ANALISIS DE LOS CAMBIOS DE MULTIPLICIDAD EN ATOMOS

392 F.

TESIS QUE PRESENTA: Rubicelia Vargas Fosada

para la obtención del grado de Maestra en Química

UNIVERSIDAD AUTONOMA METROPOLITANA IZTAPALAPA

INDICE

. ...

Introducción.		1
Capítulo I:	Potencial de Spin y Funciones Generalizadas de Fukui.	3
Capítulo II:	Potencial de Spin y Energía de Apareamiento.	18
Capítulo III:	Redistribuciones de Carga y Cambios de multiplicidad.	28
111.1	Diferencias de Energía en la Teoría de Funcionales de la Densidad	28
111.2	Regla de Hund y Estabilidad de Capas Semillenas	39
Conclusiones.		49
Referencias.		51

INTRODUCCION

• -- --

En la estructura matemática de la Teoría de Funcionales de la Densidad Spin Polarizado (TFDSP) aparecen criterios de reactividad química¹ (potencial de spin, μ_S , dureza de spin, η_{SS} , y funciones generalizadas de fukui) que permiten analizar cambios en la distribución de la densidad electrónica cuando existe transferencia de carga entre especies químicas que interactúan (cambios en el número de electrones, N, a número de spin fijo, N_S) y los cambios que se producen cuando hay cambios en la polarización de spin (cambios de N_S a N fijo). En general cuando se estudia un proceso químico deben tomarse en cuenta ambos efectos.

Sin embargo existen procesos de interés químico que están asociados con cambios en N_S a N fijo, estos cambios son equivalentes a los cambios de multiplicidad en una especie. El objetivo de esta tésis es aplicar la TFDSP primero, al análisis de la energía de apareamiento y segundo a la racionalización de la regla de máxima multiplicidad de Hund, como ejemplos de cambios de multiplicidad en átomos.

Para lograr lo anterior, en el capítulo II se hace una exploración numérica del potencial de spin en la tabla periódica y se aplica este concepto a la obtención de la energía de apareamiento². A través de esta exploración numérica se logra conectar el sentido físico del potencial de spin proveniente de la ubicación que tiene en la estructura matemática de la TFDSP con una cantidad que se emplea para entender la tendencia de los iones metálicos a formar complejos de alto o de bajo spin. Esta conexión apoya el significado asociado a μ_S . Además se demuestra que éste es una propiedad periódica.

En el capítulo III se analiza la regla de máxima multiplicidad de Hund a la luz de una formulación reciente basada en las redistribuciones de la carga entre estados de diferente multiplicidad³. Inicialmente se reescribe el análisis de Vosko⁴ para

las diferencias de energía en términos de la densidad de spin alfa (o spin \uparrow) y de spin beta (o spin \downarrow).

Dentro de este contexto se prueba que las redistribuciones de carga por spin dan la estructura a las diferencias de energía locales tanto electrostática como de intercambio y correlación. Esto indica que las redistribuciones de carga son elementos importantes en la descripción de diferencias de energía entre estados de diferente multiplicidad.

Finalmente se establece la relación entre las redistribuciones de carga, en procesos donde cambia N_S a N fijo, y la función generalizada de fukui, f_{ns} . Mediante esta conexión se demuestra que la información cualitativa sobre las redistribuciones de carga, para este tipo de procesos, está presente en f_{ns} .

CAPITULO I

POTENCIAL DE SPIN Y FUNCIONES GENERALIZADAS DE FUKUI

En la Teoría de Funcionales de la Densidad (TFD) Spin Polarizado aparecen, de manera natural, parámetros que no estan presentes en el modelo spin restringido. Estos parámetros son: el potencial de spin (μ_s), la dureza de spin (η_{ss}) y las funciones generalizads de fukui¹. En general estas cantidades se expresan como derivadas de la energía o de la densidad electrónica o de spin con respecto al número de electrones o al número de spin.

La metodología más directa para el cálculo de estas cantidades es el modelo de Kohn-Sham⁵ (KS). La ventaja de utilizar este modelo es que en él, el funcional de la energía interpola suavemente entre números enteros de electrones⁶ y se pueden llevar a cabo, fácilmente, las derivadas requeridas para estimar los parámetros mencionados al inicio de este capítulo.

En el esquema de KS spin polarizado el funcional de la energía en ausencia de un campo magnético tiene la forma siguiente⁷, en unidades atómicas

$$\mathbf{E}[\rho(\vec{r})] = \sum_{\sigma \downarrow} n_{i\sigma} \int \phi_{i\sigma}^{*}(\vec{r}) \left[-\frac{1}{2} \nabla^{2} \right] \phi_{i\sigma}(\vec{r}) d\vec{r} + \frac{1}{2} \int \int \frac{\rho(\vec{r})\rho(\vec{r}')}{\left|\vec{r}' - \vec{r}\right|} d\vec{r} d\vec{r}' + \mathbf{E}_{xc} \left[\rho_{\uparrow}(\vec{r}), \rho_{\downarrow}(\vec{r}) \right] + \int \rho(\vec{r}) \vartheta(\vec{r}) d\vec{r}$$

$$(1)$$

El primer término de la expresión (1) corresponde al funcional de la energía cinética del sistema de partículas no inter ctuantes con densidad $\rho(\mathbf{r})$, $n_{i\sigma}$ es el número de ocupación del spin orbital iésimo de simetría de spin σ , $\phi_{i\sigma}$, (donde $\sigma = \uparrow,\downarrow$); el segundo término corresponde a la energía electrostática clásica, E_{XC} es la energía de intercambio y correlación, $\rho_{\uparrow}(\mathbf{r})$ es la densidad de spin alfa, $\rho_{\downarrow}(\mathbf{r})$ es la densidad de spin beta y $\upsilon(\mathbf{r})$ el potencial externo.

En la expresión (1) se nota que el funcional de la energía, en este esquema, depende de la densidad y de los orbitales de KS, $\phi_{i\sigma}$, por lo cual se establece una relación entre ambos juegos de variables, de la forma

$$\rho_{\sigma}(\vec{r}) = \sum_{i} n_{i\sigma} \phi_{i\sigma}^{*}(\vec{r}) \phi_{i\sigma}(\vec{r}) \qquad (2)$$

es importante recordar que los orbitales de KS son funciones auxiliares que pueden servir para evaluar a la densidad.

De esta manera el funcional de la energía queda en términos del conjunto de spin orbitales y de los números de ocupación. La minimización de este funcional debe hacerse, entonces, sobre los dos conjuntos de variables. El conjunto de los números de ocupación puede fijarse y entonces el funcional de la energía depende solamente de los spin orbitales.

Para un conjunto definido de números de ocupación, la variación de la energía, dada por la ecuación (1), bajo las restricciones de ortonormalidad de los orbitales,

$$\int \phi_{i}^{*}(\vec{r}) \phi_{j}(\vec{r}) d\vec{r} = \delta_{ij}, \qquad (3)$$

lleva a las ecuaciones monoelectrónicas siguientes:

$$\left\{-\frac{1}{2}\nabla^{2}+\vartheta(\vec{r})+\int\frac{\rho(\vec{r}')}{|r-r'|}d\vec{r}'+\frac{\delta E_{xc}\left[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})\right]}{\delta\rho_{\sigma}}\right\}\phi_{1\sigma}=\varepsilon_{1\sigma}\phi_{1\sigma} (4)$$

Si definimos

$$\vartheta_{\mathbf{e}\,\mathbf{f}}^{\sigma}(\vec{\mathbf{r}}) \equiv \vartheta(\vec{\mathbf{r}}) + \int \frac{\rho(\vec{\mathbf{r}}')}{|\mathbf{r} - \mathbf{r}'|} \mathbf{d}\,\vec{\mathbf{r}}' + \frac{\delta \mathbf{E}_{\mathbf{x}\mathbf{c}} \left[\rho_{\uparrow}(\vec{\mathbf{r}}), \rho_{\downarrow}(\vec{\mathbf{r}})\right]}{\delta \rho_{\sigma}} \tag{5}$$

entonces (4) puede escribirse como

$$\left\{-\frac{1}{2}\nabla^{2}+\vartheta_{of}^{\sigma}(\vec{r})\right\}\phi_{i\sigma}=\varepsilon_{i\sigma}\phi_{i\sigma} \qquad (6)$$

Estas son las ecuaciones de Kohn-Sham en la versión spin polarizado. Como v_{ef}^{σ} depende de la densidad y por lo tanto de los spin orbitales, se deben resolver autoconsistentemente para obtener $\epsilon_{i\sigma} y \phi_{i\sigma}$.

Los números de ocupación, que se mantienen fijos durante la variación, se pueden escoger para que den los valores correctos del número de electrones (N=N↑+N↓, donde N↑ es el numero de electrones de spin ↑ y N↓es el número de electrones de spin ↓) y del número de spin (N_S=N↑-N↓) además de que debe tomarse en cuenta el principio de exclusión de Pauli. Así, la relación entre los números de ocupación con N y N_S se puede expresar como:

$$\mathbf{N} = \sum_{i} \left(\mathbf{n}_{i\uparrow} + \mathbf{n}_{i\downarrow} \right) \tag{7a}$$

$$N_{s} = \sum_{i} (n_{i\uparrow} - n_{i\downarrow})$$
(7b)

Las sumatorias anteriores incluyen todos los estados ocupados.

Dentro del esquema descrito se pueden obtener expresiones exactas para los parámetros de reactividad que aparecen en TFDSP, las cuales serán deducidas en las siguientes secciones.

POTENCIAL QUIMICO Y DE SPIN

En TFD Spin Polarizado se define el potencial químico¹ como:

$$\mu_{N} = \left(\frac{\partial E}{\partial N}\right)_{N_{S}, \vartheta(\bar{r})}$$
(8)

esta cantidad da información sobre la tendencia que tiene un sistema a obtener o donar carga. Otra cantidad que es definida es el potencial de spin¹

$$\mu_{s} = \left(\frac{\partial \mathbf{E}}{\partial \mathbf{N}_{s}}\right)_{\mathbf{N}, \vartheta(\bar{r})}, \tag{9}$$

que está relacionado con la tendencia de un sistema a cambiar su polarización de spin. Tanto μ_N como μ_S son constantes en todo el espacio y por ello se denominan parámetros globales.

Las ecuaciones (8) y (9) muestran que $\mu_N y \mu_S$ son derivadas de la energía con respecto a N y N_S respectivamente. Dentro del esquema de KS estas derivadas se definen en términos de las derivadas de los números de ocupación.

Si se considera a la energía como una función de los números de ocupación, al usar la regla de la cadena se obtienen las siguientes expresiones:

$$\mu_{N} = \left(\frac{\partial \mathbf{E}[\{\mathbf{n}_{i}\}]}{\partial \mathbf{N}}\right)_{\mathbf{N}_{s'} \upsilon(\bar{r})} = \sum_{\sigma} \sum_{i} \left(\frac{\partial \mathbf{E}}{\partial \mathbf{n}_{i\sigma}}\right)_{\mathbf{N}_{s'} \mathbf{n}_{j\gamma} \neq \mathbf{n}_{i\sigma}} \left(\frac{\partial \mathbf{n}_{i\sigma}}{\partial \mathbf{N}}\right)_{\mathbf{N}_{s'} \mathbf{n}_{j\gamma} \neq \mathbf{n}_{i\sigma}}$$
(10)

У

$$\mu_{s} = \left(\frac{\partial \mathbf{E}[\{\mathbf{n}_{i}\}]}{\partial \mathbf{N}_{s}}\right)_{\mathbf{N}_{s}^{(\tau)}} = \sum_{\sigma = i} \left(\frac{\partial \mathbf{E}}{\partial \mathbf{n}_{i\sigma}}\right)_{\mathbf{n}_{j\gamma} \neq \mathbf{n}_{i\sigma}, \mathbf{N}} \left(\frac{\partial \mathbf{n}_{i\sigma}}{\partial \mathbf{N}_{s}}\right)_{\mathbf{N}_{s} = \mathbf{N}_{s}^{(\tau)}} (11)$$

En la derivación todos los números de ocupación $n_{j\gamma}$ permanecen constantes excepto el $n_{i\sigma}.$

Recurriendo al teorema de Janak⁸ en el caso spin polarizado, se tiene que la derivada de la energía respecto al número de ocupación de un orbital de simetría σ es igual al eigenvalor de KS correspondiente, es decir

$$\varepsilon_{i\sigma} = \left(\frac{\partial \mathbf{E}}{\partial \mathbf{n}_{i\sigma}}\right)_{\vartheta(\bar{r}), \, \mathbf{n}_{j\sigma} \neq \mathbf{n}_{i\sigma}}$$
(12)

Utilizando estas relaciones, (10) y (11) pueden escribirse como

$$\mu_{N} = \sum_{\sigma} \sum_{i} \varepsilon_{i\sigma} \left(\frac{\partial n_{i\sigma}}{\partial N} \right)_{N_{S}}$$
(13)

$$\mu_{s} = \sum_{\sigma} \sum_{i} \varepsilon_{i\sigma} \left(\frac{\partial n_{i\sigma}}{\partial N_{s}} \right)_{N}$$
(14)

Para evaluar las derivadas de los números de ocupación de las ecuaciones (13) y (14) se tienen que analizar los procesos específicos que se llevan a cabo. Es decir cuando N o N_S aumentan o disminuyen se debe tomar en cuenta que orbitales cambian su número de ocupación.

Para aclarar estos procesos específicos de los que se habla es importante analizar las tablas 1 y 2. Por ejemplo en la tabla 1 cuand^c el número de electrones (N) aumenta, es decir el sistema acepta carga, existen varios casos. Como N_S tic e que permanecer fijo la carga que el sistema acepta tiene que ser distribuida en partes iguales a los orbitales más bajos desocupados de cada una de las simetrías de spin. Si ϕ_i y ϕ_k están llenos, ninguno de los dos podrán aceptar carga y entonces cambian su número de ocupación en el proceso $\phi_j y \phi_l$, que es el caso del berilio. Pero si es solo uno de ellos (ϕ_k por ejemplo) el que ya no puede aceptar carga, entonces los que cambian su número de ocupación son $\phi_i y \phi_l$ como sucede con el carbono.

	Estado de ocupación del orbital atómico más alto ocupado		Orbitales qu ocupación proceso	ue cambian su durante el
	spin alfa	spin beta	spin alfa	spin beta
	φ ^p i	φ ^ρ _k	φ _i	φ _κ
N crece	¢ ^p	φ ^f _k	φ _i	Φ,
	φ ^f i	Φ ^P k	φ _j	φ _κ
	φ ^f _i	φ ^f κ	φ _j	φ,
N decrece	φ ^{p,f}	φ ^{p,f} κ	φ _i	φ _κ

Tabla 1. Cambios de ocupación en procesos de transferencia de carga.

p en estas tablas se refiere a que el orbital esta parcialmente ocupado y f a que esta totalmente ocupado. Además $\phi_i y \phi_j$ representan los orbitales más alto ocupado (HOMO) y más bajo desocupado (LUMO), respectivamente, para el spin mayoritario; $\phi_k y \phi_l$ tienen el mismo significado para el spin minoritario.

En el caso de los cambios en N_S, como N tiene que permanecer constante el sistema no dona ni acepta carga, solamente polariza o depolariza su spin. Cuando N_S disminuye quiere decir que incialmente el sistema tenía más electrones desapareados que al final y cuando N_S aumenta es el caso contrario. Para que N_S disminuya, por ejemplo, se tiene que transferir carga del orbital de spin α más alto ocupado al orbital de spin `más bajo desocupado. Por ejemplo, en el carbono se tiene el caso donde ϕ_i está parcialmente ocupado y ϕ_k está totalmente ocupado, cuando N_S aumenta, ϕ_i y ϕ_k cambiarán su número de ocupación, pero cuando N_S

disminuye $\phi_i y \phi_i$ son los que cambiaran durante el proceso. Así los casos que pueden existir se muestran en la tabla 2.

....

Tabla 2. Cambios de ocupación en procesos de transferencia de spin.

	Estado de o orbital atómi ocupado	cupación del co más alto	Orbitales que ocupación proceso	e cambian su durante el
	spin alfa	spin beta	spin alfa	spin beta
N _s decrece	φ ^{p,f} i	φ ^p k	φ _i	φ _k
	φ ^{ρ,1} i	Φ'ĸ	Ψ	Ψ1
N _s crece	φ ^p i	¢ ^{p,f} k	φ _j	¢ ^p k
	φ ^f i	φ ^{ρ, f} κ	φ _j	φ _k

Si uno estudia todos los casos posibles, tablas 1 y 2, puede darse cuenta que siempre cambian dos orbitales uno de spin \uparrow y otro de spin \downarrow , siempre y cuando no se permitan "hoyos" en la configuración de Kohn-Sham⁶. Es decir, es válido para estados basales.

Considerando lo anterior las ecuaciones (13) y (14) se reducen a

$$\mu_{N} = \varepsilon_{i\uparrow} \left(\frac{\partial n_{i\uparrow}}{\partial N} \right)_{N_{s}} + \varepsilon_{j\downarrow} \left(\frac{\partial n_{j\downarrow}}{\partial N} \right)_{N_{s}}$$
(15)

$$\mu_{s} = \varepsilon_{i\uparrow} \left(\frac{\partial \mathbf{n}_{i\uparrow}}{\partial \mathbf{N}_{s}} \right)_{\mathbf{N}} + \varepsilon_{j\downarrow} \left(\frac{\partial \mathbf{n}_{j\downarrow}}{\partial \mathbf{N}_{s}} \right)_{\mathbf{N}}$$
(16)

Con el fin de evaluar las derivadas que aparecen en (15) y (16) se pueden definir dos funciones auxiliares a partir de las ecuaciones (7), a saber

.

$$\mathbf{A}\left[\mathbf{N}, \left\{\mathbf{n}_{i\sigma}\right\}\right] = \mathbf{N} - \sum_{i} \left[\mathbf{n}_{i\uparrow} + \mathbf{n}_{i\downarrow}\right] = \mathbf{0}$$
(17)

$$\mathbf{B}[\mathbf{N}_{s}, \{\mathbf{n}_{i\sigma}\}] = \mathbf{N}_{s} - \sum_{i} [\mathbf{n}_{i\uparrow} - \mathbf{n}_{i\downarrow}] = \mathbf{0}$$
(18)

Tomando las diferenciales totales de estas dos funciones cuando solo cambian dos orbitales uno de spin \uparrow y otro de spin \downarrow se tiene

$$\mathbf{dA} = \left(\frac{\partial \mathbf{A}}{\partial \mathbf{N}}\right)_{\mathbf{n}_{i\uparrow},\mathbf{n}_{j\downarrow}} \mathbf{dN} + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{n}_{i\uparrow}}\right)_{\mathbf{n}_{j\downarrow},\mathbf{N}} \mathbf{dn}_{i\uparrow} + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{n}_{j\downarrow}}\right)_{\mathbf{n}_{i\uparrow},\mathbf{N}} \mathbf{dn}_{j\downarrow}$$
(19)

$$d\mathbf{B} = \left(\frac{\partial \mathbf{B}}{\partial \mathbf{N}_{s}}\right)_{\mathbf{n}_{i\uparrow},\mathbf{n}_{j\downarrow}} d\mathbf{N}_{s} + \left(\frac{\partial \mathbf{B}}{\partial \mathbf{n}_{i\uparrow}}\right)_{\mathbf{n}_{j\downarrow},\mathbf{N}} d\mathbf{n}_{i\uparrow} + \left(\frac{\partial \mathbf{B}}{\partial \mathbf{n}_{j\downarrow}}\right)_{\mathbf{n}_{j\uparrow},\mathbf{N}} d\mathbf{n}_{j\downarrow}$$
(20)

Si se deriva la ecuación (19) con respecto a N tomando $N_{\rm S}$ fijo y se evaluan las derivadas de A que aparecen de la ecuación (17) se llega a

$$\mathbf{1} = \left(\frac{\partial \mathbf{n}_{1\uparrow}}{\partial \mathbf{N}}\right)_{\mathbf{N}_{s}} + \left(\frac{\partial \mathbf{n}_{j\downarrow}}{\partial \mathbf{N}}\right)_{\mathbf{N}_{s}}$$
(21)

por otro lado al derivar la ecuación (20) con tespecto a N manteniendo N_S fijo y usando 1: ecuación (18) y (21) se llega a

$$\left(\frac{\partial n_{i\uparrow}}{\partial N}\right)_{N_{s}} = \left(\frac{\partial n_{j\downarrow}}{\partial N}\right)_{N_{s}} = \frac{1}{2}$$
(22)

Por el resultado de las ecuaciones (22) y (15), μ_N que da expresada como

$$\mu_{N} = \frac{1}{2} \left[\epsilon_{i\uparrow} + \epsilon_{j\downarrow} \right]$$
(23)

Por un procedimiento similar, se llega a las derivadas con respecto a $\ensuremath{N_S}$

$$\left(\frac{\partial n_{i\uparrow}}{\partial N_{s}}\right)_{N} = -\left(\frac{\partial n_{j\downarrow}}{\partial N_{s}}\right)_{N} = \frac{1}{2}$$
(24)

Por lo que la ecuación (16) se reduce a

$$\mu_{s} = \frac{1}{2} \left[\varepsilon_{i\uparrow} - \varepsilon_{j\downarrow} \right]$$
(25)

Como ya se había dicho anteriormente, existen diferentes procesos, N aumenta o decrece y lo mismo sucede para N_S . Si aplicamos las ecuaciones (23) y (25) a cada uno de estos procesos y si se utiliza el lenguaje de orbitales de frontera (HOMO y LUMO) se obtienen las siguientes ecuaciones:

Para la derivada de la energía cuando N se incrementa, del número de electrones del estado basal, N_o, a N_o + δ se tiene que

$$\mu_{N}^{+} = \frac{1}{2} \left[\varepsilon_{LUMOT} + \varepsilon_{LUMOL} \right].$$
 (26)

Para cuando N decrece

$$\mu_{N} = \frac{1}{2} \left[\epsilon_{HOMO\uparrow} + \epsilon_{HOMO\downarrow} \right]$$
 (27)

y si hacemos el promedio de estas dos, obtenemos μ_N cuando la aceptación o donación de carga es nula

$$\mu_{N}^{o} = \frac{1}{2} \left\{ \frac{\varepsilon_{LUMOT} + \varepsilon_{LUMOL}}{2} + \frac{\varepsilon_{HOMOT} + \varepsilon_{HOMOL}}{2} \right\}$$
(28)

Para N_S se tienen tres ecuaciones equivalentes, para cuando se acepta, se dona o no hay polarización de spin

$$\mu_{s}^{+} = \frac{1}{2} \left[\epsilon_{LUMOT} - \epsilon_{HOMOL} \right], \qquad (29)$$

$$\mu_{s} = \frac{1}{2} \left[\epsilon_{HOMOT} - \epsilon_{LUMOL} \right]$$
(30)

у

$$\mu_{s}^{o} = \frac{1}{2} \left\{ \frac{\varepsilon_{LUMOT} - \varepsilon_{HOMOL}}{2} + \frac{\varepsilon_{HOMOT} - \varepsilon_{LUMOL}}{2} \right\}$$
(31)

De esta manera pueden ser evaluadas las derivadas de la energía con respecto a N o N_S en el esquema de Kohn-Sham.

FUNCIONES GENERALIZADAS DE FUKUI

Las funciones generalizadas de fukui, que son parámetros locales (dependen de la posición), aparecen en la TFDSP. Son una medida de la respuesta de la densidad de carga o la densidad de spin cuando cambia en un sistema electrónico el número de electrones (N) o el número de spin (N_S). Se expresan como derivadas de la siguiente manera:

$$\mathbf{f}_{NN}(\vec{\mathbf{r}}) = \left(\frac{\partial \rho(\vec{\mathbf{r}})}{\partial \mathbf{N}}\right)_{\mathbf{N}_{s}, \vartheta(\vec{\mathbf{r}})}, \tag{32}$$

$$\mathbf{f}_{SN}(\vec{r}) = \left(\frac{\partial \rho_{S}(\vec{r})}{\partial N}\right)_{N_{S},\vartheta(\vec{r})}$$
(33)

$$\mathbf{f}_{NS}(\vec{r}) = \left(\frac{\partial \rho(\vec{r})}{\partial N_{S}}\right)_{N,\vartheta(\vec{r})}, \qquad (34)$$

у

$$\mathbf{f}_{ss}(\vec{r}) = \left(\frac{\partial \rho_s(\vec{r})}{\partial N_s}\right)_{N,\vartheta(\vec{r})}.$$
 (35)

Estas cantidades se pueden calcular derivando numéricamente, con respecto a N o N_S , la densidad electrónica o la densidad de spin obtenidas dentro del esquema de KS spin polarizado.

Una forma alternativa para la estimación de las funciones generalizadas de fukui es la que se denomina "Core Congelado"⁹. En ella las distintas derivadas se expresan como combinaciones lineales de orbitales de frontera.

Las expresiones para las funciones generalizadas de fukui dentro de esta aproximación pueden ser deducidas a partir de $\rho(\mathbf{r})$ y $\rho_{S}(\mathbf{r})$ escritas en término de los orbitales de KS:

$$\rho(\vec{r}) = \sum_{i=1}^{N_{\uparrow}} n_{i\uparrow} \phi_{i\uparrow}^{*}(\vec{r}) \phi_{i\uparrow}(\vec{r}) + \sum_{j=1}^{N_{\downarrow}} n_{j\downarrow} \phi_{j\downarrow}^{*}(\vec{r}) \phi_{j\downarrow}(\vec{r})$$
(36)

$$\rho_{s}(\vec{r}) = \sum_{i=1}^{N_{\uparrow}} n_{i\uparrow} \phi_{i\uparrow}^{*}(\vec{r}) \phi_{i\uparrow}(\vec{r}) - \sum_{j=1}^{N_{\downarrow}} n_{j\downarrow} \phi_{j\downarrow}^{*}(\vec{r}) \phi_{j\downarrow}(\vec{r})$$
(37)

Las sumatorias incluyen todos los estados ocupados con spin α y spin β respectivamente. Por derivación directa de estas ecuaciones se puede demostrar que²⁵

• .. -

$$\left(\frac{\partial \rho(\vec{r}\,)}{\partial N}\right)_{N_{s}} = \frac{1}{2} \left[\phi_{k\uparrow}^{*}(\vec{r}\,) \phi_{k\uparrow}(\vec{r}\,) + \phi_{1\downarrow}^{*}(\vec{r}\,) \phi_{1\downarrow}(\vec{r}\,) \right] + \sum_{i=1}^{N_{s}} n_{i\uparrow} \left(\frac{\partial \left[\phi_{i\uparrow}^{*}(\vec{r}\,) \phi_{i\uparrow}(\vec{r}\,) \right]}{\partial N} \right) + \sum_{i=1}^{N_{\downarrow}} n_{i\downarrow} \left(\frac{\partial \left[\phi_{i\downarrow}^{*}(\vec{r}\,) \phi_{i\downarrow}(\vec{r}\,) \right]}{\partial N} \right)$$
(38)

Si en la ecuación (38) se desprecian los dos últimos términos, lo cual equivale a despreciar la relajación de los orbitales de KS cuando cambia el número de electrones, se obtiene

$$\mathbf{f}_{\mathsf{N}\mathsf{N}}(\vec{\mathbf{r}}) = \left(\frac{\partial \rho(\vec{\mathbf{r}})}{\partial \mathsf{N}}\right)_{\mathsf{N}_{\mathsf{S}}} \cong \frac{1}{2} \left[\phi_{\mathsf{k}\uparrow}^{*}(\vec{\mathbf{r}}) \phi_{\mathsf{k}\uparrow}(\vec{\mathbf{r}}) + \phi_{\mathsf{l}\downarrow}^{*}(\vec{\mathbf{r}}) \phi_{\mathsf{l}\downarrow}(\vec{\mathbf{r}}) \right]$$
(39)

En esta aproximación no solo el core no varía, sino que también los orbitales de valencia permanecen fijos al variar N; por lo que esta aproximación puede ser llamada sin relajación. Como se explicó antes en este mismo capítulo, se necesitan distinguir los procesos de tal manera que se obtengan expresiones específicas para cada uno de ellos:

$$\mathbf{f}_{NN}^{+}(\vec{\mathbf{r}}) \cong \frac{1}{2} \left[\left| \phi_{LUMOT}^{+}(\vec{\mathbf{r}}) \right|^{2} + \left| \phi_{LUMOI}^{+}(\vec{\mathbf{r}}) \right|^{2} \right]$$
(40)

es la expresión para cuando el sistema acepta carga, y

$$\mathbf{f}_{NN}(\vec{r}) \cong \frac{1}{2} \left[\left| \phi_{HOMO\uparrow}(\vec{r}) \right|^2 + \left| \phi_{HOMO\downarrow}(\vec{r}) \right|^2 \right]$$
 (21)

corresponde al proceso de donación de carga.

Cuando no hay transferencia de carga se promedian las expresiones anteriores:

$$f_{NN}^{\circ} = \frac{1}{2} \begin{bmatrix} \frac{\left| \phi_{LUMO1}^{\circ}(\vec{r}) \right|^{2} + \left| \phi_{LUMO1}^{\circ}(\vec{r}) \right|^{2}}{2} \\ + \frac{\left| \phi_{HOMO1}^{\circ}(\vec{r}) \right|^{2} + \left| \phi_{HOMO1}^{\circ}(\vec{r}) \right|^{2}}{2} \end{bmatrix}$$
(42)

De esta manera quedan definidas todas las derivadas de $\rho(\mathbf{r})$ con respecto a N. Si se procede de manera similar, se encuentran expresiones equivalentes para todas las derivadas (ecuaciones de la (32) a la (35)). A continuación listamos todas ellas; donde los signos +, -, o, corresponden a los procesos ya mencionados

$$\mathbf{f}_{SN}^{+}(\vec{\mathbf{r}}) \cong \frac{1}{2} \left[\left| \phi_{LUMOT}^{+}(\vec{\mathbf{r}}) \right|^{2} - \left| \phi_{LUMOL}^{+}(\vec{\mathbf{r}}) \right|^{2} \right], \qquad (43)$$

$$\mathbf{f}_{SN}^{-}(\mathbf{\vec{r}}) \cong \frac{1}{2} \left[\left| \phi_{HOMO\uparrow}^{-}(\mathbf{\vec{r}}) \right|^{2} - \left| \phi_{HOMO\downarrow}^{-}(\mathbf{\vec{r}}) \right|^{2} \right]$$
(44)

$$f_{SN}^{o} = \frac{1}{2} \begin{bmatrix} \frac{\left| \phi_{LUMOT}(\vec{r}) \right|^{2} - \left| \phi_{LUMOL}(\vec{r}) \right|^{2}}{2} \\ + \frac{\left| \phi_{HOMOT}(\vec{r}) \right|^{2} - \left| \phi_{HOMOL}(\vec{r}) \right|^{2}}{2} \end{bmatrix}$$
(45)

Cuando se varía el número de spin se obtiene:

$$\mathbf{f}_{NS}^{+}(\vec{\mathbf{r}}) \cong \frac{1}{2} \left[\left| \phi_{LUMOT}^{-}(\vec{\mathbf{r}}) \right|^{2} - \left| \phi_{HOMOI}^{-}(\vec{\mathbf{r}}) \right|^{2} \right], \qquad (46)$$

$$\mathbf{f}_{SS}^{+}(\vec{\mathbf{r}}) \equiv \frac{1}{2} \left[\left| \phi_{LUMOT}^{+}(\vec{\mathbf{r}}) \right|^{2} + \left| \phi_{HOMO\downarrow}^{+}(\vec{\mathbf{r}}) \right|^{2} \right]$$
(47)

El signo más en este caso se refiere a la aceptación de spin, cuando se dona spin las expresiones son:

$$\mathbf{f}_{NS}(\vec{r}) \cong \frac{1}{2} \left[\left| \phi_{HOMO\uparrow}(\vec{r}) \right|^2 - \left| \phi_{LUMO\downarrow}(\vec{r}) \right|^2 \right]$$
(48)

$$\mathbf{f}_{SS}^{-}(\vec{\mathbf{r}}) \cong \frac{1}{2} \left[\left| \phi_{HOMO\uparrow}(\vec{\mathbf{r}}) \right|^{2} + \left| \phi_{LUMO\downarrow}(\vec{\mathbf{r}}) \right|^{2} \right]$$
(49)

En esta aproximación, si se toma el promedio entre (46) y (47), (48) y (49) se llega al resultado

$$\mathbf{f}_{NS}^{o}(\vec{r}) = \mathbf{f}_{SN}^{o}(\vec{r}), \qquad (50)$$

у

. . .

$$\mathbf{f}_{SS}^{o}(\vec{r}) = \mathbf{f}_{NN}^{o}(\vec{r})$$
 (51)

La aproximación sin relajación es importante porque nos da una alternativa para calcular funciones generalizadas de fukui aproximadas de una manera directa a partir de los orbitales obtenidos en un cálculo ya sea de Kohn-Sham o de Hartree Fock no restringido (UHF) Por otro lado, el hecho de que las funciones generalizadas de fukui se reduzcan a expresiones que dependen de los orbitales de frontera puede ser útil en el análisis del sentido físico de dichas cantidades.

CAPITULO II

. . .

POTENCIAL DE SPIN Y ENERGIA DE APAREAMIENTO

Por el lugar que ocupa en la estructura matemática de la TFD Spin Polarizado, el potencial de spin es una medida de la tendencia de un sistema a cambiar su polarización de spin o en otras palabras, es una medida de la capacidad que tiene un sistema para "aceptar" o "transferir spin".

El objetivo de este capítulo es analizar el comportamiento del potencial de spin en la tabla periódica y aplicarlo al cálculo de energías de apareamiento. A través de este análisis se trata de ubicar el sentido físico de este parámetro.

En la gráfica de la figura 1 se muestra, para el carbono, la energía de Kohn-Sham (KS) en función de N_S ; en ella se distingue, como ya se había mencionado, que este funcional interpola suavemente entre números enteros, lo que permite derivarlo numéricamente. En $N_S=2$, que es el estado basal, se observa una discontinuidad.

Por otro lado se distinguen dos ramas una con pendiente positiva (a la derecha de $N_S=2$) y otra con pendiente negativa (a la izquierda de $N_S=2$), esto implica que las derivadas hacia menores multiplicidades son negativas (μ_S -siempre será negativo) y hacia mayores multiplicidades (μ_S +) siempre son positivas. En el estado basal los potenciales de spin más y menos son de signo diferente, como una consecuencia de que la energía como función de N_S tiene un mínimo en ese estado. Este comportamiento de los signos alrededor del estado basal puede usarse como un criterio, si no se tiene el alor de la energía, para ubicar a dicho estado: El estado basal será el ínfimo de todos los puntos que presenten un cambio de signo en μ_S .

Figura 1. Energía total en función del número de spin a número de electrones constante para el átomo de carbono, calculado con el modelo Kohn-Sham Spin Polarizado.

El comportamiento de los signos puede ser verificado en los cálculos reportados en la tabla 3. Ahí se enlistan el potencial químico promedio (μ_N^o) y los potenciales de spin (μ_S^+ , $\mu_S^- y \mu_S^o$) para una muestra de átomos en su estado basal¹⁰ que va de Z=3 hasta Z=54. Estas cantidades fueron calculadas dentro del esquema de KS (ecs. 29, 30 y 31) y con el potencial de intercambio y correlación de Gunnarsson y Lundqvist²². En algunos casos, en los cuales la configuración del estado basal¹⁰ daba signos contrarios a los demás resultados, aparecen números e re paréntesis, estos indican los resultados cuya configuración dá la mínima energía de KS sin usar números fraccionarios. Los valores del potencial químico promedio serán discutidos posteriormente en este capítulo.

Z	μ _Ν ^Ο (Ec.28)	μ _S (Ec. 30)	μ _S ⁺ (Ec.29)	μ _S ⁰ (Ec.31)
3	-0.5324	-0.0330	0.9068	0.4369
4	-0.1480	-0.0648	0.0648	0.0000
5	-0.1890	-0.0287	0.0739	0.0226
6	-0.2612	-0.0626	0.0844	0.0109
7	-0.2537	-0.1000	0.2654	0.0827
8	-0.2354	-0.0727	0.1273	0.0273
9	-0.3100	-0.0385	0.1903	0.0759
11	-0.3251	-0.0290	0.5106	0.2408
12	-0.1184	-0.0635	0.0635	0.0000
13	-0.1506	-0.0188	0.0736	0.0274
14	-0.2096	-0.0385	0.0821	0.0218
15	-0.2096	-0.0594	0.2088	0.0747
16	-0.1920	-0.0404	0.1032	0.0314
17	-0.2450	-0.0206	0.1472	0.0633
18	-0.2018	-0.1914	0.1914	0.0000
19	-0.2181	-0.0215	0.3467	0.1626
20	-0.1192	-0.0276	0.0276	0.0000
21	-0.1458	-0.0169	-0.0475	-0.0087
		(-0.0022)	(0.6143)	
22	-0.1717	-0.0358	-0.0250	-0.0304
		(-0.0183)	(0.5586)	
23	-0.1899	-0.0561	-0.0475	-0.0518
		(-0.0664)	(0.6143)	
24	-0.4539	-0.0472	0.7252	0.3390
25	-0.1805	-0.0994	0.0486	-0.0254
26	-0.2109	-0.0832	0.0694	-0.0069
27	-0.2266	-0.0641	0.0989	0.0174
28	-0.2447	-0.0439	0.1269	0.0415
30	-0.2308	-0.1/93	0.1793	0.0000
31	-0.1611	-0.0185	0.0963	0.0389
32	-0.2165	-0.0360	0.1030	0.0335
33	-0.2143	-0.0553	0.2203	0.0835
34	-0.1031	-0.0347	0.0967	0.0310
36	-0.22/9	-0.0173	0.1343	0.0585
37	-0.1037	-0.1700	0.1700	0.0000
38	-0.1930	-0.0194	0.2910	0.1361
39	-0 1259	-0.0342	0.0042	-0.0000
40	-0.1398	-0.0287	-0.0167	-0.0027
-		(-0.0263)	(0.4767)	-0.0221

.

TABLA 3. Potencial Químico y de Spin para Estados Basales de Atomos. Todas las cantidades están en unidades atómicas.

.....

Z	μ _N ⁰ (Ec.28)	μ _S ⁻ (Ec.30)	μ _S ⁺ (Ec.29)	μ _S ⁰ (Ec.30)
41	-0.4003	-0.0450	0.5070	0.2310
42	-0.4112	-0.0641	0.6175	0.2767
43	-0.1890	-0.0748	0.0404	-0.0172
44	-0.1945	-0.0144	0.0494	0.0175
45	-0.1635	-0.0120	0.0768	0.0444
46	-0.1443	-0.0254	0.0254	0.0000
47	-0.1676	-0.0662	0.1268	0.0303
48	-0.1345	-0.0771	0.0771	0.0000
49	-0.1525	-0.0162	0.0798	0.0318
50	-0.2002	-0.0311	0.0829	0.0259
51	-0.1939	-0.0452	0.1888	0.0718
52	-0.1706	-0.0290	0.0906	0.0308
53	-0.2080	-0.0141	0.1217	0.0538
54	-0.1678	-0.1517	0.1517	0.0000

Tabla 3. (Continuación)

En la figura 2 se puede analizar con más detalle el comportamiento de μ_S como una función del número atómico. Se puede ver que el comportamiento de μ_S^o está determinado por la estructura de μ_S^+ , ya que este es numéricamente mayor que μ_S^- . Por otro lado en las capas llenas las dos cantic des ($\mu_S^+ y \mu_S^-$) son iguales. Los valores más altos de μ_S^+ corresponden a los metales alcalinos, al cromo y al molibdeno, debido a que los metales alcalinos tienen la capa ns semillena y el Cr y Mo tienen el valor de N_S mayor para la configuración ns(n-1)d. μ_S^- , que en todos los

casos es negativo, tiene sus valores mínimos para las capas llenas (v.g. gases nobles y Zinc) para los cuales el potencial de spin promedio es 0. μ_S para estos casos no da más información física, ya que implicaría moverse a N_S menor que cero.

Figura 2. Potencial de Spin para atomos neutros en su estado basal como una función del número atómico.---o-- corresponde a μ_S^+ (Ecuación (29)),--o- a μ_S^- (Ecuación (30)) y --o-- μ_S^{o} (Ecuación(31)).

En general en la figura 2 se puede observar que el comportamiento del potencial de spin es periódico, en el mismo sentido que al potencial de ionización y a la electronegatividad¹¹ se les asigna esta cualidad.

En cuanto a μ_N° se refiere, en la figura 3 se comparan los resultados obtenidos por Robles y Bartolotti¹¹ (RB) para electronegatividades y los de este trabajo (- μ_N°), ambos fueron

calculados con el mismo potencial de intercambio y correlación, pero en el esquema utilizado en este trabajo la derivación es a N_S fijo y RB hicieron la derivación sin restricciones. Lo que se puede notar es que, en general, el comportamiento de las curvas es similar, pero existen algunas diferencias notables en aquellos átomos en donde el eigenvalor HOMO de spin hacia arriba es muy diferente del eigenvalor del HOMO de spin hacia abajo lo que provoca un μ_N ⁻ considerablemente más grande que μ_N ⁺ haciendo que el promedio crezca exageradamente. Esto ayuda a aclarar que derivar a N_S fijo no es equivalente a hacerlo sin restricciones.

Figura 3. Comparación de electronegatividades (- μ_N^o) obtenidas a través de diferentes trayectorias de derivación. La línea sólida corresponde a la electronegatividad derivada sin restricciones (Ref(11)) y la línea punteada a número de spin fijo.

Los cambios en la energía, a potencial externo fijo, se pueden dividir en dos procesos, uno a número de electrones fijo y otro a número de spin fijo. El sentido físico de estos procesos por separado puede no ser claro, ya que los procesos reales son una combinación de los dos.

Sin embargo, los procesos en donde se cambia la polarización del spin son de interés en química. En la siguiente sección se utiliza el potencial de spin y la dureza de spin para estimar la energía de apareamiento.

ENERGIA DE APAREAMIENTO Y POTENCIAL DE SPIN.

La energía de un compuesto de coordinación puede ser escrita como

$$E = E_1 + E_a + \lambda \Delta, \qquad (53)$$

de acuerdo a un modelo simple propuesto por Griffith^{12,13}, donde λ es el número de electrones en el nivel de mayor energía, E₁ es la parte de la energía que no es sensible respecto de λ : incluye la energía de solvatación del complejo, la interacción entre los ligandos y la energía del estado original del ion con orbitales d degenerados, Δ es la energía que separa los dos tipos de orbitales que se distinguen por su simetría y E_a es la energía de apareamiento, esto es, la energía requerida para aparear los electrones en el átomo aislado de tal forma que se genere la polarización de spin asociada con el complejo de bajo spin. Para complejos de alto spin E_a es muy pequeña y λ es tan pequeño como sea posible preservando N_s en el mismo valor que el de la especie aislada. Para complejos de bajo spin, λ y N_s adquieren el valor más pequeño posible (ver ejemplo en la tabla 4).

Configuración	λ			Ng
	alto spin	bajo spin	alto spin	bajo spin
d0	0	0	0	0
d1	0	0	1	1
d ²	0	0	2	0
d ³	0	0	3	1
d ⁴	1	0	4	0
d ⁵	2	0	5	1
d ⁶	2	0	4	0
d ⁷	2	1	3	1
d ⁸	2	2	2	0
d ⁹	3	3	1	1
d ¹⁰	4	4	0	0

Tabla 4. Ejemplo de valores de λ y N_S en complejos de alto v baio spin.

Para el proceso en el cual un complejo de coordinación MA_n cambia de alto spin a bajo spin:

$$(MA_n)_{alto spin} = (MA_n)_{bajo spin},$$
 (54)

el cambio en la energía libre es aproximadamente igual al cambio de entalpía, ya que el de entropía debe ser pequeño porque las dos especies difieren solamente en el arreglo de sus electrones. A su vez el cambio de entalpía puede ser calculado por el cambio en la energía interna debido a que el término $\Delta(PV)$ es prácticamente nulo. Esto quiere decir que el cambio de energía del proceso se debe únicamente al cambio en el arreglo de los electrones.

En los complejos regulares $(d^4, d^5, d^6 y d^7)$ por cada electrón apareado $(N_s disminuye)$ λ decrece en la misma cantidad. De esta manera la diferencia de energía entre la especie de bajo y de alto spin queda

$$E_{bajo spin} - E_{alto spin} = E_a - \mu\Delta$$
 (55)

cuando se aparean μ electrones. Para que el proceso sea exotérmico (o la especie de bajo spin más estable), como en la ecuación (55) E_a

y Δ son positivo definidas, se tiene que cumplir la siguiente desigualdad

$$\Delta > \mu^{-1} E_a \approx \varepsilon_{\pi}$$
 (56)

donde ε_{π} es la energía promedio de apareamiento por electrón. La ecuación (56) indica que si la desigualdad se satisface, el complejo de bajo spin se estabiliza con respecto al otro.

 Δ depende de los ligandos pero ε_{π} no, entonces la desigualdad (56) se puede utilizar de dos maneras:

-para un ion específico M^{n+} , ε_{π} representa un valor por arriba del cual debe ubicarse el valor de Δ para que se favorezca la formación de la especie de bajo spin.

-por otro lado, si no se cambia la naturaleza y el número de los ligantes, ni el grado de ionización del metal los cambios en el valor de la polarización de spin en los complejos se pueden atribuir a los cambios en la energía de apareamiento.

La segunda forma de aplicar la desigualdad es la que es útil para los objetivos de la discusión siguiente, en donde se establecerá una relación entre las diferencias de energía que aparecen en la ecuación (55) y algunas cantidades propias de la TFD como son el potencial de spin y la dureza de spin.

Para establecer esta relación se parte de hacer un desarrollo en series de Taylor de la energía en función de N_s a número de electrones fijo, el que a segundo orden tiene la forma siguiente

$$\mathbf{E}(\mathbf{N}^{0},\mathbf{N}_{s}^{0}+\delta_{s})-\mathbf{E}(\mathbf{N}^{0},\mathbf{N}_{s}^{0})\cong\delta_{s}\mu_{s}+\frac{\delta_{s}^{2}}{2}\eta_{ss}$$
(57)

donde $\delta_s = (N_s - N_s^o) y \eta_{ss}^o$ es la dureza de spin en el estado basal y depende, como en el caso del potencial de spin, del proceso que se lleve a cabo para realizar la derivación. Si partimos de que el estado basal es el de mayor multiplicidad y nos movemos hacia

menores multiplicidades, es decir $\delta_s < 0$, la ecuación (57) representa la energía de apareamiento de acuerdo a la ecuación (55). Para este proceso las cantidades de interés son μ_S y η_{ss} , que indican que las derivaciones son hacia menores multiplicidades.

Se utilizó la ecuación (57) para calcular las energías de apareamiento de una muestra de cationes metálicos a primero y segundo orden, estos resultados se muestran en la tabla 5, en donde además se comparan con otros en donde se usan parámetros de Racah para las integrales coulombicas y de intercambio², los cuales no contienen correlación. En la ecuación (57) μ_S^- fue calculada por medio de la ecuación (30) y η_s^- por una derivación numérica de μ_S^- utilizando diferencias finitas en un esquema de cinco puntos donde el paso se tomó igual 0.01 u. a.

	ION	1 ^{er} orden	2º orden	Ref (2)
	Cr ²⁺	0.1712	0.1281	0.0930
d ⁴	Mn ³⁺	0.1970	0.1460	0.1149
	Cr+	0.1342	0.0976	0.0806
d ⁵	Mn ²⁺	0.2168	0.1729	0.1086
	Fe ³⁺	0.2480	0.1972	0.1361
	Mn+	0.1498	0.1128	0.0663
d ⁶	Fe ²⁺	0.1756	0.1311	0.0873
	Co ³⁺	0.1934	0.1441	0.1076
	Fe+	0.1162	0.0775	0.0806
d ⁷	Co ²⁺	0.1340	0.0890	0.0952

Tabla 5. Energías de apareamiento en unidades atómicas para algunos cationes metálicos

En la tabla 5 se puede distingui, que a primer orden en N_s la tendencia seguida a N fijo es la misma que en las cantidades reportadas en la literatura, por lo que se puede decir que es una medida cualitativa de la tendencia de un sistema a formar

complejos de bajo o de alto spin, por otro lado la corrección a segundo orden mejora los resultados, en el sentido de que se acercan más a los calculados por otro método. Con esto se puede decir que la ecuación (57) es una alternativa para calcular energías de apareamiento utilizando cantidades de TFD spin polarizado.

CAPITULO III

....

REDISTRIBUCIONES DE CARGA Y CAMBIOS DE MULTIPLICIDAD

III.1 DIFERENCIAS DE ENERGIA EN LA TEORIA DE FUNCIONALES DE LA DENSIDAD

La regla de máxima multiplicidad de Hund establece que entre dos estados, que provengan de la misma configuración electrónica, el de mayor multiplicidad será el de menor energía¹⁴. Esta regla fué formulada a partir de observaciones en los espectros experimentales de los elementos del escandio al niquel¹⁵ y se aplica muy común y ampliamente en la química.

Es necesario distinguir entre los niveles de aplicabilidad de la regla de Hund. Pauncz¹⁵ distingue tres niveles: el primero, es la formulación mínima que restringe la regla a la determinación del término de menor energía de la configuración del estado basal.

Otro nivel consiste en utilizarla como un criterio para determinar el estado de menor energía de cualquier configuración y la formulación más general intenta usar la primera regla de Hund como un principio de construcción de cualquier configuración.

Como ya se mencionó, esta regla es empírica y fué formulada antes del advenimiento de la mecánica cuántica. Más tarde, se aplicaron métodos de la mecánica cuántica para determinar cual era el estado más estable y se concluyó que dicho estado tenía una menor energía de repulsión electrón-electrón que el de energía mayor¹⁶.

Como ejemplo de lo anterior podemos analizar la diferencia entre los est. los triplete y singulete de un sistema de dos electrones en estados atómicos s (1s2s).

Aplicando la Teoría de Perturbaciones para este caso y tomando como perturbación la repulsión interelectrónica, se

obtiene, a primer orden, la expresión para la diferencia de energía entre los estados singulete y triplete¹⁷.

$$E(^{3}S)-E(^{1}S) = \langle ^{3}S | 1/r_{12} | ^{3}S \rangle \langle ^{-1}S | 1/r_{12} | ^{1}S \rangle$$
(52)

La diferencia de las dos integrales que aparecen en la ecuación (52) se reduce a $-2K_{12}$, en donde K_{12} es la integral de intercambio asociada a los dos orbitales involucrados. Como K_{12} es mayor que cero

$$E(^{3}S)-E(^{1}S)<0$$

Lo que significa que el estado de menor energía es el triplete y por lo tanto es el más estable. De esta manera se justificó que en el estado de mayor multiplicidad existía menor energía de repulsión electrón-electrón lo que lo hacía más estable.

Sin embargo en 1965, Davidson¹⁸ calculó para estados excitados del helio la energía de repulsión electrón-electrón y observó que esta era mayor en el triplete que en el singulete. Lo que hacía inválida la explicación anterior.

En los años siguientes, se hicieron más cálculos que apoyaban los de Davidson¹⁵.

En 1984 Boyd³ dió una explicación alternativa, basada en la correlación entre electrones de spines paralelos. De acuerdo con Boyd esta correlación mantiene a los electrones separados, de tal manera que "se apantallan menos" el uno al otro y cada uno experimenta una carga nuclear efectiva mayor. El efecto anterior origina una contracción en la nube electrónica y por lo tanto una energía de atracción electrón - núcleo más grande. Boyd atribuye a esta contracción de carga en el estado de mayor multiplicidad, su menor energía total. Las observaciones de Boyd son con istentes con que el estado de mayor multiplicidad de un átomo es el de menor tamaño.

Para apoyar esta explicación, Boyd compara los estados singulete y triplete del helio provenientes de la configuración 1s2s. En la tabla 6 se muestran la energía de atracción electrónnúcleo (V_{en}) calculada como V_{en} = -2Z<1/r>, la energía de repulsión electrón-electrón (V_{ee}), V_{en} = <1/r₁₂>, la energía total y las cargas nucleares efectivas.

Tabla 6. Componentes de la energía y cargas nucleares efectivas (Z_{ef}) para los estados ³S y ¹S del helio en unidades atómicas.

Cantidad	³ S	1S
E _{total}	-2.1752	-2.1459
V _{ee}	0.2682	0.2495
V _{en}	-4.6186	-4.5413
Zef ^a	1.41	1.20

.

^a Esta cantidad se cálculo sobreponiendo las densidades radiales en la secuencia isoelectrónica del He, lo cual se logra ajustando el parámetro δ que es interpretado como la constante de apantallamiento y Z- δ viene a ser la carga nuclear efectiva

En esta tabla se puede notar que la V_{ee} para el triplete es mayor que el singulete y que la energía total menor del triplete se debe a que su V_{en} es más grande en valor absoluto. Además la carga nuclear efectiva del singulete es menor.

Valenta y colaboradores^{19,20,21} han extrapolado esta explicación al análisis de la regla de Hund en moléculas.

De la sección anterior se puede concluir que la regla de máxima multiplicidad de Hund, se explica mediante el análisis de las diferencias de energía y diferencias entre los componentes de la energía entre estados de diferente multiplicidad. Asociada con esas diferencias está la redistribución de carga cuando cambia N_S . En esta sección se analiza en detalle el efecto de la redistribución

de carga en las diferencias de energía, este análisis se hace en el contexto de la TFD Spin Polarizado. Es importante aclarar que, en este trabajo, cuando se hace referencia a la primera regla de Hund solo es para el primer nivel de aplicabilidad definido por Pauncz¹⁵, es decir el que restringe la regla a la determinación del término de menor energía de la configuración del estado basal.

Vosko⁴ introdujo un formalismo para entender los cambios de energía en función de los cambios en la densidad electrónica. Este tratamiento puede hacerse utilizando como variables el conjunto $\{\rho_{s},\rho\}$ o $\{\rho_{\downarrow},\rho_{\uparrow}\}$ según sea conveniente, siendo esto posible debido a que

$$\rho(\vec{\mathbf{r}}) = \rho_{\uparrow}(\vec{\mathbf{r}}) + \rho_{\downarrow}(\vec{\mathbf{r}})$$
 (58a)

у

$$\rho_{s}(\vec{r}) = \rho_{\uparrow}(\vec{r}) - \rho_{\downarrow}(\vec{r})$$
(58b)

En esta sección se utiliza el conjunto de $\{\rho_{\perp}, \rho_{\uparrow}\}$.

La energía total puede ser escrita de la siguiente manera

$$\mathbf{E}\left[\rho_{\uparrow}(\vec{r}\,),\rho_{\downarrow}(\vec{r}\,)\right] = \mathbf{T}_{\mathbf{S}}\left[\rho_{\uparrow}(\vec{r}\,),\rho_{\downarrow}(\vec{r}\,)\right] + \mathbf{E}_{\mathbf{E}\mathbf{x}\mathbf{t}}\left[\rho_{\uparrow}(\vec{r}\,),\rho_{\downarrow}(\vec{r}\,)\right] + \mathbf{E}_{\mathbf{H}}\left[\rho_{\uparrow}(\vec{r}\,),\rho_{\downarrow}(\vec{r}\,)\right] + \mathbf{E}_{\mathbf{X}\mathbf{C}}\left[\rho_{\uparrow}(\vec{r}\,),\rho_{\downarrow}(\vec{r}\,)\right] \tag{59}$$

en donde T_S es el funcional de la energía cinética del sistema de partículas no interactuantes. E_{XC} es el de la energía de intercambio y correlación, la forma exacta de este funcional es, hasta ahora, desconocida y generalmente se puede modelar. En este trabajo se utiliza la aproximación de Gunnarsson y Lundqvist²² al funcional de la energía de intercambio y correlación. E_{ext} es la energía t. tal asociada a la interacción del potencial externo con la distribución de carga y tiene la siguiente forma

$$\mathbf{E}_{\mathsf{Ext}}\left[\rho_{\uparrow}(\vec{\mathbf{r}}),\rho_{\downarrow}(\vec{\mathbf{r}})\right] = \sum_{\sigma} \int \mathbf{d} \, \vec{\mathbf{r}} \rho_{\sigma}(\vec{\mathbf{r}}) \, \upsilon^{\sigma}(\vec{\mathbf{r}}) \tag{60}$$

 σ se refiere a spin \downarrow , o spin \uparrow y υ es el potencial externo.

Por último E_H es la energía coulombica clásica y esta dada por

$$\mathbf{E}_{H}\left[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})\right] = \frac{1}{2} \int d\vec{r}_{1} \int d\vec{r}_{2} \frac{\rho(\vec{r}_{1})\rho(\vec{r}_{2})}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}$$
(61)

siendo

y

$$\rho(\vec{r}_1) = \rho_{\uparrow}(\vec{r}_1) + \rho_{\downarrow}(\vec{r}_1)$$

$$\rho(\vec{r}_2) = \rho_{\uparrow}(\vec{r}_2) + \rho_{\downarrow}(\vec{r}_2)$$

Los términos más grandes en la ecuación (59) son E_{ext} y E_H que combinadas nos dan la energía electrostática (E_{es}), esto es

$$\mathbf{E}_{es}\left[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})\right] = \mathbf{E}_{Ext}\left[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})\right] + \mathbf{E}_{H}\left[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})\right] \quad (62)$$

A continuación se analiza el cambio de energía electrostática entre dos estados de diferente multiplicidad con $\{\rho_{\downarrow}, \rho_{\uparrow}, \upsilon_{\downarrow}, \upsilon_{\uparrow}\}$ y $\{\rho^{*}_{\downarrow}, \rho^{*}_{\uparrow}, \upsilon^{*}_{\downarrow}, \upsilon^{*}_{\uparrow}\}$.

Los cambios en la densidad y en el potencial externo se pueden escribir como

$$\Delta \rho = \rho_{\sigma}^{*} - \rho_{\sigma} \tag{63}$$

$$\Delta \upsilon = \upsilon_{\sigma}^* - \upsilon_{\sigma} \tag{64}$$

Es posible, también, analizar estos cambios de energía si se toman ahora como variables los promedios entre los dos estados

$$\upsilon_{\sigma}^{a} = \frac{1}{2} (\upsilon_{\sigma}^{*} + \upsilon_{\sigma})$$
 (65)

$$\rho_{\sigma}^{a} = \frac{1}{2} (\rho_{\sigma}^{*} + \rho_{\sigma})$$
(66)

de tal manera que

$$\Delta \mathbf{E}_{\mathbf{E} \times \mathbf{t}} = \int \mathbf{d} \, \vec{\mathbf{r}} \left\{ \Delta \rho_{\uparrow} \upsilon_{\uparrow}^{\mathbf{a}} + \Delta \upsilon_{\uparrow} \rho_{\uparrow}^{\mathbf{a}} \right\} + \left\{ \Delta \rho_{\downarrow} \upsilon_{\downarrow}^{\mathbf{a}} + \Delta \upsilon_{\downarrow} \rho_{\downarrow}^{\mathbf{a}} \right\}$$
(67)

Cuando el potencial externo es constante

$$\Delta \mathbf{E}_{\mathbf{E} \times \mathbf{t}} = \int \mathbf{d} \, \vec{\mathbf{r}} \left\{ \Delta \rho_{\uparrow} \upsilon_{\uparrow}^{\mathbf{a}} + \Delta \rho_{\downarrow} \upsilon_{\downarrow}^{\mathbf{a}} \right\}, \tag{68}$$

y el cambio en la energía coulombica clásica se puede escribir como

$$\Delta \mathbf{E}_{H} = \frac{1}{2} \int d\vec{r}_{1} \int d\vec{r}_{2} \frac{\left[\rho^{*}(\vec{r}_{1})\right] \left[\rho^{*}(\vec{r}_{2})\right] - \left[\rho(\vec{r}_{1})\right] \left[\rho(\vec{r}_{2})\right]}{\left|\vec{r}_{1} - \vec{r}_{2}\right|}$$
(69)

donde

$$\rho^{*}(\vec{r}_{1}) = \rho^{*}_{\uparrow}(\vec{r}_{1}) + \rho^{*}_{\uparrow}(\vec{r}_{1})$$

$$\rho^{*}(\vec{r}_{2}) = \rho^{*}_{\uparrow}(\vec{r}_{2}) + \rho^{*}_{\downarrow}(\vec{r}_{2})$$

$$\rho(\vec{r}_{1}) = \rho_{\uparrow}(\vec{r}_{1}) + \rho_{\uparrow}(\vec{r}_{1})$$

$$\rho(\vec{r}_{2}) = \rho_{\uparrow}(\vec{r}_{2}) + \rho_{\downarrow}(\vec{r}_{2})$$

Utilizando la ecuación (66) la expresión anterior se puede reducir a

$$\Delta \mathbf{E}_{\mathrm{H}} = \frac{1}{2} \int \mathbf{d} \, \vec{\mathbf{r}}_{1} \int \mathbf{d} \, \vec{\mathbf{r}}_{2} \frac{\left(\rho^{\mathrm{a}}(\vec{\mathbf{r}}_{2})\Delta\rho_{\uparrow}(\vec{\mathbf{r}}_{1}) + \rho^{\mathrm{a}}(\vec{\mathbf{r}}_{2})\Delta\rho_{\downarrow}(\vec{\mathbf{r}}_{1})\right)}{\left|\vec{\mathbf{r}}_{1} - \vec{\mathbf{r}}_{2}\right|} \tag{70}$$

Si se utilizan los siguientes cambios de variable:

$$\rho_{\uparrow}^{*} = \frac{\Delta \rho_{\uparrow}}{2} + \rho_{\uparrow}^{a}, \qquad \rho_{\downarrow}^{*} = \frac{\Delta \rho_{\downarrow}}{2} + \rho_{\downarrow}^{a}$$
(71)

$$\rho_{\uparrow} = \rho_{\uparrow}^{a} - \frac{\Delta \rho_{\uparrow}}{2}; \qquad \rho_{\downarrow} = \rho_{\downarrow}^{a} - \frac{\Delta \rho_{\downarrow}}{2}$$
(72)

33

.

La idea detrás de estas ecuaciones es medir las deformaciones de las densidades a partir del promedio (ρ^a_{σ}) tomado entre los estados ρ_{σ} y ρ^*_{σ} .

Si se suman las dos contribuciones (Eext y EH)

$$\Delta \mathbf{E}_{es} = \int \mathbf{d} \, \vec{\mathbf{r}}_1 \Delta \rho_{\uparrow}(\vec{\mathbf{r}}_1) \left[\upsilon^{\mathbf{a}}(\vec{\mathbf{r}}_1) + \int \mathbf{d} \, \vec{\mathbf{r}}_2 \frac{\rho^{\mathbf{a}}(\vec{\mathbf{r}}_2)}{\left| \vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2 \right|} \right] + \int \mathbf{d} \, \vec{\mathbf{r}}_1 \Delta \rho_{\downarrow}(\vec{\mathbf{r}}_1) \left[\upsilon^{\mathbf{a}}(\vec{\mathbf{r}}_1) + \int \mathbf{d} \, \vec{\mathbf{r}}_2 \frac{\rho^{\mathbf{a}}(\vec{\mathbf{r}}_2)}{\left| \vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2 \right|} \right]$$
(73)

definiendo al potencial efectivo como

$$\frac{Z_{eff}[\rho_{a},\vec{r}]}{r_{1}} = v^{a}(\vec{r}_{1}) + \int d\vec{r}_{2} \frac{\rho^{a}(\vec{r}_{2})}{\left|\vec{r}_{1} - \vec{r}_{2}\right|}$$
(74)

se obtiene

$$\Delta \mathbf{E}_{es} = \int d\vec{r}_{1} \Delta \rho_{\uparrow}(\vec{r}_{1}) \frac{\mathbf{Z}_{eff}[\rho_{a}, r_{1}]}{r_{1}} + \int d\vec{r}_{1} \Delta \rho_{\downarrow}(\vec{r}_{1}) \frac{\mathbf{Z}_{eff}[\rho_{a}, r_{1}]}{r_{1}}$$
(75)

En la ecuación anterior se puede observar que la respuesta de la densidad electrónica a los cambios de multiplicidad determina el cambio en la energía electrostática, junto con el potencial efectivo, Z_{eff} . En este caso nos referimos a cambios en la multiplicidad, pero esta ecuación es general y puede aplicarse, por ejemplo, a dos estados con diferente número de electrones, además a cualquier sistema, esto es átomos o moléculas.

Como los integrandos en la ecuación (75) tienen dos contribuciones, se van a analizar en detalle los comportamientos locales de ambos para una muestra de átomos.

Para átomos la integral en la que aparece el potencial efectivo puede ser evaluada de la siguiente manera

$$\int d\vec{r}_{2} \frac{\rho^{a}(\vec{r}_{2})}{\left|\vec{r}_{1}-\vec{r}_{2}\right|} = 4\pi \left[\frac{1}{r_{1}}\int_{0}^{r_{1}} dr_{2}r_{2}^{2}\rho^{a}(\vec{r}_{2}) + \int_{r_{1}}^{\infty} dr_{2}r_{2}\rho^{a}(\vec{r}_{2})\right] \quad (76)$$

si se hace un promedio esférico.

En la figura 4 se muestran los potenciales efectivos para los átomos de B, C, N, O y F, los $\Delta \rho_{\uparrow} y \Delta \rho_{\downarrow}$ son mostrados en la figura 5 para la misma muestra, la multiplicación da como resultado la ΔE_{es} local (figura 6). Se puede notar que la estructura de esta última cantidad está determinada por el cambio en las densidades de spin alfa y beta cuando cambia la multiplicidad, ya que la contibución del potencial efectivo es solo sobre el tamaño de los cambios y el signo de estos, pero la estructura de Z_{eff} es la misma para todos los átomos de la muestra.

Figura 4. Potenciales efectivos en función del radio atómico para los átomos de B, C, N, O y F. En la gráfica aparecen en este orden de arriba hacia abajo.

Figura 5.Diferencias de densidades de spin alfa y beta. Las líneas sólidas son las diferencias de densidades de spin alfa y las punteadas de spin beta.

÷

Figura 6 Diferencias de energía electrostática de spin alfa y beta. La linea sólida, en cada gráfica, corresponde a la diferencia de energía de spin alfa y la punteada a la beta. La línea sólida de enmedio corresponde a la suma de las dos contribuciones.

Si se hace un análisis similar para medir los cambios en la energía de intercambio y correlación para los mismos átomos, se ve también que $\Delta p_{\uparrow} y \Delta p_{\downarrow}$ son las cantidades que determinan su estructura, no obstante que c. potencial de intercambio y correlación presenta variaciones más a apreciables que Z_{eff}/r (figura 7). Estas variaciones introducen hombros en la E_{XC} local que desaparecen casi por completo para las Δp_{σ} más grandes (ver por ejem. el oxígeno y el fluor en la figura 8).

.

Figura 7. Potenciales de intercambio y correlación de spin alfa y beta para B, C, N, O y F. La grafica a la izquierda es la que corresponde al spin alfa y la de la derecha al beta.

Por otro lado es importante notar que los cambios en la energía de intercambio y correlación son de menor magnitud que los de la energía electrostática.

También puede observarse que conforme se va llenando la capa "p" la suma de las diferencias de energía electrostática son menores debido a que las diferencias entre $\Delta \rho_{\uparrow} y \Delta \rho_{\perp}$ disminuyen.

De esta manera se puede decir que los cambios de energía entre estados de diferente multiplicidad están determinados directamente por los cambios en la densidad electrónica.

III.2 REGLA DE HUND Y ESTABILIDAD DE CAPAS SEMILLENAS

Ahora se van a expresar los $\Delta \rho_{\sigma}$ en términos de las funciones generalizadas de fukui.

Si se hace un desarrollo en series de Taylor de la densidad electrónica alrededor del estado basal a potencial externo fijo, tomando como variables a N_S y N se tiene

$$\rho^{m} - \rho^{M} = \Delta \rho = \left(\frac{\partial \rho}{\partial N_{s}}\right)_{N,v} \Delta N_{s}$$
(77)

donde m se refiere al estado de menor multiplicidad y M al de mayor multiplicidad y $(\partial \rho / \partial N_s)_N$ es una función generalizada de fukui, f_{ns}.

Como $\rho = \rho_{\uparrow} + \rho_{\downarrow}$, los cambios en la densidad electrónica pueden ser analizados por separado²³, es decir se pueden estimar $(\partial \rho_{\downarrow}/\partial N_s)_N y (\partial \rho_{\uparrow}/\partial N_s)_N$ que además se relacionan con f_{ns} de la siguiente manera

$$\mathbf{f}_{\mathbf{ns}} = \left(\frac{\partial \rho}{\partial \mathbf{N}_{\mathbf{s}}}\right)_{\mathbf{N},\upsilon} = \left(\frac{\partial \rho}{\partial \mathbf{N}_{\mathbf{s}}}\right)_{\mathbf{N},\upsilon} + \left(\frac{\partial \rho}{\partial \mathbf{N}_{\mathbf{s}}}\right)_{\mathbf{N},\upsilon}$$
(78)

Por lo que el comportamiento de f_{ns} es la combinación de las respuestas de las densidades de carga spin alfa y beta respecto de N_{S} .

Para calcular las funciones generalizadas de fukui se pueden derivar numéricamente las densidades ρ_{σ} con respecto a N_s. Como ya se mencionó en el capítulo I, fijar la dirección del cambio que se quiere analizar es muy importante para calcular las derivadas en la dirección correcta. Como en este caso los cambios que nos interesan son los que van del estado basal (que es de mayor multiplicidad) a uno de menor multiplicidad, la función que se debe calcular es f_{ns}⁻, es decir la derivada en la dirección de menor multiplicidad.

Las funciones de distribución de las derivadas $(\partial \rho_{\downarrow}/\partial N_s)_N y$ $(\partial \rho_{\uparrow}/\partial N_s)_N$ para el átomo de carbono se muestran en la figura 9. Para analizar estas figuras puede recurrirse a una ecuación similar a la ecuación (77), pero para el cambio en la $\rho \uparrow y \rho \downarrow$.

$$\Delta \rho_{\uparrow} = \left(\frac{\partial \rho_{\uparrow}}{\partial \mathbf{N}_{s}}\right)_{\mathbf{N},\upsilon} \Delta \mathbf{N}_{s}$$
(79)

y

$$\Delta \rho_{\downarrow} = \left(\frac{\partial \rho_{\downarrow}}{\partial \mathbf{N}_{s}}\right)_{\mathbf{N},\nu} \Delta \mathbf{N}_{s}$$
(80)

 ΔN_s siempre es menor que cero porque es la resta del número de spin de menor multiplicidad menos el de mayor multiplicidad (N_s^m - N_s^M). Entonces cuando $(\partial \rho_{\uparrow}/\partial N_s)_N$ es positiva $\Delta \rho \uparrow$ es negativo y viceversa. Lo mismo ocurre para $\Delta \rho \downarrow$. Lo relevante de estas figuras es que en ambos casos los cambios en la densidad no responden de manera niforme al cambio en la multiplicidad y por otra parte la respuesta de $\rho_{\uparrow} y \rho_{\downarrow}$ no es simétrica, es decir los cambios no son equivalentes y de signo contrario, ya que esto ocurriría en una capa cerrada.

Figura 9. Funciones de distribución radial de las derivadas de la densidad de spin alfa y beta con respecto al número de spin, para el átomo de carbono. La linea solida corresponde a la de spin beta (pero con signo contrario) y la punteada a la alfa.

Si sumamos estas cantidades $((\partial \rho_{\downarrow}/\partial N_s)_N y (\partial \rho_{\uparrow}/\partial N_s)_N)$ obtenemos f_{ns} que es el cambio en la densidad de carga total cuando se disminuye la multiplicidad a N fijo. La f_{ns} para el carbono se muestra en la figura 10.

Figura 10. Función de distribución radial de la derivada de la densidad electrónica en función del número de spin a N constante para el átomo de carbono.

De manera similar que para los cambios en la densidad de spin, cuando f_{ns} es mayor que cero, $\Delta \rho$ es menor que cero; indicando que $\rho^{M} > \rho^{m}$; en la gráfica esto ocurre cerca del núcleo, esto se interpreta como que la densidad en el estado de mayor multiplicidad se contrae con respecto al de menor multiplicidad. Este comportamiento, que fué descrito por Boyd, se puede racionalizar tomando en cuenta que la respuesta no es simétrica: Las "pequeñas" diferencias de la figura 9 originan la estructura de f_{ns} y por ende de $\Delta \rho$.

Lo anterior implica que una función generalizada de fukui, f_{ns}, tiene información relevante para el análisis de las redistribuciones de carga entre estados de diferente multiplicidad. Por lo mismo resulta interesante probar la aproximación de "core congelado" para estimar esta función. Ya que en el caso de moléculas se facilitaría en gran medida el cálculo. En la figura 11 se compara, para el C, la f_{ns} numérica y la que se obtiene mediante la ecuación (48). Se puede ver que cualitativamente da la misma información. Por lo que podríamos decir que el análisis que se ha hecho hasta ahora podría extenderse a moléculas.

Figura 11. Comparación entre las funciones de fukui, f_{ns}⁻, para el carbono calculada numéricamente y por la aproximación "core congelado". La linea sólida corresponde a la aproximación "core congelado" y la punteada a la numérica.

Uno de los aspectos importantes de la interpretación de Boyd de la regla de Máxima Multiplicidad de Hund son las diferencias de energía. En particular se hace énfasis en las diferencias de la energía nucleo electrón (ΔV_{en}) y electrón-electrón(ΔV_{ee}).

En esta sección se estiman esas diferencias recurriendo a parámetros de la TFD Spin Polarizado para series isoelectrónicas en átomos.

En primer término se puede decir que la energía núcleo-electrón es un funcional de la densidad y a su vez la densidad es una función de N_S: V_{en}[$\rho(N_S)$]. Tomando esto en cuenta se puede escribir la diferencial de V_{en} en la forma

$$\delta V_{ne} \left[\rho(N_{s}) \right] = \int \left(\frac{\delta V_{ne}}{\delta \rho(\vec{r})} \right) \left(\frac{\delta \rho(\vec{r})}{\delta N_{s}} \right) dN_{s} d\tau \qquad (81)$$

en donde se ha hecho uso de la regla de la cadena. La primera derivada funcional de V_{en} respecto de $\rho(r)$ es el potencial externo, $\upsilon(r)$. Tomando esto en cuenta y la ecuación (34) se obtiene,

$$\delta V_{ne}[\rho(N_s)] = \int \upsilon(\vec{r}) f_{ns}(\vec{r}) dN_s dr \qquad (82)$$

Esta ecuación asocia directamente el cambio en la energía núcleo electrón con la función generalizada de fukui, f_{ns}.

Por otro lado la ecuación (57) aplicada para el paso de un estado triplete a uno singulete da

$$\Delta \mathbf{E} = -2\mu_{s} + 2\eta_{ss}$$
 (83)

 μ_s y η_s son derivadas calculadas en la dirección de menor multiplicidad y para el estado basal o de mayor multiplicidad.

Para calcular las diferencias de energía electrónelectrón, ΔV_{ee} , se recurre al teorema del virial¹⁴ que establece que

$$\langle \Delta V \rangle = \langle \Delta V_{ee} \rangle + \langle \Delta V_{en} \rangle = 2 \langle \Delta E \rangle$$
 (84)

así ΔV_{ee} puede ser calculada una vez que se tengan ΔV_{en} y ΔE .

La ecuación (82) se utilizó para calcular ΔV_{en} , la ecuación (83) para ΔE y el teorema del virial para para ΔV_{ee} en las series

isoelectrónicas del C, N y O. Estos resultados se muestran en la tabla 7, junto con las diferencias de energía calculadas por Colpa y colaboradores²⁴ utilizando el método Hartree-Fock (HF).

Tabla 7. Comparación entre diferencias de energía y componentes de la energía, calculados mediante parámetros TFD y SCF, para las series isoelectrónicas del C, N y O. Todas las cantidades están en u. a.

	Cálculos TFD			Cálculos SCF ²⁴		
	ΔE	<∆V _{en} >	<∆V _{ee} >	ΔE	<∆V _{en} >	<∆V _{ee} >
		¹ D- ³ P			¹ D- ³ P	
С	0.06403	0.14536	-0.01729	0.05729	0.14592	-0.03134
N ⁺	0.08904	0.15303	+0.02505	0.08060	0.15856	+0.00264
<u>0²⁺</u>	0.11183	0.17089	+0.05278	0.10292	0.17649	+0.02934
0	0.07275	0.15282	-0.00730	0.08013	0.18887	-0.02860
F ⁺	0.09061	0.16706	+0.01416	0.10312	0.20280	+0.00344
Ne ²⁺	0.10827	0.17945	+0.02590	0.12539	0.22059	+0.03019
		² D- ⁴ S			² D- ⁴ S	
N	0.13664	0.28728	-0.01400	0.10476	0.24885	-0.03932
0+	0.17951	0.29665	+0.06240	0.13926	0.27008	+0.00844
F ²⁺	0.22095	0.30822	+0.13368	0.17261	0.29713	+0.04800

En la tabla 7 se observa que los resultados de TFD Spin Polarizado y los HF siguen la misma tendencia, es decir, $\Delta V_{en} y \Delta E$ aumentan conforme aumenta el número atómico en cada serie isoelectrónica y ΔV_{ee} es negativa para los átomos neutros. Si bien las tendencias son parecidas la concordancia numérica solo es relativamente buena para V_{en} . Desde luego que resultaría interesante la comparación con datos SCF con correlación, para saber si los datos calculados vía TFD son más cercanos \in los exactos.

De cualquier forma, los resultados TFD pueden ser usados en forma cualitativa de la misma forma que los obtenidos a nivel HF.

Con la finalidad de aplicar la función generalizada de fukui f_{ns} al entendimiento de las variaciones en ΔV_{en} , se calcularon las f_{ns} para la serie isoelectrónica del carbono (figura 12) y para los átomos de Li a F (figura 13).

Figura 12. Funciones de fukui generalizadas (fns⁻) para la serie isoelectrónica del carbono.

En la figura anterior se puede apreciar claramente el efecto del incremento en la carga nuclear sobre las redistribuciones de carga: a mayor carga nuclear el incremento en la distribución de carga en el estado de mayor multiplicidad se ubica en una región más cercana al núcleo. Esto correlaciona muj bien con el incremento de ΔV_{en} que se observa en las series isoelectrónicas de la tabla 7.

A diferencia de este efecto, hasta cierto punto esperado, en la figura 13 se observa un efecto que se aleja de una interpretación intuitiva. Si bien es cierto que se nota el efecto del cambio en la carga nuclear, este va acompañado de un cambio que depende del número de electrones desapareados. Este último efecto apoya la idea de que el incremento en la energía núcleo-electrón es una consecuencia del apantallamiento de electrones del mismo spin.

Figura 13. Funciones de fukui generalizadas (f_{ns}⁻) para algunos átomos del primer periódo de la tab' periódica.

Algo que resulta muy interesante es el comportamiento de f_{ns} de C, N y O es claro que el nitrógeno tiene una redistribución de carga mayor cerca del núcleo. Este efecto es más importante que el

desplazamiento hacia el núcleo del máximo. Esto es más claro si se comparan los valores de ΔV_{en} para N y para Ne²⁺.

El resultado final es que el N presenta los valores mayores de ΔV_{en} . Lo anterior permite explicar porque las capas semillenas son más estables. El argumento se puede resumir a que un cambio de multiplicidad, en este tipo de sistemas, está asociado con un cambio importante en la energía núcleo-electrón como consecuencia de un decremento en la densidad del estado de menor multiplicidad en una región cercana al núcleo.

CONCLUSIONES

Aunque junto con la presentación de los resultados se han hecho discusiones y conclusiones, vale la pena resaltar los puntos más importantes a los que se ha llegado en este trabajo.

Con respecto al potencial de spin, se ha analizado un ejemplo, la energía de apareamiento, donde su significado físico es claro como una medida de la tendencia que tiene un sistema a polarizar o depolarizar su spin. Además se mostró que μ_s puede ser clasificado como una propiedad periódica en el mismo sentido que la electronegatividad. El hecho de que μ_s se haya relacionado con el cálculo de energías de apareamiento apoya la idea de que es una medida de la tendencia de un sistema a cambiar su polarización de spin o multiplicidad.

Además se puede decir que μ_s puede ser utilizado para ubicar el estado basal de una especie química, si no se conoce el valor de la energía, el cual será el ínfimo de todos los puntos que cumplan con que μ_s^+ y μ_s^- tengan signos distintos.

Por otro lado las diferencias de energía estan determinadas por la manera en como se distribuye la densidad de carga entre dos estados de diferente multiplicidad y de que estas diferencias también pueden ser analizadas utilizando funciones generalizadas de fukui, con la ventaja de que estas últimas se calculan para un solo estado, el estado basal.

La función generalizada de fukui, f_{ns} , puede ser utilizada para hacer la racionalización de la regla de máxima multiplicidad de Hund de acuerdo con la reinterpretación basada en las redistribuciones d carga.

Al particionar la f_{ns} en sus contribuciones por spin se concluyó que los efectos de redistribución no son simétricos en el spin mayoritario y minoritario. Esa asimetría se mapea a la

redistribución de carga dando por resultado la contracción de la carga hacia el núcleo en el estado de mayor multiplicidad.

Por último, por medio de f_{ns} y su relación con los cambios en la energía de atracción núcleo-electrón se llegó a una explicación de la estabilidad de capas semillenas. En donde el argumento es, que cuando existe un cambio de multiplicidad hay un decremento de la carga cerca del núcleo para el estado de menor multiplicidad; lo que produce un cambio importante en la energía núcleo-electrón y la especie se estabiliza.

REFERENCIAS

1. Galván, M., Vela, A. y Gazquez, J. L., J. Phys. Chem., 92, 6470(1978).

2. Huheey, J. E., Química Inorgánica (Ed. HARLA, México, 1981).

3. Boyd, R. J., Nature, 310, 480(1984)

•

4. Vosko, S. H. y Lagowski, J. B., en *Density Matrices and Density Functionals* (D. Reidel Publishing Company, 1987).

5. Kohn, W. y Sham L. J., Phys. Rev., 140, A1135(1965).

6. Capítulos 7 y 8 de referencia 7.

7. Parr, R. G.y Yang, W., *Density Functional Theory of Atoms and Molecules* (Oxford University Press, New York, 1989)

8. Janak, J. F., Phys. Rev. B, 18, 7165(1978).

9. Parr, R. G. y Yang, W., J. Am. Chem. Soc., 106, 4049(1984).

10. Tomadas de la tabla 2.2 de la referencia 2.

11. Robles, J. y Bartolotti, L. J., J. Am. Chem. Soc., 106, 3723(1984).

12. Griffith, J. S., J. Inorg. Nucl. Chem., 2, 1(1956).

13. Griffith, J. S., J. Inorg. Nucl. Chem., 2, 229(1956).

14. Levine, I. N., *Quantum Chemistry* (Ally and Bacon Inc., Boston, 1975).

15. Katriel, J. y Pauncz, R., en Advances in Quantum Chemistry (Academic, New York, 1977), Vol. 10.

16. Slater, J. C., *Quantum Theory of Atomic Structure*(Mc. Graw-Hill, New York, 1960) Vol. I.

17. Kohl, D. A., J. Chem. Phys., 56, 4236(1972).

•----

18. Davidson, E. R., J. Chem. Phys., 42, 4199(1965).

19. Valenta, K. y Boyd, R. J., J. Chem. Phys., 90, 5638(1989).

20. Valenta, K., Fricker, P. D. y Boyd, R. J., *J. Phys. Chem.*, **94**, 3480(1990).

21. Valenta, K. y Boyd, R. J., J. Chem. Phys., 87, 5329(1987).

22. Gunnarson, O., Johnson, M. y Lundqvist, M., *Phys. Rev. B*, **20**, 3136(1979).

23. Yang, W. y Parr, R. G., Proc. Natl. Acad. Sci., 82, 6723(1985).

24. Colpa, J., Thakkar, J. P., Smith, V. H. y Randle, P., *Molec. Phys.*, **29**, 6(1975).

25. Yang, W., Parr, R. G. y Pucci, R., J. Chem. Phys., 81, 2862(1984).