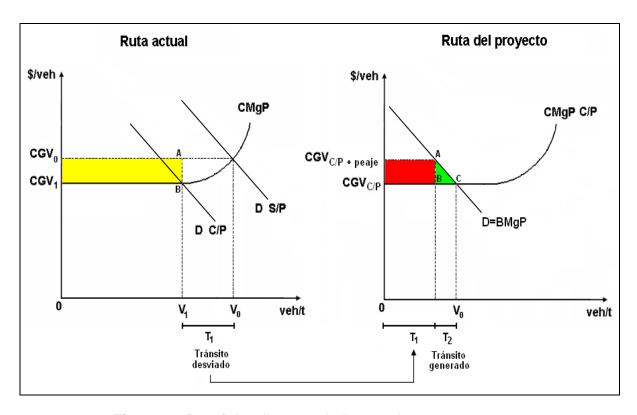


Figura 4.8 Beneficios directos e indirectos de una nueva ruta.

Bajo el supuesto de que una nueva ruta tiene mejores características físicas y geométricas que permiten circular a un menor costo generalizado de viaje que en la ruta actual, el cual es igual al CGV de la ruta actual sin congestión vehicular, tal y como lo muestra el segmento perfectamente elástico (horizontal) de la curva de CMgP C/P en la gráfica de la ruta del proyecto, habrá tránsito desviado de la ruta actual a la ruta del proyecto; además, habrá tránsito generado (mayor consumo de viajes) debido a que el menor CGV que ofrece la nueva ruta es un incentivo para que nuevos usuarios decidan transitar por este origen—destino.

Por lo tanto, si en el proyecto no se cobra peaje todos los vehículos que viajan por la ruta actual se desviarán y viajarán por la ruta del proyecto. Sin embargo, si la nueva ruta es concesionada y se cobra el peaje máximo por vehículo, el cual se estima que puede ser igual a la diferencia entre el CGV de circular por la vía actual (CGV_0) menos el CGV de circular por la nueva ruta $(CGV_{C/P})$, con ello sólo se desviarán aproximadamente a la ruta del proyecto una cantidad de vehículos igual

al segmento T₁, que son los que están dispuestos a pagar el costo monetario de la cuota.⁴¹

Asimismo, se estima que el tránsito generado puede ser igual al segmento T_2 representado en la gráfica de la ruta del proyecto, el cual se puede calcular con base en alguno de los métodos de asignación de tránsito en carreteras. De esta forma, el equilibrio en la ruta del proyecto se encuentra donde la curva de BMgP intersecta a la curva de CMgP C/P. En este punto el número de viajes es igual a V_0 y los costos son $CGV_{C/P}$. Ahora bien, el costo que enfrentan los usuarios en la carretera del proyecto es igual al $CGV_{C/P}$ más el peaje. No obstante, se debe dejar claro que el peaje no es un costo real desde el punto de vista social pues sólo implica una transferencia de recursos, ya que los usuarios de la nueva ruta pagan este costo pero lo recibe el concesionario, por lo que, la disminución en el CGV es un beneficio social. En este sentido, el peaje es una parte del excedente del consumidor que se apropia el concesionario y desde el punto de vista social no es un flujo real de recursos.

Los beneficios directos de un proyecto que consiste en la construcción de una nueva ruta son iguales al ahorro en el CGV de los vehículos desviados de la ruta actual a la ruta del proyecto y al ahorro en el CGV que perciben los vehículos que representan el tránsito generado. Así los beneficios directos para el tránsito desviado quedan representados por el área $CGV_{C/P+peaje}ABCGV_{C/P}$ y el beneficio directo para el tránsito generado queda representado por el área ABC en la gráfica de la ruta del proyecto en la figura 4.8, respectivamente.

Por otra parte, cuando el proyecto entra en operación con menores CGV, la desviación de vehículos de la ruta actual hacia la nueva ruta induce a un desplazamiento hacia la izquierda de la curva de demanda en la ruta actual; con ello, el nuevo equilibrio en la ruta actual se encuentra donde la curva de demanda D C/P intersecta a la curva de CMgP. Esto provoca una disminución en los costos de CGV_0 a CGV_1 y, de esta manera, los vehículos que se quedan circulando por la

^{41.} De acuerdo con estudios de evaluación de nuevas carreteras, el tránsito desviado varía de acuerdo con el monto del peaje aplicado. Aproximadamente, el 100 por ciento del tránsito que circula en una ruta alternativa se desvía si no existe peaje en la ruta del proyecto; 50 por ciento se desvía si el peaje es del 60 por ciento de la disminución en los CGV y, entre 15 y 30 por ciento se desvía si el peaje es igual al 100 por ciento de la disminución en los CGV.

ruta actual obtienen un beneficio indirecto equivalente al área CGV_0ABCGV_1 , representada en la gráfica de la ruta actual de la figura 4.8.

4.3.7 Cuantificación y valoración de beneficios sociales

Una vez identificados los beneficios de un proyecto de manera gráfica, el siguiente paso es realizar su cuantificación y valoración. Para calcular los beneficios del proyecto es necesario contar con los CGV en las situaciones sin y con proyecto, para obtener el respectivo diferencial que representa el ahorro en los CGV.

Los CGV, en las situaciones sin y con proyecto, resultan de la interacción entre la oferta y la demanda, es decir, de la interacción entre las condiciones físicas y geométricas que ofrece la carretera y el flujo vehicular que demanda el proyecto. Esta interacción se realiza mediante modelos computacionales diseñados para tal efecto. En México, el modelo generalmente utilizado para el cálculo de los CGV es el modelo computacional VOC-MEX, el cual es un submodelo del HDM-III desarrollado por el Banco Mundial, adaptado y calibrado para México por la Secretaría de Comunicaciones y Transportes.

A partir de modelos matemáticos desarrollados por el Banco Mundial, los cuales fueron incorporados al modelo VOC–MEX, y de la información sobre las características físicas y geométricas de una carretera, así como de los precios de los insumos de los vehículos y del costo de oportunidad del tiempo de las personas y de la carga transportada; el modelo conforma un conjunto de gráficas, que permiten la estimación de los CGV para los diferentes tipos de vehículos. 42

La información de entrada con la que se alimenta el modelo es:

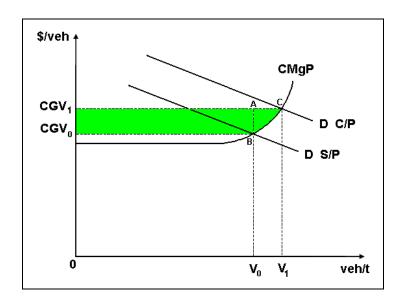
- i) Características físicas y geométricas de la carretera
 - Longitud;
 - Índice de rugosidad (m/km);
 - Pendiente media ascendente (%);
 - Pendiente media descendente (%);
 - Proporción de viaje ascendente (%);

85

^{42.} Véase Arroyo y Aguerrebere, 2002.

- Curvatura horizontal promedio (grados/km);
- Altitud del terreno (m.s.n.m)
- ii) Tipo de vehículo (vehículo ligero, autobús, camión unitario y camión articulado);
- iii) Características del vehículo;
- iv) Características de los neumáticos;
- v) Datos sobre la utilización del vehículo,
- vi) Costos de los vehículos y de los insumos (llantas, lubricantes, gasolina, diesel, etc.); y
- vii) Valor del tiempo de las personas, peso de carga transportada, costo por retención de carga y tasa de ocupación de los vehículos (promedio de pasajeros por vehículo).

La información salida del modelo es:

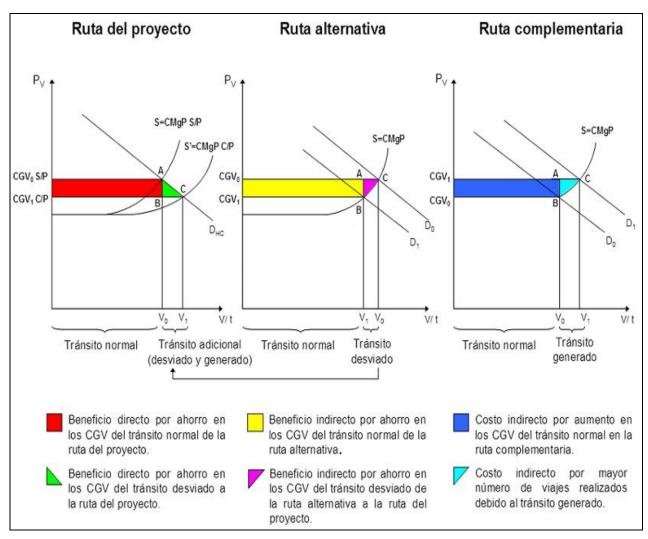

Costo generalizado de viaje por cada 1,000 vehículos por kilómetro.

4.3.8 Identificación de costos sociales

Existen cotos sociales directos e indirectos asociados a la ejecución de un proyecto carretero. Los costos directos están determinados por el costo de construcción de las obras, los costos de operación y mantenimiento, y los costos de reposiciones futuras de la carretera. Los costos indirectos son aquellos ocasionados a usuarios de otras carreteras debido a la realización del proyecto.

El proyecto provocará efectos en vías alternativas y complementarias. En carreteras alternativas ya se mostró que se produce una disminución de la demanda que da lugar a un beneficio indirecto. Por el contrario, en las rutas complementarias a las del proyecto aumentará el número de vehículos en circulación, lo cual incrementa los CGV en estas vías. Estos incrementos en los costos de circulación deberán tomarse en cuenta como costos indirectos del proyecto al momento de realizar la evaluación.

En la figura 4.9 se analiza gráficamente el efecto del proyecto en una ruta complementaria, donde en la situación sin proyecto la cantidad de vehículos que circulan por esta ruta es V₀ con costos iguales a CGV₀. Con la realización del proyecto aumenta el consumo de viajes en esta ruta, provocando que la demanda se desplace hacia la derecha de D S/P a D C/P. Así, en la situación con proyecto el número de vehículos aumenta a V₁, incrementando los costos hasta CGV₁. Los costos indirectos que percibe el tránsito normal de esta ruta son equivalentes al área *CGV₁ABCGV₀*, y los costos indirectos para el tránsito generado son equivalentes al área *ABC*. El desplazamiento de la curva de demanda es paulatino en la medida en que se incrementa el flujo vehicular en esta ruta; por lo tanto, este desplazamiento debe ser de tal magnitud que el incremento en el CGV llegue a compensar la disminución del CGV en la ruta del proyecto y en la ruta alternativa. Si el incremento en esta ruta fuese mayor no existirá alguna razón por la que se siga generando flujo vehicular.


Figura 4.9 Costos indirectos en la ruta complementaria.

De esta forma, el tránsito desviado, continuará hasta que los CGV se igualen en la carretera del proyecto y en la carretera alternativa y hasta que el incremento del CGV en la carretera complementaria sea de la misma magnitud que la disminución del CGV en las dos rutas anteriores.

4.3.9 Identificación simultánea de beneficios y costos sociales para un proyecto carretero de ampliación

Con el análisis realizado hasta este momento, se puede utilizar el ejemplo de un proyecto de ampliación de una carretera, donde existe congestión vehicular, para mostrar gráficamente y de manera simultánea los beneficios directos en la ruta del proyecto, los beneficios indirectos en la ruta alternativa y los costos indirectos en la ruta complementaria.

Para analizar todos los efectos de manera simultánea se parte del supuesto de que en la ruta del proyecto se cobra peaje y que en equilibrio el CGV de la ruta del proyecto más el peaje (CGV₀ S/P) es igual al CGV de la ruta alternativa (CGV₀), de manera que a los usuarios les sea indiferente transitar por una u otra ruta, puesto que en ambas existe congestión vehicular, los ahorros de CGV en la ruta del proyecto provocarán ahorros de CGV de la misma magnitud en la ruta alternativa. Esto ocasionará, a su vez, el descongestionamiento de la ruta alternativa debido al tránsito desviado de esta ruta a la ruta del proyecto. En la figura 4.10 se muestran los efectos directos e indirectos de un proyecto carretero de ampliación.

Figura 4.10 Efectos directos e indirectos de un proyecto carretero de ampliación.

En la figura anterior se muestra el mercado de transporte interurbano en la situación sin y con proyecto para la ruta del proyecto, la ruta alternativa y la ruta complementaria. En la gráfica de la ruta del proyecto, se puede observar que la curva S=CMgP S/P presenta dos partes. La primera parte de la curva es completamente elástica (costos marginales constantes), es decir, la carretera puede admitir la entrada de un vehículo adicional sin que éste provoque un efecto negativo al resto de los vehículos que ya transitaban sobre esta vía; por lo tanto, no se presenta un incremento en los CGV por disminución de la velocidad. En la segunda parte de la curva los costos marginales comienzan a ser crecientes, ya que ese punto corresponde a aquel en el cual inicia la congestión vehicular, es

decir, los vehículos no viajan a la velocidad deseada y por consiguiente se incrementan sus costos de viaje.

El equilibrio de mercado sin proyecto se presenta donde la curva de costo marginal intersecta a la curva de demanda (D_{HC}), con un número de viajes igual a V_o y costos por CGV_o S/P. De la misma manera, en la gráfica de la ruta alternativa, el punto de equilibrio se encuentra en el punto de intersección de la curva de costos marginales con la curva de demanda (D_o), donde el número de viajes es V_o y los costos son iguales a CGV_o .

Por otra parte, se determinan los efectos que el proyecto causará con la ampliación. En la gráfica de la ruta del proyecto, se observa que la curva de costos marginales se desplaza a la derecha a partir del punto en donde los costos marginales son crecientes; esta curva queda representada por S'. Con esta nueva curva se tiene un nuevo equilibrio, donde el número de viajes se incrementan de V_o a V_1 y los CGV disminuyen de CGV $_o$ S/P a CGV $_1$ C/P.

La disminución de los CGV en la ruta del proyecto es un incentivo para que algunos usuarios de la ruta alternativa decidan desviarse y transitar por la ruta del proyecto. Esto provoca que la demanda en la ruta alternativa disminuya, desplazándose de D_o a D_1 , donde el número de viajes pasa de V_o a V_1 y los costos disminuyen de CGV $_o$ a CGV $_1$. El tránsito desviado está determinado por el número de viajes entre V_o y V_1 en la gráfica de la ruta alternativa y puede ser igual o menor al incremento en el consumo de viajes en la ruta del proyecto (V_1 - V_0) debido a la ampliación, dependiendo de que exista o no tránsito generado.

Finalmente, en la gráfica de la ruta complementaria se observa que el consumo de viajes se incrementa como consecuencia de la ampliación de la ruta del proyecto. Esto provoca que la demanda se incremente de D_o a D_1 , donde el número de viajes pasa de V_o a V_1 y los costos se incrementan de CGV_o a CGV_1 . Esto da como resultado tránsito generado en esta ruta por el mayor consumo de viajes en la ruta del proyecto.

En este ejemplo, los beneficios directos son aquellos que percibe el tránsito normal, en la ruta del proyecto por el ahorro en los CGV, como resultado de la ampliación de la carretera. Estos beneficios quedan representados por el área $CGV_oS/PABCGV_1C/P$. Adicionalmente, se generan beneficios directos para el tránsito adicional (desviado y generado) que circulará por esta vía y corresponden a la disminución en los CGV que este tránsito percibe en la situación con proyecto. Estos beneficios están representados por el área ABC, en la gráfica de la ruta del proyecto.

Asimismo, al desviarse tránsito de la ruta alternativa a la ruta del proyecto, la ruta alternativa se descongestiona y el tránsito normal que se queda circulando en esta ruta percibe una disminución en los CGV. El beneficio indirecto asociado a este tránsito por la disminución de los CGV queda representado por el área CGV_oABCGV_1 , en la gráfica de la ruta alternativa. Adicionalmente, el tránsito que se desvía a la ruta del proyecto percibe un beneficio indirecto representado por el área ABC en ésta misma gráfica. Este triángulo puede ser medido en esta gráfica o en la gáfica de la ruta del proyecto, siempre cuando el mayor consumo de viajes $(V_1 - V_0)$ en la ruta del proyecto corresponda únicamente al tránsito desviado de la ruta alternativa y no exista tránsito generado. Así, dado que se supone que los CGV en la ruta alternativa y en la ruta del proyecto son iguales en la situación sin proyecto, la disminución en los CGV es de la misma magnitud en ambas rutas. Por lo tanto, los beneficios indirectos se pueden medir utilizando el diferencial del CGV en la ruta del proyecto.

Por último, el incremento en el tránsito sobre la ruta complementaria, como resultado del aumento en el consumo de viajes en la ruta del proyecto, genera costos indirectos tanto para el tránsito normal como para el tránsito generado en la ruta complementaria debido al incremento en los CGV. Los costos indirectos para el tránsito normal quedan representados por el área CGV_oABCGV_1 y los costos indirectos para el tránsito generado son equivalentes al área ABC, en la gráfica de la ruta complementaria. El tránsito generado en esta ruta aumentará paulatinamente hasta que el incremento en el CGV sea de tal magnitud que iguale la disminución en el CGV en la ruta del proyecto, pues el tránsito aumentará en esta vía mientras en la ruta del proyecto el ahorro en el CGV sea un incentivo para que se genere nuevo tránsito. Por lo tanto, los beneficios indirectos se pueden

medir utilizando el diferencial en los CGV de la ruta del proyecto sin y con proyecto.

4.4 Cuantificación y valoración de costos sociales

Los costos de inversión, operación y mantenimiento se cuantifican con el número de horas-hombre requerido para la construcción y operación del camino del proyecto, así como con la cantidad de los insumos que se necesitan para realizar las obras.

Para valorar los costos sociales es necesario recurrir a costos promedio por tipo de terreno o a estudios de ingeniería, dependiendo del nivel de la evaluación. Dichos estudios suministran información respecto a los costos privados, los que tendrán que corregirse para transformarlos a costos sociales.

Con relación a los costos indirectos del proyecto, el incremento en los costos de circulación de los vehículos que transitan por las vías complementarias puede cuantificarse y valorarse utilizando el modelo computacional VOC-MEX.

CAPÍTULO V

UN CASO DE ESTUDIO HIPOTÉTICO: EVALUACIÓN SOCIOECONÓMICA A NIVEL PERFIL DEL PROYECTO "AMPLIACIÓN DE LA CARRETERA ARCADIA – LACONIA DEL RAMO CD. PARAÍSO A STA. LUCIA, PARA EL AÑO 2006" 43

5.1 Origen del proyecto y objetivos del proyecto y del estudio

5.1.1 Ubicación geográfica y origen del proyecto

Existen dos carreteras a través de las cuales se comunican las ciudades de Arcadia y Laconia. Una de ellas es la carretera de cuota (A), la cual tiene una longitud de 53.6 kilómetros (km). La otra es la carretera libre (B), la cual tiene una longitud de 72.3 km, (véase figura 5.1).

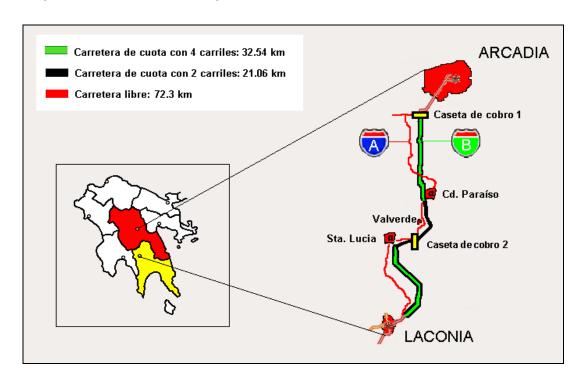


Figura 5.1 Carretera de cuota y libre Arcadia-Laconia.

^{43.} Debido a que la información utilizada para la evaluación socioeconómica del proyecto es estrictamente confidencial y de uso exclusivo de la institución que la proporcionó, se realizó la evaluación de un caso de estudio hipotético, cuyos datos mantienen una relación con los datos reales que sirvieron de base al presente estudio. Esta situación no modifica de ninguna forma la metodología empleada para tal fin, por lo que, se considera que los resultados de la evaluación reflejan apropiadamente la misma situación que un caso de estudio real. El autor agradece el apoyo otorgado por el Centro de Estudios para Preparación y Evaluación Socioeconómica de Proyectos (CEPEP) para la realización de este trabajo.

La carretera de cuota presenta una reducción de cuatro a dos carriles del km 21.3 al km 42.36, de Cd. Paraíso hasta el poblado de Sta. Lucia. La reducción de carriles, las características físicas y geométricas de la carretera, así como la cantidad de vehículos que circulan por ésta vía a ciertas horas, provocan que la velocidad de circulación disminuya, originando un incremento en los costos generalizados de viaje (CGV).

5.1.2 Descripción del proyecto

Ante la problemática descrita anteriormente, el Gobierno Federal a través de la Secretaría de Comunicaciones y Transportes (SCT), ha propuesto la ampliación de la carretera de cuota Arcadia-Laconia, de dos a cuatro carriles, en el tramo comprendido entre Cd. Paraíso y Sta. Lucia. De realizarse la ampliación, no se contempla modificar el peaje en esta autopista.

5.1.3 Objetivo del proyecto y objetivos del estudio

El proyecto tiene como objetivo reducir los CGV, al disminuir el tiempo de viaje de los usuarios y el costo de operación de los vehículos que realizan viajes desde Arcadia hasta Laconia y viceversa.

El estudio de evaluación tiene como objetivos determinar la rentabilidad socioeconómica del proyecto propuesto por la SCT, así como el momento óptimo de invertir y de operar el proyecto, utilizando la metodología de evaluación costobeneficio.

5.2 Situación actual y sin proyecto

Para viajar de la ciudad de Arcadia a la ciudad de Laconia se utilizan dos carreteras: la carretera de cuota y la libre (Arcadia–Laconia). La carretera de cuota es de dos y cuatro carriles, pero para efectos de este estudio sólo se analizará la parte de dos carriles, comprendida entre Cd. Paraíso y el poblado de Sta. Lucia (véase figura 5.2).

Figura 5.2 Trayecto de la carretera de cuota con dos carriles.

5.2.1 Carretera de cuota

a) Oferta

En esta sección se describen las características físicas y geométricas de la carretera de cuota (tipo de superficie, índice internacional de rugosidad (IRI), número de carriles, pendientes, grados de curvatura y altitud).

La carretera de cuota en el tramo de dos carriles, tiene un ancho de corona de 12 metros, acotamiento de 2.5 metros para cada sentido y el tipo de superficie de rodadura es de pavimento asfáltico.⁴⁴

El trayecto de 21.06 km entre Cd. Paraíso y Sta. Lucia se dividió de acuerdo con el tipo de terreno, para lo cual se utilizó la pendiente y el grado de curvatura, dando como resultado dos tramos. En la figura 5.3 se muestra el tipo de terreno correspondiente a cada tramo y en la figura 5.4 se muestra la ubicación y longitud de cada uno de los tramos.⁴⁵

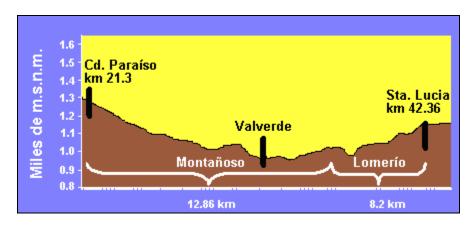
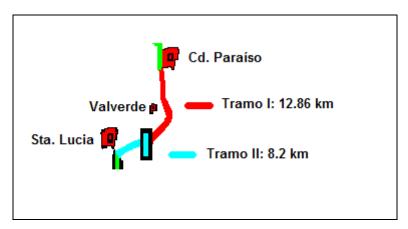



Figura 5.3 Tipo de terreno del trayecto Cd. Paraíso – Sta. Llucia en la carretera de cuota.

^{44.} Para determinar la información mencionada, se realizó un trabajo de campo del 18 al 25 de septiembre de 2006. Éste consistió en el cálculo de las características físicas y geométricas, toma de velocidades y tasa de ocupación de las carreteras de cuota 54D y federal 54. No obstante, parte de esta información es confidencial y en la evaluación de este caso de estudio se utilizan cifras hipotéticas con una escala menor a las de la situación real.

^{45.} El tipo de terreno se clasifica en:
Plano o llano: pendientes entre 1 y 2 por ciento;
Lomerío u ondulado: pendientes entre 2 y 4 por ciento;
Montañoso: pendientes mayores a 4 por ciento.

Figura 5.4 Tramificación del trayecto Cd. Paraíso-Sta. Lucia sobre carretera de cuota.

El tramo I es montañoso y presenta curvas con una longitud promedio de 306 metros, con pendientes ascendentes y descendentes que en promedio son mayores a 4 por ciento. El tramo II presenta curvas con longitud promedio de 309 metros y su pendiente media total corresponde a terreno de lomerío. En el cuadro 5.1 se presentan las características físicas y geométricas de los cuatro tramos.

Cuadro 5.1 Características físicas y geométricas de los tramos I y II

Concepto	Tramo I Montañoso		Tramo II Lomerío	
Sentido	N-S	S-N	N-S	S-N
Longitud (km)	12.86		8.20	
Índice de rugosidad	3.43	3.42	3.68	3.23
Pendiente media ascendente (%)	1.18	2.78	2.01	0.16
Pendiente media descendente (%)	2.78	1.18	0.16	2.01
Proporción de viaje ascendente (%)	38.34	61.66	80.49	15.85
Proporción de viaje plano (%)	0.00		3.66	
Altitud promedio (m.s.n.m.)	1,057.78		1,118.78	
Curvatura horizontal promedio ponderada (grados/km)	95.03		68.30	

Fuente: Datos obtenidos en trabajo de campo.

Además, a lo largo del trayecto de dos carriles existen 12 puentes, los cuales tienen características similares a las que prevalecen sobre la carretera. En el cuadro 5.2 se describe la longitud y ubicación de cada uno de los puentes.

Cuadro 5.2. Longitud y ubicación de puentes

Puente	Longitud (metros)	Kilómetro de ubicación	Tramo en que se ubica el puente	Tipo de terreno
Puente 1	125	21.6		
Puente 2	340	22.4		Montañoso
Puente 3	440	23.9		
Puente 4	152	25.0		
Puente 5	70	27.2	ı	
Puente 6	109	27.8	l	
Puente 7	105	28.0		
Puente 8	160	30.3		
Puente 9	62	31.8		
Puente 10	310	32.9		
Puente 11	105	37.8	11	Lomerío
Puente 12	125	41.9	II	

Fuente: Datos hipotéticos.

b) Demanda

En este apartado se presenta la cantidad de vehículos que circulan diariamente por la carretera de cuota, su composición vehicular, su comportamiento horario y la tasa de ocupación de los vehículos.

En el trayecto de dos carriles existe la caseta de cobro 2, además de 2 entradas y salidas, las cuales no afectan el tránsito diario promedio anual (TDPA), ya que únicamente 14 vehículos en promedio entran o salen por estas vías diariamente. La ubicación de las entradas y salidas se muestra en el cuadro 5.3.

Cuadro 5.3 Ubicación de entradas y salidas de la carretera de cuota

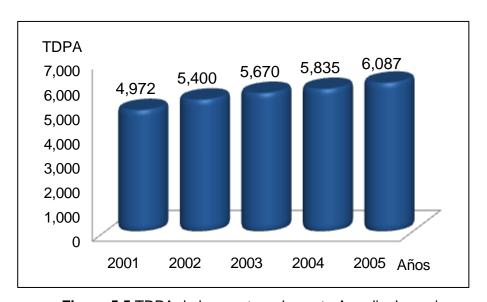
Entrada/Salida	Kilómetro de ubicación (Sentido Arcadia-Laconia)		
1	23.1		
2	29.4		

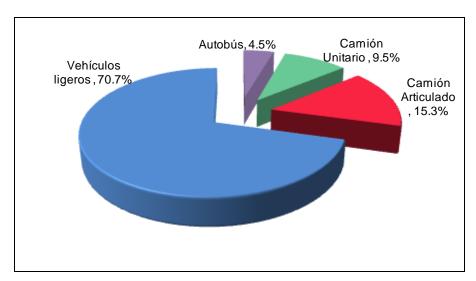
Fuente: Datos hipotéticos.

Aforos vehiculares

Los usuarios que transitan por la carretera de cuota son de largo itinerario y, aunque existen puntos de atracción vehicular, como es el caso de la población Valverde, el flujo vehicular para las casetas 1 y 2 es relativamente constante, lo que indica que el origen—destino que tienen estos usuarios son las ciudades de Arcadia y Laconia.

Para establecer el comportamiento y composición del flujo vehicular que circula por una carretera de cuota se utilizaron los Datos Viales publicados por la Secretaría de Comunicaciones y Transportes (SCT), correspondientes a la carretera de cuota número 54D que presenta tramos similares a los de la carretera hipotética en estudio. El TDPA del año 2001 al año 2005 de la carretera cuota se muestra en la figura 5.5.




Figura 5.5 TDPA de la carretera de cuota Arcadia-Laconia.

Fuente: Datos Viales de la SCT para la carretera de cuota 54D (2002-2006).

Composición del flujo vehicular

El flujo vehicular se clasificó en cuatro tipos: vehículos ligeros, autobuses, camiones unitarios y camiones articulados. La composición vehicular también se obtuvo de los Datos Viales correspondientes a la carretera de cuota 54D, donde los camiones de carga representan el 24.8 por ciento del

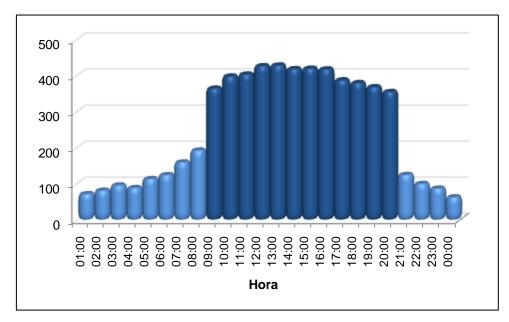
TDPA. En la figura 5.6 se muestra la composición vehicular como porcentaje del TDPA en el año 2005.

Figura 5.6 Composición vehicular para el año 2005 de la carretera de cuota.

Fuente: Elaboración propia con base en Datos Viales 2006 de la SCT para la carretera de cuota 54D.

En el cuadro 5.4 se presenta el crecimiento del TDPA de acuerdo con su composición vehicular. 46

Cuadro 5.4 Crecimiento promedio del flujo vehicular por tipo de vehículo


Tipo de vehículo	Año				Crecimiento
Tipo de Verticulo	2002	2003	2004	2005	promedio
Vehículo ligero	7.7%	2.3%	1.7%	2.8%	3.7%
Autobús	-2.3%	21.6%	-2.9%	0.5%	4.2%
Camión unitario	11.4%	0.3%	5.0%	1.0%	4.4%
Camión articulado	-9.2%	15.2%	9.0%	1.0%	4.0%

Fuente: Elaboración propia con base en Datos Viales de la SCT para la carretera de cuota 54D.

^{46.} Para calcular el crecimiento promedio del TDPA por tipo de vehículo, se sumaron los flujos vehiculares de las carreteras de cuota 54D y libre 54, de acuerdo con los Datos Viales de la SCT, debido a que cuando el TDPA de la carretera de cuota presenta un crecimiento, el TDPA de la carretera libre presenta un decrecimiento similar, y viceversa. Por esta razón, las tasas de crecimiento promedio del flujo vehicular serán las mismas para ambas carreteras.

• Comportamiento horario del flujo vehicular

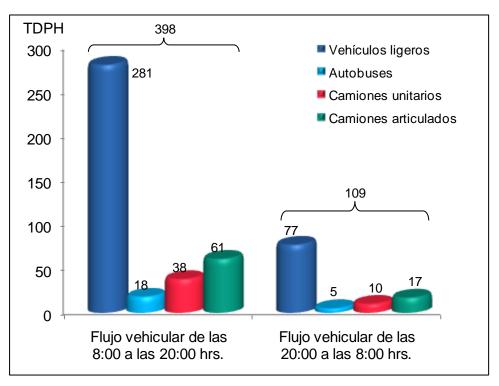

De acuerdo con el análisis de los flujos vehiculares horarios de lunes a domingo, se observó que existen diferencias en el flujo vehicular en distintas horas del día, tanto en días entre semana como en días de fin de semana. Esto indica que el comportamiento del flujo vehicular es similar en todos los días de la semana. La figura 5.7 muestra el comportamiento horario de lunes a domingo en la carretera de cuota Arcadia—Laconia.

Figura 5.7. Distribución horaria del flujo vehicular en la carretera de cuota Arcadia – Laconia.

Fuente: Elaboración propia con base en el trabajo de campo.

En la figura anterior se observa que entre las 08:00 y 20:00 horas el flujo vehicular promedio por hora es 398 vehículos, con un total de 4,776 vehículos durante doce horas al día. Asimismo, el flujo vehicular entre las 20:00 y 08:00 horas es de 109 vehículos por hora en promedio, que da un total de 1,311 vehículos durante doce horas al día. En la figura 5.8 se muestra el comportamiento horario promedio del flujo vehicular y la composición vehicular.

Figura 5.8 Comportamiento horario del flujo vehicular de la carretera de cuota para el año 2005.

Fuente: Elaboración propia con base en el trabajo de campo.

Tasa de ocupación de los vehículos

Para calcular el costo del tiempo de viaje de los usuarios que transitan por la carretera de cuota, se usarán las tasas de ocupación que se muestran en el cuadro 5.5.

Cuadro 5.5 Tasa de ocupación de los distintos vehículos en la caseta de cobro 2

Tipo de vehículo	Pasajeros por vehículo
Vehículo ligero	2.6
Autobús	24.2
Camión unitario	1.8
Camión articulado	1.9

Fuente: Elaboración propia con base en el trabajo de campo. Para la ocupación de autobuses se obtuvo información en la terminal.

5.2.2 Interacción entre oferta y demanda

A continuación se establecen las velocidades de los vehículos en la situación sin proyecto para la carretera de cuota y los cálculos de los CGV por tipo de vehículo.

a) Velocidades de operación

Con el fin de obtener los CGV en la situación sin proyecto, en el trabajo de campo se midieron velocidades mediante el método de placas durante 24 horas de un día entre semana y de un día en fin de semana. Esto se realizó con base en la tramificación establecida en la oferta. De esta forma, la velocidad promedio se determinó para cada tipo de vehículo mediante la obtención de la distancia y el tiempo cronometrado que realizan los distintos tipos de vehículos para el recorrido.

En este trabajo se observó que existen cambios relativamente significativos en las velocidades, en distintas horas a lo largo del día. Por lo tanto, se confirmó que existen dos tipos de horas; esto es, horas con alta congestión vehicular (de las 08:00 a las 20:00 horas) y horas con baja congestión vehicular (de las 20:00 a las 08:00 horas). Lo anterior, coincide con el comportamiento horario del flujo vehicular analizado en la demanda.⁴⁷

La congestión durante doce horas del día se debe a que la velocidad de circulación de los camiones unitarios y articulados es baja por las características físicas de la carretera. Esto provoca que los demás vehículos circulen a la misma velocidad, ya que se les dificulta el rebase de dichos camiones.

La velocidad de los vehículos está en función de las variaciones del flujo vehicular y de la cantidad de vehículos pesados que transitan por la carretera. En los cuadros 5.6 y 5.7 se muestran las velocidades promedio de recorrido de la carretera de cuota para cada tramo, por sentido de circulación y por tipo de vehículo, en horas con baja y con alta congestión vehicular, respectivamente.

103

^{47.} En este estudio el término congestión se refiere a la imposibilidad de viajar a la velocidad deseada por la presencia de camiones de carga, independientemente del número de vehículos que se encuentran transitando por la vía, lo que tiene como consecuencia un incremento en los CGV.

Cuadro 5.6 Velocidades promedio de circulación (km/hr) en horas con baja congestión en la situación sin proyecto

Sentido	Tipo de vehículo	Tramo I	Tramo II
	Vehículo ligero	32	33
Norte-Sur	Autobús	29	31
None ou	Camión unitario	23	25
	Camión articulado	21	23
	Vehículo ligero	31	35
Sur-Norte	Autobús	27	34
	Camión unitario	21	26
	Camión articulado	19	24

Fuente: Elaboración propia con base en el trabajo de campo.

Cuadro 5.7 Velocidades promedio de circulación (km/h) en horas con alta congestión en la situación sin proyecto

Sentido	Tipo de vehículo	Tramo I	Tramo II
	Vehículo ligero	27	29
Norte-Sur	Autobús	26	27
Tronto Car	Camión unitario	19	23
	Camión articulado	18	22
	Vehículo ligero	25	31
Sur-Norte	Autobús	23	28
Gai Hone	Camión unitario	18	23
	Camión articulado	16	23

Fuente: Elaboración propia con base en el trabajo de campo.

En el cuadro 5.8 se presenta la cantidad de vehículos al año que presentan alta congestión, por tipo de vehículo. En el cuadro 5.9 se muestra la cantidad de vehículos al año que presentan baja congestión, por tipo de vehículo.

Cuadro 5.8 Vehículos que circulan con alta congestión en el año 2005

Tipo de vehículo	Flujo vehicular por hora de congestión	Horas con alta congestión al año	Número de vehículos al año
Vehículo ligero	281	4,380	1,232,471
Autobús	18	4,380	78,446
Camión articulado	61	4,380	266,716
Camión unitario	38	4,380	165,608
Total	398		1,743,240

Fuente: Elaboración propia con base en el trabajo de campo.

Cuadro 5.9 Vehículos que circulan con baja congestión en el año 2005

Tipo de vehículo	Flujo vehicular por hora con baja congestión	Horas con baja congestión al año	Número de vehículos al año
Vehículo ligero	77	4,380	337,698
Autobús	5	4,380	21,681
Camión articulado	17	4,380	73,803
Camión unitario	10	4,380	45,333
Total	109		478,515

Fuente: Elaboración propia con base en el trabajo de campo.

Las cifras anuales que se presentan en los cuadros 5.8 y 5.9 se calcularon considerando que existen las mismas horas de baja y alta congestión en días entre semana que en días de fin de semana.

b) Costos generalizados de viaje

Para calcular los CGV se realizó una optimización que consistió en el mejoramiento del índice de rugosidad internacional (IRI) de la carretera de cuota Arcadia-Laconia, asignando un nivel de 1.5 en promedio para el tramo en estudio, el cual se considera como bueno con respecto a los datos

establecidos en la oferta. De esta manera, la situación actual corresponde a la situación sin proyecto.⁴⁸

De acuerdo con las condiciones físicas y geométricas de la carretera de cuota (número de carriles, tipo de terreno, altitud del terreno, IRI, grados de curvatura horizontal), el tipo de vehículo, los precios de combustibles, de refacciones y otros, se determinaron los CGV en la situación sin proyecto, utilizando el modelo computacional VOC–MEX.

Se hace notar que el programa computacional VOC-MEX no considera el peaje para el cálculo de los CGV. Asimismo, el costo del tiempo de los usuarios que se utilizó para el cálculo de los CGV, es de \$22.17 por hora, el cual emplea la SCT realizando un promedio anual ponderado con base en 4 salarios mínimos del año 2006. El modelo se alimentó a partir de las velocidades promedio por sentido, con el objeto de obtener información confiable y válida de costos. Los cuadros 5.10 y 5.11 muestran los cálculos de CGV para los tramos I y II, por sentido y tipo de vehículo, en horas con baja y alta congestión vehicular, respectivamente.

_

^{48.} Las medidas de optimización tienen como finalidad no atribuirle al proyecto beneficios o costos que no están asociados con el mismo o que se pueden obtener por una vía más económica. Por lo tanto, se optimiza la situación actual para obtener la situación sin proyecto.

Cuadro 5.10 CGV en la situación sin proyecto con baja congestión (pesos septiembre de 2006 por vehículo-km)

Sentido	Tipo de vehículo	Tramo I	Tramo II
	Vehículo ligero	1.48	1.51
Norte-Sur	Autobús	7.23	7.05
Norte-Sui	Camión unitario	3.05	2.93
	Camión articulado	4.33	4.17
Sur-Norte	Vehículo ligero	1.67	1.50
	Autobús	8.36	6.77
	Camión unitario	3.94	2.85
	Camión articulado	6.47	4.16

Fuente: Elaboración propia con base en información obtenida del modelo VOC-MEX.

Cuadro 5.11 CGV en la situación sin proyecto con alta congestión (pesos septiembre de 2006 por vehículo-km)

Sentido	Tipo de vehículo	Tramo I	Tramo II
	Vehículo ligero	1.64	1.59
Norte-Sur	Autobús	7.68	7.67
Norte-Sui	Camión unitario	3.53	3.36
	Camión articulado	4.87	4.69
Sur-Norte	Vehículo ligero	1.81	1.54
	Autobús	9.18	7.60
	Camión unitario	4.02	3.26
	Camión articulado	6.64	4.63

Fuente: Elaboración propia con base en información obtenida del modelo VOC-MEX.

En el cuadro 5.12 se muestran los flujos vehiculares y los cálculos de CGV anual para los tramos I y II, en horas con baja y alta congestión vehicular, respectivamente.

CGV anual en la situación sin proyecto en el año 2006 (millones de pesos de septiembre de 2006)

Tramo	Flujo con baja congestión	CGV anual con baja congestión	Flujo con alta congestión	CGV anual con alta congestión	Total
I	1,362	16.09	4,960	63.57	79.65
11	1,302	9.06	4,960	37.63	46.68

Fuente: Elaboración propia con base en información obtenida del modelo VOC-MEX.

c) Proyección del TDPA

Con base en la tasa de crecimiento promedio por tipo de vehículo, establecida en la demanda, se determinó proyectar el flujo vehicular para cada tipo de vehículo en la carretera de cuota. En los cuadros 5.13 y 5.14 se muestran las proyecciones correspondientes en horas con baja y con alta congestión vehicular, respectivamente.

Cuadro 5.13 Proyecciones del TDPA por tipo de vehículo en horas con baja congestión (vehículos por día)

		Flujo vehicular		
Año	Vehículo ligero	Autobús	Camión unitario	Camión articulado
2006	959	63	211	129
2007	995	65	220	134
2008	1,032	68	230	139
2009	1,070	71	240	145
2010	1,109	74	251	151

Fuente: Elaboración propia con base en los Datos Viales de la SCT.

Cuadro 5.14 Proyecciones del TDPA por tipo de vehículo en horas con alta congestión (vehículos por día)

		Flujo vehicular		
Año	Vehículo ligero	Autobús	Camión unitario	Camión articulado
2006	3,497	225	764	474
2007	3,626	235	798	493
2008	3,760	244	833	513
2009	3,899	255	870	533
2010	4,044	265	908	555

Fuente: Elaboración propia con base en los Datos Viales de la SCT.

5.2.3 Carretera libre

a) Oferta

El tramo de la carretera libre que es relevante en este estudio, tiene una longitud de 39.96 km, con un carril de circulación por sentido, con un ancho de corona de 7 metros para ambos sentidos, sin acotamiento y el tipo de superficie de rodadura es de pavimento asfáltico.

La topografía del terreno de la carretera libre es similar a la de la carretera de cuota en el tramo de estudio. La parte de terreno montañoso está ubicada a un costado de la Sierra de Laconia, que serpentea entre las montañas con una curvatura horizontal promedio de 386 grados/km y una pendiente media total de 3.5 por ciento. Esto hace que la velocidad a la que circulan los vehículos sea relativamente baja. En la figura 5.9 se muestra la carretera libre en el trayecto en estudio.

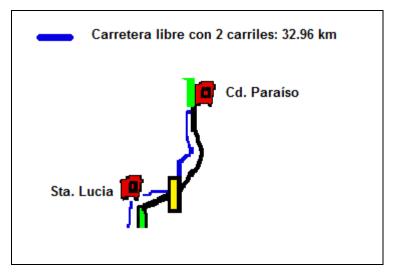


Figura 5.9 Carretera libre en el trayecto Cd. Paraíso-Sta. Lucia.

b) Demanda

La carretera libre es utilizada por los vehículos de largo y corto itinerario, es decir, algunos usuarios tienen como destino Cd. Paraíso y otras poblaciones locales, mientras que otros realizan el trayecto completo desde Arcadia hasta Laconia.

Aforos vehiculares

El aforo vehicular de la carretera libre en el tramo comprendido del km 27.4 al km 67.36, del año 2001 al año 2005, se muestra en la figura 5.10.

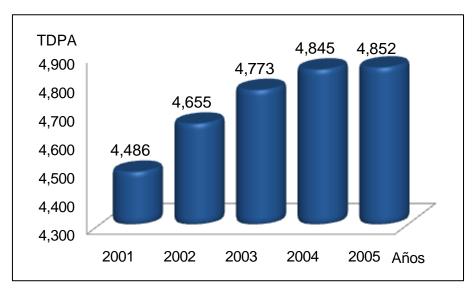



Figura 5.10 TDPA de la carretera libre Arcadia – Laconia.

Fuente: Datos Viales de la SCT para la carretera federal 54 (2002-2006).

El TDPA de la carretera libre en el año 2005, presenta variaciones a lo largo del trayecto, debido al tránsito de corto itinerario que se incorpora o sale de la vía a través de las entradas y salidas ubicadas en las poblaciones. Por lo tanto, en Cd. Paraíso el aforo es 8,311 vehículos y, en cambio, en Valverde el flujo vehicular es de 4,852 vehículos; lo cual indica que una cantidad considerable de vehículos se queda en Cd. Paraíso. Sin embargo, el tránsito de largo itinerario, que es relevante para la evaluación del proyecto, es de 3,800 vehículos de acuerdo con el menor aforo vehicular tomado en el km 64 de la carretera libre.

Composición del flujo vehicular

La composición vehicular del TDPA sobre la carretera libre indica que los vehículos ligeros son los que circulan con mayor afluencia. La figura 5.11 se muestra la composición vehicular como porcentaje del TDPA.

Figura 5.11 Composición vehicular para el año 2005 de la carretera libre.

Fuente: Elaboración propia con base en Datos Viales 2006 de la SCT para la carretera federal 54.

• Tasa de ocupación de los vehículos

Para calcular el costo del tiempo de viaje de los usuarios que transitan por la carretera libre se usarán las tasas de ocupación por tipo de vehículo que se muestran en el cuadro 5.15.

Cuadro 5.15 Tasa de ocupación de los distintos vehículos en la carretera libre

Tipo de vehículo	Pasajeros por vehículo
Vehículo ligero	2.3
Autobús	26.1
Camión unitario	1.8
Camión articulado	1.9

Fuente: Elaboración propia con base en el trabajo de campo.

Velocidades de operación

Las velocidades sobre la carretera libre se obtuvieron con base en análisis previos de evaluación para carreteras con características y tramos similares. En el cuadro 5.16 se muestran las velocidades promedio de recorrido por tipo de vehículo.

Cuadro 5.16 Velocidades promedio de circulación (km /h) de la carretera de libre

Sentido	Tipo de vehículo	Velocidad promedio
	Vehículo ligero	31
Norte-Sur	Autobús	30
Tronto Gai	Camión unitario	21
	Camión articulado	20
	Vehículo ligero	30
Sur-Norte	Autobús	29
	Camión unitario	23
	Camión articulado	22

Fuente: Elaboración propia con base en el trabajo de campo.

Debido a que se parte del supuesto de que en equilibrio el CGV de la carretera de cuota más el peaje (CGV_{0 S/P}) es igual al CGV de la ruta alternativa (CGV₀), lo que hace que a los usuarios les sea indiferente transitar por una u otra ruta puesto que en ambas existe congestión vehicular, los ahorros de CGV en la carretera de cuota provocarán ahorros de CGV de la misma magnitud en la carretera libre. Por lo tanto, no se calcularán los CGV de la carretera libre, puesto que los beneficios en la carretera libre pueden calcularse utilizando el ahorro en el CGV de la carretera de cuota.

Proyección del TDPA

Utilizando la tasa de crecimiento promedio por tipo de vehículo, se proyectó el flujo vehicular para cada tipo de vehículo en la carretera libre de acuerdo con la demanda de los vehículos de largo itinerario. En el cuadro 5.17 se muestran las proyecciones correspondientes.

Cuadro 5.17 Proyecciones del TDPA por tipo de vehículo para el tránsito de largo itinerario (vehículos por día)

	Flujo vehicular				
Año			Camión	Camión	
	Vehículo ligero	Autobús	unitario	articulado	
2006	3,145	147	405	249	
2007	3,261	153	422	259	
2008	3,382	159	441	269	
2009	3,507	166	460	280	
2010	3,636	173	481	291	

Fuente: Elaboración propia con base en Datos Viales de la SCT.

5.3 Situación con proyecto

5.3.1 Descripción del proyecto

a) Oferta

El proyecto consiste en la ampliación de la carretera de cuota Arcadia-Laconia, de dos a cuatro carriles, en el tramo comprendido del km 21.3 al km 42.36, a partir del poblado de Cd. Paraíso hasta Sta. Lucia, con una longitud aproximada de 21.06 km

La ampliación se realizará mediante la construcción de otro cuerpo, considerando las características físicas y geométricas, y puentes paralelos similares a los que prevalecen en la situación sin proyecto. Con dicha ampliación, las características de la carretera dejarían de ser de tipo A2 y pasarían a ser de tipo A4, con ancho de corona de 24 metros, acotamientos de 2.5 metros y tipo de superficie de pavimento asfáltico. Con estas especificaciones se pretenden disminuir los CGV y mejorar el nivel de seguridad vial de la carretera. 49

^{49.} De acuerdo con los caminos establecidos por la SCT:

Tipo A4: con TDPA de 5,000 a 20,000 vehículos;

Tipo A2: con TDPA de 3,000 a 5,000 vehículos.

Inversión

El monto presupuestado para la construcción de la ampliación de esta carretera es de \$603.74 millones de pesos, en un periodo de inversión de un año para el tramo I y de tres años para el tramo II. Este monto mantiene una relación con el monto real presupuestado por la SCT para una ampliación de este tipo. El monto de inversión incluye el derecho de vía, que es una parte del suelo, propiedad privada o federal, y tiene uso limitado por una reglamentación de carácter local o nacional. El desglose de la inversión se muestra en el cuadro 5.18.

Cuadro 5.18 Inversión por kilómetro para la ampliación de la carretera Arcadia-Laconia (millones de pesos de septiembre de 2006)

Tramo	Longitud (km)	Inversión por kilómetro*	Inversión
I	12.86	41.40	532.40
II	8.20	8.70	71.34
Total			603.74

Fuente: Elaboración propia con información hipotética.

Nota: /* Incluye derecho de vía.

b) Demanda

El análisis de la demanda requiere, en primer lugar, considerar el comportamiento del flujo vehicular en la carretera de cuota como resultado de la construcción del proyecto. En segundo lugar, es necesario determinar el número de vehículos que se desviarán de la carretera libre a la carretera del proyecto, esto es, la reasignación del flujo vehicular considerando que el peaje no se incrementará una vez realizado el proyecto.

Flujo vehicular

El flujo vehicular de la carretera de cuota en la situación con proyecto está compuesto por el tránsito normal que actualmente circula por esta carretera (TDPA 2005) y por el tránsito desviado de la carretera libre a la carretera de cuota. De esta manera, la proyección del tránsito normal de la carretera de cuota en la situación con proyecto es igual a la de la situación sin proyecto.

Para calcular el tránsito desviado se utilizó el método de asignación de tránsito de la AASHTO, el cual es una herramienta para estudiar el comportamiento vehicular en redes de transporte ya existentes.⁵⁰

Este método está constituido por una curva de distribución binaria (dos alternativas viales) y hace uso de un factor de utilización (FU) que determina la relación de tiempos de recorrido entre dos alternativas viales. También utiliza un factor de cuota (FC) que pondera el tránsito potencial por asignar a una determinada ruta. La expresión utilizada para la estimación del tránsito potencial por asignar es la siguiente:

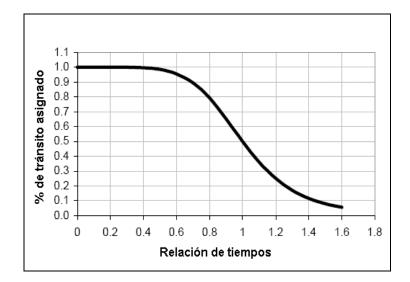
$$TP = \sum_{ij} TDPA_{ij} * FU * FC$$

donde:

TP = tránsito potencial por asignar,

TDPA = tránsito diario promedio anual,

FU = factor de utilización,


FC = factor de cuota,

i = el tipo de vehículo,

j = tipo de itinerario (corto, mediano y largo).

50. Método de asignación de tránsito de la American Association of State Highway and Transportation Officials (AASHTO). Véase Torres y Pérez, 2002, y Girardotti, 2003.

La función de distribución AASHTO que se obtiene es:

A partir de las distancias y velocidades de recorrido promedio, para cada tipo de vehículo, tanto para la carretera de cuota con proyecto como para la carretera libre en la situación sin proyecto, se obtuvieron los tiempos de recorrido para ambas carreteras. En el cuadro 5.19 se presentan los resultados para el cálculo de la asignación del tránsito desviado por el método de la AASHTO.

Cuadro 5.19 Factores de utilización y cuota para la asignación de tránsito desviado por el método de la AASHTO

Conceptos	Vehículo ligero	Autobús	Camión unitario	Camión articulado	Total
(FU) Factor de utilización	0.98	0.96	0.98	0.98	
(FC) Factor de cuota	0.65	0.65	0.65	0.65	
% Composición	70.7	4.5	9.5	15.3	
TDPA	6,990	445	939	1,513	9,887
FUxFCxTDPA	4,441	279	597	961	6,277
(-) TDPA cuota					6,087
(=) Desviados	134	9	18	29	190
Proporc	ción de tránsi	to en horas	con alta co	ngestión	
Desviados	105	7	14	23	149
Proporc	Proporción de tránsito en horas con baja congestión				
Desviados	29	2	4	6	41

Fuente: Elaboración propia con base en el modelo de la AASHTO.

Para el cálculo del tránsito desviado se consideró la suma del TDPA (2005) de las dos carreteras y se asignó la composición vehicular de la carretera de cuota, debido a que se puede suponer que la composición del tránsito desviado es similar. Así, el tránsito desviado en horas con alta y baja congestión será de 149 y 41 vehículos en promedio diarios, respectivamente.

5.3.2 Interacción entre oferta y demanda

Como resultado de la interacción entre la oferta y la demanda, se obtienen las velocidades promedio de operación, los costos generalizados de viaje que observarán los vehiculos en la vía del proyecto y los ahorros en los CGV correspondientes.

a) Velocidades de recorrido

Las características geométricas de la carretera de cuota con cuatro carriles, permitirán que los diferentes tipos de vehículos alcancen velocidades promedio mayores a las promedio observadas en la ruta actual.⁵¹ En el cuadro 5.20 se observan las velocidades obtenidas en la carretera de cuota en la situación con proyecto, por tipo de vehículo.

Cuadro 5.20 Velocidades promedio de circulación (km /hr) de la carretera de cuota en la situación con proyecto

Sentido	Tipo de vehículo	Tramo I	Tramo II
	Vehículo ligero	35	41
Norte-Sur	Autobús	32	36
Tronto Gai	Camión unitario	24	29
	Camión articulado	23	28
	Vehículo ligero	33	43
Sur-Norte	Autobús	30	38
	Camión unitario	22	32
	Camión articulado	21	30

Fuente: Elaboración propia con base en la asimilación de velocidades establecidas en otros estudios de evaluación para proyectos similares.

b) Costos generalizados de viaje (CGV)

De acuerdo con las características físicas y geométricas de la ruta del proyecto, se determinaron los CGV correspondientes para la situación con proyecto, los cuales se muestran en el cuadro 5.21.⁵²

^{51.} Las velocidades promedio en la situación con proyecto se obtuvieron con base en otros estudios de evaluación de carreteras con características similares.

^{52.} Debido a que la velocidad disminuye en la situación sin proyecto por el aumento del TDPA, el cálculo de los CGV para cada tramo se realizó tomando en cuenta la proporción en la que baja la velocidad, de acuerdo con las estimaciones de la Dirección General de Desarrollo Carretero, con base en el Manual de Capacidad Vial y el modelo HDM-III.

Cuadro 5.21 CGV en la situación con proyecto para cada tramo y tipo de vehículo (pesos de septiembre de 2006 por vehículo-km)

Sentido	Tipo de vehículo	Tramo I	Tramo II
	Vehículo ligero	1.35	1.31
Norte - Sur	Autobús	6.85	6.48
Noite - Sui	Camión unitario	2.63	2.91
	Camión articulado	4.21	4.07
	Vehículo ligero	1.51	1.22
Sur - Norte	Autobús	7.89	6.07
	Camión unitario	3.85	2.49
	Camión articulado	5.87	4.03

Fuente: Elaboración propia con base en la información obtenida del modelo VOC-MEX.

En el cuadro 5.22 se muestran los flujos vehiculares y los cálculos de CGV anual para los tramos I y II, en la situación con proyecto.

CGV Anual con proyecto para cada tramo en el año 2006 (millones de pesos de septiembre de 2006)

Tramo	Flujo con proyecto	CGV anual con proyecto
I	6 222	68.93
II	6,322	37.49

Fuente: Elaboración propia con base en la información obtenida del modelo VOC-MEX.

c) Ahorros en CGV

De acuerdo con los CGV obtenidos para la carretera de cuota por tramo, en las situaciones sin y con proyecto, en horas con baja y con alta congestión vehicular, se obtienen los ahorros en los CGV. En el cuadro 5.23 se presentan los ahorros estimados por tipo de vehículo y los ahorros totales por tramo, en horas con baja congestión vehicular.

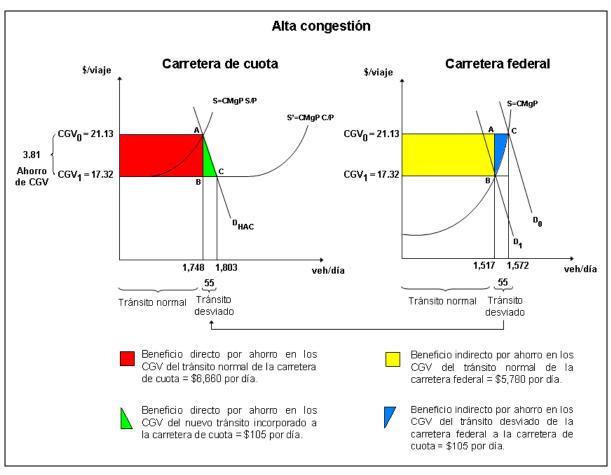
Cuadro 5.23 Ahorro en CGV, por tipo de vehículo, para el tramo II en el año 2008; y para el tramo I en el año 2010, en horas con baja congestión vehicular (pesos de septiembre de 2006)

Sentido	Tipo de vehículo	Año 2010	Año 2008
		Tramo I	Tramo II
	Vehículo ligero	2.41	1.88
Norte – Sur	Autobús	8.57	5.68
Noite – Sui	Camión unitario	6.52	0.50
	Camión articulado	3.15	1.33
	Vehículo ligero	2.86	2.57
Sur – Norte	Autobús	10.14	6.79
Sui – Noite	Camión unitario	2.78	3.24
	Camión articulado	10.32	1.53

Fuente: Elaboración propia con base en la información obtenida del modelo VOC-MEX.

En el cuadro 5.24 se presentan los ahorros estimados con alta congestión vehicular por tipo de vehículo y los ahorros totales correspondientes.

Cuadro 5.24 Ahorro en CGV, por tipo de vehículo, para el tramo II en el año 2008; y para el tramo I en el año 2010; en horas con alta congestión vehicular (pesos de septiembre de 2006)


Sentido	Tipo de vehículo	Año 2010	Año 2008
Serillao	Tipo de verticalo	Tramo I	Tramo II
	Vehículo ligero	4.65	2.55
Norte-Sur	Autobús	14.55	10.86
Norte-Sui	Camión unitario	12.89	9.03
	Camión articulado	10.33	19.62
	Vehículo ligero	4.73	2.90
Sur-Norte	Autobús	21.12	13.73
	Camión unitario	3.89	6.67
	Camión articulado	12.54	5.50

Fuente: Elaboración propia con base en la información obtenida del modelo VOC-MEX.

5.4 Metodología de evaluación

Cada proyecto presenta características particulares, por lo cual es conveniente adecuar la metodología al proyecto que trata de evaluarse. En este sentido, se ejemplifica la metodología para el caso de estudio que se está analizando (ampliación de una carretera), con base en los fundamentos de orden teóricometodológicos previamente expuestos en el apartado 4.3.

En la figura 5.12 se muestra el mercado de transporte interurbano en las situaciones sin y con proyecto para el caso de vehículos ligeros, en horas con alta congestión vehicular, a lo largo del tramo I en el sentido norte—sur. Las cifras que aparecen en esta figura corresponden al año 2006 y se obtuvieron con base en las cifras de los cuadros 5.11, 5.14, 5.17, 5.19 y 5.21, que presentan los CGV de la carretera de cuota en la situación sin proyecto en horas con alta congestión vehicular, las proyecciones del TDPA para la carretera de cuota por tipo de vehículo en horas con alta congestión vehicular, las proyecciones del TDPA para la carretera federal por tipo de vehículo para el tránsito de largo itinerario, la asignación de tránsito desviado por el método de la AASHTO y los CGV en la situación con proyecto, respectivamente.

Figura 5.12 Beneficios directos e indirectos del proyecto de ampliación para vehículos ligeros en horas con alta congestión vehicular en el sentido norte—sur.

En la gráfica de la carretera de cuota de la figura 5.12 se puede observar que el equilibrio de mercado para el caso de vehículos ligeros en la situación sin proyecto, en sentido de circulación norte – sur y en horas con alta congestión vehicular, se presenta donde la curva de costo marginal es igual a la curva de demanda (D_{HAC}), con un número de viajes igual a 1,748 vehículos ligeros por día (cifra que se obtiene al dividir el TDPA de vehículos ligeros entre los dos carriles de circulación = 3,497 vehículos/2 carriles, bajo el supuesto de que circula la mitad del TDPA por cada sentido) y CGV por 21.13 pesos por viaje en el tramo I (que se obtiene de multiplicar el CGV sin proyecto para vehículos ligeros en el tramo I por la longitud de dicho tramo = \$1.6435 X 12.86 km).

Asimismo, en la gráfica de la carretera libre el equilibrio se encuentra donde la curva de costos marginales es igual a la curva de demanda (D₀) y donde el número de viajes es de 1,572 (cifra que se obtien al dividir el TDPA de la carretera libre entre dos carriles de circulación = 3,145 vehículos/2) y los CGV son iguales a 21.13 pesos por viaje al día, pues como se mencionó anteriormente, se parte del supuesto de que en equilibrio los CGV de ambas carreteras son iguales.

Por otra parte, se pueden observar los efectos que el proyecto causará con la ampliación. En la gráfica de la carretera de cuota, se observa que la curva de costos marginales se desplaza a la derecha, con lo cual se amplia el tramo elástico de la curva a partir del punto en donde los costos marginales son crecientes. Así, la nueva curva queda representada por S' y el nuevo equilibrio da lugar a una disminución en los CGV de 21.13 a 17.32 pesos por viaje y a un incremento en el número de viajes de 1,748 a 1,803 viajes de vehículos ligeros por día. Este incremento en el número de viajes (55 vehículos ligeros al día) es igual al tránsito desviado de la carretera federal hacia la carretera de cuota. De esta manera, se genera un ahorro en los CGV de 3.81 pesos por viaje realizado.

La disminución de los CGV en la carretera de cuota incentiva a algunos usuarios de la carretera federal a desviarse (55 vehículos ligeros al día) y esto provova que disminuya la demanda en la carretera federal, desplazándose de D_o a D₁, en donde el número de viajes pasa de 1,572 a 1,517 viajes de vehículos ligeros por día y los costos en esta ruta disminuyen de de 21.13 a 17.32 pesos por viaje.

5.4.1 Identificación de beneficios sociales

En general, los proyectos de ampliación de carreteras se motivan con la presencia de congestión significativa, que provoca lentitud en la circulación vehicular, afectando la velocidad promedio de los vehículos e incrementando el consumo de combustible, frenos, neumáticos, duración de tiempo de viaje, etc, o sea, un mayor CGV.

Este es el caso en estudio, dado que los flujos vehiculares presentan niveles de congestión vehicular alta en ciertas horas, como se describió en el apartado 5.2. Por lo tanto, los beneficios del proyecto serán marginales dado que las características físicas de la carretera de cuota no varían. Los beneficios consistirán

en un incremento en la velocidad de circulación y, para lograr esto, es conveniente ampliar la carretera a cuatro carriles (dos por sentido de circulación); con ello, aumentaría la seguridad de la carretera debido a las facilidades de rebase de vehículos ligeros a camiones unitarios y articulados, en relación con la carretera de dos carriles y doble sentido de tránsito.

a) Beneficios directos

Los beneficios directos son aquellos que percibe el tránsito normal en la carretera de cuota para el caso de los vehículos ligeros por el ahorro en los CGV, como resultado de la ampliación. Estos beneficios se pueden identificar por el área GCV_0ABCGV_1 en la gráfica de la carretera de cuota de la figura 5.12 y son iguales a 6,660 pesos por día (que resulta de multiplicar el ahorro en los CGV por la cantidad de viajes de vehículos ligeros en la situación sin proyecto = \$3.81X1,517 vehículos).

Los beneficios directos para los 55 vehículos ligeros desviados de la carretera libre a la de cuota, corresponden a la disminución en los CGV que este tránsito percibe en la situación con proyecto en la carretera de cuota. Estos beneficios están representados por el área del triángulo *ABC* en la gráfica de la carretera de cuota y son iguales a 105 pesos por día (que resulta de multiplcar el ahorro en el CGV por la cantidad de vehículos ligeros desviados, entre dos = \$3.81X55/2 vehículos).⁵³

b) Beneficios indirectos

La disminución en el CGV de la carretera federal (libre de cuota) es equivalente a la disminución en el CGV de la carretera de cuota. Por lo tanto, en este estudio, los beneficios indirectos pueden medirse usando el ahorro del CGV de la carretera de cuota. Así, el tránsito normal de la carretera federal percibe una disminución en los CGV, debido a liberación del tránsito por la

^{53.} No se considera tránsito generado debido a que el presente estudio tiene como limitación el no contar con la elasticidad de la demanda total de viajes en el trayecto Arcadia – Laconia, motivo por el cual no se valorará el beneficio para este tránsito. Asimismo, se considera que no existirá tránsito transferido, puesto que difícilmente los usuarios cambiarán su origen - destino como resultado del ahorro en los CGV.

desviación de vehículos de ésta vía a la carretera de cuota. Los beneficios indirectos para el tránsito normal, en el caso de vehículos ligeros, están depresentados por el área GCV_0ABCGV_1 en la gráfica de la carretera federal de la figura 5.12 y son iguales a 5,780 pesos por día (que resulta de multiplicar el ahorro en los CGV por la cantidad de viajes de vehiculos ligeros en la situación sin proyecto = \$3.81X1,748 vehículos).

Adicionalmente, se generan beneficios indirectos para los 55 vehículos ligeros desviados de la carretera federal a la carretera de cuota. Estos beneficios están representados por el área del triángulo *ABC* en la gráfica de la carretera federal y son iguales a 105 pesos por día (que resulta de multiplcar el ahorro en el CGV por la cantidad de vehículos ligeros desviados, entre dos = \$3.81X55/2 vehículos).

c) Beneficios intangibles por disminución en el número de accidentes

Se espera tener una disminución en el número de accidentes, debido a que se dispondrá de una carretera de cuota más segura con cuatro carriles. Sin embargo, el incremento en la velocidad podría traer como consecuencia que la gravedad de los accidentes sea mayor y, debido a la falta de estadísticas históricas, se dificulta cuantificar y valorar este beneficio en el presente estudio, el cual será considerado como intangible.

5.4.2 Identificación de costos sociales

a) Costos de inversión

Los costos de inversión corresponden a los costos de construir el nuevo cuerpo de dos carriles (obra civil, materiales, equipo, etc.). El plan de construcción permitirá disponer siempre de dos carriles en operación, por lo cual no se registrarán costos por molestias durante la construcción.

b) Costos de mantenimiento

Los costos de mantenimiento del proyecto, corresponden a la conservación normal, riego de sello, sobrecarpeta y reconstrucción de la ampliación de la carretera de cuota.

5.5 Evaluación socioeconómica

5.5.1 Cuantificación y valoración de beneficios y costos

a) Beneficios

Los beneficios directos (para el tránsito normal de la carretera de cuota y para el tránsito desviado de la carretera libre), y los beneficios indirectos (para el tránsito normal de la carretera libre), que son atribuibles al proyecto de ampliación de la carretera Arcadia – Laconia, estarán dados por la disminución en los costos generalizados de viaje debido al aumento en la velocidad de circulación, entre las situaciones sin y con proyecto.

El modelo computacional VOC-MEX permite calcular los costos de tiempo y de operación por tipo de vehículo, para las situaciones sin y con proyecto, obteniendo por diferencia el beneficio por ahorro en los costos generalizados de viaje para cada uno de ellos.

En el cuadro 5.25 se presentan los beneficios directos para el tránsito normal de la carretera de cuota en cada uno de los tramos y para todos los vehículos. En el cuadro 5.26 se presentan los beneficios directos para el tránsito desviado en cada uno de los tramos y para todos los vehículos. En el cuadro 5.27 se presentan los beneficios indirectos para el tránsito normal de la carretera libre en cada tramo y para todos los vehículos.

Cuadro 5.25 Beneficios directos por ahorro en CGV del tránsito normal de la carretera de cuota en horas con baja y con alta congestión (millones de pesos de septiembre de 2006)

Año	Tramo	Flujo con baja congestión	Ahorro anual con baja congestión (\$/año)	Flujo con alta congestión	Ahorro anual con alta congestión (\$/año)	Total
2008	II	1,469	1.22	5,351	9.58	10.80
2010	I	1,584	2.12	5,772	13.75	15.86

Fuente: Elaboración propia con base en resultados del modelo VOC-MEX.

Cuadro 5.26 Beneficios directos por ahorro en CGV del tránsito desviado de la carretera de libre en horas con baja y con alta congestión (millones de pesos de septiembre de 2006)

Año	Tramo	Flujo con baja congestión	Ahorro anual con baja congestión (\$/año)	Flujo con alta congestión	Ahorro anual con alta congestión (\$/año)	Total
2008	Ш	46	0.04	167	0.31	0.35
2010	I	49	0.07	180	0.44	0.51

Fuente: Elaboración propia con base en resultados del modelo VOC-MEX.

Cuadro 5.27 Beneficios indirectos para el tránsito normal de la carretera libre por ahorro en CGV (millones de pesos de septiembre de 2006)

Año	Tramo	Flujo	Ahorro anual (\$/año)
2008	П	4,038	11.72
2010	I	4,352	17.98

Fuente: Elaboración propia con base en los resultados del modelo VOC-MEX.

Costos

Los costos sociales de inversión y mantenimiento se obtuvieron con base en los datos reales del estudio que sirvió como base para el presente análisis.

El monto por los costos de inversión es de \$603.74 millones de pesos, el cual se desglosa en el cuadro 5.28.

Cuadro 5.28 Desglose por costos de inversión para cada tramo (millones de pesos de septiembre de 2006)

Tramo	Longitud (km)	Inversión por kilómetro*	Inversión
I	12.86	41.40	532.40
П	8.20	8.70	71.34
Total			603.74

Fuente: Elaboración propia con información hipotética.

Nota: */ Incluye derecho de vía.

Por otra parte, los costos de mantenimiento de la carretera de cuota se muestran en el cuadro 5.29.

Desglose y periodicidad de costos de mantenimiento de la carretera Arcadia-Laconia (pesos de septiembre de 2006)

		•
Concepto	\$/km/carril	Año
Conservación normal	18,000	Todos los años
Riego de sello	60,000	4, 12, 20, 28
Sobrecarpeta	210,000	8, 24
Reconstrucción	600,000	16

Fuente: Elaboración propia con información hipotética.

5.6 Parámetros de evaluación social

De acuerdo con los criterios de evaluación establecidos por la Unidad de Inversiones de la Secretaría de Hacienda y Crédito Púplico (SHCP), la tasa social de descuento anual en México es de 12 por ciento. Asimismo, todos los beneficios y costos del proyecto se identificarán, cuantificarán y valorarán, comparando la situación con proyecto con la situación sin proyecto, con un periodo de inversión

de un año para el tramo I y de tres años para el tramo II, con un horizonte de evaluación de 30 años.

5.7 Indicadores de rentabilidad

Como ya se mencionó, en los proyectos carreteros los beneficios sociales son crecientes en el tiempo, esto debido a que el flujo vehicular crece con el aumento de la población y de los ingresos. En estos casos, interesa determinar el momento óptimo de ejecución que maximice el valor actual neto social (VANS). Para ello, se compararán los beneficios netos anuales del proyecto contra el costo alternativo de la inversión, es decir, el costo anual equivalente (CAE) de la inversión, considerando una vida útil de la carretera de 30 años. Para tal fin, se deberá obtener el valor futuro de los recursos invertidos en el último año de inversión capitalizando con la tasa social de descuento los respectivos montos.

5.7.1 Momento óptimo de entrada en operación

Una vez calculados los costos y beneficios de la ampliación de la carretera de cuota Arcadia-Laconia, se determina el momento óptimo de entrada en operación del proyecto de cada tramo. Para su cálculo se tomó en cuenta el crecimiento del flujo vehicular por tipo de vehículo calculado en la sección II, el crecimiento del CGV debido a la disminución de la velocidad en el tiempo y una tasa social de descuento del 12 por ciento anual. Los resultados se muestran en los cuadros 5.30 y 5.31.

Cuadro 5.30 Momento óptimo de operar del tramo I (millones de pesos de septiembre de 2006)

	Ahorro CGV(\$/año)				CAE de los	Beneficio	CAE de la
Año	Año Beneficios directos Beneficios Tatal						
Allo	Tránsito	Tránsito	indirectos	LOTAL	costos de mantenimiento	neto (t)	inversión
	normal	desviado	ilidilectos		mantenimento		IIIVersion
2010	15.86	0.51	17.98	34.36	1.30	33.06	77.12
2015	25.55	0.83	28.49	54.87	1.30	53.57	77.12
2019	37.64	1.22	41.37	80.23	1.30	78.93	77.12

Fuente: Elaboración propia.

Cuadro 5.31 Momento óptimo de operar del tramo II (millones de pesos de septiembre de 2006)

		Ahorro C	GV(\$/año)	CAE de los	Beneficio neto (t)	CAE de la inversión	
Año	Beneficio	s directos	Beneficios				costos de mantenimiento
Allo	Tránsito	Tránsito	indirectos Total				
	normal	desviado	munectos		manteniiniento		11146131011
2008	10.80	0.35	11.72	22.87	0.82	22.05	8.89

Fuente: Elaboración propia.

Los resultados indican que para el tramo I el momento óptimo de invertir sería el año 2016 y el momento óptimo de entrada en operación sería el año 2019. El momento óptimo de invertir en el proyecto para el tramo II es inmediato; por lo tanto, el momento óptimo de entrada en operación de este tramo es el año 2008.

5.7.2 Valor actual neto social y tasa interna de retorno

En el cuadro 5.32 se presenta el valor actual neto social (VANS), la tasa interna de retorno (TIR) y la tasa de rentabilidad inmediata (TRI), para cada tramo.

Cuadro 5.32 VANS, TIR y TRI para los tramos I y II (millones de pesos de septiembre de 2006)

(itiliaries de passe de septierilare de 2000)								
Tramo	VANS (\$)	TIR (%)	TRI (%)					
I	140.34	14	5					
*	326.97	22	13					
П	246.31	44	31					

Fuente: Elaboración propia.

Nota: */ Si se realiza la inversión en el año 2016.

Las cifras del cuadro 5.32 indican que de llevarse a cabo el proyecto, el VANS en el año 2007, para el tramo I sería de 140.34 millones de pesos; sin embargo, este VANS no sería el **máximo** que se podría obtener, debido a que es conveniente postergar la inversión hasta el año 2016, en donde el VANS sería de 326.97 millones de pesos. Por lo tanto, si se invierte en el año 2007 el país tendría una **pérdida social** de **186.63** millones de pesos.

Asimismo, la TRI de 5 por ciento en el año 2010 para el tramo I es menor al costo de oportunidad social de los recursos. Esto indica que la inversión en este tramo debe postergarse hasta el año 2016 y el momento óptimo de entrada en operación

sería el año 2019, donde la TRI es igual a 13 por ciento. En este caso la TIR no es un buen indicador de rentabilidad social, pues aunque es positiva y mayor a 12 por ciento, el VANS no se estaría maximizando.

Por otra parte, la TRI de 31 por ciento para el tramo II indica que el momento óptimo de entrada en operación del proyecto en este tramo ha sido rebasado. Además, el VANS para el tramo II en el año 2007 sería de 246.31 millones de pesos, por lo tanto, este tramo es socialmente rentable.

5.8 Análisis de sensibilidad

Con el propósito de saber el cambio en el valor de los indicadores de rentabilidad ante cambios en el crecimiento del TDPA, se realizó un análisis de sensibilidad considerando un crecimiento del 1 por ciento en el flujo vehicular. Los resultados se muestran en los cuadros 5.34 y 5.35.

Cuadro 5.34 Momento óptimo de operar del tramo I (millones de pesos de septiembre de 2006)

	Ahorro CGV(\$/año)				CAE de los		CAE
Año	Beneficios directos Beneficios				Beneficio	de la	
Allo	Tránsito	Tránsito	Beneficios indirectos	I LOTAL I	costos de mantenimiento	neto (t)	inversión
	normal	desviado	indirectos		manteniiniento		IIIVEISIOII
2010	15.58	0.44	15.62	31.64	1.30	30.34	77.12
2015	24.63	0.62	21.48	46.73	1.30	45.43	77.12
2022	44.99	1.01	33.99	79.99	1.30	78.69	77.12

Fuente: Elaboración propia.

Cuadro 5.35 Momento óptimo de operar del tramo II (millones de pesos de septiembre de 2006)

		Ahorro C	GV(\$/año)		CAE de los		CAE
Año	Beneficio	s directos	Beneficios		costos de mantenimiento	Beneficio neto (t)	de la inversión
Allo	Tránsito	Tránsito					
	normal	desviado		IIIVEISIOII			
2008	10.70	0.33	10.75	21.78	0.82	20.95	8.89

Fuente: Elaboración propia.

El momento óptimo de invertir del proyecto para el tramo I sería el año 2019 y el momento óptimo de entrada en operación sería el año 2022. No obstante, el momento óptimo de invertir para el tramo II es inmediato, por lo tanto, el momento óptimo de entrada en operación de este tramo es el año 2008.

En el cuadro 5.36 se presenta el valor actual neto social (VANS), la tasa interna de retorno (TIR) y la tasa de rentabilidad inmediata (TRI), para cada tramo.

Cuadro 5.36 VANS, TIR y TRI para cada tramo (millones de pesos de septiembre de 2006)

Tramo	VANS (\$)	TIR (%)	TRI (%)
I	-8.34		5
*	220.50	20	13
II	163.76	39	29

Fuente: Elaboración propia.

Nota: */ Si se realiza la inversión en el año 2019.

Las cifras del cuadro 5.36 indican que de llevarse a cabo el proyecto, el VANS en el año 2007, para el tramo I sería de -8.34 millones de pesos, por lo tanto, no sería socialmente rentable. Sin embargo, si se posterga la inversión hasta el año 2019, el VANS sería de 220.50 millones de pesos. Por lo tanto, si se invierte en el año 2007 el país tendría una **pérdida social** de 228.84 millones de pesos. Asimismo, en el año 2010 la TRI para el tramo I es de 5 por ciento y es menor al costo de oportunidad social de los recursos. Esto indica que la inversión en este tramo debe postergarse hasta el año 2019 y el momento óptimo de entra en operación del proyecto sería el año 2022, donde la TRI es igual a 13 por ciento.

Por otra parte, la TRI de 29 por ciento para el tramo II indica que el momento óptimo de entrada en operación del proyecto en este tramo ha sido rebasado y el VANS para el tramo II en el año 2007 sería de 163.76 millones de pesos; por lo tanto, este tramo es socialmente rentable aún cuando el TDPA se incremente 1 por ciento anualmente.

CAPÍTULO VI CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

- a) La correcta aplicación del análisis costo-beneficio, sustentado en la teoría del bienestar económico y las finanzas públicas, permite tomar decisiones para asignar de manera eficiente los recursos públicos del país.
- b) La evaluación social de un caso de estudio permite concluir que existe un momento óptimo para invertir eficientemente los recursos y un momento óptimo para la entrada en operación de un proyecto público carretero que tiene como objetivo la disminución de los CGV. Así, con base en los resultados obtenidos del estudio se concluye que el momento óptimo de inversión para el tramo I es el año 2016 y el momento óptimo de entrada de operación es el año 2019, debido a que la inversión es elevada por la existencia de puentes sobre la ruta del proyecto. Además, se concluye que el momento óptimo de entrada en operación del proyecto para el tramo II es inmediato.
- c) Por su parte, los VANS indican que de llevarse a cabo el proyecto en el año 2007, sólo la ampliación del tramo II genera un VAN positivo para la sociedad, por un monto de 246.31 millones de pesos. Sin embargo, si se invierte en el año 2007 en la ampliación del tramo I, la sociedad tendría una pérdida neta de 186.63 millones de pesos. En este sentido, se concluye que en una situación en la que los costos generalizados de viaje (CGV) son elevados para la sociedad, la inversión en un proyecto público carretero se justifica sólo si los beneficios sociales exceden a los costos sociales.
- d) Los beneficios del proyecto propuesto por la SCT se presentan para el tránsito normal que utiliza la carretera de cuota, para el tránsito desviado de la carretera libre a la carretera de cuota y para el tránsito normal de la carretera libre, por la disminución en los CGV.

6.2 Recomendaciones

Debido a que la ampliación del tramo I no es socialmente rentable, se recomienda a la Secretaría de Comunicaciones y Transportes postergar la inversión hasta el año 2016, y en su momento, realizar un estudio a nivel de prefactibilidad.

Asimismo, se recomienda considerar diferentes alternativas al proyecto propuesto por la SCT, con la finalidad de identificar proyectos socialmente más rentables.

Bibliografía

Arroyo J. A. y R. Aguerrebere (2002), *Estado superficial y costos de operación en carreteras*. Publicación técnica No. 202, Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Tranporte, México.

Banco Mundial (2004), *Public Expenditure Review*, Report No. 27894-MX, Estados Unidos, Washington, D. C.

BANOBRAS (1998), *Proyectos de Inversión*, *Federalismo y Desarrollo*, Nº 61, Año 11 (Enero-Febrero-Marzo), México.

Belli, P. (1996), *Is Economic Analysis of Projects Still Usefull?*, Policy Research Working Paper 1689, The World Bank.

Cervini, H. (1995), "El costo de oportunidad de los fondos públicos y la tasa social de descuento", *Análisis Económico*, No. 26, Universidad Autónoma Metropolitana Unidad Azcapotzalco, México.

Dasgupta, Partha, Stephen Marglin, and Amartya K. Sen (1972), *Guidelines for Project Evaluation*, United Nations Industrial Development Organization, N. Y.

DOF (2004), "Acuerdo por el que se expide el Manual de Normas Presupuestarias para la Administración Pública Federal", *Diario Oficial de la Federación*, Segunda Sección, SHCP. Viernes 31 de diciembre de 2004, Pag. 52.

Dupuit, J. (1844), "On the Measurement of Utility of Public Works", *International Economic Papers*, Vol. 2.

Eckstein, O. (1958), *Water Resource Development*, Harvard University Press, Cambridge, Mass.

Feldstein, M. S. (1964), "Net Social Benefit Calculation and the Public Investment Decision", *Oxford Economic Papers*, Vol. 16 (marzo).

Feldstein, M. S. (1964), "Opportunity Cost Calculations in Cost Benefit Analysis", *Public Finance*, Vol. XIX, No. 2.

Ferrá, C. (2000), Evaluación socioeconómica de proyectos, 2a. edición, UNC FCE, Mendoza.

Fontaine, E. R. (1999), Evaluación social de proyectos, 12a. edición, Alfaomega, México.

Girardotti, L. M. (2003), *Previsión de la demanda en corredores*, Facultad de Ingeniería de Buenos Aires, Argentina.

González, E. (1995), "El costo de oportunidad social de la mano de obra urbana en México, Análisis Económico, No. 26, Universidad Autónoma Metropolitana Unidad Azcapotzalco, México.

Gramlich, E. M. (1990), *A guide to benefit-cost analysis*, 2a. ed., Englewood Cliffs, Prentice Hall, N. J.

Gramlich, E. M. (2002), *The Methodology of Benefit-Cost Analysis*. At the Werner Sichel Economics Lecture-Seminar Series, Western Michigan University, Kalamazoo, Michigan (October 16).

Harberger, A. C. (1973), Project Evaluation: Collected Papers, Macmillan, N. Y.

Hicks, J. R. (1939), "The Fundatios of Welfarde Economics", *Economic Journal*, Vol. 49, No. 196 (diciembre).

Inter-Agency River Basin Committee (Sub-Committee on Costs and Budgets) (1950), Proposed Practices for Economic Analysis of River Basin Projects ("El Libro Verde"), Washington D. C.

Kaldor, N. (1939), "Welfare Propositions in Economics", *Economic Journal*, Vol. 49 (septiembre).

Layard, R., y S. Glaister, eds. (1994), *Cost-Benefit analysis*. 2a. ed. Cambridge University Press, Reino Unido.

Little, I. M. D., and J. A. Mirrlees (1969), *Manual of Industrial Project Analysis*, OECD Development Center, Paris.

Llamas, I. (2005), "Notas de Microeconomía", *Apuntes de clase*, Capítulos 2, 3, 4 y 5, Universidad Autónoma Metropolitana Unidad Iztapalapa, México.

Llamas, I. (2005), "Notas de Microeconomía", *Apuntes de clase*, Capítulo 6, Universidad Autónoma Metropolitana Unidad Iztapalapa, México.

Marglin y G. M. Fair (1962), Design of Water Resource Systems: New Techniques for Relating Economic Objectives, Engineering Analysis, and Governmental Planning, Macmillan, Londres.

Marshall, A. (1920), *Principles of economics*, 8a. edición, Macmillan, Londres.

Mishan, E. (1975), Cost-Benefit Analysis. Allen and Unwin, London.

Nicholson W. (1997), *Teoría Microeconómica: Principios básicos y aplicaciones*, McGraw Hill, España.

Sanin, H. (1995), Guía metodológica general para la preparación y evaluación de proyectos de inversión social. Instituto Latinoamericano y del Caribe de Planificación Económica y Social (ILPES).

Shantayanan D. L. Squire, and S. Suthiwart-Narueput (1997), *Beyond rate of return: reorienting Proyect Appraisal*. The World Bank Research Observer, Volume 12, Number 1, February.

Squire, Lyn, and Herman G. van der Tak (1975), *Economic Analysis of Projects*, Johns Hopkins University Press for the World Bank, Baltimore, Md.

Steiner, P. O. (1959), "Choosing Among Alternative Public Investments in the Water Resource Field", *American Economic Review*, Vol. XLIX (diciembre).

Stockstrom, S. (2004), "El Consenso de Copenhague un Fallido Intento de Priorizar las Políticas Públicas: Las Limitaciones del Análisis costo Beneficio", *Observatorio de la Globalización* (junio).

Bibliografía adicional utilizada para la evaluación del caso de estudio

Arriaga, M. C. et al (1998), Índice Internacional de Rugosidad en la Red Carretera de México, Publicación Técnica No.108, Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte, México.

CEPEP (1999), "Metodologías y casos prácticos en la evaluación socioeconómica de proyectos", *CD de Biblioproyectos 3.0*, SHCP, BANOBRAS, CEPEP, CEPAL, ILPES, CIAPEP, México.

CEPEP (2004), *Apuntes sobre evaluación social de proyectos*, Banco Nacional de Obras y Servicios Públicos, S.N.C., Centro de Estudios para la Preparación y Evaluación Socioeconómica de Proyectos, México.

Fontaine, E.R. y O.H. Schenone (2000), Nuestra economía de cada día, Alfaomega, México.

IMT (2005), Manual Estadístico del Sector Transporte 2005, (Datos 1993-2004), Instituto Mexicano del Transporte, México.

MIDEPLAN (1992), *Inversión pública, eficiencia y equidad,* 2a. edición, Ministerio de Planificación Santiago de Chile.

SCT (1985), *Manual de Capacidad de Carreteras*, Secretaría de Comunicaciones y Transportes, Subsecretaría de Infraestructura, Dirección General de Servicios Técnicos, México.

SCT (1991), *Manual de Capacidad Vial*, Secretaría de Comunicaciones y Transportes, Subsecretaría de Infraestructura, Dirección General de Servicios Técnicos, México.

SCT (2001-2004), *Anuarios Estadísticos del Sector Comunicaciones y Transportes*, Secretaría de Comunicaciones y Transportes, México.

SCT (2001-2005), *Datos viales*, Secretaría de Comunicaciones y Transportes, Subsecretaría de Infraestructura, Dirección General de Servicios Técnicos, México.

Torres, G. y J. A. Pérez (2002), *Métodos de asignación de tránsito en redes regionales de carreteras: dos alternativas de solución*, Publicación Técnica No. 214, Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte, México.

Varian, H. R. (1994), *Microeconomía Intermedia: un enfoque moderno,* 3a. edición, Antoni Bosh Editor S. A., Barcelona.

Anexo 1

Evaluación socioeconómica del proyecto (hipotético) de ampliación carretero

Cuadro A1.1 CGV sin proyecto en horas con baja congestión para los tramos I y II (pesos de septiembre de 2006)

Tramo	ramo Sentido Tipo de vehículo		Longitud (km)	CGV sin proyecto con baja congestión (\$/km-veh)	CGV total del tramo (\$/veh)
		Automóvil		1.48	18.98
	Norte - Sur	Autobús		7.23	93.02
	Noite - Sui	Camión unitario		3.05	39.18
I		Camión articulado	10.06	4.33	55.64
	Sur - Norte	Automóvil	12.86	1.67	21.42
		Autobús		8.36	107.47
		Camión unitario Camión articulado		3.94	50.68
				6.47	83.25
		Automóvil		1.51	12.42
	Norte - Sur	Autobús		7.05	57.79
	Noite - Sui	Camión unitario		2.93	24.06
II		Camión articulado	8.20	4.17	34.20
		Automóvil] o.∠∪	1.50	12.33
	Sur Norto	Autobús		6.77	55.50
	Sur - Norte	Camión unitario		2.85	23.34
		Camión articulado		4.16	34.09

Cuadro A1.2 CGV sin proyecto en horas con alta congestión para los tramos I y II (pesos de septiembre de 2006)

Tramo	Sentido	Tipo de vehículo	Longitud (km)	CGV sin proyecto con baja congestión (\$/km-veh)	CGV total del tramo (\$/veh)
		Vehículo ligero		1.64	21.13
	Norte - Sur	Autobús		7.68	98.77
	Noite - Sui	Camión unitario		3.53	45.36
ı		Camión articulado	12.86	4.87	62.61
'	Sur - Norte	Vehículo ligero	12.00	1.81	23.22
		Autobús		9.18	118.04
		Camión unitario		4.02	51.76
		Camión articulado		6.64	85.40
		Vehículo ligero		1.59	13.08
	Norte - Sur	Autobús		7.67	62.88
	Norte - Sui	Camión unitario		3.36	27.55
ll ll		Camión articulado	8.20	4.69	38.46
"		Vehículo ligero	0.20	1.54	12.66
	Sur - Norte	Autobús		7.60	62.32
	Sui - Noite	Camión unitario		3.26	26.73
		Camión articulado	ırticulado		38.00

Cuadro A1.3 CGV anual sin proyecto en horas con baja congestión para los tramos I y II (pesos de septiembre de 2006)

Tramo	Sentido	Tipo de vehículo	CGV sin proyecto con baja congestión (\$/km-veh)	TDPA	CGV anual (\$)
		Vehículo ligero	1.48	480	3,322,309
	Norte - Sur	Autobús	7.23	31	1,061,375
	Noite - Sui	Camión unitario	3.05	105	1,507,870
		Camión articulado	4.33	64	1,309,518
'		Vehículo ligero	1.67	480	3,750,182
	Sur – Norte	Autobús	8.36	31	1,226,241
		Camión unitario	3.94	105	1,950,548
		Camión articulado	6.47	64	1,959,202
				Total	16,087,247
		Vehículo ligero	1.51	480	2,174,696
	Norte - Sur	Autobús	7.05	31	659,395
	INOITE - Sui	Camión unitario	2.93	105	925,816
l II		Camión articulado	4.17	64	804,794
"		Vehículo ligero	1.50	480	2,158,345

6.77

2.85

4.16

31

105

64

Total

Fuente: Elaboración propia con base en información obtenida del modelo VOC-MEX.

Autobús

Camión unitario

Camión articulado

Sur - Norte

633,296

898,479

802,253

9,057,074

Cuadro A1.4 CGV anual sin proyecto en horas con alta congestión para los tramos I y II (pesos de septiembre de 2006)

Tramo	Sentido	Tipo de vehículo	CGV sin proyecto con alta congestión (\$/km-veh)	TDPA	CGV anual (\$)
		Vehículo ligero	1.64	1,748	13,487,433
	Norte - Sur	Autobús	7.68	113	4,057,176
	Noite - Sui	Camión unitario	3.53	382	6,326,399
		Camión articulado	4.87	237	5,419,160
'		Vehículo ligero	1.81	1,748	14,817,826
	Sur - Norte	Autobús	9.18	113	4,848,532
		Camión unitario	4.02	382	7,218,712
		Camión articulado	6.64	237	7,391,461
				Total	63,566,699
		Vehículo ligero	1.59	1,748	8,344,894
	Norte - Sur	Autobús	7.67	113	2,582,825
	Noite - Sui	Camión unitario	3.36	382	4,526,465
II		Camión articulado	4.69	237	4,519,453
11		Vehículo ligero	1.54	1,748	8,076,665
	Sur - Norte	Autobús	7.60	113	2,559,815
	Sui - Noite	Camión unitario	3.26	382	3,727,887
		Camión articulado	4.63	237	3,288,646
				Total	37,626,651

Cuadro A1.5 CGV en la situación con proyecto para los tramos I y II (pesos de septiembre de 2006)

				CGV con	CGV total
Tramo	Sentido	Tipo de vehículo	Longitud	proyecto	del tramo
Traine		Tipo de verticalo	(km)	(\$/km-veh)	(\$/veh)
		Vehículo ligero		1.35	17.32
		Autobús		6.85	88.06
	Norte – Sur	Camión unitario		2.63	33.86
,		Camión articulado	40.00	4.21	54.20
I		Vehículo ligero	12.86	1.51	19.41
	Sur – Norte	Autobús		7.89	101.51
		Camión unitario		3.85	49.46
		Camión articulado		5.87	75.48
		Vehículo ligero		1.31	10.77
	Norte – Sur	Autobús		6.48	53.17
	Norte – Sui	Camión unitario		2.91	23.90
		Camión articulado	0.20	4.07	33.36
II		Vehículo ligero	8.20	1.22	9.99
	Cur Norto	Autobús		6.07	49.73
	Sur – Norte	Camión unitario	1	2.49	20.44
		Camión articulado	1	4.03	33.05

Cuadro A1.6 CGV anual en la situación con proyecto para los tramos I y II (pesos de septiembre de 2006)

		1	CCV/ 227		
Tramo	Sentido	Tipo de vehículo	CGV con proyecto (\$/km-veh)	TDPA	CGV anual (\$)
		Vehículo ligero	1.35	2,228	14,088,891
	Norte - Sur	Autobús	6.85	144	4,621,985
	Norte - Sui	Camión unitario	2.63	488	6,025,373
		Camión articulado	4.21	302	5,966,894
ı		Vehículo ligero	1.51	2,228	15,784,234
	Cur Norto	Autobús	7.89	144	5,327,545
	Sur - Norte	Camión unitario	3.85	488	8,801,394
		Camión articulado	5.87	302	8,309,335
				Total	68,925,651
		Vehículo ligero	1.31	2,228	8,759,927
	Norte - Sur	Autobús	6.48	144	2,790,765
	Norte - Sui	Camión unitario	2.91	488	4,253,148
II		Camión articulado	4.07	302	3,672,580
II		Vehículo ligero	1.22	2,228	8,126,230
	Cur Narta	Autobús	6.07	144	2,610,328
	Sur - Norte	Camión unitario	2.49	488	3,638,068
		Camión articulado	4.03	302	3,638,188
		•		Total	37,489,235

Cuadro A1.7 Ahorros en CGV en horas con baja congestión para los tramos I y II (pesos de septiembre de 2006)

Tramo	Sentido	Tipo de vehículo	CGV sin proyecto (\$/km-veh)	CGV con proyecto (\$/km-veh)	Ahorro en CGV (\$/km-veh)	Ahorro por tramo (\$/veh)				
	Año 2010									
		Vehículo ligero	1.53	1.35	0.19	2.41				
	Norte - Sur	Autobús	7.51	6.85	0.67	8.57				
	Norte - Sui	Camión unitario	3.14	2.63	0.51	6.52				
		Camión articulado	4.46	4.21	0.24	3.15				
'		Vehículo ligero	1.73	1.51	0.22	2.86				
	Sur - Norte	Autobús	8.68	7.89	0.79	10.14				
	Sui - Noite	Camión unitario	4.06	3.85	0.22	2.78				
		Camión articulado	6.67	5.87	0.80	10.32				
		Ai	ño 2008							
		Vehículo ligero	1.54	1.31	0.23	1.88				
	Norte - Sur	Autobús	7.18	6.48	0.69	5.68				
	Noite - Sui	Camión unitario	2.98	2.91	0.06	0.50				
l II		Camión articulado	4.23	4.07	0.16	1.33				
"		Vehículo ligero	1.53	1.22	0.31	2.57				
	Sur - Norte	Autobús	6.89	6.07	0.83	6.79				
	Sui - Noite	Camión unitario	2.89	2.49	0.40	3.24				
		Camión articulado	4.22	4.03	0.19	1.53				

Cuadro A1.8 Ahorros en CGV en horas con alta congestión para los tramo I y II (pesos de septiembre de 2006)

Tramo	Sentido	Tipo de vehículo	CGV sin proyecto (\$/km-veh)	CGV con proyecto (\$/km-veh)	Ahorro en CGV (\$/km-veh)	Ahorro por tramo (\$/veh)
		Ai	ño 2010			
		Vehículo ligero	1.71	1.35	0.36	4.65
	Norte - Sur	Autobús	7.98	6.85	1.13	14.55
	Noite - Sui	Camión unitario	3.64	2.63	1.00	12.89
		Camión articulado	5.02	4.21	0.80	10.33
I		Vehículo ligero	1.88	1.51	0.37	4.73
	Sur - Norte	Autobús	9.54	7.89	1.64	21.12
	Sui - Noite	Camión unitario	4.15	3.85	0.30	3.89
		Camión articulado	6.84	5.87	0.98	12.54
		Ai	ño 2008			
		Vehículo ligero	1.62	1.31	0.31	2.55
	Norte - Sur	Autobús	7.81	6.48	1.32	10.86
	Noite - Sui	Camión unitario	4.02	2.91	1.10	9.03
II		Camión articulado	6.46	4.07	2.39	19.62
"		Vehículo ligero	1.57	1.22	0.35	2.90
	Sur - Norte	Autobús	7.74	6.07	1.67	13.73
	Sui - Noite	Camión unitario	3.31	2.49	0.81	6.67
		Camión articulado	4.70	4.03	0.67	5.50

Cuadro A1.9 Cálculo del VANS y la TIR del tramo I (pesos de septiembre de 2006)

	Ahorro CGV(\$/año)							
Año	Inversión* Beneficios directos Beneficios Total Tránsito Tránsito indirectos beneficios		Costos de mantenimiento	Beneficio neto	Beneficio neto descontado			
2046	122 101 000	normal	desviado					
2016	133,101,000						-133,101,000	-133,101,000
2017	159,721,200						-159,721,200	-142,608,214
2018	239,581,800	27.020.550	4 000 545	44 007 007	00 007 000	400,000	-239,581,800	-190,993,144
2019		37,636,550	1,222,515	41,367,967	80,227,032	462,960	79,764,072	56,774,491
2020		41,493,563	1,348,310	45,459,095	88,300,968	462,960	87,838,008	55,822,642
2021		45,765,434	1,487,641	49,982,233	97,235,308	462,960	96,772,348	54,911,229
2022		50,502,330	1,642,143	54,989,105	107,133,578	2,006,160	105,127,418	53,260,822
2023		55,761,566	1,813,685	60,538,765	118,114,016	462,960	117,651,056	53,219,363
2024		61,608,840	2,004,407	66,698,861	130,312,108	462,960	129,849,148	52,443,893
2025		68,119,715	2,216,773	73,547,158	143,883,645	462,960	143,420,685	51,718,937
2026		75,381,430	2,453,626	81,173,386	159,008,442	5,864,160	153,144,282	49,308,360
2027		83,495,117	2,718,261	89,681,510	175,894,889	462,960	175,431,929	50,432,487
2028		92,578,524	3,014,517	99,192,513	194,785,554	462,960	194,322,594	49,877,770
2029		102,769,401	3,346,880	109,847,866	215,964,146	462,960	215,501,186	49,387,310
2030		114,229,734	3,720,628	121,813,853	239,764,215	2,006,160	237,758,055	48,650,009
2031		127,151,089	4,142,002	135,287,042	266,580,133	462,960	266,117,173	48,618,612
2032		141,761,415	4,618,427	150,501,236	296,881,078	462,960	296,418,118	48,352,216
2033		158,333,792	5,158,799	167,736,432	331,229,023	462,960	330,766,063	48,174,205
2034		177,197,819	5,773,852	187,330,453	370,302,124	15,894,960	354,407,164	46,086,962
2035		198,754,588	6,476,650	209,694,273	414,925,511	462,960	414,462,551	48,121,911
2036		223,496,667	7,283,234	235,332,445	466,112,346	462,960	465,649,386	48,272,366
2037		250,986,757	8,179,072	264,278,336	523,444,165	462,960	522,981,205	48,406,937
2038		281,858,128	9,185,098	296,784,571	587,827,797	2,006,160	585,821,637	48,413,771
2039		316,526,678	10,314,865	333,289,073	660,130,616	462,960	659,667,656	48,675,528
2040		355,459,459	11,583,593	374,283,629	741,326,682	462,960	740,863,722	48,809,660
2041		399,180,973	13,008,375	420,320,516	832,509,864	462,960	832,046,904	48,943,750
2042		448,280,233	14,608,406	472,019,939	934,908,577	5,864,160	929,044,417	48,794,165
2043		503,418,701	16,405,239	530,078,392	1,049,902,332	462,960	1,049,439,372	49,211,969
2044		565,339,201	18,423,084	595,278,034	1,179,040,319	462,960	1,178,577,359	49,346,171
2045*		634,875,923	20,689,123	668,497,232	1,856,466,278	462,960	1,856,003,318	69,383,482
	Elaboración pro		-,,	,,	, , ,	1,	1,000,000,010	00,000,402

VANS	
(Inversión	
año 2016)	\$326,971,117
TIR	22%

Cuadro A1.9 Cálculo del VANS y la TIR del tramo II (pesos de septiembre de 2006)

	Ahorro CGV(\$/año)							
Año	Inversión*	Beneficios Tránsito normal	directos Tránsito desviado	Beneficios indirectos	Total beneficios	Costos de mantenimiento	Beneficio neto	Beneficio neto descontado
2007	71,340,000						-71,340,000	-71,340,000
2008		10,799,856	354,385	18,124,317	29,278,558	295,200	28,983,358	25,877,998
2009		11,230,786	368,409	18,831,176	30,430,370	295,200	30,135,170	24,023,573
2010		11,678,998	382,989	19,565,737	31,627,724	295,200	31,332,524	22,301,871
2011		12,145,188	398,149	20,329,091	32,872,428	1,279,200	31,593,228	20,078,068
2012		12,630,081	413,911	21,122,374	34,166,367	295,200	33,871,167	19,219,410
2013		13,134,431	430,300	21,946,765	35,511,496	295,200	35,216,296	17,841,672
2014		13,659,023	447,340	22,803,489	36,909,852	295,200	36,614,652	16,562,609
2015		14,204,674	465,057	23,693,822	38,363,553	3,739,200	34,624,353	13,984,195
2016		14,772,232	483,479	24,619,088	39,874,799	295,200	39,579,599	14,272,800
2017		15,362,582	502,634	25,580,666	41,445,882	295,200	41,150,682	13,249,418
2018		15,976,644	522,550	26,579,987	43,079,182	295,200	42,783,982	12,299,372
2019		16,615,376	543,259	27,618,541	44,777,176	1,279,200	43,497,976	11,164,847
2020		17,279,773	564,792	28,697,876	46,542,441	295,200	46,247,241	10,598,674
2021		17,970,872	587,181	29,819,602	48,377,655	295,200	48,082,455	9,838,623
2022		18,689,751	610,461	30,985,392	50,285,604	295,200	49,990,404	9,133,060
2023		19,437,533	634,669	32,196,987	52,269,188	10,135,200	42,133,988	6,872,966
2024		20,215,386	659,839	33,456,194	54,331,419	295,200	54,036,219	7,870,070
2025		21,024,525	686,012	34,764,896	56,475,433	295,200	56,180,233	7,305,655
2026		21,866,215	713,228	36,125,048	58,704,490	295,200	58,409,290	6,781,714
2027		22,741,772	741,527	37,538,682	61,021,981	1,279,200	59,742,781	6,193,341
2028		23,652,565	770,953	39,007,914	63,431,433	295,200	63,136,233	5,843,865
2029		24,600,021	801,552	40,534,941	65,936,514	295,200	65,641,314	5,424,763
2030		25,585,622	833,370	42,122,048	68,541,040	295,200	68,245,840	5,035,721
2031		26,610,913	866,457	43,771,611	71,248,980	3,739,200	67,509,780	4,447,686
2032		27,677,498	900,861	45,486,103	74,064,462	295,200	73,769,262	4,339,352
2033		28,787,050	936,638	47,268,091	76,991,779	295,200	76,696,579	4,028,166
2034		29,941,309	973,841	49,120,246	80,035,396	295,200	79,740,196	3,739,303
2035		31,142,085	1,012,527	51,045,347	83,199,959	1,279,200	81,920,759	3,429,962
2036*		32,391,262	1,052,757	53,046,282	157,830,300	295,200	157,535,100	5,889,178

VANS (Inversión año 2007)	\$246,307,933
TIR	44%

Anexo 2 Análisis de sensibilidad de la evaluación socioeconómica del proyecto (hipotético) de ampliación carretero

Cuadro A9.1 Cálculo del VANS y la TIR del tramo I Análisis de sensibilidad del proyecto (pesos de septiembre de 2006)

Tránsito normal Tránsito normal Deneficios Total beneficios		Inversión	Ahorro CGV(\$/año)						
133,101,000 133,101,000 1-30,903,110 1-30,903,110 1-30,903 1-30,905 1-30,9	Año		Beneficios directos					Beneficio neto	Beneficio neto descontado
2020 159,721,200 -159,721,200 -142,608,214 2021 239,581,800 -239,581,800 -190,993,144 2022 44,989,947 1,009,393 33,994,230 79,993,570 462,960 79,530,610 56,608,317 2023 48,225,128 1,083,264 36,377,427 85,685,819 462,960 85,222,859 54,160,688 2024 51,727,919 1,163,262 38,956,686 91,847,868 462,960 91,384,908 51,854,251 2025 55,527,323 1,250,051 41,753,215 98,530,589 2,006,160 96,524,429 48,902,279 2026 59,656,509 1,344,390 44,791,272 105,792,172 462,960 105,329,212 47,645,586 2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 113,236,516 45,734,330 2028 69,062,587 1,559,346 51,707,766 122,329,070 462,960 121,866,740 43,946,368 2030 80,329,162 1,816,904 59,966,226 142,132,311					indirectos	beneficios			
2021 239,581,800 -239,581,800 -190,993,144 2022 44,989,947 1,009,393 33,994,230 79,993,570 462,960 79,530,610 56,608,317 2023 48,225,128 1,063,264 36,377,427 85,685,819 462,960 85,222,859 54,160,668 2024 51,727,919 1,163,262 38,956,686 91,847,868 462,960 91,384,908 51,854,251 2025 55,527,323 1,250,061 41,753,215 98,530,589 2,006,160 96,524,429 48,902,727 2026 59,656,509 1,344,390 44,791,272 105,792,172 462,960 105,329,212 47,645,586 2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 113,236,516 45,734,330 2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,552 2031 <	2019	133,101,000						-133,101,000	-133,101,000
2022 44,989,947 1,009,393 33,994,230 79,993,570 462,960 79,530,610 56,608,317 2023 48,225,128 1,083,264 36,377,427 85,685,819 462,960 85,222,859 54,160,668 2024 51,727,919 1,163,262 38,956,686 91,847,688 462,960 91,384,908 51,854,251 2025 55,527,323 1,250,051 41,753,215 98,530,589 2,006,160 96,524,429 48,902,279 2026 59,656,509 1,344,390 44,791,272 105,792,172 462,960 105,329,212 47,645,586 2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 113,236,516 45,734,330 2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,093 2030 80,329,182 1,816,904 59,966,226 142,132,311 462,960	2020	159,721,200						-159,721,200	-142,608,214
2023 48,225,128 1,083,264 36,377,427 85,685,819 462,960 85,222,859 54,160,668 2024 51,727,919 1,163,262 38,956,686 91,847,868 462,960 91,384,908 51,854,251 2025 55,527,323 1,250,051 41,753,215 98,530,589 2,006,160 96,524,429 48,902,279 2026 59,656,509 1,344,390 44,791,272 105,792,172 462,960 105,329,212 47,645,586 2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 121,866,740 43,946,368 2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,099 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 153,069,177 39,289,045 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 <td>2021</td> <td>239,581,800</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-239,581,800</td> <td>-190,993,144</td>	2021	239,581,800						-239,581,800	-190,993,144
2024 51,727,919 1,163,262 38,956,686 91,847,868 462,960 91,384,908 51,854,251 2025 55,527,323 1,250,051 41,753,215 98,530,589 2,006,160 96,524,429 48,902,279 2026 59,656,509 1,344,390 44,791,272 105,792,172 462,960 105,329,212 47,645,586 2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 113,236,516 45,734,330 2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,099 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,553 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 </td <td>2022</td> <td></td> <td>44,989,947</td> <td>1,009,393</td> <td>33,994,230</td> <td>79,993,570</td> <td>462,960</td> <td>79,530,610</td> <td>56,608,317</td>	2022		44,989,947	1,009,393	33,994,230	79,993,570	462,960	79,530,610	56,608,317
2025 55,527,323 1,250,051 41,753,215 98,530,589 2,006,160 96,524,429 48,902,279 2026 59,656,509 1,344,390 44,791,272 105,792,172 462,960 105,329,212 47,645,586 2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 113,236,516 45,734,330 2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,099 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,553 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 158,664,205 37,963,688 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,	2023		48,225,128	1,083,264	36,377,427	85,685,819	462,960	85,222,859	54,160,668
2026 59,656,509 1,344,390 44,791,272 105,792,172 462,960 105,329,212 47,645,586 2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 113,236,516 45,734,330 2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,099 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,553 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 165,654,205 37,963,668 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 89,346,959 212,895,607 462	2024		51,727,919	1,163,262	38,956,686	91,847,868	462,960	91,384,908	51,854,251
2027 64,153,594 1,447,153 48,098,730 113,699,476 462,960 113,236,516 45,734,330 2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,099 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,553 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 165,654,205 37,963,688 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 46	2025		55,527,323	1,250,051	41,753,215	98,530,589	2,006,160	96,524,429	48,902,279
2028 69,062,587 1,559,346 51,707,766 122,329,700 462,960 121,866,740 43,946,368 2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,099 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,553 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 165,654,205 37,963,668 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 4	2026		59,656,509	1,344,390	44,791,272	105,792,172	462,960	105,329,212	47,645,586
2029 74,434,573 1,682,142 55,655,733 131,772,447 5,864,160 125,908,287 40,539,099 2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,553 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 165,654,205 37,963,668 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 <td< td=""><td>2027</td><td></td><td>64,153,594</td><td>1,447,153</td><td>48,098,730</td><td>113,699,476</td><td>462,960</td><td>113,236,516</td><td>45,734,330</td></td<>	2027		64,153,594	1,447,153	48,098,730	113,699,476	462,960	113,236,516	45,734,330
2030 80,329,182 1,816,904 59,986,226 142,132,311 462,960 141,669,351 40,726,553 2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 165,654,205 37,963,668 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793	2028		69,062,587	1,559,346	51,707,766	122,329,700	462,960	121,866,740	43,946,368
2031 86,816,451 1,965,237 64,750,449 153,532,137 462,960 153,069,177 39,289,045 2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 165,654,205 37,963,668 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105	2029		74,434,573	1,682,142	55,655,733	131,772,447	5,864,160	125,908,287	40,539,099
2032 93,979,189 2,129,038 70,008,938 166,117,165 462,960 165,654,205 37,963,668 2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497	2030		80,329,182	1,816,904	59,986,226	142,132,311	462,960	141,669,351	40,726,553
2033 101,916,015 2,310,566 75,833,787 180,060,368 2,006,160 178,054,208 36,433,419 2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241	2031		86,816,451	1,965,237	64,750,449	153,532,137	462,960	153,069,177	39,289,045
2034 110,745,313 2,512,531 82,311,533 195,569,378 462,960 195,106,418 35,645,213 2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671	2032		93,979,189	2,129,038	70,008,938	166,117,165	462,960	165,654,205	37,963,668
2035 120,610,430 2,738,218 89,546,959 212,895,607 462,960 212,432,647 34,652,366 2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444	2033		101,916,015	2,310,566	75,833,787	180,060,368	2,006,160	178,054,208	36,433,419
2036 131,686,609 2,991,639 97,668,159 232,346,408 462,960 231,883,448 33,772,512 2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794	2034		110,745,313	2,512,531	82,311,533	195,569,378	462,960	195,106,418	35,645,213
2037 147,884,062 3,359,611 109,681,343 260,925,016 15,894,960 245,030,056 31,863,608 2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 <td>2035</td> <td></td> <td>120,610,430</td> <td>2,738,218</td> <td>89,546,959</td> <td>212,895,607</td> <td>462,960</td> <td>212,432,647</td> <td>34,652,366</td>	2035		120,610,430	2,738,218	89,546,959	212,895,607	462,960	212,432,647	34,652,366
2038 166,073,802 3,772,843 123,172,148 293,018,793 462,960 292,555,833 33,967,715 2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782	2036		131,686,609	2,991,639	97,668,159	232,346,408	462,960	231,883,448	33,772,512
2039 186,500,880 4,236,903 138,322,322 329,060,105 462,960 328,597,145 34,064,603 2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 831,901,026 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 <td>2037</td> <td></td> <td>147,884,062</td> <td>3,359,611</td> <td>109,681,343</td> <td>260,925,016</td> <td>15,894,960</td> <td>245,030,056</td> <td>31,863,608</td>	2037		147,884,062	3,359,611	109,681,343	260,925,016	15,894,960	245,030,056	31,863,608
2040 209,440,488 4,758,042 155,335,968 369,534,497 462,960 369,071,537 34,161,118 2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 740,733,822 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2038		166,073,802	3,772,843	123,172,148	293,018,793	462,960	292,555,833	33,967,715
2041 235,201,668 5,343,281 174,442,292 414,987,241 2,006,160 412,981,081 34,129,793 2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 740,733,822 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2039		186,500,880	4,236,903	138,322,322	329,060,105	462,960	328,597,145	34,064,603
2042 264,131,473 6,000,505 195,898,694 466,030,671 462,960 465,567,711 34,353,290 2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 740,733,822 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2040		209,440,488	4,758,042	155,335,968	369,534,497	462,960	369,071,537	34,161,118
2043 296,619,644 6,738,567 219,994,233 523,352,444 462,960 522,889,484 34,449,059 2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 740,733,822 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2041		235,201,668	5,343,281	174,442,292	414,987,241	2,006,160	412,981,081	34,129,793
2044 333,103,860 7,567,411 247,053,523 587,724,794 462,960 587,261,834 34,544,683 2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 740,733,822 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2042		264,131,473	6,000,505	195,898,694	466,030,671	462,960	465,567,711	34,353,290
2045 374,075,635 8,498,202 277,441,107 660,014,944 5,864,160 654,150,784 34,356,529 2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 740,733,822 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2043		296,619,644	6,738,567	219,994,233	523,352,444	462,960	522,889,484	34,449,059
2046 420,086,938 9,543,481 311,566,363 741,196,782 462,960 740,733,822 34,735,661 2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2044		333,103,860	7,567,411	247,053,523	587,724,794	462,960	587,261,834	34,544,683
2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2045		374,075,635	8,498,202	277,441,107	660,014,944	5,864,160	654,150,784	34,356,529
2047 471,757,632 10,717,329 349,889,026 832,363,986 462,960 831,901,026 34,831,087	2046		420,086,938	9,543,481	311,566,363	741,196,782	462,960	740,733,822	34,735,661
	2047			10,717,329	349,889,026	832,363,986	462,960	831,901,026	34,831,087
1 - 2 - 3 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	2048*		529,783,820	12,035,561	392,925,376	1,467,148,757	462,960	1,466,685,797	54,829,518

VANS (Inversión año 2019)	\$220,497,877
TIR	20%

Cuadro A9.2 Cálculo del VANS y la TIR del tramo II Análisis de sensibilidad del proyecto (pesos de septiembre de 2006)

Año Inversión Beneficios directos Tránsito normal Tránsito normal Tránsito desviado Tránsito normal Tránsito normal Tránsito desviado Tránsito normal Tránsito normal Tránsito normal Tránsito desviado Tránsito normal Tránsito normal			Ahorro CGV(\$/año)						
2007 71,340,000 -71,340,000 -71,340,000 -71,340,000 2008 10,701,269 325,006 16,649,312 27,675,588 295,200 27,380,388 24,446,775 2009 10,808,282 328,256 16,818,805 27,952,344 295,200 27,657,144 22,048,106 2010 11,916,365 331,539 16,983,963 28,231,867 295,200 27,234,986 17,308,326 2011 11,1025,529 334,854 17,153,803 28,514,186 1,279,200 27,234,986 17,308,326 2012 11,135,784 338,203 17,325,341 28,799,328 295,200 28,504,128 16,174,008 2013 11,247,142 341,585 17,498,594 29,087,321 295,200 28,792,121 14,586,885 2014 11,359,613 348,401 17,673,580 29,378,194 295,200 29,082,994 13,155,670 2015 11,473,209 348,451 17,850,316 29,671,976 3,739,200 25,932,776 10,770,560 2017	Año	Inversión							
2008 10,701,269 325,006 16,649,312 27,675,588 295,200 27,380,388 24,446,775 2009 10,808,282 328,266 16,815,805 27,952,344 295,200 27,657,144 22,048,106 2010 10,916,365 331,539 16,983,963 28,231,867 295,200 27,936,667 19,884,768 2011 11,025,529 334,854 17,153,803 28,514,186 12,799,200 27,234,986 17,308,326 2012 11,135,784 338,203 17,325,341 28,799,328 295,200 28,504,128 16,174,008 2013 11,247,142 341,585 17,498,594 29,087,321 295,200 28,792,121 14,586,985 2014 11,359,613 345,001 17,650,316 29,671,976 37,39,200 29,082,994 13,155,670 2015 11,473,209 348,451 17,850,316 29,586,996 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,673,496 <td></td> <td></td> <td>normal</td> <td>desviado</td> <td></td> <td></td> <td></td> <td></td> <td></td>			normal	desviado					
2009 10,808,282 328,256 16,815,805 27,952,344 295,200 27,657,144 22,048,106 2010 10,916,365 331,539 16,983,963 28,231,867 295,200 27,936,667 19,884,768 2011 11,025,529 334,854 17,153,803 28,514,186 1,279,200 27,234,986 17,308,326 2012 11,135,784 338,203 17,325,341 28,799,328 295,200 28,504,128 16,174,008 2013 11,247,142 341,585 17,498,594 29,087,321 295,200 28,792,121 14,586,985 2014 11,359,613 345,001 17,673,580 29,378,194 295,200 29,082,994 13,155,670 2015 11,473,209 348,451 17,850,316 29,671,976 3,739,200 25,932,776 10,473,813 2016 11,587,941 351,935 18,028,819 29,686,696 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,275,867 30,275,888	2007	71,340,000						-71,340,000	-71,340,000
2010 10,916,365 331,539 16,983,963 28,231,867 295,200 27,336,667 19,884,768 2011 11,025,529 334,854 17,153,803 28,514,186 1,279,200 27,234,986 17,308,326 2012 11,135,784 338,203 17,325,341 28,799,328 295,200 28,504,128 16,174,008 2013 11,247,142 341,585 17,498,594 29,087,321 295,200 28,792,121 14,586,985 2014 11,359,613 345,001 17,673,580 29,378,194 295,200 29,082,994 13,155,670 2015 11,473,209 348,481 17,850,316 29,671,976 3,739,200 25,932,776 10,473,813 2016 11,587,941 351,935 18,028,819 29,968,696 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,563 2018 11,239,067 362,599 18,575,111 30,876,777 1,279,200 29,577,77	2008		10,701,269	325,006	16,649,312	27,675,588	295,200	27,380,388	24,446,775
2011 11,025,529 334,854 17,153,803 28,514,186 1,279,200 27,234,986 17,308,326 2012 11,135,784 338,203 17,325,341 28,799,328 295,200 28,504,128 16,174,008 2013 11,247,142 341,585 17,498,594 29,087,321 295,200 28,792,121 14,586,985 2014 11,359,613 345,001 17,673,580 29,378,194 295,200 29,082,994 13,155,670 2015 111,473,209 348,451 17,673,580 29,378,194 295,200 29,673,496 10,700,560 2016 11,587,941 351,935 18,028,819 29,968,696 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,563 2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,867 8,703,588 2019 11,939,067 362,599 18,575,111 30,875,777 1,279,200 29,597,577	2009		10,808,282	328,256	16,815,805	27,952,344	295,200	27,657,144	22,048,106
2012 11,135,784 338,203 17,325,341 28,799,328 295,200 28,504,128 16,174,008 2013 11,247,142 341,585 17,498,594 29,087,321 295,200 28,792,121 14,586,985 2014 11,359,613 345,001 17,673,580 29,378,194 295,200 29,082,994 13,155,670 2015 11,473,209 348,451 17,850,316 29,671,976 3,739,200 25,932,776 10,473,813 2016 11,587,941 351,935 18,028,819 29,968,696 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,563 2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,867 8,703,588 2019 11,939,067 362,599 18,575,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 31,507,577	2010		10,916,365	331,539	16,983,963	28,231,867	295,200	27,936,667	19,884,768
2013 11,247,142 341,585 17,498,594 29,087,321 295,200 28,792,121 14,586,985 2014 11,359,613 345,001 17,673,580 29,378,194 295,200 29,082,994 13,155,670 2015 11,473,209 348,451 17,850,316 29,671,976 3,739,200 25,932,776 10,473,813 2016 11,587,941 351,935 18,028,819 29,968,696 295,200 29,673,496 10,700,560 2017 111,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,563 2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,867 8,703,588 2019 11,939,067 362,599 18,575,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,517,175	2011		11,025,529	334,854	17,153,803	28,514,186	1,279,200	27,234,986	17,308,326
2014 11,359,613 345,001 17,673,580 29,378,194 295,200 29,082,994 13,155,670 2015 11,473,209 348,451 17,850,316 29,671,976 3,739,200 25,932,776 10,473,813 2016 11,587,941 351,935 18,028,819 29,968,696 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,663 2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,667 8,703,588 2019 11,939,067 362,599 18,575,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298	2012		11,135,784	338,203	17,325,341	28,799,328	295,200	28,504,128	16,174,008
2015 11,473,209 348,451 17,850,316 29,671,976 3,739,200 25,932,776 10,473,813 2016 11,587,941 351,935 18,028,819 29,968,696 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,563 2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,867 8,703,588 2019 11,939,067 362,599 18,676,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603	2013		11,247,142	341,585	17,498,594	29,087,321	295,200	28,792,121	14,586,985
2016 11,587,941 351,935 18,028,819 29,968,696 295,200 29,673,496 10,700,560 2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,563 2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,867 8,703,588 2019 11,939,067 362,599 18,575,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,517,175 5,758,070 2023 12,300,833 373,586 19,137,955 31,812,375 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603	2014		11,359,613	345,001	17,673,580	29,378,194	295,200	29,082,994	13,155,670
2017 11,703,821 355,455 18,209,107 30,268,383 295,200 29,973,183 9,650,563 2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,867 8,703,588 2019 11,939,067 362,599 18,575,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,202,201 6,384,588 2022 12,300,833 373,586 19,137,955 31,812,375 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121	2015		11,473,209	348,451	17,850,316	29,671,976	3,739,200	25,932,776	10,473,813
2018 11,820,859 359,009 18,391,199 30,571,067 295,200 30,275,867 8,703,588 2019 11,939,067 362,599 18,575,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,202,201 6,384,588 2022 12,300,833 373,586 19,137,955 31,812,375 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121 4,223,832 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885	2016		11,587,941	351,935	18,028,819	29,968,696	295,200	29,673,496	10,700,560
2019 11,939,067 362,599 18,575,111 30,876,777 1,279,200 29,597,577 7,596,961 2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,202,201 6,384,588 2022 12,300,833 373,586 19,137,955 31,812,375 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121 4,223,832 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,155,925 3,333,501 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925	2017		11,703,821	355,455	18,209,107	30,268,383	295,200	29,973,183	9,650,563
2020 12,058,458 366,225 18,760,862 31,185,545 295,200 30,890,345 7,079,270 2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,202,201 6,384,588 2022 12,300,833 373,586 19,137,955 31,812,375 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121 4,223,832 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885 3,809,334 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277	2018		11,820,859	359,009	18,391,199	30,571,067	295,200	30,275,867	8,703,588
2021 12,179,043 369,888 18,948,470 31,497,401 295,200 31,202,201 6,384,588 2022 12,300,833 373,586 19,137,955 31,812,375 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,808,885 3,809,334 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885 3,809,334 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971	2019		11,939,067	362,599	18,575,111	30,876,777	1,279,200	29,597,577	7,596,961
2022 12,300,833 373,586 19,137,955 31,812,375 295,200 31,517,175 5,758,070 2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121 4,223,832 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885 3,809,334 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043	2020		12,058,458	366,225	18,760,862	31,185,545	295,200	30,890,345	7,079,270
2023 12,423,842 377,322 19,329,335 32,130,498 10,135,200 21,995,298 3,587,910 2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121 4,223,832 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885 3,809,334 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526	2021		12,179,043	369,888	18,948,470	31,497,401	295,200	31,202,201	6,384,588
2024 12,548,080 381,095 19,522,628 32,451,803 295,200 32,156,603 4,683,427 2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121 4,223,832 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885 3,809,334 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 35,196,859	2022		12,300,833	373,586	19,137,955	31,812,375	295,200	31,517,175	5,758,070
2025 12,673,561 384,906 19,717,854 32,776,321 295,200 32,481,121 4,223,832 2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885 3,809,334 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859	2023		12,423,842	377,322	19,329,335	32,130,498	10,135,200	21,995,298	3,587,910
2026 12,800,296 388,756 19,915,033 33,104,085 295,200 32,808,885 3,809,334 2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780	2024		12,548,080	381,095	19,522,628	32,451,803	295,200	32,156,603	4,683,427
2027 12,928,299 392,643 20,114,183 33,435,125 1,279,200 32,155,925 3,333,501 2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250	2025		12,673,561	384,906	19,717,854	32,776,321	295,200	32,481,121	4,223,832
2028 13,057,582 396,570 20,315,325 33,769,477 295,200 33,474,277 3,098,366 2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2026		12,800,296	388,756	19,915,033	33,104,085	295,200	32,808,885	3,809,334
2029 13,188,158 400,535 20,518,478 34,107,171 295,200 33,811,971 2,794,306 2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2027		12,928,299	392,643	20,114,183	33,435,125	1,279,200	32,155,925	3,333,501
2030 13,320,040 404,541 20,723,663 34,448,243 295,200 34,153,043 2,520,083 2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2028		13,057,582	396,570	20,315,325	33,769,477	295,200	33,474,277	3,098,366
2031 13,453,240 408,586 20,930,899 34,792,726 3,739,200 31,053,526 2,045,872 2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2029		13,188,158	400,535	20,518,478	34,107,171	295,200	33,811,971	2,794,306
2032 13,587,772 412,672 21,140,208 35,140,653 295,200 34,845,453 2,049,725 2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2030		13,320,040	404,541	20,723,663	34,448,243	295,200	34,153,043	2,520,083
2033 13,723,650 416,799 21,351,611 35,492,059 295,200 35,196,859 1,848,568 2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2031		13,453,240	408,586	20,930,899	34,792,726	3,739,200	31,053,526	2,045,872
2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2032		13,587,772	412,672	21,140,208	35,140,653	295,200	34,845,453	2,049,725
2034 13,860,887 420,967 21,565,127 35,846,980 295,200 35,551,780 1,667,150 2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2033		13,723,650	416,799	21,351,611	35,492,059	295,200	35,196,859	1,848,568
2035 13,999,496 425,176 21,780,778 36,205,450 1,279,200 34,926,250 1,462,336	2034		13,860,887	420,967	21,565,127	35,846,980		35,551,780	1,667,150
	2035		13,999,496	425,176	21,780,778	36,205,450	1,279,200	34,926,250	1,462,336

VANS (Inversión año 2007)	\$163,759,359
TIR	39%

Con fundamento en los artículos 21 y 27 de la Ley Federal del Derecho de Autor y como titular de los derechos moral y patrimonial de la obra titulada *Economía del bienestar y asignación de recursos: un caso de estudio para México (2006)*, otorgo de manera gratuita y permanente a la Universidad Autónoma Metropolitana Unidad Iztapalapa y a la Coordinación de Servicios Documentales (CSD) Biblioteca; autorización para que fijen la obra en cualquier medio, incluido el electrónico, y la divulguen entre sus usuarios, profesores, estudiantes o terceras personas, sin que pueda percibir por tal divulgación una contraprestación.

LUIS ARTURO CASTRO VALLEJO

FIRMA