
UNIVERSIDAD AUTÓNOMA
METROPOLITANA

Master in Science and Tecnologies of Information

Quality of Service Management for
Enterprise Service Bus (ESB)

Author:

Mariano Vargas Santiago

Supervisor:

Dr. Luis Mart́ın Rojas

Cárdenas

A thesis submitted in fulfilment of the requirements

for the degree of Master in Science

in the

Maestŕıa en Ciencias y Tecnoloǵıas de la Información

PCyTI

December 2013

http://www.uam.mx
http://www.uam.mx
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

ii

“The important thing is not to stop questioning. Curiosity has its own reason for exist-

ing. One cannot help but be in awe when he contemplates the mysteries of eternity, of

life, of the marvelous structure of reality. It is enough if one tries merely to comprehend

a little of this mystery every day. Never lose a holy curiosity.”

“Everything should be made as simple as possible, but no simpler.”

Albert Einstein

“The truth of things is the chief nutriment of superior intellects.”

Leonardo da Vinci

“All truths are easy to understand once they are discovered; the point is to discover

them.”

Galileo Galilei

“Experience: that most brutal of teachers. But you learn, my God do you learn.”

C. S. Lewis

UNIVERSIDAD AUTÓNOMA METROPOLITANA

Abstract

UAM

PCyTI

Master in Science

Quality of Service Management for Enterprise Service Bus (ESB)

by Mariano Vargas Santiago

Nowadays with the accelerated evolution of Internet and the advent of the cloud com-

puting, networked applications and distributed systems in general are more and more

designed as a composition of distributed services following the Service Oriented Architec-

ture (SOA) paradigm. The standardization efforts around SOA give open and standard

interfaces facilitating the integration and the interoperability of services. And the En-

terprise Service Bus (ESB) is mostly used as the infrastructure of services integration as

it follows and applies defined standards. Given its role and importance, an ESB brings

up many challenges like knowing its limits and constraints, but also including strate-

gies to guarantee and improve its performance and reliability. The main goal of this

paper is to present an experimental platform that allows evaluating and modeling ESB

performance. The platform can be used to make resource planning before deploying a

business around an ESB but also to propose, develop, test and validate solutions aimed

at managing ESB scalability and quality of service. . .

University Web Site URL Here (include http://www.insa-toulouse.fr/fr/index.html)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

Thanks to God Almighty for the competition of this master’s thesis.

To my father, my mother, my brothers, and all my family, who have always believed in

me and who have been there when I needed them most.

To Assaely my partner in live who has never stopped believing in me, always been very

supportive, confidence and encouraged me to continue on and on.

To Dr. Luis Rojas Cárdenas , for his teaching, advice and especially for the direction

of this work, as the primary part of this.

To Dr. Ernesto Expósito, co-counsel for this work and for his comments to improve it.

To Codé Diop, for taking the time to review my work and guide me with his comments

for improvement.

To my synod: Dr. Alfonso Castro for taking his time to review my work and

orientation feedback for improvement of this thesis.

To my degree teachers for my bearings, with good tips and lessons to improve as a

person and as a student.

To my friends, for supporting me when I need it and distract me when necessary.

To the National Council for Science and Technology (CONACyT) for the support

given, which was essential for my studies.

To LAAS CNRS for the opportunity and to the FP7-ICT IMAGINE research and

development project, co-funded by the European Commission under the “Virtual

Factories and Enterprises” (FoF-ICT- 2011.7.3, Grant Agreement No: 285132).

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables viii

Abbreviations ix

0.1 Abstract . 1

0.2 Introducción . 1

0.3 Estado del Arte . 3

0.4 Metodoloǵıa . 6

0.5 Resultados . 7

0.6 Conclusiones . 10

1 Introduction 11

1.1 Welcome and Thank You . 11

1.1.1 Objectives . 11

1.2 Motivation . 12

1.3 Basic Concepts . 13

1.3.1 Service Oriented-Architecture . 13

1.3.2 System Integration . 14

1.4 Enterprise Service Bus . 16

1.4.1 Functionalities of an ESB . 17

1.4.2 Use case Example of an ESB . 17

1.4.3 Dissertation Structure . 18

2 State of the Art 19

2.1 Related Work . 19

3 Emulator 27

3.1 Problem Statement . 27

3.2 Motivation . 27

3.2.1 Different ways to Evaluate Distributed Systems 28

iv

Contents v

3.3 ESB’s General Environment . 30

3.3.1 General Use Case . 31

3.4 Emulators Architecture . 32

3.4.1 Emulator’s Components General View 33

3.4.2 Emulator’s Component Diagram 34

3.5 Current Environment . 35

4 Results and Analysis 37

4.1 Test with SoapUI . 37

4.2 Avoiding Bottlenecks . 39

4.2.1 Performance issues from the provider side and impact 40

4.2.2 Performance issues from the consumer side and impact 47

4.3 Identified Problem while Evaluating the ESB’s Performance 47

4.3.1 What is the cost of monitoring the ESB? 48

4.4 OUT OF HEAP MEMORY . 50

5 Emulators Outputs 54

5.1 Obtained Metrics . 54

5.1.1 Obtained Graphs . 55

6 Structure Learning 59

6.1 Motivation . 59

6.2 Data sampling . 60

6.3 PC Algorithm . 62

6.4 Graphical Model . 63

6.5 Analysis . 64

6.6 Conclusions . 68

7 Conclusions and Perspectives 69

7.1 Conclusions . 69

Bibliography 71

List of Figures

1 Emulators architecture . 7

2 Bayesian Network . 9

1.1 System Integration Point to Point . 14

1.2 System Integration EAI . 15

1.3 System Integration ESB . 16

2.1 Typical Components Around an ESB [UT06] 20

2.2 Direct Proxy [AP11] . 21

2.3 Content Based Routing [AP11] . 22

2.4 Transformation Proxy [AP11] . 22

2.5 Direct Service Orchestration and BPEL Orchestration [SJA] 23

2.6 Direct Service Orchestration and BPEL a) First experiment. b) Second
experiment [GJMCGS10] . 24

3.1 ESB General Environment . 30

3.2 Emulator General Use Case . 31

3.3 Emulator Architecture . 33

3.4 Emulator Black Box . 34

3.5 Emulator Component Diagram . 35

3.6 Current Environment . 36

4.1 Results Using SoapUI . 38

4.2 Scenario Topology and Metrics . 39

4.3 Phase One Application Server Resources 40

4.4 Phase One Response Time . 41

4.5 Phase Two Application Server Resources 41

4.6 Phase Two Response Time . 42

4.7 Phase Three Application Server Resources 42

4.8 Phase Three Response Time . 43

4.9 Phase Four Application Server Resources 44

4.10 Phase Four Response Time . 44

4.11 Phase Five Application Server Resources 45

4.12 High Response Time and losses detection issue 46

4.13 Resume of Three Phases . 46

4.14 Out of Heap Memory at the Consumer Side 47

4.15 ESB Times . 48

4.16 ESB Mediation Comparison . 50

4.17 Consumer Concurrency . 51

vi

List of Figures vii

4.18 ESB Concurrency . 52

4.19 Provider Concurrency . 52

4.20 Consumer vs ESB vs Provider Concurrency 53

5.1 Computed Response Time . 56

5.2 ESB Concurrency view by the Consumer 56

5.3 ESB Heap Memory view by the Consumer 57

5.4 ESB CPU view by the Consumer . 58

6.1 Bayesian Network . 64

List of Tables

2 ESB Evaluation Survey (Resumen) . 5

3 Tested Scenarios (Resumen) . 8

4 Variables and States (Resumen). 9

2.1 ESB Evaluation Survey . 25

3.1 Characteristics of VMs . 36

4.1 First Scenario, No Mediation . 49

4.2 Second Scenario, With Mediation . 49

5.1 Stored Information . 54

6.1 Tested Scenarios . 60

6.2 CPU . 61

6.3 Memory Used . 61

6.4 Concurrency . 61

6.5 Number of Requests . 62

6.6 Response Time . 62

6.7 Marginal Probabilities . 64

6.8 High Concurrency (C=H) . 65

6.9 Recommended RT . 65

6.10 Very High NRs . 66

6.11 New Marginal Probabilities . 66

6.12 New High Concurrency (C=H) . 67

6.13 New Recommended RT . 67

6.14 New Very High NRs . 67

viii

Abbreviations

ESB Enterprise Service Bus

XML eXtensible Markup Language

QoS Quality of Service

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TPS Transactions Per Second

VM Virtual Machine

ix

Dedicated to my parents and Diana Assaely the love of my life. . .

x

Resumen

0.1 Abstract

Hoy en d́ıa, la mayoŕıa de las organizaciones siguen un paradigma SOA (Service Ori-

ented Architecture − arquitectura orientada al servicio) basada en un ESB (Enterprise

Service Bus − Bus de Servicios Empresariales). Un ESB es una solución middleware que

permite la interconexión de aplicaciones y servicios heterogéneos, t́ıpicamente entregá

de mensajes de los consumidores de servicios a los proveedores de los mismos. El uso de

un ESB es la tendencia que la mayoŕıa de las organizaciones siguen actualmente, él esta

encargado de la integración de sistemas, la solicitud de enrutamiento, la transformación

y adaptación de datos. Sin embargo, un ESB trae consigo muchos retos, como saber

sus ĺımites y problemas, debido a que tiene como meta reducir los costos y mejorar la

eficiencia operativa del negocio. En general la mayoŕıa de los B2B (Business-to-Business

- negocio-a-negocio) tienen sistemas complejos de integraciónón en torno a un ESB, de

hecho la integración de cualquier sistema utilizando un ESB como columna vertebral

de integración, tiene dificultades para descubrir problemas potenciales antes de su de-

spliegue. Por lo tanto, contar con una herramienta que pueda implementar y evaluar

complejos B2B a bajo costo es indispensable. En este trabajo se propone un emulador

genérico para evaluar el desempeño de cualquiera que sea el ESB. Proponemos un en-

torno basado en la nube, ejecutando el ESB, consumidores y proveedores de servicios en

diferentes máquinas virtuales. Estamos haciendo más fácil la evaluación del desempeño

de un ESB, en condiciones de alta presión como en un entorno real. . .

0.2 Introducción

En el contexto de la rápida evolución del Internet, aplicaciones distribuidas y más ampli-

amente los sistemas distribuidos se basan cada vez más en los servicios que se integran

para implementar procesos de negocio complejos. La diversidad y heterogeneidad de

1

Chapter 0. Resumen 2

estos servicios plantean muchas necesidades durante la integración. Para satisfacer es-

tas, el ESB se ha propuesto para el desarrollo de estrategias, basado en estándares de

integración de servicios y aplicaciones. Sin embargo, la competencia entre los servicios

y el contexto dinámico de SOA (movilidad, aumento de consumidores y proveedores de

servicios, etc. . .) puede causar acontecimientos imprevisibles, como la falta de disponi-

bilidad de servicios, tiempos de respuesta más altos, menor fiabilidad, y problemas por

cuestiones de seguridad. En este contexto, debe ser una prioridad garantizar la calidad

de servicio (QoS), mientras se acceda a servicios distribuidos desplegados en el ESB.

SOA es una arquitectura que modulariza servicios. En una SOA con éxito, puede re-

combinar estos servicios en diversas formas para la ejecución de procesos empresariales

nuevos o mejorados [VAMD09]. SOA permite a las empresas reutilizar los servicios que

crean a través de la integración de múltiples aplicaciones en más de un proceso de nego-

cio sin necesidad de programación adicional. En esencia, SOA establece un repositorio

de estos servicios, que los desarrolladores de procesos de negocio pueden descubrir a

través de protocolos servicios Web [Ort07].

Juntos SOA y ESB proporcionan una infraestructura que permite la comunicación entre

diferentes aplicaciones que se ejecutan en diferentes plataformas y escritos en diversos

idiomas. Un ESB es definido en [Cha09] como un sistema de integración middleware

que permite a los sistemas heterogéneos distribuidos tratar y gestionar los datos. Los

esfuerzos de normalización en torno SOA crean como enfoque principal de integración al

ESB, ya que un ESB es el enfoque basado en estándares. Además un ESB permite una

integración más rápida y más barata de los sistemas y permite tener una mejor solución

de escalabilidad para despliegues empresariales distribuidos.

En general la mayoŕıa de los B2B (negocio-a-negocio) usualmente cuenta con sistemas

complejos de integración en torno a un ESB. Es dif́ıcil y costoso de implementar o aplicar

las topoloǵıas complejas alrededor de un ESB. Debido a la falta de experiencia de los

desarrolladores de procesos de negocio y el uso de los recursos dedicados a una aplicación

o servicio en proceso que no puede fallar o sufrir interrupciones. La tendencia del

B2B para integrar cualquier sistema (aplicaciones o servicios), construido sobre un ESB

como una columna vertebral de integración, encuentra dificultad en descubrir problemas

potenciales antes de la implantación de nuevos negocios. Ya que, la mayoŕıa de los

problemas se producen en el ESB bajo alta carga de trabajo.

A lo largo de los años, muchos estudios se han realizado con el fin de evaluar el desempeño

del ESB, tratando de averiguar si tiene problemas de seguridad, fiabilidad y de escala-

bilidad. La evaluación del performance ESB se puede hacer midiendo el rendimiento y

el tiempo medio de respuesta.

Chapter 0. Resumen 3

Ser capaz de evaluar los ESB realmente es una necesidad de las empresas y muchos

enfoques y herramientas están propuestas en el trabajo relacionado. Por ejemplo, el

objetivo de capacidad de planificación en [UT06], para determinar qué hardware comprar

para cumplir con los requisitos de coste, el rendimiento y la escalabilidad. Tomando otro

ejemplo, para evaluar el desempeño de la ESB en relación con la orquestación de servicios

[SJA], que las empresas utilizan para crear servicios compuestos de más alto nivel y más

útiles.

Como consecuencia de ello, desarrollamos una herramienta para evaluar el compor-

tamiento de los ESB. Utilizando como KPIs (Key Performance Indicators − indicadores

clave de rendimiento) el tiempo de respuesta, la fiabilidad, y el número de solicitudes

simultáneas. En concreto la contribución de este trabajo es presentar una herramienta

para evaluación comparativa del rendimiento ESB. Ademas de contar con la posibilidad

de implementar diferentes escenarios en un entorno controlado.

0.3 Estado del Arte

Muchos estudios se han realizado con el fin de evaluar el desempeño de un ESB , en

[UT06] Ken Ueno et al. propuso una técnica de prueba de capacidad, realizada muy

temprano en la vida de un proyecto (fase de capcidad de planificación). Desplegó un

consumidor y proveedor de servicios Web ligero para probar el rendimiento del ESB. Los

resultados de sus pruebas de capacidad pueden revelar la capacidad máxima actual del

servidor ESB en una plataforma espećıfica. Se hicieron pruebas de la ESB sin mediación

y con mediación. Se midió el rendimiento como transacciones por segundo (TPS), y el

tiempo medio de respuesta.

En [AP11], podemos encontrar otros enfoques estudiados acerca de la evaluación de tres

diferentes ESBs: Mule, ServiceMix y WSO2. Los autores tomaron como parámetros

de evaluación: el tiempo de respuesta promedio y las TPS. Para generar peticiones

concurrentes, se utilizó Grinder. En este art́ıculo podemos encontrar tres escenarios

de prueba diferentes, la primera con el ESB simplemente obteniendo la solicitud del

cliente y pasándola al proveedor de servicios, esto se conoce como virtualización o proxy.

Los tres componentes implicados (clientes, ESB y Proveedores de servicios Web) se

desplegaron en diferentes máquinas. Otra prueba fue hecha cuando el ESB realiza algún

tipo de tratamiento de datos, identificando una parte de entrada del mensaje que viene

del lado del cliente para enrutar correctamente al proveedor de servicios. Esto se llama

enrutamiento de contenido base, y es una caracteŕıstica desplegada en cada uno de

los ESB estudiados. Los autores midieron el rendimiento como las transacciones por

segundo, y el tiempo medio de respuesta.

Chapter 0. Resumen 4

En algunas otras obras de los autores centraron su estudio en una de las muchas carac-

teŕısticas que un ESB debe lograr, por ejemplo, el rendimiento de la mediación [SJA].

Ellos evaluaron la función de mediación de los siguientes ESB: ServiceMix, Mule y

JBoss. La aplicación implementada en todos los escenarios fue la aplicación corredor de

préstamos; esta simula más o menos el comportamiento de una aplicación real. Para

conocer la capacidad máxima de un ESB, debe sobrecargarse; con este fin los autores

utilizaron Apache JMeter para enviar muchas solicitudes concurrentes por parte del

cliente.

El objetivo en [GJMCGS10] fue evaluar las caracteŕısticas de tres ESB de código abierto:

Fuse, Mule y Petals ESB. En particular, los autores realizaron un análisis del rendimiento

del tiempo de respuesta con respecto a la invocación de servicios externos y BPEL

(Business Process Execution Language) de procesos basados en un sistema existente.

Para concluir esta sección se presenta la caracterización principal de QoS de los ESBs

estudiados en los trabajos relacionados. Algunos de los parámetros QoS utilizados para

caracterizar el ESB son: el tiempo de respuesta, la escalabilidad, la saturación del

sistema, transacciones por segundo (TPS). Los cuales pueden ser obtenidos utilizando

nuestro enfoque propuesto.

La Tabla 2 muestra un resumen del estudio hecho. Esta Tabla ilustra: la evaluación del

o de los ESB evaluado(s), el entorno de evaluación del ESB, las herramientas prueba

de estrés utilizadas para evaluar al ESB a su máxima capacidad, la aplicación utilizada,

una descripción de si es emulación o metroloǵıa y, finalmente, el objetivo que muestra

por qué se evaluó el ESB.

Chapter 0. Resumen 5

T
a
b
l
e

2
:

E
S

B
E

va
lu

a
ti

o
n

S
u

rv
ey

.

P
ar

am
et

er
[U

T
06

]
[A

P
11

]
[S

J
A

]
[B

re
0
9
]

[B
ru

]
[G

J
M

C
G

S
1
0
]

E
va

lu
at

io
n

R
es

p
on

se
T

im
e

T
h

ro
u

gh
p

u
t

R
es

p
on

se
T

im
e

T
h

ro
u

gh
p

u
t

(P
ro

x
y,

R
ou

ti
n

g,
M

ed
ia

ti
on

)

R
es

p
o
n

se
T

im
e

T
h

ro
u

g
h

p
u

t
(S

er
v
ic

e
O

rc
h

es
tr

a
ti

o
n

)

R
es

p
o
n

se
T

im
e

T
h

ro
u

g
h

p
u

t
S

ec
u

ri
ty

Is
su

es
In

te
g
ra

ti
o
n

Is
su

es
R

es
p

o
n

se
T

im
e

T
h

ro
u

g
h

p
u

t

E
S

B
—

—
—

—
–

M
u

le
E

S
B

S
er

v
ic

eM
ix

W
S

O
2

E
S

B

M
u

le
E

S
B

S
er

v
ic

eM
ix

J
B

o
ss

E
S

B
M

u
le

E
S

B
S

er
v
ic

eM
ix

M
u

le
E

S
B

F
u

se
E

S
B

P
et

a
ls

E
S

B

E
n
v
ir

on
m

en
t

1
.

N
o

E
S

B
2
.

E
S

B
(w

it
h

ou
t

M
ed

ia
ti

on
)

3
.

E
S

B
(w

it
h

M
ed

ia
ti

on
)

1
.

D
ir

ec
t

P
ro

x
y

2
.

R
ou

ti
n

g
P

ro
x
y

3
.

T
ra

n
sf

or
m

at
io

n
P

ro
x
y

1
.

D
ir

ec
t

O
rc

h
es

tr
a
ti

o
n

2
.

B
P

E
L

O
rc

h
es

tr
a
ti

o
n

1.
In

si
d

e
o
n

e
S

er
ve

r
2.

E
ve

ry
th

in
g

!=
S

er
ve

r

O
b

se
rv

a
to

ry
(R

ea
l

A
p

p
li

ca
ti

o
n

)
1.

N
o

J
M

S
2.

W
it

h
J
M

S

P
ar

am
et

er
s

A
t

P
ro

v
id

er
M

u
lt

i
@

IP
H

T
T

P
K

ee
p

A
li

ve
#

of
T

h
re

ad
s

P
ay

lo
ad

A
t

C
on

su
m

er
#

of
C

li
en

ts
P

ay
lo

ad

A
t

C
o
n

su
m

er
#

o
f

C
li

en
ts

P
ay

lo
a
d

A
t

C
o
n

su
m

er
P

ay
lo

a
d

u
n
ti

l
sa

tu
ra

ti
o
n

N
o

P
a
ra

m
et

er
A

t
C

o
n

su
m

er
#

o
f

In
vo

ca
ti

o
n

s

A
p

p
li

ca
ti

on
H

T
T

P
L

oa
d

G
en

er
at

or
G

ri
n

d
er

A
p

a
ch

e
J
M

et
er

L
o
a
n

B
ro

k
er

A
p

a
ch

e
J
M

et
er

L
o
a
n

B
ro

k
er

R
ea

l
A

p
p

li
ca

ti
o
n

R
ea

l
A

p
p

li
ca

ti
o
n

E
/M

E
E

E
E

M
M

G
oa

l
C

ap
ac

it
y

P
la

n
n

in
g

E
S

B
C

or
e

F
ea

tu
re

s
O

rc
h

es
tr

a
ti

o
n

P
er

fo
rm

a
n

ce
P

er
fo

rm
a
n

ce
Is

su
es

S
ca

la
b

il
it

y
Is

su
es

E
S

B
Is

su
es

S
y
st

em
In

te
g
ra

ti
o
n

E
va

lu
a
ti

o
n

Chapter 0. Resumen 6

0.4 Metodoloǵıa

Proponemos un emulador agnóstico, que no es producto ESB dependiente. Sin embargo,

algunas medidas de adaptación tienen que ser efectuadas dentro del ESB correspondiente

para calcular las marcas de tiempo correspondientes. Una ventaja en la que se centro

nuestro enfoque es que esta basado en la nube, lo que nos permite controlar el uso

actual de los recursos de cada máquina virtual que alberga a: consumidores, ESB y

proveedores. Además de la capacidad de obtener métricas KPI eficazmente, es decir, de

manera directa.

Hemos presentado herramientas estrés como son: SoapUI, Grinder y Apache JMeter,

en el estado del arte. Algunas de estas herramientas son de código abierto, pero otras

como SoapUI tienen versiones comerciales. Estas herramientas permiten tener diferentes

métricas de calidad de servicio (QoS), tales como: el tiempo medio de respuesta y TPS,

pero su fallo se mantiene en no ser capaz del monitoreo de la CPU y memoria heap

del sistema ESB. Como consecuencia se propone una arquitectura para ser capaz de

controlar los defectos antes mencionados.

La Figura 1 muestra los componentes principales que intervienen en la arquitectura

del emulador. El Consumidor de Servicio(s) que es la instancia a cargo de la comuni-

cación con el ESB. La Base de datos donde se almacenará toda la información de cada

solicitud−respuesta. El Controlador es responsable de la visualización de gráficos y la

información recuperada de la ejecución de un escenario, los resultados. Este componente

tiene la responsabilidad de invocar a cada LD (Load Driver −controladordecarga). Un

tercer componente, el Driver de Configuración, almacena el número de invocaciones que

cada LD puede lograr, y contiene el tiempo de sueño emulado en el lado proveedor y

el tamaño de los datos de respuesta en bytes que el/los proveedor(es) deben generar.

El Generador, su nombre lo dice, genera cada invocación hecha de un LD a un servicio

Web (proveedor). Por último, el Monitoreo es una instancia independiente encargada

del monitoreo de la memoria Heap de la ESB y el uso de la CPU.

Chapter 0. Resumen 7

E
m

u
la

to
r

E
S

B

C
o

n
tr

o
lle

r
Configuration

Driver

Generator

Monitoring

Service Provider 1

Service Provider 2

.

.

Service Provider N

Service Consumer
D

a
ta

 B
A

s
e

Figure 1: Emulators architecture

0.5 Resultados

Este trabajo tiene como meta principal agilizar el análisis de rendimiento de un ESB.

Para lograr dicha agilización se afianzo que el emulador debeŕıa regresar de manera

directa métricas KPI. Estas pueden ser propuestas por expertos en el tema; como son

los desarrolladores de software. Nuestro emulador obtiene de manera directa, de un

escenario previamente ejecutado, gráficas como son: el tiempo de respuesta, número

de peticiones concurrentes, la memoria Heap y el uso de la CPU. Con las cuales se

puede llevar a cabo un análisis del comportamiento y rendimiento del ESB en cuestión.

Teniendo en cuenta que para determinar el máximo rendimiento del sistema ESB se

deben evitar cuellos de botella. A continuación se muestra un análisis de diagnóstico

probabiĺıstico basado en una red Bayesiana.

Para lograr este objetivo algunas herramientas conocidas establecen relaciones de de-

pendencia entre las variables que se encuentran en una muestra de datos y construyen

un modelo probabiĺıstico, esto se llama aprendizaje estructural. El Algoritmo PC (PC

Algorithm) es una de las técnicas de aprendizaje para encontrar las relaciones de depen-

dencia entre variables en un modelo, y se construye un modelo gráfico en el que se puede

inferir el conocimiento. Esta herramienta necesita un conjunto de datos discretos, que se

Chapter 0. Resumen 8

genera fácilmente después de ejecutar varios escenarios con nuestro enfoque propuesto.

La discretización de indicadores clave de rendimiento (KPIs) y los datos monitorizados

es una primera clasificación necesaria, después se genera una BN (Bayesian Network -

red bayesiana), que es el resultado de las pruebas de dependencia, antepuesta poste-

riormente al cálculo del DAG (Direct Acyclic Graph – gráfica acŕılica directa). DAG

representa las relaciones causales entre las variables. Finalmente, se calculan a partir

de los datos discretos, las tablas de probabilidad condicional (CPT), para conseguir una

BN.

Hemos implementado una serie de diferentes escenarios como se muestra en la Tabla 3.

Table 3: Tested Scenarios (Resumen)

Scenario
of Load

Drivers
of

Request
Response

Size

Processing
Time (ms)

1 1 4000 1000 B 100

2 2 8000 1000 B 100

3 3 12000 1000 B 100

4 4 16000 1000 B 100

5 6 24000 1000 B 100

6 8 32000 1000 B 100

El conjunto de datos consta de cinco variables: el porcentaje utilizado de CPU y de

memoria, el tiempo de respuesta, el nivel de concurrencia y el número de peticiones. La

Tabla 4 muestra los valores discretos y sus estados.

Después de ejecutar el algoritmo PC, usando Tetrad v4.3, se obtuvo la siguiente red

bayesiana en su representación gráfica, Figura 6.1. Las relaciones de dependencia en-

tre las variables se establece mediante pruebas de hipótesis estad́ısticas, de pruebas

espećıficas, independencia condicional.

La figura 2 muestra la fuerte dependencia de cada uno de los indicadores clave de

rendimiento monitorizados y medidos. Lo que esto significa es que todas las variables

dependen una de la otra.

Chapter 0. Resumen 9

Table 4: Variables and States (Resumen).

Variable States

Low = [0,25),
Med = [25,50),
High = [50, 75),
Very High = [75,100]

CPU

MU

C

Low = [0, 339),
Med = [339, 967),
High = [967, 4219),
Very High = [4219, 9919]

RT
(Measured in seconds
according to the UTI

G.1010 Recommendation)

Preferred = [0; 2),
Acceptable = [2; 4),
Unacceptable = [4; +∞)

NR

Low = [0; 10000),
Med = [10000; 20000),
High = [20000; 30000),
Very High = [30000; +∞)

Figure 2: Bayesian Network

Chapter 0. Resumen 10

0.6 Conclusiones

En este trabajo, hemos propuesto una herramienta que facilita la evaluación de un ESB

con el objetivo principal centrado en circunstancias de alta carga de trabajo como en una

producción real. Utilizando el emulador podŕıamos implementar complejas y diferentes

topoloǵıas de redes de negocios. Con nuestro enfoque fácilmente se pueden encontrar

cuestiones de fiabilidad, transacciones por segundo y el tiempo de respuesta entre otras

caracteŕısticas de calidad de servicio de un ESB.

Hemos encontrado un problema de fiabilidad cuando enviamos 40,000 solicitudes con-

currentes (10 LD) para este ESB, ya que este asigna una cantidad dinámica de alma-

cenamiento de memoria por cada solicitud que recibe, y por lo tanto se desborda la

memoria Heap.

Chapter 1

Introduction

1.1 Welcome and Thank You

In the context of the rapid evolution of the Internet, distributed applications and more

broadly distributed systems are increasingly based on services that are integrated to

implement complex business processes. Diversity and heterogeneity of these services

raise many needs during integration. To meet these needs, the ESB (Enterprise Service

Bus) has been proposed for the development of strategies, standards-based integration

services and applications. However, the competition between the services and the dy-

namic context of service-oriented architectures (mobility, increase of service consumer

and providers, etc. . .) may cause unforeseeable events, such as service unavailability,

higher response times, reduced reliability, safety, etc. . . In this context, ensuring quality

of service while accessing distributed services deployed on the ESB must be a priority.

The main contribution of this work is to study the quality of service problems that may

occur with the use of an ESB.

1.1.1 Objectives

• State of the art of ESB and service quality problems due to the use of an ESB.

Develop a tool to assess the behavior of ESBs. This tool should allow to:

Deploy providers and consumers of services configurable on the ESB.

Evaluate the ESB using as KPI (Key Performance Indicator) response time,

reliability, etc. . .

Configure the processing time of a request by the suppliers, the frequency of

consumer requests/second, the data exchanged size.

11

Chapter 1. Introduction 12

Extract and analyze the simulation results.

• Design, develop and evaluate mechanisms to control the quality of service.

The expected results are:

• State of the art and a final Emulator.

1.2 Motivation

Nowadays, most of the organizations follow a Service Oriented Architecture model

(SOA). SOA provides business functions to be reusable in practically throughout the

whole organization. SOA grants a collection of services to communicate with each other,

because an application needs to share and communicate data with other applications.

In the past, the most common architecture used was the Enterprise Application Integra-

tion (EAI), EAI was used to integrate services or applications in an easier way, since all

the communications passed only through a message broker. The EAI handles routing

and data transformation, but the EAI has scalability problems, because if the message

broker fails the rest of the network applications will not be able to communicate with

each other, this is known as a single point of failure in the network. Plus EAI is not

standards-based. Nor SOA or EAI handle all the features of a new solution proposed

called Enterprise Service Bus (ESB). With SOA paradigm an ESB performs as a me-

diator facilitating the provision and consumption of services. An ESB is a middleware

solution, it permits heterogeneous environments using a service oriented architecture to

interoperate. The invention of the ESB was not an accident. The ESB is a result of

vendors working with forward-thinking customers who were trying to build a standards-

based integration network using a foundation of SOA, messaging, and XML [Cha09].

Therefore, the ESB is the new component burden with the role of connecting heteroge-

neous applications and services. In other words an ESB is a bus in charge of delivering

messages from service requesters to service providers.

Many approaches have been done in order to assess the ESB performance. The evalu-

ation of the ESB performance can be done by assessing the throughput and the mean

response time, it is important to remark that the ESB must be under high load to get its

maximum capacity performance. There is much ongoing research on performance eval-

uation of ESBs, this kind of studies are important, since evaluating an ESB is no easy

task but needed in some important aspects for an enterprise. For example, to determine

what hardware to buy to meet the cost, performance and scalability requirements which

is the objective of capacity planning in [UT06]. Another important fact is that if the

communication between each service or application is done in a point to point way, after

Chapter 1. Introduction 13

time the interaction between them becomes difficult and this rises the system costs and

maintenance. The above mention problems of system integration are the main reasons

why we need a method to evaluate the capacity of an ESB.

The aim of this study is to evaluate the performance of an ESB, deploying an emulator.

This emulator will allow us to retrieve the throughput and mean response time using

Linux shell scripts. This emulator will assess firstly, under high load the ESB will act as

a pass through network device, just forwarding the incoming messages from the client

to the provider. Secondly, the same evaluation will be made but this time with some

sort of the ESB processing, for example routing or transformation inside the ESB, both

of these examples are features of an ESB called mediation.

1.3 Basic Concepts

1.3.1 Service Oriented-Architecture

As mentioned before a SOA (Service Oriented-Architecture) is a paradigm that most of

the organizations, nowadays, follow. An SOA allows to reuse the code of an application

facilitating its integration. In this context, SOA follows standards like XML (eXtensible

Markup Language), SOAP (Simple Object Access Protocol) to integrate the applications

in a standards-based approach instead of a vendor-based approach. So, SOA separates

a monolithic approach of integrating applications or services. The goal in SOA is to

make each subsystem of a company presents their capabilities through adequate services.

SOA is an architecture that can build business applications from a set of loosely coupled

black box components. SOA links together business process having an orchestrated

well-defined service level. The reuse of existing business applications is done adding a

simple adapter to the black box components regardless of how they were built. SOA

takes the best software assets used and packages them so that it lets you use them and

reuse them, so you don’t have to discard software.

Any SOA system is built using different units, services for a specific functionality, to

have complex systems. These systems usually involve various physical resources, i.e.,

network resources, processing components, and of course the logical organization.

SOA enables flexible connectivity and communication among applications by represent-

ing each as a service with an interface that lets them communicate readily with one

another. SOA lets companies reuse the services they create—via the integration of mul-

tiple applications— in more than one business process without additional programming.

Chapter 1. Introduction 14

In essence, SOA sets up a repository of these services, which business-process developers

can discover via Web services protocols [Ort07].

1.3.2 System Integration

Enterprises’ software components or modules (usually deployed as services) running on

two or more enterprise’s networks, are usually known as distributed enterprise appli-

cations. Most of the time, the enterprise network is heterogeneous and is composed

of diverse computers, devices, and operating systems. Since the network is hetero-

geneous, systems consist in different protocols for data exchange, technologies, and de-

vices distributed across a network. In recent years the industry environment has become

increasingly distributed and heterogeneous across multiple organizational and geograph-

ical boundaries, there’s a strong demand to integrate various distributed applications in

order to enhance or increase enterprises’ competitiveness.

There are many ways for system integration, some of them are: point to point, EAI and

ESB.

In a point to point integration, consider Figure 1.1, all the services and applications

need to be programed in order to have an interface to interact with other applications

and services. This kind of integration is feasible when in an organization there is no

need or a small need of applications to communicate and share data between them.

Application
C++

Application 2

Application
JAVA Application 1

New
Application

Figure 1.1: System Integration Point to Point.

Chapter 1. Introduction 15

The Figure 1.1 show a mesh of applications, communicating in a point to point SOA

approach. This approach brings with it high maintenance costs and it is difficult to reuse

applications. The figure also shows the difficulty of integrating a new application, for this

new application we need to program all the interfaces in order to communicate with other

applications. As example if we need to add another application called new application2,

we need to program all its interfaces to communicate with all other applications. We

could conclude, that this approach has scalability problems, as a consequence another

integration approach was created called EAI (Enterprise Application Integration).

In an EAI approach, consider Figure 1.2, its main component is a message broker that

handles all the communication and data sharing of the applications and services. In this

approach the integration of a new application or service is easier than the point to point

integration. Due to the fact that a new application only needs to report itself to the

message broker, after the message broker handles all the communication between the

new application and whichever other application it wants to communicate with. The

problem with EAI is that it introduces the well-known point of failure to the network,

for example lets think that the message broker is no longer available in the network,

how does application in C++ communicate with the application in JAVA?

Another, flaw of EAI is that is not standards-based, this introduces another problem,

EAIs are not able to communicate between them. To solve this kind of problem, and

the problems mentioned for point to point integration another solution called ESB (En-

terprise Service Bus) was proposed [AP11].

Application
C++

Application 2

Application
JAVA

Application 1
Message

Broker

New
Application

Figure 1.2: System Integration EAI.

Chapter 1. Introduction 16

To have a better understanding of an ESB, we present the Figure 1.3. An ESB is a

middleware solution for system integration, as mentioned before an ESB solves the flaws

that other approaches like point to point or EAI have.

Application
C++

Application 2

Application
JAVA

Application 1
New

Application

Figure 1.3: System Integration ESB.

The ESB provides a kind of mechanism that makes it easier to add new applications

as shown in the Figure 1.3. As noticed from it, all applications communicate with each

other through the ESB. Therefore, the complexity of integration logic is dealt by the

ESB; and it is done only once.

1.4 Enterprise Service Bus

An ESB is a middleware layer that allows the integration of heterogeneous applications,

using a standards-based approach. An ESB its a software architecture usually based

on Web Services (WS) standards. It provides foundational services for more complex

Service-Oriented Architectures (SOA) via an XML-based messaging engine (the bus),

and thus provides an abstraction layer on top of an enterprise messaging system that

allows integration architects to exploit the messaging without writing code [UT06].

Together SOA and ESBs provide an infrastructure enabling communications between

different applications, running on different platforms and written in different languages.

The efforts for standardization around SOA make an ESB the main integration approach,

Chapter 1. Introduction 17

additionally an ESB allows faster and cheaper integration of systems and it allows to have

a better scalability solution for enterprise distributed deployments. An ESB provides

flexibility in changing systems as the requirements change.

The ESB as mentioned before, is an improvement of point to point and EAI architectures,

an ESB now plays the role of connecting heterogeneous applications and services in an

SOA. An ESB handles transformation, routing, and adaptation of data. The ESB has

the responsibility to ensure that the formats of the messages match between the service

consumer and the service provider.

1.4.1 Functionalities of an ESB

The main functionalities that an ESB must integrate are: Virtualization, Intelligent

Routing, and Mediation, these functionalities are known as the core features of an ESB

[AP11].

Virtualization: Virtualization, or proxying, is a role that an ESB can play. In this

role, the ESB acts as a proxy for the service provider and handles the requests of the

service consumer. The ESB can handle authentication, authorization, and auditing, so

the service provider can focus solely on the business logic.

Routing: The ESB has the capability to route the incoming requests on a single end-

point to the appropriate service. The ESB can look at a wide array of things like the

message content or the message header to determine where the request should be routed.

Mediation: Mediation, or message transformation, is another core feature of an ESB.

The ESB has the capability to take an incoming request and transform the message

payload before sending it to the end Web Service.

1.4.2 Use case Example of an ESB

The typical topology of a distributed system having the ESB as integration backbone,

consists of five tiers.

1. The first tier is usually represents the way on how consumers of a service interact

or request a service; via a Web Browser.

2. The second tier is in charge of data management for example: Servlets, Web

Services.

Chapter 1. Introduction 18

3. In the third tier we usually find the ESB.

4. The fourth is where the providers of a service are usually deployed.

5. The last tier consist of data servers where the providers take the data they were

requested for.

1.4.3 Dissertation Structure

The Dissertation Structure is as follows:

• Chapter 1 has presented the motivation of this work as well as some basic concepts

around it.

• Chapter 2 presents a state of the art of previous works made till today, we are

presenting a survey on how to evaluate the performance of different ESBs. Here we

present, the most common architectures around a testbed or a real system involving

the use of an ESB. We also present the assessment of the core functionalities of an

ESB as mediation, routing and transformation.

• Chapter 3 presents our proposal, in concrete, the emulator; which is born out

of the need presented in the related work. We present a general Use Case, and

the components diagram around our emulator. In this chapter we could find the

general approach functions of our emulator.

• Chapter 4 introduces some results and analysis, a comparison between two different

scenarios was made. This Chapter 4 gives the consequences of totally monitoring

the ESB.

• Chapter 5 describes the emulators outputs, this chapter illustrates the information

collected using the emulator and also illustrates the graphs important for the

analysis.

• Chapter 6 describes one of possible cases where the emulator can be used; in this

chapter our emulator has the function of data mining.

• Chapter 7 presents conclusions for this work and also the future work in the do-

main.

Chapter 2

State of the Art

2.1 Related Work

The use of SOA in organizations continues growing, this means more industries are

adopting SOA which is one of many branches of new engineering challenges for research.

How to assess the performance of an ESB is one of the new challenges. To predict the

capacity of an ESB we must measure its performance which differs from predictions for

traditional application servers.

Many studies have been done in order to evaluate performance of an ESB, in [UT06] the

authors propose a capacity testing technique, it is conducted very early in a project’s

lifetime (capacity planning phase). What the authors deployed to test the performance

of an ESB was a lightweight Web Service provider and consumer, the results of their

capacity testing can reveal the actual maximum capacity of the ESB server on the specific

platform.

The Figure 2.1 show the architecture deployed in [UT06]. This Figure 2.1 could be seen

as a three tier environment (consumers of a service, the ESB and the providers).

1. The first tier is the Web Service Clients (consumers), since the goal of this article

was to evaluate the ESB under high workload to its maximum capacity. They

used a HTTP Workload Simulator that generates concurrent requests in order to

stress test the ESB.

2. The second tier is the ESB. Which they test with and without mediation.

3. The third tier, the Web Service Provider; the authors used a Lightweight service

provider that emulates a delay to each request, trying to emulate a real world

application.

19

Chapter 2. State of the Art 20

Figure 2.1: Typical Components Around an ESB [UT06].

The authors do not mention what ESB was taken for their tests, they simply refer to

this as the ESB system. They measured the throughput as the transactions per second

(TPS), and the mean response time.

Although, the results of capacity planning reveal the maximum capacity of an ESB; the

resource reallocation is needed to evaluate the ESB with different system characteristics.

In [AP11], we can find other studied performance assessing approaches for three different

ESBs: Mule, ServiceMix and WSO2 which have similar features and are open source.

In this article we could find three different test scenarios (Direct Proxy, Content Based

Routing and Transformation Proxy).

1. In the first test scenario we found the ESB configured as Virtualization or Direct

Proxy. Where the ESB simply gets the request from the client and passes it to the

service provider as depicted in Figure 2.2. All three involved components (Client,

ESBs and Web Services) were deployed on different machines.

Chapter 2. State of the Art 21

2. The second scenario consist on the ESB configured as Content Based Routing.

Where the ESB makes some sort of processing in this case it identifies a part of an

incoming message from the client side to correctly route to its adequate end side

web service; this feature is deployed in each of the studied ESBs. As depicted in

the Figure 2.3.

3. In the third scenario, the Figure 2.4, the ESB was configured as Transformation

Proxy. Where the ESB shows the the ability to transform the incoming mes-

sages to a correct form that the server side will interpret. Data transformation is

done through the use of XSLT (eXtensible Stylesheet Language Transformations)

enabling XML based message transformation

To evaluate the ESB under high workload to its maximum capacity. In order to stress test

the ESB, the authors used Grinder to generate multiple requests. They also measured

the throughput as the transactions per second, and the mean response time.

Although this article evaluates the core functionalities of an ESB; they have fixed con-

figurations of their systems lacking of resource reallocation to evaluate the ESB with

different system characteristics.

Figure 2.2: Direct Proxy [AP11].

Chapter 2. State of the Art 22

Figure 2.3: Content Based Routing [AP11].

Figure 2.4: Transformation Proxy [AP11].

In other studies the authors focused in one of the features of an ESB, for example the

mediation module performance of the ESB. In [SJA] the authors evaluated the mediation

feature of the following ESBs: ServiceMix, Mule, and JBoss. Figure 2.5 only shows

ServiceMix, but the authors tried to make equivalent scenarios for the other ESBs, this

is one of the reasons why in Figure 2.5 Apache ODE was deployed outside ServiceMix

Chapter 2. State of the Art 23

and not inside, giving no advantage over the other two ESBs. As we could also see from

Figure 2.5, the application deployed in all scenarios was the loan broker, the loan broker

application simulates more or less the behavior of a real world application.

Regarding to the mediation feature for the above mentioned ESBs; the maximum ca-

pacity of an ESB is reached under high workload circumstances; for achieving such goal

the authors used Apache JMeter which generates many concurrent requests from the

client side.

Figure 2.5: Direct Service Orchestration and BPEL Orchestration [SJA].

The aim of [GJMCGS10] Garćıa et al. was to evaluate the features of three ESBs open

source: Fuse, Mule and Petals. In particular the authors made a performance analysis of

the response time regarding to invoking external services and BPEL (Business Process

Execution Language) process based on an existing system. The Figure 2.6 shows the

scenarios configured for such performance analysis.

In [Bre09] the authors show the application of their method called Service Oriented

Performance Modeling; a method and tool support for performance modeling of large-

scale heterogeneous SOAs. Implementing their approach SOPM to the MULE ESB Loan

Broker application in a laboratory context. They use a test−bed, deploying everything

inside the same server and comparing it to another deployment where all components

(Client,ESB and Providers) were in different machines.

In other work we could find the possible issues of using an ESB as an integration platform

[Bru]. In this article the authors use the ServiceMix ESB to integrate their applications,

this is a real world integration for an Ocean Observatory.

Chapter 2. State of the Art 24

Figure 2.6: Direct Service Orchestration and BPEL a) First experiment. b) Second
experiment [GJMCGS10].

Table 2.1 shows a survey made, showing the evaluation, the evaluated ESB(s), the

environment under which the authors evaluated the ESB, the stress test tools used to

evaluate the maximum capacity of the ESB, the application tested, a description of

whether is Emulation or Metrology and finally the goal which shows why they evaluated

the ESB.

Chapter 2. State of the Art 25

T
a
b
l
e

2
.1

:
E

S
B

E
va

lu
a
ti

o
n

S
u

rv
ey

.

P
ar

am
et

er
[U

T
06

]
[A

P
11

]
[S

J
A

]
[G

J
M

C
G

S
10

]
[B

ru
]

[B
re

0
9
]

E
va

lu
at

io
n

R
es

p
on

se
T

im
e

T
h

ro
u

gh
p

u
t

R
es

p
on

se
T

im
e

T
h

ro
u

gh
p

u
t

(P
ro

x
y,

R
ou

ti
n

g,
M

ed
ia

ti
on

)

R
es

p
on

se
T

im
e

T
h

ro
u

gh
p

u
t

(S
er

v
ic

e
O

rc
h

es
tr

at
io

n
)

R
es

p
on

se
T

im
e

T
h

ro
u

gh
p

u
t

S
ec

u
ri

ty
Is

su
es

In
te

g
ra

ti
o
n

Is
su

es
R

es
p

o
n

se
T

im
e

T
h

ro
u

g
h

p
u

t

E
S

B
—

—
—

—
–

M
u

le
E

S
B

S
er

v
ic

eM
ix

W
S

O
2

E
S

B

M
u

le
E

S
B

S
er

v
ic

eM
ix

J
B

os
s

E
S

B
M

u
le

E
S

B
S

er
v
ic

eM
ix

M
u

le
E

S
B

F
u

se
E

S
B

P
et

a
ls

E
S

B

E
n
v
ir

on
m

en
t

1
.

N
o

E
S

B
2
.

E
S

B
(w

it
h

ou
t

M
ed

ia
ti

on
)

3
.

E
S

B
(w

it
h

M
ed

ia
ti

on
)

1.
D

ir
ec

t
P

ro
x
y

2.
R

ou
ti

n
g

P
ro

x
y

3.
T

ra
n

sf
or

m
at

io
n

P
ro

x
y

1.
D

ir
ec

t
O

rc
h

es
tr

at
io

n
2.

B
P

E
L

O
rc

h
es

tr
at

io
n

1
.

In
si

d
e

on
e

S
er

ve
r

2
.

E
ve

ry
th

in
g

!=
S

er
ve

r

O
b

se
rv

a
to

ry
(R

ea
l

A
p

p
li

ca
ti

o
n

)
1.

N
o

J
M

S
2.

W
it

h
J
M

S

P
ar

am
et

er
s

A
t

P
ro

v
id

er
M

u
lt

i
@

IP
H

T
T

P
K

ee
p

A
li

ve
#

of
T

h
re

ad
s

P
ay

lo
ad

A
t

C
on

su
m

er
#

of
C

li
en

ts
P

ay
lo

ad

A
t

C
on

su
m

er
#

of
C

li
en

ts
P

ay
lo

ad

A
t

C
on

su
m

er
P

ay
lo

ad
u

n
ti

l
sa

tu
ra

ti
on

N
o

P
a
ra

m
et

er
A

t
C

o
n
su

m
er

#
o
f

In
vo

ca
ti

o
n

s

A
p

p
li

ca
ti

on
H

T
T

P
L

oa
d

G
en

er
at

or
G

ri
n

d
er

A
p

ac
h

e
J
M

et
er

L
oa

n
B

ro
ke

r
A

p
ac

h
e

J
M

et
er

L
oa

n
B

ro
k
er

R
ea

l
A

p
p

li
ca

ti
o
n

R
ea

l
A

p
p

li
ca

ti
o
n

E
/M

E
E

E
E

M
M

G
oa

l
C

ap
ac

it
y

P
la

n
n

in
g

E
S

B
C

or
e

F
ea

tu
re

s
O

rc
h

es
tr

at
io

n
P

er
fo

rm
an

ce
P

er
fo

rm
an

ce
Is

su
es

S
ca

la
b

il
it

y
Is

su
es

E
S

B
Is

su
es

S
y
st

em
In

te
g
ra

ti
o
n

E
va

lu
a
ti

o
n

Chapter 2. State of the Art 26

None of the aforementioned studies perform a study of all the ESB functionalities, this

is beyond scope to this work. To conclude this chapter we present the main KPIs (Key

Performance Indicator) of Quality of Service (QoS) ESB found in the studied related

work. Some of these KPIs found are: response time, scalability, system saturation,

transactions per second etc. . .

Hence there is not much works based on implementing a tool for the ESB’s performance

evaluation. Is a cloud based approach able to let us know the maximum performance of

an ESB? Can we find out problems related to the QoS: scalability, high response times

?. . .

Therefore, we propose a cloud based Emulator; to discover potential problems of using

an ESB as an integration backbone before the deployment into an organization’s actual

business.

Chapter 3

Emulator

3.1 Problem Statement

This work is situated in the context distributed integration systems, more specifically

in the context of ESB as system integration middleware, it is interesting to model and

characterize the QoS (Quality of Service). We want to be able to identify the limits of

ESBs, for this we will have particular loaded scenarios. In this case we are interested on

having a tool that allows:

• Comparing the execution of several scenarios for the same ESB model/characterize

the QoS observed.

• Comparing several scenarios with diverse ESBs solutions.

3.2 Motivation

Let us start our motivation with a natural question.

Why there is a need for an Emulator?

There is a lot of ongoing research on SOA, middleware integration systems ESBs, and

high performance systems. The concept of an emulator can be seen as an experimental

platform to measure performance of different ESBs. An emulator gives the option to built

complex network topologies, making it a tool for benchmarking the ESB’s performance

behavior in a readily manner.

We can’t make predictions of the performance of an ESB. So we could say that predic-

ting the performance of an ESB is different from predictions for traditional application

27

Chapter 3. Emulator 28

servers, this is because an ESB plays not just a server role but also plays a client role

for multiple service providers. Meaning that the methods used for a J2EE server’s

performance evaluation [Bre09] aren’t suitable for an ESB.

With an Emulator we can evaluate the ESB system capacity with a small hardware

environment. The mediation functionalities also cause some differences in how ESB

performance is evaluated, compared to evaluating simple intermediaries like TCP/IP

network routers. Nevertheless, performance estimation of an ESB in the capacity plan-

ning phase, which happens at a very early stage in the project life-cycle, is critical for a

successful project [UT06].

With an Emulator we could select an ESB that best fits the needs of an enterprise, at

low price. Given the particular characteristics of SOA application and its environment,

many organizations would like to evaluate ESBs, because this evaluation is less costly

and time consuming than actually implementing SOA application or even purchasing an

ESB. In other words, the evaluation can help organizations to select an ESB. Or it could

be an open source ESB, but an enterprise wants place it as part as their organization.

Hence, to improve some aspects of the ESB, first we need to know the issues.

The evaluation of some capabilities (routing, transformation, service orchestration) of an

ESB are also another reason. It is important to know if an ESB has scalability problems,

caused by the use of the previous features.

Previous works show different evaluations and provide interesting results. However:

First They often compare commercial ESBs only.

Second They often set out too general evaluation criteria (i.e Orchestration assesment)

that are useful for categorizing ESBs or judging providers only.

Third They lack some important evaluation criteria e.g. high availability, reliability

etc . . .

Fourth They don’t report scalability problems.

Concluding this section we could say a framework allowing to deploy configurable scena-

rios, to test it and to adapt it is needed. Our proposal (emulator) can be built on a small

environment compared to a real life application, but giving the same characteristics.

3.2.1 Different ways to Evaluate Distributed Systems

In this section, a brief definition of distributed system is given, then we justify why

emulation is used.

Chapter 3. Emulator 29

A distributed system should make resources easily accessible, it should reasonably hide

the fact that resources are distributed across a network, it should be open and it should

be scalable [TVS02]. In system integration the component that glues the services and

applications must consider the former definition.

There are diverse forms of evaluating distributing systems using: mathematical functions,

simulations, an experimental approach, and emulation.

1. Mathematical functions studied for traditional application servers, for which

many studies have been done; aren’t suitable for predicting the performance of an

ESB [UT06], because of their wide features.

2. Simulation is the imitation of the operation of a real-world process or system

over time, for example: NS3, NS2, and OPNET. Currently there’s no simulation

platform that deploys an ESB.

3. Experimentation or metrology the science of measurement it includes all

theoretical and practical aspects of measurement. For organizations it is way too

expensive interrupting an already deployed service used for testing the ESB. Also,

organizations using an ESB as their integration backbone usually have complex

topologies, and business process.

4. Emulation is an alternative way to improve software quality for distributed appli-

cations, allowing analysis of the application behavior in a given environment before

deployment. To evaluate distributed systems, virtualization can be applied, as it

allows creation of a large-scale controlled environment with few physical resources

[SCDR].

For these reasons our approach adopted emulation as an alternative, which fulfills the

evaluation of an ESB. To conclude, the concept of an emulator can be seen as an experi-

mental platform to measure performance of different ESBs. An emulator gives the option

to deploy many scenarios with different topologies; implemented with few resources en-

vironment compared to a real life application, but offering the same characteristics.

Indeed, allowing us to specify the exact environment conditions for the scenario.

Our approach deploys a Virtual Machine (VM) for the client side, it also deploys a VM

for the system holding the ESB software and it deploys another VM for the Web Service

Provider.

Chapter 3. Emulator 30

3.3 ESB’s General Environment

VM

VM

ESB

VM

LD 1

LD 2

LD 3
Web

Service

DB

Figure 3.1: Most general environment.

Figure 3.1 intents to show the most general view of the system we are proposing. Here

we have three basic components that will hold the system deployed. The figure show a

Load Driver hold inside the cloud in a VM (Virtual Machine), the Load Driver will be

in charge of sending concurrent requests to the ESB. The ESB is deployed in the cloud,

being inside another VM. The Server is also a VM, it will be holding the web services

applications for the provider side.

For the VM containing the end Web service, we need to be careful about its resources

due to the fact that we want to measure the capability of an ESB, so its important that

the provider side does not become a bottleneck. For these reasons, we need to allocate

enough resources to the machine holding the Server. The same considerations must be

taken into account for the machine holding the client side, here the system has to be

able to send many requests concurrently, so it needs to be able to create many threads

and without becoming a bottleneck. More information may be found in Chapter 4 in

section ”Avoiding Bottlenecks”.

Chapter 3. Emulator 31

Figure 3.1 shows that we are following an architecture like the one deployed in [[UT06],

[AP11], [SJA], [GJMCGS10]], but in this articles they deployed their work in different

machines, we are also going to deploying ours in different machines but with the option

of dynamically changing the resources, so we could say we are not limit to the capacity

of the systems holding the VMs.

3.3.1 General Use Case

With our emulator the user will be able to Create Scenario, Launch Scenario and to

View Results.

Figure 3.2: General Use Case.

Figure 3.2 shows the functionality of the system, this use case diagram has a high level

abstraction.

To Create Scenario the user has two options, the first one is to choose the already de-

ployed services (client and producer) and test the performance of the an ESB. The second

option is to upload a web service provider, so that the user can test the performance of

the new deployed service.

Chapter 3. Emulator 32

To Launch Scenario, the user can choose from existing scenarios to directly run one of

them, or he could Create an Scenario using the other use case established.

To Display Results, the user can display results after the emulation of the whole system

finished running. The user will be able to monitor the CPU usage of the system holding

the ESB, other parameters that a user will be able to view are the TPS, and the mean

response time.

3.4 Emulators Architecture

We propose an agnostic emulator, this means any ESB shall be able to be plugged

in straightforwardly. However, some adaptive actions have to be made inside the

corresponding ESB to compute relevant timestamps.

Stress tools like: Grinder and Apache JMeter are open source but others like SoapUI

have commercial versions. These tools permit having different QoS metrics, like: average

response time and TPS, but their flaw remains in not being able to monitor the CPU

and Heap Memory of the ESB system. As consequence we propose an architecture to

be able to heal the aforementioned flaws.

Figure 3.3 shows the principal components involved in the emulator’s architecture.

As main components we have the Service Consumer which is in charge of communica-

ting with the ESB. The Controller is responsible for displaying graphs and information

retrieved from the execution of a scenario (the results). This component has the respon-

sibility to invoke each Load Driver (LD). A third component, the Configuration Driver,

stores the number of invocations that each LD can achieve, and it contains the sleep time

emulated at the provider side and the response data size in bytes the providers must

generate. The Generator, its name says it, generates each invocation made from a LD

to a service web (provider). Finally, the Monitoring it is a standalone instance in charge

of monitoring the ESB’s Heap Memory and CPU usage. Nevertheless, we want to stress

the ESB to its maximum capacity, as consequence the LDs have to generate multiple

concurrent request alike the aforementioned tools. To determine the maximum perfor-

mance of the ESB system, some considerations must be taken into account; section 4.2

”Avoiding Bottlenecks” describes such. In subsection 3.4.1 we describe the component

diagram, which represents the dependency between software components and how they

are divided.

Chapter 3. Emulator 33

E
m

u
la

to
r

E
S

B

C
o

n
tr

o
lle

r

Configuration

Driver

Generator

Monitoring

Service Provider 1

Service Provider 2

.

.

Service Provider N

Service Consumer

Figure 3.3: Emulators Architecture.

3.4.1 Emulator’s Components General View

Figure 3.4 illustrates a general view or black box of the approach for the Emulator,

as we can notice from the depicted Figure 3.4. The ESB is outside of the emulator,

meaning that our Emulator is independent of the ESB used. Figure 3.4 intends to

show the interaction between the different components involved, Emulator as a whole

and the ESB as the system evaluated. The user will have the option to parametrize

the scenario to be emulated, and to retrieve the results from it, with UsertoEmulator

and EmulatortoUser respectively. Also, the Emulator is able to configure the ESB and

retrieve data from it, with the EmulatortoESB and ESBtoEmulator.

This component diagram has a high abstraction level, the next step is to open the black

box, shown in the next section, and wire all the components and interfaces needed to

form the software system. Where the component is required to execute a function.

Chapter 3. Emulator 34

Figure 3.4: Black Box.

3.4.2 Emulator’s Component Diagram

We intend to separate each of the components involved like the Coffee Machine example

of [Exp13]. Figure 3.5 depicts a deeper look into the components that the emulator must

have, as we could see the main component is called Controller. This Controller will

be in charge of distributing parameters and knowing what task is executed by the user.

The Generator is in charge as its name says to generate concurrent users to stress test

the ESB. The Config goes in action when the user wants to add a new web service or

the ESB must be configured to perform a mediation action. Finally, the Monitor will

be in charge of monitoring the ESB, mean heap memory usage and CPU usage.

The components diagram is useful since it allows the reuse of previously constructed

components and it also takes into account that a component could be replaced by another

if needed, for example if the requirements change or due to an update the system.

Chapter 3. Emulator 35

Figure 3.5: Component Diagram.

3.5 Current Environment

First we describe the cloud based environment at which the emulator is currently de-

ployed. The environment consists of a PROXMOX Virtual Environment1 where the

required VMs for the tests are currently deployed. Each component has a Linux Ubuntu

12.04 LTS x86 as operating system, with a QEMU Virtual CPU version 1.050. To be

clear about the environment we present the Figure 3.6. In the Figure 3.6 we deployed

many instances of LD (Load Drivers), these are deployed inside a VM depending of its

characteristics. For a VM with 4 GB of RAM, it could create at most three instances;

due to the fact that each LD is assigned with a finite amount of resources for its Java

1http://www.proxmox.com/

Chapter 3. Emulator 36

Virtual Machine (JVM). The ESB server system is hosted inside a VM with 2 GB of

RAM, specially dedicated to its JVM, currently running WSO2 ESB version 4.6.0. Fi-

nally, each service provider hosting the end Web service is hosted inside a different VM,

with 4GB of RAM running WSO2 Application Server (AS) version 5.0.1.

WSO2 ESB

VM1 VM2 VMN

VM1 VMN

LD 1

LD 2

LD 3

LD 1

LD 2

LD 3

LD 1

LD 2

LD 3

Service Provider 1 Service Provider N

MySQL

Figure 3.6: Current Environment.

Table 3.1, summarizes the characteristics each of the VMs.

Table 3.1: Characteristics of VMs

Component
Number
of CPUs

Memory

Load Driver (LD) 2 1024 MB
ESB 1 2048 MB

Application Server
(Providers)

2 4096 MB

Chapter 4

Results and Analysis

For the results we consider using stress test tools like SoapUI and Apache JMeter,

with them we could overwhelm the ESB to its maximum capacity. SoapUI: is an open

source web service testing application for service-oriented architectures (SOA). Its functio-

nality covers web service inspection, invoking, development, simulation and mocking,

functional testing, load and compliance testing. Apache JMeter: is an Apache project

that can be used as a load testing tool for analyzing and measuring the performance of

a variety of services, with a focus on web applications.

The next section shows some of the test made with SoapUI; this tool gave us some ideas

of how to attack the ESB, unfortunately it does not monitor the CPU nor the Heap

Memory of an ESB. We also executed some test with Apache JMeter, but again it lacks

on how to monitor the ESB. As consequence we decided to deploy our own tool; it is

merely written in JAVA.

4.1 Test with SoapUI

We use the SoapUI tool to stress test the ESB. With SoapUI we could send a concurrent

number of request to an endpoint, we took the same environment deployed in the Figure

3.6. But this time instead of having a Java Client (LD) running multiple threads, we

used SoapUI that generates multiple threads to invoke the service provided by the WSO2

AS.

We run this scenario for 2 minutes with three different configurations of the machine

holding the ESB having the next characteristics:

37

Chapter 4. Results and analysis 38

• 1 GB of RAM, 1 Processor

• 2 GB of RAM, 2 Processors

• 3 GB of RAM, 3 Processors

We wanted to know the average response time, when we have a fixed payload of 1 Kb,

but varied the number of concurrent clients invoking a Web service passing through the

ESB. From Figure 4.1, we could see that the average response time is quite similar for

all the configurations of the machine holding the ESB. This is maybe, because the ESB

is not working hard enough, what we mean by this is that the ESB is not performing or

using any of its mediation features. We also monitored the behavior of the CPU usage

holding the ESB, and we can conclude that the ESB is able to manage simple messages

passing through it with no difficulty, since the CPU usage never overpassed 40% of its

usage, not even for the first test ran with the machine holding the ESB configured with

1GB of RAM and 1 Processor. Further, other tests must be made but this time to

evaluate one of the core features of an ESB (mediation, transformation and routing).

Figure 4.1: Results using SoapUI.

Chapter 4. Results and analysis 39

Plus we have to be sure the consumers and providers of a service passing through an

ESB do not become a bottleneck, which can be a misconfiguration while evaluating the

ESB.

4.2 Avoiding Bottlenecks

Using our emulator, we emulate a set of scenarios to identify the impact a failure at the

provider or consumer side, will have against its counterpart. For example what happens

to the consumers of a service when the provider becomes a bottleneck. The answer is

simple, the consumers will receive a higher response time, than when the provider is

under normal conditions.

The Figure 4.2 illustrates, a set of service consumers interacts with a provider. The

number of service consumers can be parameterized. We can also configure for each

service consumer the provider that it invokes, the number of sending requests, the size

of these requests. At the provider side, the processing time can be emulated and the size

of the response can be parameterized. The resources allocated (physical or virtual) to

the consumer, the ESB or the provider can be configured. After running the scenario, a

set of metrics can be taken with the emulator.

Figure 4.2: Scenario Topology and Metrics.

Chapter 4. Results and analysis 40

4.2.1 Performance issues from the provider side and impact

The first three phases (1,2,3) intent to illustrate the AS’ CPU usage, and the response

time computed for the consumers, phases 1,2 and 3 represent a scenario. What we want

to find out is what occurs when high processing time or high CPU usage is present at

the AS, and how it will affect the consumer and ESB side.

The next configurations were used to test the AS.

• Phase 1 is configured as follows: 4000 concurrent requests at the client side and

the service provider emulating 100 ms sleep time and generating 1 KB as reply

answer.

• Phase 2 is configured as follows: 8000 concurrent requests at the client side and

the service provider emulating 100 ms sleep time and generating 1 KB as reply

answer.

• Phase 3 is configured as follows: 12000 concurrent requests at the client side and

the service provider emulating 100 ms sleep time and generating 1 KB as reply

answer.

The Figure 4.3 depicts the WSO2 AS resources monitored with JConsole, it shows that

the AS is running on high CPU load even though it has Heap Memory. Causing a high

RT shown in the Figure 4.4. The Figure shows that the LD only sent 4000 requests, and

that the delay indeed is due to the AS.

Figure 4.3: Monitoring AS using Jconsole (Phase 1).

Chapter 4. Results and analysis 41

Figure 4.4: Computed Response Time (Phase 1).

Figure 4.5 depicts the AS resources, it shows how the CPU processing time is slightly

increased due to the fact that we doubled the number of request and therefore we used

two LDs. Figure 4.6 shows an increased number of requests, and that the average RT

trigged to higher values.

Figure 4.6 shows an increased RT having as average 15s. We could infer that something

is wrong having this kind of values. Therefore, the correlation between the consumer

and the AS is indispensable and notable.

Figure 4.5: Monitoring AS using Jconsole (Phase 2).

Chapter 4. Results and analysis 42

Figure 4.6: Computed Response Time (Phase 2).

Figure 4.7 presents an AS with quite lower CPU usage, but the thing here is that the

processing time was from 1 min (as shown in figure 4.5) to 5 minutes.

Figure 4.7: Monitoring AS using Jconsole (Phase 3).

Chapter 4. Results and analysis 43

The Figure 4.8 illustrates an average RT of 25s. Even though it was quite an amount of

requests (12,000) sent to the AS, we didn’t expect this kind of RT. The AS queues the

requests till it has enough CPU to deal with them.

Figure 4.8: Computed Response Time (Phase 3).

Finally, in the next phases we created a reliability problem or issue, the AS becomes a

bottleneck. Replaying the scenario of Phase 1 but this time increasing the payload the

AS must generate, as follows:

• Phase 4 is configured as follows: 4000 concurrent requests at the client side and

the service provider emulating 100 ms sleep time and generating 6 KB as reply

answer.

• Phase 5 is configured as follows: 8000 concurrent requests at the client side and

the service provider emulating 100 ms sleep time and generating 6 KB as reply

answer.

The average processing time per request is high 1890 ms and the average response time

is higher than the one calculated in Phase 1.

The Figure 4.9 shows an AS CPU completely overloaded, but still attending each of the

4000 requests received.

Figure 4.10 shows the RT of the 4000 requests sent. The RT is always increasing, because

the AS queues the requests and the consumer is pending till it receives an answer.

Chapter 4. Results and analysis 44

Figure 4.9: Monitoring AS using Jconsole (Phase 4).

Figure 4.10: Computed Response Time (Phase 4).

Chapter 4. Results and analysis 45

Using the same configuration of the Phase 4 and putting the number of concurrent

requests to 8000, we create the reliability issue at the AS due to a lack of resources. The

relation between provider, ESB and consumer makes we detect losses at the consumer

or user side.

Figure 4.11 shows the AS curve of the CPU usage. This figure illustrates when the AS

becomes a bottleneck. This curve has high and low peaks, meaning that the AS cannot

manage the burst of requests. Hence, the AS is in charge of generating the response

size data, in this case of 6 KB, it queues requests till it has the ability to perform the

aforementioned task.

Figure 4.11: Monitoring AS using Jconsole (Phase 5).

Finally, the Figure 4.12 depicts that from the 8000 initial requests made from the con-

sumer (Phase 5) only 1750 were attended correctly by the three actors of this scenario:

consumer, ESB and AS (end Web service). This Figure intents to depict the response

time calculated for Phase 5, as shown in previous Phases 4, 3, 2 and 1, but with the

difference that this Phase didn’t get all the reply back.

Chapter 4. Results and analysis 46

Figure 4.12: High Response Time and losses detection issue.

Figure 4.13 shows that it is not feasible having a provider with small amount of resources.

As shown in this figure the processing time is way above the expected emulated time of

100 ms. Hence, the provider is consider as a bottleneck.

Figure 4.13: Resume of three phases.

Chapter 4. Results and analysis 47

4.2.2 Performance issues from the consumer side and impact

We create a client congestion out of heap memory by reducing the allocated resources

and sending 8000 requests.

Figure 4.14 depicts a problem when the consumer does not have enough resources to

create a thread or a consumer of the service. The Figure shows one of the two LD finished

its tasks, but the other didn’t. Since, the LDs are executed concurrently it could of been

either one which failed. And let’s remember that a LD has specially dedicated resources

to its JVM as mentioned in section 3.5 ”Current Environment”.

Figure 4.14: Out of Heap Memory at the consumer side.

4.3 Identified Problem while Evaluating the ESB’s Perfor-

mance

Figure 4.15 shows a need to compute the real times that a message (request or invocation)

passing through the ESB must take into account.

To solve the problem of not knowing the times shown in the Figure 4.15, we simply

wrote to a LOG file inside the ESB, for each time a request is processed in the ESB. To

Chapter 4. Results and analysis 48

Figure 4.15: ESB Times.

be clear about what the ESB writes to a log file, next we give an example of a processed

message:

• [2013-06-22 18:59:30,325] INFO - LogMediator testing = Request arrives from

Client, Time t1 = 1371920370325

• [2013-06-22 18:59:30,326] INFO - LogMediator testing = Request sent to Provider,

Time t2 = 1371920370326

• [2013-06-22 18:59:30,331] INFO - LogMediator testing = Request received from

Provider, Time t3 = 1371920370331

• [2013-06-22 18:59:30,333] INFO - LogMediator testing = Request sent by the ESB,

Time t4 = 1371920370333

But what is the cost of retrieving all these timestamps?

4.3.1 What is the cost of monitoring the ESB?

Two different scenarios were deployed in order to analyze the cost of monitoring the ESB

completely. In the first scenario the ESB acts as a pass through proxy. In the second

scenario the ESB also acts as a pass through proxy but it also writes some timestamps

into a log file.

The first and second scenarios were tested with the following configurations:

• Fixed number of concurrent requests (4000) the provider side emulating 100 ms

sleep time and generating .5, 1, 1.5, 3, 6, 7, 8, 9 and 10 KB as reply answer.

• Calculating the Response Time (RT) and Propagation Time (PT) in ms.

Chapter 4. Results and analysis 49

Next we give a table, Table 4.1, to show the results for the first scenario:

Table 4.1: First Scenario, No Mediation

of
Load

Drivers

of
invocations

Receiving
Size

Sleep
Time
(ms)

Response
Time
(ms)

Propagation
Time (ms)

Sent
Requests

Answered
Requests

1 4000 500 100 549 447 4000 4000

1 4000 1000 100 550 448 4000 4000

1 4000 1500 100 562 458 4000 4000

1 4000 3000 100 1258 1053 4000 4000

1 4000 6000 100 4182 3309 4000 4000

1 4000 7000 100 5536 4197 4000 4000

1 4000 8000 100 7131 5131 4000 4000

1 4000 9000 100 9030 6298 4000 4000

1 4000 10000 100 10813 7271 4000 4000

Next, Table 4.2, depicts the results for the second scenario (when the ESB writes to a

log file).

Table 4.2: Second Scenario, With Mediation

of
Load

Drivers

of
invocations

Receiving
Size

Sleep
Time
(ms)

Response
Time
(ms)

Propagation
Time (ms)

Sent
Requests

Answered
Requests

1 4000 500 100 13187 13078 4000 4000

1 4000 1000 100 14570 14464 4000 4000

1 4000 1500 100 17130 17018 4000 4000

1 4000 3000 100 20272 20128 4000 4000

1 4000 6000 100 28472 27896 4000 4000

1 4000 7000 100 32077 31172 4000 4000

1 4000 8000 100 46772 45403 4000 4000

1 4000 9000 100 52093 50038 4000 4000

1 4000 10000 100 71376 68300 4000 4000

Chapter 4. Results and analysis 50

Then the Figure 4.16 shows the difference between two different ways of direct Proxies,

a comparison was made. The parameters configured for both of the scenarios were the

size of the data generated at the provider side, and processing time was fixed to 100 ms.

Figure 4.16: ESB with Mediation vs ESB without Mediation.

The Figure 4.16 shows the RT from both scenarios described before. Hence, it is un-

acceptable for real time and Web applications (UTI G.1010 Recommendation), having

higher values of RT > 4s, adding a log file (some sort of mediation, but not totally

mediation inside the ESB) to monitor the ESB; we could conclude it is unacceptable to

add this kind of monitoring.

Now that we have taken into consideration the recommendations made by the section

4.2 ”Avoiding Bottlenecks”, and we know which values are optimal to overwhelm the

ESB, we present the next section.

4.4 OUT OF HEAP MEMORY

In this section we address a problem found when many concurrent invocations (request)

are sent to the ESB, the ESB tries to attend all incoming request but unfortunately it

Chapter 4. Results and analysis 51

runs out of heap memory. So the first thing we need to know is the behavior of the

outgoing request (client side), the processing of the same request and how many can be

treated before running out of memory at the ESB side. Finally we need to know how

the requests are treated by the provider side.

The next figures illustrate the number of concurrent requests, of each involved actor of

the system and how they perform.

The Figure 4.17 shows the number of concurrent requests from the point of view of

the client. The aforementioned figure is obtained as the increment on a counter each

time a request was sent from the client. Opposite to, when a request is replied by the

provider the counter decreases. In the x axis we find the number of concurrent requests

during the time-line. What this means is for example that at the instant 5000 we have

computed 1000 concurrent requests.

Figure 4.17: Consumer Concurrency.

The Figure 4.18 shows the number of concurrent request from the point of view of the

ESB. For the ESB, we have to increase a counter each time it receives an incoming

request or reply from the client or provider respectively. Again the x axis represents an

instant during the scenarios time-line.

Chapter 4. Results and analysis 52

Figure 4.18: ESB Concurrency.

The Figure 4.19 shows the concurrency from the point of view of the provider.

Figure 4.19: Provider Concurrency.

Finally the Figure 4.20 shows the concurrency from the point of view of the three actors

involved.

Chapter 4. Results and analysis 53

Figure 4.20: Consumer vs ESB vs Provider Concurrency.

It seems that the number of concurrent request has a strong correlation with the Heap

Memory of the ESB, since we monitor the Heap Memory using our Emulator. We have

run many test trying to detect an issue for the ESB. Running these scenarios we realized

that the Heap Memory increases each time it handles a request. So if we have a great

number of concurrent requests coming from a client the ESB is most likely to run out

of heap memory, since it has to allocate heap memory for each one of the requests. The

former graphs were helpful since we noticed that the ESB never allocates more than 400

threads to treat the incoming requests from consumers and providers. But what it does

allocate is Heap Memory.

Chapter 5

Emulators Outputs

5.1 Obtained Metrics

In this Chapter 5, we present the Quality of Service (QoS) metrics obtained using our

emulator, helping to evaluate the performance and efficiency of an ESB. Since, our

system has a common database to which all LDs write to, we offer a table describing

the information received with respect to each request a LD has properly processed. The

monitoring instance is also writing to the database. Table 5.1 shows in detail the data

gathered by the emulator, for each request sent and received answer. It shows the idLD

(Load driver identifier), the idR (Request id), the timestamps and the CPU and HM

(Heap Memory).

Table 5.1: Stored Information

idLD idR t1 t2 t3 t4 t5 t6 t7 t8 CPU HM

As described in Figure 4.2 for each invocation the consumer takes the following times-

tamps and stores them in a common database:

• t1 request is sent by the requester to the ESB.

• t2 request is received by the ESB.

• t3 request is sent by the ESB to the provider.

• t4 request is received by the provider.

• t5 response is sent from the provider to the ESB.

54

Chapter 5. Emulators Outputs 55

• t6 response is received by the ESB.

• t7 response is sent from the ESB to the consumer.

• t8 response is received in the requester.

It is interesting to have this kind of tables, in specific the database, because for example

if we want to plot a graph to have a better idea of the the response behavior (RT), given

a certain time, all we need to compute is RT = t8 − t1. RT was taken as the amount

of time passed since the moment the request was sent till the time a reply was received.

Table 5.1 represents each time a LD sends a request and it gets its response back these

info is stored inside the database. Another, example: for knowing the concurrence level

(viewed at the client side) we applied the following rule, to the MySQL database:

A.t1<B.t1 & A.t8>B.t8 & A.t1<B.t8

To compute the concurrence we created a temporary table called B, then we compare

each request against another table A, checking for A containing B. Meaning the request

were concurrent. All the information analysis is done in off-line mode.

5.1.1 Obtained Graphs

Using our proposed approach, is easy to obtain the QoS of a deployed scenario. For

example we configured the following scenario:

• One LD 4000 concurrent request.

• One Web service provider: emulating 100 ms delay and generating 1 KB as reply

answer.

• The ESB was configured as a Direct Proxy

The above scenario was created because or methodology, the previous chapters, give us

the optimal values under which the ESB will work under high pressure circumstances;

and the consumers and the providers will not be under high work demands.

The following graph, Figure 5.1 shows the RT computed for the 4000 concurrent invo-

cations sent to the end service, and the ESB system acting as a direct proxy. Figure 5.1

also shows the average response time = 3775 ms. The number of request and the size

of such affect in the behavior of the ESB.

Chapter 5. Emulators Outputs 56

Figure 5.1: Computed Response Time.

A common database gives important advantages like being able to compute the
concurrency level. Figure 5.2 shows the concurrency computed at the client side. The
average concurrency = 760 requests; meaning that the ESB system queues request till
it has space for a new task.

Figure 5.2: ESB Concurrency view by the Consumer.

Chapter 5. Emulators Outputs 57

Figure 5.3 illustrates the monitoring done remotely to the ESB, this graph presents the

heap memory of the ESB. The average Heap Memory = 20% ; meaning that the ESB

is working under normal circumstances for this scenario. As presented in figure 5.3

the Heap Memory is always increasing, after a drop at the beginning. This means that

the Garbage Collector (GC), played its role at the beginning but not afterwards. It

is important to mention that the GC depends on the configuration given to the Java

Virtual Machine. During the execution of this scenario the ESB was configured as follows

: −Xms512M −Xmx2048M −XX:MaxPermSize = 1024M . These values mean that

the ESB’s JVM has as minimum Heap Memory of 0.5 GB and that it could use at most

2 GB and the JVM could create an object which uses less than 1 GB. These values also

mean that the GC doesn’t interfere very often.

Figure 5.3: ESB Heap Memory view by the Consumer.

The concurrency level, the RT and the Heap Memory are tightly dependent on the ESB’s

CPU % value, it is indispensable to monitor it. Figure 5.4 presents a graph of the CPU

% usage during the execution of the aforementioned scenario. The average CPU = 67%,

meaning that the CPU is working at a medium percentage. Reason why the average RT

is acceptable less than 4s recommended value by UTI G.1010 recommendation.

Chapter 5. Emulators Outputs 58

Figure 5.4: ESB CPU view by the Consumer.

To conclude this Chapter 5 we discuss the aforementioned scenario was for illustrating

purpose. Summarizing, in order to have a high workload test scenario, we created more

Load Drivers increasing the number of requests and therefore the workload in the ESB.

Chapter 6

Structure Learning

6.1 Motivation

From observations made learning techniques can predict effects applying the principles

of probability. Some know tools establish dependency relationships between variables

found in a data sample and build a probabilistic model, this is called structure learning.

The dependency relationships between variables is established by statistical hypothesis

testing, in specific, conditional independence tests.

The PC algorithm is one of the learning techniques to find the dependency relationships

between variables in a model building a graphical model on which we can infer knowledge.

Being able to represent the dependencies using a graphical model allows probabilistic

application tools for Bayes networks, Markov networks or graphs Factor. The following

section describes the PC algorithm.

We applied the PC algorithm in order to calculate a Bayesian network from a data

sample obtained from a dataset of stress tests performed over a ESB platform. The

sample contains 134,824 cases.

The resulting Bayesian Network (BN) is useful to make inferences about the current

states in performance parameters of the platform when we only have some evidences,

for example, to diagnose a problem and to determine its cause and other effects. From

another perspective the BN could help to define setting parameters in order to get a

good performance level.

In this particular section we want to evaluate the KPI (Key Performance Indicators) of

an ESB, namely CPU load, Memory load, Concurrency level, and the Response Time

(RT) for each request. The Concurrency level measures the amount of request that can

59

Chapter 6. Structure Learning 60

be simultaneously mediated by the ESB, while the RT is the time elapsed between a

request sending and response receiving.

In the table 6.1 we defined six scenarios in which we change different parameters in

order to consider most liked real conditions. The response message size corresponds to

the size in bytes of the response messages. The processing time is the time the provider

requires answering to one invocation.

Each LD can create up to 4000 simultaneous requests. For each scenario we have different

number of LD, but the same response message size (100 B) and processing time (100

ms).

The table 6.1 resumes in detail each one of the tested scenarios.

Table 6.1: Tested Scenarios

Scenario
of
Load

Drivers

of
Request

Response
Size (ms)

Processing
Time
(ms)

1 1 4000 1000 B 100

2 2 8000 1000 B 100

3 3 12000 1000 B 100

4 4 16000 1000 B 100

5 6 24000 1000 B 100

6 8 32000 1000 B 100

6.2 Data sampling

The data set consists of five variables, related to interesting aspects in the ESB plat-

form, namely, the percentage used of CPU and Memory, the Response time, and the

concurrence level observed in each request mediated by the ESB; as part of each test,

the number of request is also included.

These aspects and the measures, used are defined in the next tables. We also establish

intervals to define states for each variable in each case.

Chapter 6. Structure Learning 61

1. CPU

Measure unit: percentage used

Table 6.2: CPU

Name Tag Interval Description

Low L [O, 25) Correct level of function

Medium M [25, 50) Correct level of function

High H [5O, 75) High CPU load

Very High VH [75, 100] Critical CPU load

2. Memory Used (M)

Table 6.3: Memory Used

Name Tag Interval Description

Low L [O, 25) Correct level of function

Medium M [25, 50) Correct level of function

High H [5O, 75) Memory Loaded

Very High VH [75, 99] Critical Memory

ERROR ER 100

System in nonfunctional
condition (Heap Memory

overloaded)

3. Concurrency

Table 6.4: Concurrency

Name Tag Interval Description

Low L [O, 339) Low number of consumers

Medium M [339, 967)
Medium number of

consumers

High H [967, 4219) High number of consumers

Very High VH [4219, 9919] VH number of consumers

Chapter 6. Structure Learning 62

4. Number of Requests

Table 6.5: Number of Requests

Name Tag Interval Description

Low L [O, 10000) Low number of Requests

Medium M [10000, 20000) Expected number of requests

High H [20000, 30000) High number of requests

Very High VH [30000, 40000] VH number of requests

5. Response Time

Following the Recommendation G.1010 of ITU, we define the states for the response

time (RT) parameter.

Measure unit: Time

Dimension: seconds

Table 6.6: Response Time

Name Tag Interval

Recommendable R [O, 2)

Acceptable Acc [2, 4)

Unacceptable Unacc [4,+INF)

ERROR ER [−INF, 0]

6.3 PC Algorithm

The PC algorithm consist on building a causal graphical model based, where each node

represents a variable, and the edges represent the causal relations. The first step is

create an undirected complete graph, relating each variable with all other variables.

Chapter 6. Structure Learning 63

From the complete graph, independence tests are performed for determining whether the

variables are conditionally independent given another subset of variables, in this way,

edges that are not necessary to represent the conditions of independence are removed

from the model. After, the remaining edges are oriented, forming a Directed Acyclic

Graph (DAG) that represents the causal relations among the variables. From the data

sample, the Conditional Probability tables (CPT) are calculated, getting a Bayesian

Network.

Before we describe the algorithm it is necessary to define three terms, the first one

ADJ(A) this refers to the set of nodes adjacent to node A in the graph C. The second

term is I(X, Y — Z) concerning conditional independence between the variables X and

Y given Z. And the third term is SepSet (X, Y) denotes the set variables separates the

variables X, Y.

1. Start with a complete undirected graph G′

2. i = 0

3. Repeat

4. For each A ∈ V

5. For each B ∈ ADJA

6. Test wheter ∃S ⊆ ADJA − {B} with |S| = iandI()A,B|S)

7. If this set exists

8. Make SAB = S

9. Remove A−B link from G′

10. i = i + 1

11. Until |ADJA| ≤ i,∀A

6.4 Graphical Model

Here we applied structured learning to a set of data known as data set. This data set

consists of data monitored from the ESB and Java consumer. After running the PC

algorithm we obtained the next Bayesian network in its graphical representation. The

tool used to obtain the Bayesian network was Tetrad-4.3.10-6.

Chapter 6. Structure Learning 64

Figure 6.1: Bayesian Network.

Figure 6.1 shows the strong dependency of each of the variables monitored and measured.

What this means is that all variables depend one from another.

The next table 6.7 shows the marginal probabilities obtained for each of the values we

are interested on knowing their dependency.

Table 6.7: Marginal Probabilities

Memory Used
(M)

Concurrency (C)
of Request

(NR)
CPU

Response
Time (RT)

P(MU = Er)
= 0.6366

P(C = H) =
0.1763

P(NR = H) =
0.1141

P(CPU = H) =
0.4005

P(RT = Acc)
= 0.0467

H = 0.2373
P(C = L) =

0.2997
P(NR = L) =

0.0809
P(CPU = M) =

0.1780

P(RT = Er) =
0.0364

M = 0.1261
P(C = M) =

0.1475
P(NR = M) =

0.1155
P(CPU = VH)

=0.4215

P(RT = R)
=0.0580

P(C = VH)
=0.1306

P(NR = VH)
=0.2434

P(RT =
Unacc) =

0.0922

6.5 Analysis

Now, since one of the main goal of this study is to know the dependency among aspects

in an ESB, we have to be able to tell when an ESB may fail or which are the optimal

conditions under which an ESB may have its best performance. A way to find how each

variable is influenced by another is applying the conditional probability.

Chapter 6. Structure Learning 65

So, for example we have a high number of concurrent request passing through an ESB

(P(C = H) = 1.0), this event leads us have the next table of posterior conditional

probabilities, where the most probable states of other variables is in bold type, shown

in table 6.8:

Table 6.8: High Concurrency (C=H)

MU NR CPU RT

P(MU = Er | C =
H) = 0.7392

P(NR = H | C = H)
= 0.1653

P(CPU = H | C =
H) = 0.3671

P(RT = Acc | C =
H) = 0.0524

P(MU = H | C = H)
= 0.1364

P(NR = L | C = H)
= 0.1105

P(CPU = M | C =
H) = 0.2633

P(RT = Er | C = H)
= 0.000

P(MU = M | C = H)
= 0.1245

P(NR = M | C = H)
= 0.2633

P(CPU = VH | C
= H) = 0.3696

P(RT = R | C = H)
= 0.000

P(NR = VH | C =
H) = 0.2829

P(RT = Unacc | C
= H) = 0.4638

Now lets say we have for example an application that needs or requires a recommended

response time (P(RT = R) = 1.0). The next table 6.9 shows how this condition affects

other variables:

Table 6.9: Recommended RT

RT MU NR CPU C

Acc = 1.0 Er = 0.6454 H = 0.0459 H = 0.3671 H = 0.000

H = 0.1242 L = 0.2502 M = 0.2633 L = 0.5690

M = 0.2304 M = 0.2355 VH =0.3696 M = 0.1843

VH =0.1236 VH = 0.000

Table 6.9 tells us that there is a need to add resources to the current system holding the

ESB, why? Because, in order to have recommended Response Time (RT) we have both

probabilities Very High (VH) and High (H) of 36% of having a CPU usage, which tell

us that the CPU might be overloaded most of the time.

Now lets say we want to know the behavior of the ESB when there is a whole bunch of

requests to a server. So, we set the event NR = VH = true as shown in table :

Chapter 6. Structure Learning 66

Table 6.10: Very High NRs

NR MU C CPU RT

VH = 1.0 Er = 0.6047 H = 0.10 H = 0.4235 Acc = 0.0377

H = 0.2823 L = 0.3382 M = 0.1129 Er = 0.1808

M = 0.1129 M = 0.0329 VH =0.4635 R = 0.0170

VH = 0.1953
Unacc =
0.1723

We have shown some examples of many possible combinations from table 6.7 to table

6.10, so each one of the tables presented here represents a possible combination the aim

of this study is not to present all possible combinations but to try to land our work on

a possible real case. For example we are interested in the case when many request are

made at the same time, we are also interested on knowing what is the average concurrent

request an ESB may attend.

In order to have a more realistic study we divided the previous data set into three parts

and then randomly choose a new data sample. Table 6.11 shows the new marginal

probabilities.

Table 6.11: New Marginal Probabilities

Memory Used
(M)

Concurrency (C)
of Request

(NR)
CPU

Response
Time (RT)

P(MU = Er)
= 0.6392

P(C = H) =
0.1746

P(NR = H) =
0.1149

P(CPU = H) =
0.3992

P(RT = Acc)
= 0.0464

H = 0.2354
P(C = L) =

0.2997
P(NR = L) =

0.0819
P(CPU = M) =

0.1772

P(RT = Er) =
0.0362

M = 0.1254
P(C = M) =

0.1495
P(NR = M) =

0.1165
P(CPU = VH)

=0.4236

P(RT = R)
=0.0588

P(C = VH)
=0.1316

P(NR = VH)
=0.2424

P(RT =
Unacc) =

0.0926

Now the same example as the one from table 6.8, we are interested to know what happens

when we have a high number of concurrent request passing through an ESB, this event

leads us have the next table 6.12:

Chapter 6. Structure Learning 67

Table 6.12: New High Concurrency (C=H)

C MU NR CPU RT

H = 1.0 Er = 0.7361 H = 0.1668 H = 0.3708 Acc = 0.0533

H = 0.1393 L = 0.1082 M = 0.2592 Er = 0.000

M = 0.1246 M = 0.2626 VH =0.3700 R = 0.000

VH = 0.2824
Unacc =
0.4609

The next table 6.13 shows for example an application that needs a recommended response

and shows how this condition affects other variables:

Table 6.13: New Recommended RT

NR MU C CPU RT

Acc = 1.0 Er = 0.6487 H = 0.1335 H = 0.2894 H = 0.000

H = 0.1264 L = 0.1599 M = 0.3149 L = 0.5684

M = 0.2248 M = 0.2287 VH =0.3957 M = 0.1865

VH =0.0487 VH = 0.000

Now lets say we want to know the behavior of the ESB when there is a whole bunch of

requests to a server. So, we set the event NR = VH = true, as shown in table 6.14:

Table 6.14: New Very High NRs

NR MU C CPU RT

VH = 1.0 Er = 0.6066 H = 0.1030 H = 0.4211 Acc = 0.0378

H = 0.2804 L = 0.3374 M = 0.1129 Er = 0.1799

M = 0.1129 M = 0.0304 VH =0.4659 R = 0.0164

VH = 0.1982
Unacc =
0.1742

Chapter 6. Structure Learning 68

6.6 Conclusions

First thing we could say is that our model is correct due to the fact that we made

an analysis of a complete data set, meaning that we didn’t chunk no data. After we

divided our original data set into three subsets of data and randomly analyzed and got

the same results, almost all probabilities are the same. These kind of analysis are really

interesting, because they allow us to predict, given a specific parameter to specify the

conditions a system will probably have.

Our analysis shows logical facts, but allows us to have a greater point of view of what

happens when some conditions become true, or given a certain condition.

Chapter 7

Conclusions and Perspectives

7.1 Conclusions

In the context of distributed systems and applications, an important role must be played

by the component that ”glues” applications and services together; enterprises based on

these services could implement complex business process. Hence an ESB plays the

aforementioned role, there is indeed a lot of studies around it, trying to figure out if

it has scalability problems. The ESB is the trend mostly used, in charge of system

integration, request routing, transformation and adaptation of data, it brings with it

many challenges; like knowing its limits and constraints. In general business-to-business

usually have complex integration systems around an ESB, therefore it is indispensable

to have a tool that can deploy and evaluate an ESB at low cost, before deploying it in

their actual business. In this work we focused our effort on a proposed tool that eases

the assessment of an ESB with the main goal centered on high load circumstances alike

in a real world production. With our approach we could deploy different business to

business complex network topologies using small hardware resources, compared to a real

world application, but with the same characteristics as the former. We have deployed

scenarios with and without mediation (adaptation of data). We have shown useful figures

obtain straightforwardly, with them is easy to characterize the QoS of a given scenario.

Therefore, using our approach it is easy to expose the maximum capacity of an ESB.

Furthermore we found a reliability problem when we sent 40,000 concurrent requests

(using 10 LDs), as mentioned before this ESB (WSO2) allocates an amount of Heap

Memory to each request it receives, having an out of Heap Memory issue.

We have also shown, an analysis based on a probabilistic approach obtaining a Bayesian

Network, which gives the dependency relationship between variables. Furthermore we

made inferences to a variable, and analyzed effects among other variables.

69

Chapter 7. Conclusions and Perspectives 70

Future work must be done, in order to modify the way to compute the ESB’s concurrency

level from the client point of view, since it takes a whole lot of time to be computed at

MySQL database. A Graphical User Interface (GUI) is also another perspective for the

near future.

Bibliography

[AP11] Sanjay P Ahuja and Amit Patel. Enterprise service bus: A performance

evaluation. Communications and Network, 3(3):133–140, 2011.

[Bre09] Paul Brebner. Service-oriented performance modeling the mule enterprise

service bus (esb) loan broker application. In Software Engineering and

Advanced Applications, 2009. SEAA’09. 35th Euromicro Conference on,

pages 404–411. IEEE, 2009.

[Bru] Durga Pavani Brundavanam. Enterprise service bus evaluation as inte-

gration platform for ocean observatories.

[Cha09] David A Chappell. Enterprise service bus. O’Reilly Media, Inc., 2009.

[Exp13] Ernesto Exposito. Advanced Transport Protocols: Designing the Next

Generation. John Wiley & Sons, 2013.

[GJMCGS10] FJ Garćıa-Jiménez, MA Mart́ınez-Carreras, and AF Gómez-Skarmeta.

Evaluating open source enterprise service bus. In e-Business Engineering

(ICEBE), 2010 IEEE 7th International Conference on, pages 284–291.

IEEE, 2010.

[Ort07] Sixto Ortiz. Getting on board the enterprise service bus. Computer,

40(4):15–17, 2007.

[SCDR] Mauro Storch, Rodrigo N Calheiros, and César AF De Rose. Virtual

machines networking for distributed systems emulation.

[SJA] Themba Shezi, Edgar Jembere, and Mathew Adigun. Performance evalu-

ation of enterprise service buses towards support of service orchestration.

[TVS02] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems, vol-

ume 2. Prentice Hall, 2002.

[UT06] Ken Ueno and Michiaki Tatsubori. Early capacity testing of an enterprise

service bus. In Web Services, 2006. ICWS’06. International Conference

on, pages 709–716. IEEE, 2006.

71

Bibliography 72

[VAMD09] M Hadi Valipour, Bavar Amirzafari, Kh Niki Maleki, and Negin Danesh-

pour. A brief survey of software architecture concepts and service ori-

ented architecture. In Computer Science and Information Technology,

2009. ICCSIT 2009. 2nd IEEE International Conference on, pages 34–

38. IEEE, 2009.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	0.1 Abstract
	0.2 Introducción
	0.3 Estado del Arte
	0.4 Metodología
	0.5 Resultados
	0.6 Conclusiones

	1 Introduction
	1.1 Welcome and Thank You
	1.1.1 Objectives

	1.2 Motivation
	1.3 Basic Concepts
	1.3.1 Service Oriented-Architecture
	1.3.2 System Integration

	1.4 Enterprise Service Bus
	1.4.1 Functionalities of an ESB
	1.4.2 Use case Example of an ESB
	1.4.3 Dissertation Structure

	2 State of the Art
	2.1 Related Work

	3 Emulator
	3.1 Problem Statement
	3.2 Motivation
	3.2.1 Different ways to Evaluate Distributed Systems

	3.3 ESB's General Environment
	3.3.1 General Use Case

	3.4 Emulators Architecture
	3.4.1 Emulator's Components General View
	3.4.2 Emulator's Component Diagram

	3.5 Current Environment

	4 Results and Analysis
	4.1 Test with SoapUI
	4.2 Avoiding Bottlenecks
	4.2.1 Performance issues from the provider side and impact
	4.2.2 Performance issues from the consumer side and impact

	4.3 Identified Problem while Evaluating the ESB's Performance
	4.3.1 What is the cost of monitoring the ESB?

	4.4 OUT OF HEAP MEMORY

	5 Emulators Outputs
	5.1 Obtained Metrics
	5.1.1 Obtained Graphs

	6 Structure Learning
	6.1 Motivation
	6.2 Data sampling
	6.3 PC Algorithm
	6.4 Graphical Model
	6.5 Analysis
	6.6 Conclusions

	7 Conclusions and Perspectives
	7.1 Conclusions

	Bibliography

