

Universidad Autónoma Metropolitana Unidad – Iztapalapa Posgrado en Ingeniería Biomédica División de Ciencias Básicas e Ingeniería Departamento de Ingeniería Eléctrica

Tesis para obtener grado de Maestro en Ciencias (Ingeniería Biomédica)

"fMRI para el análisis de actividad cerebral bajo un paradigma de apnea"

Presenta:

Ing. Jaime Alberto Maldonado Garcez

Matricula: 2182800695

Asesor: Dr. Juan Carlos Axayácatl Morales Guadarrama

Sinodales:

Dr. Emilio Sacristán Rock Dra. Anabel Jiménez Anguiano Dr. Luis Jiménez Ángeles

Iztapalapa, Ciudad de México, 25 de mayo del 2022

ACTA DE EXAMEN DE GRADO

No. 00141 Matricula: 2182800695 fMRI para el análisis de Con base en la Legislación de la Universidad Autónoma Metropolitana, en la Ciudad de México se presentaron a las 10:00 horas del día 25 del mes de mayo del año 2022 POR VÍA REMOTA ELECTRÓNICA, los suscritos miembros del jurado actividad cerebral bajo un paradigma de apnea designado por la Comisión del Posgrado: DR. EMILIO SACRISTAN ROCK DR. LUIS JIMENEZ ANGELES DRA. ANABEL JIMENEZ ANGUIANO Bajo la Presidencia del primero y con carácter de Secretaria la última, se reunieron para proceder al Examen de Grado cuya denominación aparece al margen, para la obtención del grado de: MAESTRO EN CIENCIAS (INGENIERIA BIOMEDICA) DE: JAIME ALBERTO MALDONADO GARCEZ f: we Have y de acuerdo con el artículo 78 fracción III del Reglamento de Estudios Superiores de la Universidad Autónoma Metropolitana, los miembros del jurado resolvieron: JAIME ALBERTO MALDONADO GARCEZ ALUMNO APROBAR REVISÓ Acto continuo, el presidente del jurado comunicó al interesado el resultado de la evaluación y, en caso aprobatorio, le fue tomada la protesta. el MTRA ROSALIA SERRANO DE LA PAZ DIRECTORA DE SISTEMAS ESCOLARES DIRECTOR DE LA DIVISIÓN DE CBI PRESIDENTE Román Linares Romero. DR. ROMAN LINARES ROMERO DR. EMILIO SACRISTAN ROCK VOCAL SECRETARIA 02 DRA. ANABEL JIMENEZ ANGUIANO DR. LUIS JIMENEZ ANGELES

El presente documento cuenta con la firma –autógrafa, escaneada o digital, según corresponda- del funcionario universitario competente, que certifica que las firmas que aparecen en esta acta – Temporal, digital o dictamen- son auténticas y las mismas que usan los c.c. profesores mencionados en ella

Dedicatoria:

Dedico este trabajo a las personas que me han apoyado a lo largo de mi trayectoria académica, en especial a las familias Sotelo Barrera, Urrea García, Gaytán Peña y Moreno Álvarez; que, a pesar de no llevar la misma sangre, incondicionalmente me han hecho ser parte de sus familias y me brindaron lo necesario para poder continuar en este camino de la ciencia.

Por su puesto a mi padre, y madre por el esfuerzo y sacrificio que han hecho para traerme hasta este punto y por la motivación que me han brindado para seguir adelante, siendo mi inspiración para crecer como individuo y darles un motivo de orgullo y el gusto de verme con el grado de maestro en ciencias e incluso grados superiores.

A mis amigos y en especial a Karla Campos, que han sido un pilar emocional y que bajo cualquier situación están ahí para ayudar en lo que sea posible cuando los he necesitado.

A los profesores que admiro y me alientan a no desistir, facilitándome valiosos conocimientos en este bosque del saber, dejando marcado el sendero por el cual me dirijo a mis metas.

También dedico esta tesis a las personas que no creían en mí, a los que me dijeron que no lo lograría y a los que esperaban que no cumpliera mis metas, pues también es gracias a ellos que me ha nacido motivación para demostrar mis capacidades.

Pero sobre todo dedico el trabajo que hasta ahora es el más importante en mi vida, a mi tía Lulú, que, aunque ya no se encuentre físicamente conmigo, siempre me apoyó para terminar mis estudios y su deseo siempre fue verme como un hombre realizado, con un título en mis manos y mis objetivos cumplidos, sin embargo, por causas del destino o azares de la vida, no le fue posible verme alcanzar este gran logro, es por eso que ahora que llego hasta aquí le dedico este trabajo.

D.E.P. tía Lulú.

Agradecimientos:

División de Ciencias Básicas e Ingeniería

departamento de ingeniería eléctrica

Índice

Dedicatoria

Agradecimientos	
i Resumen	8
i Abreviaturas	
iii Introduccion	
1 Marco teórico	12
1 Fisiología de la respiración	
1.1 Anatomía v fisiología del sistema respiratorio	
1 1 1 1 Espirometría: Volúmenes y capacidades pulmonares	
1 1 2 Intercambio de gases	
1 1 2 1 Ventilación pulmonar	
1122 Difusión	
1 1 2 3 Perfusión y circulación pulmonar	16
1.1.3 Transporte de gases	18
1 1 3 1 Transporte de oxígeno en sangre	18
1 1 3 2 Transporte de dióxido de carbono en sangre	19
1 1 3 3 Alcalosis y acidosis	20
1 1 4 Control v regulación de la respiración	20
1 1 4 1 Control químico	21
1.1.4.2 Control neuronal	22
Centro respiratorio medular o bulbar	22
Centro neumotáxico	23
Centro apneústico	
1.1.4.3 Control voluntario	
1.2 Neuroanatomía funcional	
1.2.1 Corteza cerebral	20
1.2.1.1 Corteza prefrontal	
1.2.1.2 Corteza motora suplementaria	
1.2.1.3 Corteza premotora	
1.2.1.4 Corteza motora primaria	
1.2.1.5 Corteza insular	
1.2.2 Núcleos basales	
1.2.2.1 Putamen	
1.2.2.2 Núcleo caudado	
1.2.2.3 Núcleo accumbens	
1.2.2.4 Globo pálido	
1.2.2.5 Sustancia negra	
1.2.2.6 Circuitos y vías de los ganglios basales	
1.2.3 Sistema Límbico	
1.2.3.1 Hipocampo	
1.2.3.2 Amígdala	
1.2.3.3 Tálamo	
1.2.4 Tallo cerebral	
1.2.4.1 Mesencéfalo	

1.2.4.2 Protuberancia o puente de Varolio	
1.2.4.3 Bulbo raquídeo o médula oblongada	
1.2.5 Cerebelo	
1.3 Regulación fisiológica autónoma durante períodos de apnea	
1.3.1 Fases de la apnea	
1.4 Imágenes por Resonancia Magnética	
1.4.1 Principios físicos de funcionamiento	
1.4.2 Componentes de un escáner de resonancia magnética	
1.4.3 Imagen eco-planar	
1.4.4 Imagen funcional por resonancia magnética y Contraste BOLD	
1.5 fMRI en tenómenos fisiológicos autónomos asociados a tareas respiratorias	
2 Justificación	
3 Hipotesis	
4 Objetivos	
4.1 Objetivo general	
4.2 Objetivos particulares	
5 Materiales y metodos	
5.1 Imagenes anatomicas	
5.2 Intragenes Functonales	
5.5 Falauigillas	
5.5 Análisis estadístico	
6 Resultados	
6 1 Corteza cerebral	58
6.2 Corteza insular	
6.3 Núcleos basales	
6.4 Sistema límbico	
6.5 Tallo cerebral	
6.6 Cerebelo	
6.7 Resumen de resultados	
7 Discusión	79
7.1 Contrastes del Bloque de apnea contra los bloques de respiración	
7.1.1 Corteza cerebral	
7.1.2 Corteza insular	81
7.1.3 Núcleos basales	
7.1.4 Sistema límbico	83
7.1.5 Tallo cerebral	
7.1.6 Cerebelo	
7.2 Contrastes de Bloques de respiración en contra del bloque de apnea	
7.2.1 Corteza cerebral	
7.2.2 Corteza insular	
7.2.3 Núcleos basales	
7.2.4 Sistema límbico	
7.2.5 Tallo cerebral	
/.2.6 Cerebelo	
8 Conclusiones	
8.1 Limitantes	

Perspectivas	
erencias	96
XOS	101
Reposo vs apnea 30 segundos	101
Reposo vs apnea 60 segundos	102
Reposo vs apnea 90 segundos	
Apnea vs reposo 30 segundos	106
Apnea vs reposo 60 segundos	107
Apnea vs reposo 90 segundos	109
Preparación vs apnea 30 segundos	111
Preparación vs apnea 60 segundos	113
Preparación vs apnea 90 segundos	115
Apnea vs preparación 30 segundos	
Apnea vs preparación 60 segundos	120
Apnea vs preparación 90 segundos	122
Recuperación vs apnea 30 segundos	
Recuperación vs apnea 60 segundos	
Recuperación vs apnea 90 segundos	129
Apnea vs recuperación 30 segundos	
Apnea vs recuperación 60 segundos	
Apnea vs recuperación 90 segundos	
Regresores para corrección de movimiento	
Cuestionario historial clínico	147
Consentimiento informado	150
	Perspectivas erencias

Resumen

Actualmente se tiene una noción aproximada de la localización y funcionamiento de las estructuras involucradas en los mecanismos indispensables para llevar a cabo la respiración. En este trabajo se busca contribuir con el conocimiento del funcionamiento cerebral durante periodos prolongados de interrupción respiratoria (apnea) voluntaria, realizando un estudio de fMRI con contraste BOLD en 4 sujetos a los que se les indican 3 distintos patrones de respiración y uno de no respiración (BH). Las imágenes adquiridas en cada uno de los patrones de respiración se comparan contra las obtenidas durante el periodo en que se retiene la respiración. Los mapas probabilísticos generados a partir de las adquisiciones muestran diferencias significativas en la concentración de oxígeno en regiones específicas de la CPF, SMA, corteza motora, premotora y en estructuras subcorticales tales como la ínsula, el putamen, núcleo caudado, globo pálido, amígdala, hipocampo, tálamo, tallo cerebral y cerebelo. Los hallazgos en corteza y núcleos basales sugieren actividad relacionada a la planeación e inhibición voluntaria del movimiento de la musculatura accesoria necesaria para la ventilación pulmonar; los hallazgos en estructuras límbicas, sugieren una relación con el procesamiento de emociones que surgen tanto al dejar de respirar como al respirar; también se observan activaciones en tronco encefálico y cerebelo que pueden estar asociados a movimientos involuntarios y respuestas autonómicas que se producen por causa de la hipoxia e hipercapnia que supone un esfuerzo de apnea voluntaria; los resultados del tallo cerebral incluyen actividad en la formación reticular por lo que se sospecha de un cambio en el estado de alerta-consciencia durante los periodos donde no ingresa aire a los pulmones, pudiendo ser esta actividad, la razon principal de los cambios observados en todas las demás regiones de interés que se abordan en este trabajo.

Abstract

Currently there is an approximate notion of the location and function of the structures involved in the essential mechanisms to carry out respiration. This work seeks to contribute to the knowledge of brain function during prolonged periods of voluntary respiratory interruption (apnea), performing an fMRI study with BOLD contrast in 4 subjects who are instructed in 3 different breathing patterns and one of no breathing. (BH). The images acquired in each of the breathing patterns are compared against those obtained during the period in which the breath is held. Probabilistic maps generated from the acquisitions show significant differences in oxygen concentration in specific regions of the PFC, SMA, pre-motor and motor cortex, also in subcortical structures such as the insula, putamen, caudate nucleus, globus pallidus, amygdala, hippocampus, thalamus, brain stem and cerebellum. The findings in the cortex and basal nuclei suggest activity related to planning and voluntary inhibition of the movement of the accessory muscles necessary for pulmonary ventilation; the findings in limbic structures suggest a relationship with the processing of emotions that arise both when stopping breathing and when breathing; activations are also observed in the brainstem and cerebellum that may be associated with involuntary movements and autonomic responses that occur due to the hypoxia and hypercapnia that a voluntary apnea effort entails; The results of the brain stem include activity in the reticular formation, so a change in the state of alertness-consciousness is suspected during periods when air does not enter the lungs, and this activity may be the main reason for the changes observed in all other regions of interest that are addressed in this work.

Introducción

La etimología de la palabra apnea proviene del antiguo griego *apnoia* que se deriva del prefijo -a que indica negación o ausencia; y *pnein* que significa soplar o respirar; así, el concepto de apnea se refiere a la ausencia de respiración.

En el ámbito del deporte la apnea es una disciplina en la que un nadador retiene voluntariamente la respiración para conseguir distintos objetivos, tales como alcanzar la mayor profundidad posible o la máxima duración que le sea posible contener la respiración bajo el agua. Por otro lado, hablando desde un punto de vista médico, la apnea se considera una fisiopatología en la que un sujeto experimenta involuntariamente el cese de la respiración; ya sea debida a una obstrucción neuromuscular, a la falta de movimientos ventilatorio o incluso a una combinación de las dos.

En este trabajo se aborda el estudio de la apnea desde el punto de vista deportivo, con el interés particular de las respuestas neurofisiológicas que se desencadenan debido a estos periodos temporales voluntarios en que se interrumpe la respiración. Se utiliza la técnica de neuroimagen por resonancia magnética funcional, así como métodos de procesamiento de imágenes que nos permiten identificar y evaluar cambios en la oxigenación cerebral correlacionados con actividad neuronal; lo que nos ofrece un panorama general de lo que ocurre en diversas regiones cerebrales y la posible función que estas desempeñan durante la ejecución de una apnea.

La importancia de esta exploración radica en la incapacidad que existe para comprender y tratar algunas patologías relacionadas con la respiración, ya que existe una brecha de incertidumbre en el funcionamiento normal del cerebro bajo condiciones de apnea, razón por la cual nos aventuramos a la búsqueda de un mejor entendimiento de estos fenómenos poco investigados.

Dentro de lo que se analiza en este estudio, comprende aspectos relacionados con la ejecución e inhibición de los movimientos musculares (voluntario e involuntario) encargados de provocar la ventilación pulmonar; la generación de sensaciones y emociones evocadas por la necesidad de oxigenación en sangre; así como un cambio en el estado de consciencia y de alerta por parte del sistema nervioso probablemente a causa del nivel de concentración que exige el contener la respiración por periodos prolongados de tiempo.

Abreviaturas

Oxígeno (0_2) Nitrógeno (N_2) Dióxido de carbono (CO_2) Agua $(H_2 0)$ Volumen corriente (VC) Volumen de reserva inspiratoria (VRI) Volumen de reserva espiratoria (VRE) Volumen residual (VR) Capacidad inspiratoria (CI) Capacidad residual functional (CRF) Capacidad vital (CV) Capacidad pulmonar total (CPT) Presión parcial de oxígeno (PO_2) Presión parcial de dióxido de carbono (PCO_2) Oxihemoglobina (O_2) Desoxihemoglobina (HHb) Potencial de hidrógeno (pH) Carbaminohemoglobina $(HbCO_2)$ Bicarbonato (HCO_{2}^{-}) Ácido carbónico (H_2CO_3) H^+ protón Líquido cerebroespinal (CSF, cerebrospinal fluid) Sistema nervioso central (SNC) Sistema nervioso autónomo (SNA) Formación Reticular (FR) Núcleo del tracto solitario (NTS) Grupo respiratorio dorsal (DRG, dorsal respiratory group) Grupo respiratorio ventral (VRG, ventral respiratory group) Complejo pre-Bötzinger (preBötC) Grupo respiratorio pontino (PRG, pontine respiratory group) Núcleo Para-braquial (PBN, para-braquial nucleus) Apnea (BH, breath-holding) Sistema nervioso periférico (SNP) Sistema nervioso simpático (SNS) Sistema nervioso parasimpático (SNPS) Corteza pre frontal (CPF) Área motora suplementaria (AMS) Núcleos Basales (NB) Núcleos subtalámicos (STN) Globo pálido interno (GPi) Globo pálido externo (GPe) Sustancia negra pars reticulata (SNpr) Sustancia negra pars compacta (SNpc) Sistema activador reticular ascendente (SARA)

Ácido gamma-aminobutírico (GABA) Locus coeruleus (LC) Flujo sanguíneo cerebral (CBF, cerebral blood flow) Volumen sanguíneo cerebral (CBV, cerebral blood volume) Imagenología por resonancia magnética (MRI, magnetic resonance imaging) Resonancia magnética (RM) Resonancia Magnética Nuclear (RMN) Imagen eco-planar (EPI, echo planar imaging) Teslas (T) Radiofrecuencia (RF) Campo magnético externo (B0) Magnetización longitudinal (ML) Magnetización transversal (MT) Tiempo de relajación longitudinal (T1) Tiempo de relajación transversal (T2) Tiempo de repetición (TR) Tiempo de eco (TE) Decaimiento de inducción libre (FID, free induction decay) Campo de vista (FOV, field of view) Angiografías por resonancia magnética (MRA, magnetic resonance angiography) Imágenes funcionales por resonancia magnética (fMRI, functional magnetic resonance image) Dependiente del nivel de oxígeno en sangre (BOLD, blood oxygen level dependent) Respuesta Hemodinámica (HDR, hemodynamic response) Electroencefalograma (EEG) Actividad del nervio simpático muscular (MSNA, muscle sympathetic nerve activity) Área gris periacueductal (PAG, periacueductal gray area) Mapeo paramétrico estadístico (SPM, Statical parametrical mapping) Ancho completo de la mitad del máximo (FWHM, full width of half máximum) Mapa probabilístico de tejidos (TPM, tissue probability map) (ICBM) Modelo general lineal (GLM, general linear model) Etiquetado anatómico automático (AAL, automated anatomical labeling)

1 Marco teórico.

"hay una circulación común, una respiración común. Todas las cosas están relacionadas" -Hipócrates.

1.1 Fisiología de la respiración

La respiración es el proceso fisiológico en el cual se lleva a cabo un intercambio gaseoso esencial para mantener la homeostasis en las células, tejidos, órganos, aparatos y sistemas de los seres vivos. En el caso de los mamíferos, entre los cuales se encuentra el ser humano, este proceso consta de intercambiar el CO_2 contenido en la sangre, procedente de todos los tejidos del cuerpo, por el oxígeno que se encuentra mezclado en el aire atmosférico (O_2 , N_2 , CO_2 , H_2O), mismo que es transportado hacia el interior del organismo por acción del sistema respiratorio[1][2].

1.1.1 Anatomía y fisiología del sistema respiratorio.

El sistema respiratorio está compuesto por varios órganos que conforman las denominadas vías aéreas, estas vías se clasifican de distintas maneras (Figura 1), dependiendo de si se analizan anatómica o funcionalmente. Se puede decir que este sistema inicia en la nariz (fosas nasales) y boca, por donde es posible la admisión del aire atmosférico hacia el interior del cuerpo humano, siguiendo una trayectoria a través de una serie de conductos denominadas vías aéreas de conducción (según la clasificación funcional) [3][4][5], el flujo de aire producido por un gradiente de presión, pasa por la faringe y continua por la laringe en donde se encuentra la glotis, encargada de separar el flujo aéreo de los flujos de líquidos y sólidos impidiendo el paso de estos últimos hacia la denominada vía aérea baja (según la clasificación anatómica)[3][6][7], que inicia con la tráquea y continua por los bronquios (bifurcación de la tráquea) hacia el interior de los pulmones conduciéndose por los bronquiolos (sitio donde terminan las vías aéreas de conducción y comienzan las vías respiratorias según la clasificación funcional) hasta llegar a los sacos alveolares donde finalmente ocurre el intercambio gaseoso a través de la pared alveolar que se encuentra en contacto directo con los capilares pulmonares, en este sitio de unión se forma la llamada membrana alveolo-capilar o barrera hematorespiratoria[8].

Los alveolos son estructuras microscópicas en forma de sacos o bolsas compuestos por 2 tipos distintos de células llamadas neumocitos I y II, estos tienen la función de oxigenar la sangre intercambiando el O_2 diluido en el aire que hay dentro de los pulmones, por el CO_2 proveniente de los tejidos de todo el cuerpo humano, para ser transportado a través del torrente o flujo sanguíneo de la circulación sistémica y que después es conducido por el flujo sanguíneo de la circulación pulmonar hasta los capilares pulmonares contiguos al intersticio de la pared alveolar donde se produce el intercambio[3][9].

La respiración se puede ver como la integración de tres mecanismos fisiológicos que podemos estudiar por separado: la ventilación, la difusión y la perfusión. Gracias a estos mecanismos es posible todo el proceso funcional respiratorio(intercambio gaseoso)[2].

Figura 1. Vías aéreas con clasificaciones anatómicas (izquierda) y funcional (derecha) de las partes que integran el sistema respiratorio[3].

Es importante tener en consideración la interacción entre el sistema respiratorio, el sistema cardiovascular y el sistema nervioso. El sistema circulatorio se encarga de propiciar el flujo sanguíneo a través del cual se distribuye el oxígeno por todos los tejidos de cuerpo y se retira el CO_2 de los mismos, mientras que la intervención del sistema nervioso actúa para controlar la respiración, así, con el trabajo en conjunto de estos tres sistemas es posible mantener un nivel adecuado de oxigenación en todo el cuerpo bajo diversas circunstancias, a esto se le conoce como *homeostasis respiratoria*[3].

1.1.1.1 Espirometría: Volúmenes y capacidades pulmonares.

Espirometría es el término que se le da al uso de técnicas y herramientas para obtener mediciones fisiológicas de volúmenes y capacidades pulmonares de cada individuo[10][11]. Principalmente se distinguen 4 volúmenes pulmonares y 4 capacidades pulmonares de relevancia y un volumen de espacio muerto, los cuales son descritos a continuación según las definiciones encontradas en la literatura y representados gráficamente en la figura 2[9][12][11].

Espacio muerto anatómico: Cuando se habla de un espacio muerto anatómico, se hace referencia al volumen de las vías aéreas de conducción que no son capaces de realizar intercambio gaseoso (nariz, boca, tráquea, bronquios y ciertos bronquiolos). El volumen de espacio muerto oscila entre individuos en rangos de 130-180 mL con una media de 150 mL.

Volumen corriente (VC): Se define como volumen corriente al espacio volumétrico resultado de la suma del volumen de aire que es inspirado y el volumen expulsado durante una respiración tranquila (basal), este volumen comprende el aire contenido en las vías aéreas más el volumen alveolar, se estima un promedio en el volumen corriente de 500 mL.

Volumen de reserva inspiratoria (VRI): Se define como el volumen máximo que puede inspirar un paciente por encima de su volumen corriente, es decir, VRI = el volumen máximo de inspiración (máxima capacidad inspiratoria) – *VC*. Se estima como media del VRI de 3000 mL aproximadamente.

Volumen de reserva espiratoria (VRE): Al contrario del VRI, el VRE está definido como el volumen máximo que se puede expulsar por abajo del volumen corriente, aproximadamente un volumen de 1200 mL

Volumen residual (VR): Tras haber expirado todo el aire posible (VRE – VC), aún queda un volumen de aire en los pulmones al que se le conoce como volumen residual con un promedio equivalente a 1200 mL aproximadamente.

Capacidad inspiratoria (CI): Las capacidades pulmonares son combinaciones de volúmenes pulmonares que se suman o restan entre sí, en el caso de la capacidad inspiratoria es la combinación del volumen corriente más el volumen de reserva espiratorio de la forma CI = VC + VRE. Con magnitudes de 3500 mL reportadas como normales en individuos adultos.

Capacidad residual funcional (CRF): resulta de la combinación del volumen residual y el volumen de reserva espiratorio; CRF= VR+VRE y se reporta su tamaño en volúmenes entre los 2300– 2400 mL y corresponde al volumen de aire que falta para llenar los pulmones después de una espiración normal, al ser resultado de una operación del VR no es posible que la CRF sea medida por espirometría.

Capacidad vital (CV): es el producto de la combinación de VRI +VC+VRE o, dicho de otra forma, la capacidad inspiratoria más el volumen de reserva espiratoria, CI+VRE = CV y corresponde a él volumen máximo que se puede expulsar con una espiración forzada, estimada aproximadamente en 4700 mL en adulto masculino.

Capacidad pulmonar total (CPT): es el resultado de la suma de todos los volúmenes pulmonares, CPT = VC+VR+VRE+VRI. Es el volumen máximo que se puede tener dentro del sistema respiratorio de un individuo. debido a que es resultado de una suma con el VR, no puede ser medido, únicamente estimado. Se reportan generalmente con volúmenes cercanos de 5900 mL como la media poblacional en adultos masculinos.

Figura 2. Gráfica espirométrica de volumen contra tiempo donde se muestra la definición de cada uno de los volúmenes y capacidades pulmonares descritos en la sección anterior[9].

1.1.2 Intercambio de gases

La función primordial del sistema respiratorio es llevar a cabo el intercambio gaseoso, esto consiste en remover el CO_2 de la sangre y oxigenarla para que sea distribuida al resto del cuerpo por medio de la circulación pulmonar y posteriormente por la circulación sistémica. Este proceso de intercambio gaseoso tiene lugar en los capilares de las vías aéreas (alveolos, bronquiolos y bronquios respiratorios), donde tienen contacto directo los capilares pulmonares que transportan sangre venosa saturada con CO_2 proveniente de los tejidos, con las paredes de los alveolos cargados de aire y O_2 disuelto, el cual pasa a la sangre a través de un proceso de difusión pasiva de gases a través de la membrana alveolo-capilar[13].

El rendimiento en el intercambio gaseoso a través de la membrana respiratoria es dependiente de 2 fenómenos simultáneos: la difusión y la perfusión. De manera que si alguno de estos dos procesos se ve afectado, tiene un efecto directo en el proceso de la oxigenación sanguínea [9].

1.1.2.1 Ventilación pulmonar

Desde un punto de vista fisiológico, la ventilación pulmonar es el conjunto de procesos responsables de crear un gradiente de presión para que se dé el flujo del aire atmosférico del exterior hacia el interior de los alvéolos pulmonares. Para que los sacos alveolares tengan disponibilidad de oxígeno, es necesario remover el CO_2 contenido en la sangre y expulsarlo del cuerpo vaciando los pulmones mediante la disminución de su volumen, a esta acción se le conoce como exhalación o espiración; para recargar la sangre de oxígeno se realiza la maniobra contraria, que implica llenar nuevamente los pulmones aumentando su volumen y permitiendo la entrada de aire del exterior, a esto se lo conoce como inhalación o inspiración. Estos dos procesos alternados uno después de otro, conforman lo que se le llama ciclo respiratorio y es producto de la contracción-relajación de los músculos respiratorios (diafragma, intercostales externos, intercostales internos y pared abdominal)[12].

Se conocen principalmente 2 mecanismos para efectuar la expansión y contracción pulmonar, uno es por medio del movimiento del diafragma, el otro es la consecuencia del movimiento de las costillas, en ambos casos el resultado es un cambio en el volumen de la cavidad torácica donde se encuentran los pulmones, al cambiar el volumen cambia la presión intratorácica, esto genera un gradiente de presión que causa un flujo de aire las vías respiratorias produciendo la inspiración (inhalación) o espiración (exhalación) dependiendo si el gradiente es negativo o positivo respectivamente[10][11].

1.1.2.2 Difusión

Es un proceso que ocurre debido a la diferencia de concentración de gases que se encuentran diluidos y mezclados tanto en los fluidos en el interior de los capilares (sangre) como en los fluidos en el interior de los alveolos (aire), ambas estructuras son separadas solo por una delgada membrana alveolo-capilar, de manera que la diferencia de concentración de gases en ambos compartimentos puede describirse mediante la ley de Dalton.

Ley de Dalton (presiones parciales):

Ptotal = P1 + P2 + P3 + ... + Pn.

La ley de Dalton establece que la presión total en una mezcla de gases es igual a la suma de las presiones parciales de cada componente gaseoso en la mezcla, además, añadiendo la ley de los gases ideales se puede relacionar directamente la concentración de un gas en una mezcla gaseosa con la presión parcial del gas en dicha mezcla (ley de Henry)[14].

Ley de los gases ideales. donde: C=concentración, P=Presión, V=Volumen, RT es cte. y n= # de moles

$$PV = nRT; P = nRT/V; P = CRT$$

Ley de Henry: donde; P = presión parcial del gas, C = concentración de un gas, K= constante de Henry

$$C = KP$$

En otras palabras, un cambio en la concentración de un componente de la mezcla gaseosa significa también un cambio proporcional en la presión parcial de ese componente en la mezcla, de manera que existe una diferencia de presiones parciales de los gases ($CO_2 \ge O_2$) que hay entre el interior de los capilares (fase liquida) y las presiones en el interior de los alvéolos(fase gaseosa), en consecuencia a todo lo anterior, ocurre un transporte pasivo de difusión de gases (tanto de O_2 como de CO_2) por gradiente de presión-concentración a través de la membrana alveolo-capilar, dicho fenómeno puede ser descrito mediante la ley de Fick, ecuación diferencial que modela matemáticamente el fenómeno de difusión molecular a través de una membrana.

Ley de Fick: donde J = densidad de corriente, D = coeficiente de difusión y
$$\frac{\partial c}{\partial x}$$
 = gradiente de concentración
J= - D $\frac{\partial c}{\partial x}$

Los gradientes de presión-concentración de O_2 van en dirección alveolo-capilar debido a que hay más oxígeno en el aire alveolar que en la sangre venosa, mientras que los gradientes de presión-concentración del CO_2 va en dirección capilar-alveolo ya que existe mayor concentración de CO_2 en la sangre que en el aire de los alveolos, por ello, el O_2 pasa al interior de los capilares y el CO_2 hacia los pulmones y después al espacio muerto (conductos respiratorios) para ser expulsado en la siguiente espiración[15].

1.1.2.3 Perfusión y circulación pulmonar

La perfusión no es otra cosa que la irrigación de sangre en los capilares pulmonares o dicho de otra manera, el flujo sanguíneo pulmonar producido por el ventrículo derecho y la llamada circulación pulmonar o circulación menor[16]. Es un proceso esencial para la respiración, debido a que si no hay buena perfusión sanguínea en los capilares pulmonares no hay por tanto un buen intercambio gaseoso, es por eso que se dice que el transporte de oxígeno es limitado por la perfusión[9].

Es importante recordar que para que ocurra la difusión y el intercambio gaseoso a través de la barrera alveolocapilar es necesario tener disponibilidad de aire a presión cercana a la atmosférica dentro de los alveolos $(PO_2 = 100 \text{ mmHg y } PCO_2 = 0.3 \text{ mmHg aprox.})$, de esto se encarga la ventilación pulmonar mediante la acción de los músculos respiratorios que provocan un gradiente de presión y con esto un flujo de aire a través de las vías aéreas. Por otra parte es necesario tener a los capilares pulmonares bien irrigados con sangre venosa $(PO_2 = 40 \text{ mmHg y } PCO_2 = 46 \text{ mmHg aprox.})$ que contiene una concentración alta de CO_2 y baja de O_2 , ya que es transportada desde los tejidos del cuerpo que han utilizado el oxígeno para metabolizar energía a partir de nutrientes, liberando CO_2 como producto de desecho, el cual viaja desde los capilares sistémicos por el torrente de la circulación sistémica, pasa por el corazón y gracias a la circulación pulmonar llega a los capilares pulmonares, con esto se cumple que existan diferentes concentraciones de gases en ambos lados de la barrera de O_2 y CO_2 favoreciendo los gradientes de presión y el transporte pasivo o difusión de gases[14].

Figura 3. Interacción del sistema respiratorio y circulatorio para el transporte de oxígeno en el cuerpo humano. Se muestran las presiones parciales normales de O_2 y CO_2 durante todo el trayecto de la circulación sanguínea, así como las presiones parciales de los mismos en el aire atmosférico y alveolar[14].

La circulación menor comienza en la arteria pulmonar la cual recibe sangre venosa proveniente de circulación mayor (sistémica), esta sangre viaja por las venas pulmonares hasta llegar a los capilares pulmonares (perfusión de capilares pulmonares), donde se lleva a cabo la difusión para oxigenar la sangre venosa proveniente del resto del cuerpo, la sangre oxigenada sale de los capilares y sigue el gradiente de presión causado por el bombeo del corazón recorriendo las venas pulmonares hasta ingresar al corazón por el atrio izquierdo para posteriormente ser distribuida por el cuerpo humano a través de las arterias sistémicas, siguiendo la circulación sistémica hasta los capilares sistémicos donde los tejidos realizan nuevamente un

intercambio gaseoso de O_2 - CO_2 absorbiendo O_2 y liberando CO_2 , producto de reacciones metabólicas celulares, al torrente sanguíneo[17].

1.1.3 Transporte de gases

Hasta ahora se ha visto que por medio de la ventilación pulmonar se introduce y obtiene el oxígeno del aire hasta los pulmones, como es que se llenan los alveolos de aire, también se ha visto como se perfunden los capilares pulmonares con sangre venosa gracias a la circulación pulmonar, así como los principios físicos que describen la difusión de gases a través de la membrana respiratoria. ahora se revisará que es lo que sucede una vez que pasa el oxígeno por la membrana respiratoria hasta llegar al torrente sanguíneo.

1.1.3.1 Transporte de oxígeno en sangre

El oxígeno entra en contacto con el torrente sanguíneo al momento de traspasar la barrera alveolo-capilar y de ahí es transportado hacia los distintos tejidos del cuerpo para ser utilizado en procesos metabólicos propios de cada tejido, el transporte se lleva a cabo de 2 maneras distintas: aproximadamente solo el 1.5 o 2% del total de oxígeno que es transportado en sangre viaja en su forma libre (O_2), es decir, disuelto en el plasma sanguíneo, el resto se transporta por el torrente sanguíneo en su forma químicamente unido con la hemoglobina (Hb) por lo que este complejo hemoglobina-oxígeno no contribuye a las presiones parciales de los gases[1][9].

La proteína que más abunda en los glóbulos rojos (eritrocitos) es la hemoglobina, un complejo proteico de forma globular compuesto por 4 subunidades polipeptídicas, cada una de las cuales está unida de manera covalente un grupo Hemo. Un grupo hemo es una molécula orgánica que forma un anillo al centro donde se encuentra un componente ferroso (Fe+2) que permite la unión reversible de una molécula de O_2 , de manera que por cada molécula de hemoglobina se pueden transportar hasta 4 moléculas de O_2 , en el momento en que una hemoglobina se une con uno o más oxígenos recibe el nombre de Oxihemoglobina (Hb O_2), si la Hb O_2 carga 4 moléculas de O_2 se dice que está 100% saturada, 3 moléculas, al 75%, 2 al 50% y 1 molécula es saturación al 25%. Cuando la Hb O_2 libera todos sus O_2 hasta quedarse con ninguno, se le conoce como desoxihemoglobina (HHb)[1][9][14].

A pesar de que el oxígeno que se transporta unido a la hemoglobina viaja en la sangre, este no contribuye a la presión parcial de oxígeno en sangre (P O_2), sin embargo esta P O_2 si tiene efecto en la saturación de oxígeno en la hemoglobina, dicho de otra manera, la cantidad de oxígeno disuelto en plasma está relacionado con la capacidad de enlace-separación entre la Hb y el O_2 de manera que una P O_2 alta favorece la unión Hb- O_2 y una P O_2 baja favorece la disociación de Hb y O_2 , esta relación entre la P O_2 en sangre y la saturación de oxígeno en hemoglobina queda expresada de forma gráfica por la curva de disociación de la hemoglobina[14].

Esta curva que representa la afinidad de la hemoglobina al oxígeno, se puede ver modificada por algunas variables fisiológicas como la presión parcial de dióxido de carbono (PC O_2) disuelto en sangre, el potencial de hidrógeno (pH) en sangre (efecto Bohr), la temperatura y la concentración de algunos compuestos productos del metabolismo celular aeróbico[18]. si se mantiene como una constante la P O_2 , con una temperatura, PC O_2 , y con un pH más bajo, habrá menos oxígeno combinado con hemoglobina ya que bajo estas circunstancias se presenta una menor afinidad de la hemoglobina por el oxígeno, por el contrario si los gradientes de estas variables se invierten se tendrá una afinidad aumentada[12].

Figura 4. Estructura molecular de un grupo hemo con núcleo ferroso (Fe2+) unido a una molécula de O_2 (*izquierda*). Curva de disociación de la hemoglobina (derecha)[14].

Según se reporta en la literatura y como se puede observar en la figura 3, en los tejidos la PO_2 es aproximadamente 40 mmHg, considerablemente más baja que la PO_2 en los pulmones cercana a 100 mmHg. En la figura 4 se puede ver que a una $PO_2 = 40$ mmHg, la hemoglobina está saturada aproximadamente al 75% y la afinidad por el O_2 se ve reducida, por lo tanto el O_2 y la Hb no están unidos tan fuertemente en estas condiciones, lo cual facilita la transferencia de O_2 a los tejidos por medio de los capilares sistémicos[9][18].

1.1.3.2 Transporte de dióxido de carbono en sangre

Ya que se ha transportado el O_2 de la sangre a los tejidos, los cambios en las concentraciones de los gases producen cambios en las presiones parciales de los mismos y en consecuencia cambios en los gradientes de presión, por lo que ahora el CO_2 pasa del plasma celular de los tejidos al torrente sanguíneo, donde una vez disuelto el CO_2 en el plasma sanguíneo, la PCO_2 aumenta, creando un gradiente de presión entre el plasma y los eritrocitos (glóbulos rojos), de forma que la PCO_2 del plasma es mayor y el CO_2 se difunde desde el plasma hacia los eritrocitos, donde se encuentran las HHb y otras enzimas. A pesar de que una parte del CO_2 se encuentra disuelto en la sangre, otra fracción se une a la hemoglobina y la mayor parte del CO_2 se convierte en bicarbonato (HCO_3^-) y iones de hidrógeno (H^+), por esta reacción química se elimina el CO_2 disuelto de la sangre y disminuye la PCO_2 . El descenso de PCO_2 provoca un aumento en el gradiente para la difusión de CO_2 de los tejidos a la sangre para ser transportada hasta los capilares pulmonares donde se elimina el CO_2 por medio de una exhalación y se vuelve a oxigenar la sangre con una nueva inspiración[14].

Como ya se mencionó en la sección anterior, una de las variables fisiológicas que modifican la curva de disociación (afinidad Hb- O_2) entre la Hb y el O_2 es la PC O_2 .De forma que un aumento de la PC O_2 en la sangre favorece la reacción de formación de más carbaminohemoglobina (HbC O_2)[1]. En el momento que el C O_2 se une con la Hb para formar HbC O_2 , cambia la conformación espacial de la Hb y disminuye su afinidad con el O_2 , a esto se le conoce como efecto carbamino. La unión entre el C O_2 y la Hb ($CO_2 + Hb = HbCO_2$) es solo uno de los 3 mecanismos de transporte del C O_2 en la sangre[14] y transporta aproximadamente un 15-20% del total de C O_2 . Un 5-7% del total de C O_2 es transportado de forma disuelto en plasma (contribuye a PC O_2) y cerca del 80% del total de C O_2 y la principal forma en la que se transporta en sangre[9].

A diferencia del transporte de O_2 , el transporte de CO_2 al interior del eritrocito no ocurre por unión directa al grupo Hemo, sino que es estrechamente dependiente a la regulación del pH sanguíneo. El CO_2 se difunde libremente en los eritrocitos, donde la enzima anhidrasa carbónica se encarga de catalizar la reacción $CO_2 + H_2O <> H_2CO_3$

Casi inmediatamente después de la formación del compuesto H_2CO_3 , ocurre una disociación rápida y espontánea, como resultado de esta separación se obtienen las especies H^+y HCO_3^- . El H^+ generado se incorpora a la HHb, proceso facilitado por el efecto Bohr. Mientras que el bicarbonato se difunde a través de la membrana eritrocitaria hacia el torrente sanguíneo[14].

Figura 5. Diagrama de flujo del proceso de carga y descarga de gases en sangre[14].

La HHb forma más compuestos carbamino en comparación con la Hb O_2 , ya que tiene mayor afinidad por el CO_2 a causa del efecto Bohr, el desplazamiento de la curva de disociación (efecto Haldane) que no es más que un cambio en la afinidad de la Hb, favorece la fijación de CO_2 de los tejidos y su liberación en los pulmones[19]. En el pulmón, la PO_2 está aumentada y la PCO_2 disminuida, conforme el O_2 se combina con la hemoglobina durante la oxigenación, los H^+ que fueron captados en el estado de HHb son liberados, se combinan con iones bicarbonato, y forman ácido carbónico, éste se descompone en CO_2 y H_2O . el CO_2 es liberado por los compuestos carbamino, a continuación el CO_2 se difunde a el exterior de los eritrocitos se mezcla con el plasma que viaja por venas sistémicas hasta llegar a los capilares pulmonares, de ahí se difunde hacia el interior de los alvéolos y pulmones y para ser expulsado en la siguiente exhalación[12].

1.1.3.3 Alcalosis y acidosis

Otra función de la hemoglobina además del transporte de gases, es también la regulación del pH en sangre. Esto se debe a que la Hb posee grupos ionizables que aportan significativamente al amortiguamiento del pH en sangre por la capacidad que la Hb tiene para captar H^+ sin modificar su pH por otra parte la producción de carbonatos también tiene efectos directos de amortiguación afectando el balance del pH sanguíneo[19].

Otro mecanismo de control del equilibrio ácido-base en el cuerpo es modular la frecuencia respiratoria por medio de quimiorreceptores y con la intervención del sistema nervioso que genera alteraciones en la ventilación alveolar y provocan variaciones en la eliminación de CO_2 en la sangre y junto con el H_2CO_3 son los principales reguladores del pH de la sangre, esto se poder ver expresado matemáticamente en la ecuación de Henderson-Hasselbach[17].

$$pH = 6,1 + \log [HCO_3^-] / [CO_2]$$

El pH normal en el cuerpo humano es 7.4 con variaciones de \pm .05, excediendo estos límites se consideran condiciones anormales, definiendo como alcalosis los pH mayores a 7.45 y acidosis como un pH menor a 7.35[14].

1.1.4 Control y regulación de la respiración

Hasta el momento se conocen 2 mecanismos principales por los cuales se lleva a cabo la regulación en la respiración, uno es dependiente de cambios bioquímicos en el cuerpo y otro está retroalimentado por el sistema nervioso aunque también es dependiente de variables bioquímicas[1]. El principal estimulo cuando se habla del control de la respiración está dado por los cambios de pH tanto en sangre como en el líquido cerebroespinal (CSF por sus siglas en ingles), seguido también por cambios en la PC O_2 y P O_2 , de manera que el sistema respiratorio puede compensar acidosis o alcalosis en los fluidos corporales mediante alteraciones de la ventilación alveolar. Al finalizar esta sección y a manera de resumen, se presenta un diagrama de flujo (Figura 8), donde se indican las interacciones entre las principales estructuras y variables fisiológicas involucradas en los mecanismos que hacen posible el control y regulación de la homeostasis respiratoria.

1.1.4.1 Control químico

Una parte del mecanismo de control se encarga de equilibrar la ventilación y la perfusión con el fin de asegurar un intercambio gaseoso eficaz y conseguir una relación ventilación/perfusión igual o cercana a 1, ocurre de forma que los pulmones pueden mantener la PO_2 y la PCO_2 dentro del intervalo normal para que se dé correctamente el intercambio gaseoso, ya que las variaciones en la PO_2 y la PCO_2 dentro de los alvéolos tienen un efecto directo en la carga y descarga de O_2 y CO_2 (figura 5), pero también en la actividad contráctil del músculo liso, ocasionando cambios en el diámetro de los bronquios y arteriolas, lo que trae consigo variaciones en el flujo de aire y en la perfusión sanguínea de los alvéolos individuales, por el hecho de que el flujo sanguíneo pulmonar está regulado principalmente por cambios en la resistencia de las arteriolas. Estos cambios en la concentración de moléculas vasoactivas, principalmente por el $O_2[14]$, así mediante variaciones (involuntarias) tanto en el volumen, frecuencia respiratoria, cambios en los diámetros de vías aéreas, venas y arterias se tienen consecuencias directas en la difusión de O_2 y perfusión sanguínea que permiten controlar los niveles de pH, PO_2 y PCO_2 dentro del rango fisiológico normal[9].

El acoplamiento entre perfusión y ventilación es la capacidad de emparejar el uno con el otro. Tal como se observa en la figura 6, este control homeostático se lleva a cabo por medio de una retroalimentación negativa entre los niveles de ventilación y perfusión, en donde, si existe una ventilación pulmonar inadecuada en una zona del pulmón, esto produce una PO_2 baja en la región local, aumentando la vaso-constricción de arterias pulmonares y con esto reduciendo el flujo sanguíneo y perfusión emparejando la ventilación con la perfusión en el área local(a) y redistribuyendo el flujo a un sitio con mejor ventilación (mayor PO_2); por el contrario, si un sitio en el pulmón tiene una ventilación alta, la PO_2 local aumenta provocando una vasodilatación en venas pulmonares para aumentar el flujo sanguíneo y emparejarlo con la alta ventilación(b). Por otra parte, si la deficiencia es en el flujo sanguíneo y no en la ventilación, esto implica una PCO_2 reducida en los pulmones, lo que conlleva a una constricción en los bronquiolos para reducir el flujo de aire en la zona con mala perfusión(c); si la perfusión en una región es alta, la PCO_2 en los alveolos se eleva dilatando los

bronquiolos para aumentar la ventilación en la región(d), y regresando al equilibrio entre ventilación y perfusión.

perfusion ajustada a cambios en ventilación
ventilación ajustada a cambios en perfusion
Figura 6. Retroalimentación negativa en el control de la relación perfusión-ventilación. a) efecto de la ventilación reducida en la perfusión; b) efecto de ventilación aumentada en la perfusión; c) efecto de la perfusión reducida en la ventilación; d) efecto de la perfusión reducida en la ventilación[1].

Este sistema de regulación es inverso en arterias y capilares sistémicos donde la baja disponibilidad de O_2 (hipoxia) provoca vasodilatación y por lo tanto un incremento en el flujo sanguíneo que aumentar la disponibilidad de O_2 y regular la hipoxia[1].

1.1.4.2 Control neuronal

Los ciclos respiratorios (inspiración y espiración) la mayor parte del tiempo son generados en forma automática, ya que la respiración es un proceso autónomo controlado principalmente por el tronco encefálico o tallo cerebral (bulbo raquídeo y protuberancia). Tal como se muestra en la figura 7, son 3 los centros respiratorios conocidos encargados de controlar la frecuencia respiratoria normal (autonómica): el centro respiratorio medular (bulbar), el apnéustico y el neumotáxico[9]. Aun cuando se sabe que el tronco encefálico tiene el control del ritmo respiratorio normal y que generalmente es un proceso automático coordinado por el sistema nervioso autónomo (SNA), cabe resaltar que también existe un control voluntario que se puede ejercer a partir de órdenes (como sostener la respiración o hiperventilar voluntariamente) procedentes del sistema nervioso central (SNC)[1].

Los principales componentes del sistema de control autónomo de la respiración son:

- Quimiorreceptores centrales (sensibles a pH) cercanos al tallo cerebral.
- Quimiorreceptores periféricos (sensibles a O_2 , CO_2 y pH) en arco aórtico y bifurcación de arterias carótidas.
- Mecanorreceptores en los pulmones y articulaciones.
- Centros de control de la respiración en el tronco encefálico (bulbo raquídeo y protuberancia).
- Músculos respiratorios estimulados por los centros autónomos del tronco encefálico.

Centro respiratorio medular o bulbar

El centro respiratorio bulbar está ubicado en la formación reticular (FR) del bulbo raquídeo y está formado por dos agrupaciones de neuronas respiratorias (inspiratorias y espiratorias) que se diferencian

principalmente por su localización. En la región baja del bulbo raquídeo se encuentra el núcleo del tracto solitario (NTS), es una estructura cerebral que funciona como punto de conexión y primer procesamiento de las vías aferentes, por donde viajan las señales de los quimiorreceptores y mecanorreceptores periféricos, hacia el SNC. El NTS recibe y procesa las aferencias procedentes de los receptores cardiacos (barorreceptores arteriales), por lo que tiene una participación en la integración de algunas funciones autónomas relacionadas con los reflejos respiratorios y cardiovasculares[20]. Por otra parte, también se sabe que tienen proyecciones eferentes hacia a los núcleos motores de los nervios craneales[21]. Dentro del NTS está ubicado el centro inspiratorio o grupo respiratorio dorsal (DRG) que se encarga de controlar la actividad neuronal durante la inspiración mandando potenciales de acción a los músculos inspiratorios para que se contraigan y así se llenen de aire los pulmones, El DRG contiene en su mayoría neuronas inspiratorias que poseen una actividad más compleja comparado con las neuronas inspiratorias del centro espiratorio, también llamado grupo respiratorio ventral (VRG), este se encuentra activo únicamente en espiraciones activas (forzadas) ya que la espiración normal es pasiva y no requiere la activación de ningún musculo, únicamente la relajación de los músculos inspiratorios. El VRG tiene 2 zonas de neuronas espiratorias y una zona de neuronas inspiratorias, las neuronas inspiratorias aumentan la actividad durante la inspiración y la frecuencia del potencial de acción que se emite es baja en el comienzo de la inspiración, sin embargo, esta frecuencia va aumentando gradualmente hasta llegar a una frecuencia máxima en el momento final de la inspiración, cuando desaparece el potencial de acción, se relajan los músculos inspiratorios y comienza la espiración (pasiva). Cuando se envía una orden de una expiración profunda (activa) las neuronas espiratorias inhiben el centro inspiratorio, mecanismo que solo entra en acción fuera de la respiración normal (eupnea), pues en eupnea no es necesaria una espiración activa, en caso contrario cuando las demandas ventilatorias aumentan y se requiere acelerar la actividad inspiratoria el DRG estimula a las neuronas inspiratorias del VRG modulando la frecuencia respiratoria (fuera de lo normal) para satisfacer las demandas metabólicas de O2 censadas por los quimiorreceptores[22].

El encargado de marcar el ritmo que coordina el ciclo respiratorio en su estado normal o basal (resting state) se encuentra dentro del mismo VRG, se le conoce como el complejo pre-Bötzinger (preBötC)[23], siendo un grupo neuronas principalmente espiratorias que se consideran como los marcapasos del ritmo respiratorio[12].

En la región superior del tallo cerebral también conocida como protuberancia o puente de Varolio se localizan otro par de centros respiratorios de gran importancia, los centros neumotáxico y apnéustico, que son los responsables de ejercer un control fino del centro respiratorio bulbar contribuyendo a suavizar los movimientos respiratorios. Por un lado, el centro neumotáxico envía señales al DRG para desconectar las neuronas inspiratorias, terminando así la con la inspiración. Por otro lado, el centro apneústico impide la desconexión de estas neuronas (inspiratorias). En ese sistema antagónico tiene mayor influencia el centro neumotáxico, por lo que el control se realiza limitando la inspiración, lo que permite que la espiración curse con normalidad suavizando la transición entre la inspiración y espiración. Debido a comportamientos observados en modelos animales, se ha reportado que, sin la acción del centro apnéustico, la respiración se presenta como largas espiraciones interrumpidas por inspiraciones cortas y bruscas[24].

Centro neumotáxico

Localizado en la parte superior de la protuberancia del tallo cerebral, en su región rostral, dorsolateral, se encuentra el grupo respiratorio pontino (PRG) también conocido como centro neumotáxico, está formado tanto por neuronas inspiratorias como espiratorias, está compuesto por el núcleo Kölliker-Fuse y el complejo o núcleo para-braquial (PBN)[12]. Su función es Modular los centros respiratorios bulbares (DRG y VRG)

desactivando la inspiración mediante la reducción de la ráfaga de potenciales de acción en el nervio frénico, con esto regula el volumen inspiratorio y en consecuencia modifica la frecuencia respiratoria[25], se cree que funciona para "afinar" el ritmo respiratorio y suavizar las transiciones entre inspiración y espiración sin embargo, no parece participar en la generación del ritmo respiratorio, ya que se ha visto que puede existir un patrón normal en ausencia de este centro. Se sabe también tiene control sobre algunos reflejos iniciados por mecanorreceptores pulmonares y transmite la actividad de las neuronas respiratorias bulbares a la amígdala, el hipotálamo y otras estructuras superiores del cerebro y que puede modular a estímulos como la inflación del pulmón, hipercapnia e hipoxia[12].

Centro apneústico

Se considera el centro de proyección e integración de diferentes tipos de información aferente, con capacidad de finalizar o prolongar la inspiración. La estimulación de estas neuronas excita el centro inspiratorio en el bulbo, prolongando la duración de los potenciales de acción en el nervio frénico, por tanto, la contracción del diafragma[9], tanto la estimulación del nervio vago por el aumento del volumen pulmonar, como la estimulación por parte del centro neumotáxico activan las neuronas del centro apneústico y provocan que finalice la fase de inspiración[25].

La falta de actividad del centro apnéustico en la parte inferior de la protuberancia provoca un patrón de respiración anormal con inspiraciones espasmódicas prolongadas, interrumpidas por un corto movimiento espiratorio[17]. No se ha identificado el grupo de neuronas específico que funciona como el centro apneústico, al igual que se desconoce gran parte de sus funciones[1][7]. Al igual que el centro neumotáxico, no parece ser indispensable en la generación del ritmo respiratorio básico[25].

Figura 7. *a) Representación de un corte coronal del tallo cerebral donde se marcan los principales* núcleos respiratorios. *b) diagrama de flujo de la regulación neuronal (autónoma) de la respiración[14].*

1.1.4.3 Control voluntario

Como ya se ha mencionado, existe un control voluntario para la respiración, el cual se produce en la corteza prefrontal y corteza motora, ubicadas en el lóbulo frontal del encéfalo, desde donde se envía la señal de orden y viaja descendiendo por vías del tracto corticoespinal hasta llegar directamente a las neuronas respiratorias en la médula espinal sin la intervención de los centros respiratorios autónomos en el tallo cerebral[20], este mecanismo entra en acción durante el habla, mientras se canta o simplemente al hiperventilar o hipoventilar voluntariamente por un tiempo determinado, la hipoventilación está limitada, debido a que el dejar de respirar (voluntariamente) causa un aumento en la PC O_2 , el cual es un fuerte estimulante de la control autónomo de la ventilación y de no reanudarse la ventilación se pierde la conciencia en un punto conocido como punto de quiebre, donde la señal del sistema autónomo retoma el control por encima del control voluntario[17][1][13]. Se sabe que la hiperventilación y la ventilación con O_2 al 100% antes de detener la respiración, retrasan el punto de quiebre al elevar la P O_2 y disminuir la PC O_2 . Varios otros factores afectan los límites de la retención de respiración (BH o apnea), entre ellos está la condición inicial en donde se interrumpe la ventilación y otros factores psicológicos también participan, pues los sujetos pueden interrumpir la respiración más tiempo cuando se les da motivación[7].

Figura 8. Relación de estructuras anatómicas involucradas en el control de la respiración[22].

1.2 Neuroanatomía funcional

El sistema nervioso y sus componentes celulares principales, las neuronas y neuroglias, forman un conjunto de estructuras neuronales especializadas e interrelacionadas que se encargan de controlar y regular las funciones y el mantenimiento homeostático del resto de órganos y sistemas que conforman el organismo. Para cumplir estas funciones, el sistema nervioso periférico (SNP) censa y transmite señales producidas por cambios en el medio interno y externo, esta información se transmite por medio de vías nerviosas conocidas como vías aferentes que comunican con el SNC, donde se procesa la información para responder a los estímulos sensoriales con estímulos nerviosos que viajan por vías descendientes (eferentes) atreves del SNP hacia músculos, glándulas u órganos efectores, con el fin de producir cambios que mantengan la homeostasis del organismo[25].

El sistema nervioso central resulta de la interconexión de una gran cantidad de axones neuronales, prolongaciones fibrosas que salen del cuerpo celular de la neurona y se unen para formar tractos nerviosos que funcionan como vías de comunicación entre los diversos órganos por los que se compone el SNC, los principales componentes de este sistema son la médula espinal y encéfalo; el encéfalo está ubicado en el interior del cráneo, contiene casi un 95% del tejido nervioso del organismo y está formado por el cerebro, cerebelo, tronco encefálico y diencéfalo que son órganos que compuestos a su vez por otras estructuras anatómicas (figura 9). El encéfalo se comunica con el resto del cuerpo enviando impulsos nerviosos que salen por el tronco encefálico hacia la médula espinal[4]. Entre las funciones más destacadas del SNC se encuentra la integración, procesamiento y coordinación de los impulsos sensitivos (aferentes) y motores (eferentes), también es responsable de funciones superiores como la inteligencia, la memoria, aprendizaje y de las emociones[8].

En este apartado se describe de manera general la estructura, partes, funciones y subdivisiones anatómicas del sistema nervioso y se enfoca en describir las funciones de estructuras que se relacionan con movimientos, alertas, y regulación de procesos fisiológicos involucrados en tareas respiratorias.

Figura 9. Imagen por resonancia magnética de un corte sagital de la cabeza donde se muestran las partes fundamentales del encéfalo: 1) cerebro, 2) cuerpo calloso, 3) diencéfalo, 4) mesencéfalo, 5) protuberancia, 6) bulbo raquídeo, 7) cerebelo y 8) médula espinal.

1.2.1 Corteza cerebral

Es la parte superficial del cerebro, formada por una capa fina y bien contorneada de sustancia gris; está dividido en 2 hemisferios laterales y cuenta con irregularidades formadas por surcos llamados cisuras y unas protuberancias denominadas circunvoluciones. Las circunvoluciones permiten acomodar un mayor volumen de corteza cerebral dentro de un volumen craneal dado. Se trata del área más desarrollada del encéfalo y en términos evolutivos, la más reciente. La corteza cerebral realiza el procesamiento neural de mayor nivel, es ahí donde percibimos nuestro entorno y donde surgen todas las funciones intelectuales como la formulación de ideas, emociones, recuerdos de acontecimientos pasados y por donde ordenamos a nuestro cuerpo que se mueva. Para llevar a cabo todas estas complejas funciones, la corteza actúa como un centro de integración, es decir, recibe muchos tipos de estímulos sensoriales procedentes de diversas fuentes, consolida esa información y la utiliza para formular pensamientos y acciones[14].

La corteza posee varias divisiones y subclasificaciones tanto anatómicas como funcionales de distintas regiones que conforman este órgano, a continuación, se detallan algunas de las principales regiones (figura 10) involucradas funcionalmente en el control motor, emocional y que se relacionan de cierta forma con la ejecución de las tareas respiratorias.

Figura 10. Render de corteza cerebral con las principales regiones de interés del lóbulo frontal. 1) PFC orbitofrontal, 2) PFC dorsolateral, 3) PFC ventromedial, 4) Corteza premotora, 5) Corteza motora suplementaria, 6) Corteza motora primaria.

1.2.1.1 Corteza prefrontal

Esta región de la corteza se ubica en la parte más rostral del cerebro, dentro del lóbulo frontal, se ha establecido que es en la corteza prefrontal (CPF) donde se localizan las "funciones mentales superiores" o funciones ejecutivas (toma de decisiones, planificación, inhibición, control atencional, resolución de problemas, y manejo de emociones). Se considera que juega un rol inhibidor de expresiones autonómicas y emocionales[26]; es sabido que tiene una participación activa en el control cognitivo y controla los patrones de actividad que representan metas, manteniendo activos los recursos que son necesarios para cumplir dichos propósitos, además también interviene en algunas funciones motoras[27].

Las funciones de la CPF son dependientes de las interacciones con otras regiones de la corteza frontal, así como de las conexiones con otras regiones corticales y subcorticales; principalmente el cuerpo estriado y el tálamo. También establece conectividad con áreas del cerebro involucradas en procesos sensoriales y sistemas los responsables de la respuesta ejecutiva, memoria y evaluación emocional[7].

A algunas regiones de la CPF se les ha relacionado con funciones específicas para cada área; dentro de la CPF se distinguen tres áreas principales: la ventromedial, la orbitofrontal y la dorsolateral.

En lo que respecta a la región ventromedial, a esta se le atribuye participación en procesos como de atención, motivación e interés. En su descripción anatómica se tienen conexiones con centros autonómicos tales como el hipotálamo, tallo cerebral y la médula espinal; conectividad que relaciona directamente a la CPF ventromedial con funciones autónomas tales como la respiración, el ritmo cardiaco, la presión sanguínea, la motilidad gastrointestinal y la nocicepción [26].

La región orbitofrontal se asocia con la integración sensorio-emocional, con algunos aspectos de la personalidad y con la conducta social. Por sus conexiones anatómicas tiene una relación con el sistema límbico, interviniendo en el procesamiento de emociones y la regulación conductual[26][27].

Por su parte, a la zona dorsolateral de la CPF se le considera fundamental en procesos de memoria operativa, cognitivos y atención selectiva[26]. Las proyecciones aferentes de esta zona de la CPF envían información al cuerpo estriado dorsal (caudado y putamen), jugando un papel activo en procesos de orden superior, como la toma de decisiones consciente, el razonamiento, la memoria de trabajo, inhibición motora y la predicción de resultados[28].

1.2.1.2 Corteza motora suplementaria

Esta región se localiza entre la CPF y la corteza motora primaria, dentro de la circunvolución superior frontal de la corteza cerebral[29], en cuanto a conectividad, presenta proyecciones hacia áreas motoras primarias, premotora, cíngulo, CPF dorsolateral, cerebelo, ganglios basales, también conecta directamente con el tallo cerebral y médula espinal para el control de músculos del tronco y extremidades proximales[30]. Es en la corteza motora suplementaria donde se realiza la programación de secuencias motoras complejas, selección e inicio de movimientos y también en el inicio del habla[31]. se ha observado que esta región permanece activa durante la planeación e imaginación de un movimiento, incluso cuando no se realiza el movimiento[9]. Funcionalmente, el Área motora suplementaria (AMS) como también se le conoce, puede dividirse en 2 áreas: El área motora pre-suplementaria (pre-AMS), que presenta actividad inhibitoria sobre el movimiento, otorgándole la capacidad de filtrar, controlar y decidir qué movimientos no realizar. La otra parte de la corteza motora suplementaria es la que tiene conectividad con la corteza motora primaria, y se encarga de la ejecución motora en 2 estaciones, una que se activa al imaginar los movimientos, y otra que se activa al ejecutar los movimientos[27].

1.2.1.3 Corteza premotora

Se ubica anterior a la corteza motora primaria y caudal a la corteza motora suplementaria, Se extiende hacia abajo en paralelo a el área motora primaria. Esta región parece tener participación específicamente durante los movimientos orientados de manera sensorial, es decir que neuronas del área premotora se activan en respuestas a estímulos visuales, auditivos y somatosensoriales. Junto con el cerebelo y otras estructuras, la corteza premotora está implicada en el almacenamiento de programas de actividad motora aprendidos por

experiencias pasadas, así como en la planeación motora y ejecución de movimientos compuestos por contracciones de múltiples músculos simultáneamente[10].

1.2.1.4 Corteza motora primaria

La localización anatómica de esta región se encuentra dentro del lóbulo frontal, situada por delante de la cisura central, funcionalmente es la última estación donde se procesa la información proveniente de la corteza premotora y motora suplementarias y se ejecuta la orden de movimiento muscular voluntario[14], los impulsos que proceden de cada región que forma esta corteza, producen la contracción coordinada de músculos específicos que corresponden únicamente a esa determinada área topográfica de la corteza motora, lo que permite la representación de todos los músculos del cuerpo, superpuestos en un mapa de la superficie cortical al que se le conoce como el homúnculo motor (figura 11)[9].

Figura 11. Representación y ubicación del homúnculo motor de la corteza cerebral[14].

1.2.1.5 Corteza insular

A diferencia de las regiones corticales mencionadas con anterioridad, la corteza insular o simplemente ínsula, es una región que se encuentra a una mayor profundidad, justo por debajo de los lóbulos temporal y frontal (bilateralmente) tal como se observa en la figura 12. Funcionalmente se le relaciona con el procesamiento del dolor, evaluación de estímulos nocivos (nocicepción), conciencia de sí mismo (propiocepción), percepción del medio interno o visceral (interocepción o viserocepción), trastornos de adicción, toma de decisiones [28][32]. La ínsula, en su zona posterior, recibe información sensitiva de las vías de dolor, sensación térmica corporal e incluso información sensitiva visceral; enviando esta información a la parte media de la ínsula, donde se procesa para ser retransmitida a la ínsula anterior, que se encarga de trabajar aún más esta información para finalmente comunicarse con áreas involucradas en el control cognitivo y emocional[33].

Figura 12. A la izquierda una representación en 3D de la localización anatómica de la corteza insular (en rojo) bajo la superficie de los opérculos temporal (morado), frontal (azul) y parietal (verde); a la derecha una representación de un corte coronal donde se muestra la ubicación de la ínsula en color rojo y los respectivos opérculos[34].

1.2.2 Núcleos basales

Los núcleos basales (NB)son un conjunto de estructuras bilaterales subcorticales constituidas por materia gris, se hallan localizadas en las profundidades de ambos hemisferios cerebrales. Los NB se conforman por el núcleo caudado, globo pálido, putamen, núcleo accumbens, sustancia negra y núcleos subtalámicos (STN), los cuales son representados en la figura 13. Principalmente, establece conectividad tanto aferente como eferente con el lóbulo frontal, más específicamente con las áreas de la corteza que tienen participación en tareas motoras, funcionando como un sistema motor accesorio, dependiente del sistema de control motor cortical y contribuyendo con este para efectuar el control de actividad motora compleja[10]. Además de participar en el procesamiento de actividad motora, los NB también intervienen en los llamados circuitos límbicos y asociativos[35].

Figura 13. A la izquierda un corte coronal con localización anatómica de estructuras subcorticales que conforman los NB; a la derecha una representación 3D en vista lateral de los NB[12].

1.2.2.1 Putamen

El putamen junto con el caudado conforman el llamado cuerpo estriado, siendo este la mayor parte del volumen de los NB y recibiendo la mayor parte de la información motora proveniente de las proyecciones salientes del área premotora, área motora suplementaria y en menor medida de la corteza motora primaria; en cuanto a las proyecciones principales del putamen, conecta con el globo pálido, tálamo, núcleos subtalámicos y con la sustancia negra (reticulada)[36].

Figura 14. Circuito del putamen para ejecución de patrones de movimiento previamente aprendidos[10].

Funcionalmente, se ha observado que el putamen interviene en procesos de cognitivos de aprendizaje del control motor (figura 14), funciones lingüísticas, recompensa y adicciones, así como también se conoce que tiene participación en comportamientos dirigidos al cumplimiento de objetivos o metas y en la expresión movimientos que poseen algún componente de motivación y/o emoción[37].

1.2.2.2 Núcleo caudado

El caudado (Junto con el putamen) es la otra parte por la que se conforma el cuerpo estriado, anatómicamente se extienden (bilateralmente) desde el putamen, proximalmente al tálamo. El caudado posee una morfología alargada por lo que puede ser subdividido en cabeza cuerpo y cola.

La región anterior del núcleo caudado es lo que se le conoce como cabeza y establece comunicación principalmente con las regiones laterales y mediales de la CPF, por lo que funcionalmente se le asocia con tareas cognitivas y emocionales tales como las funciones ejecutivas y memoria de trabajo; en cuanto a la parte media del caudado recibe la denominación de cuerpo y establece conectividad con toda la CPF; mientras que la sección posterior es conocida como la cola y mantiene comunicación con partes de lóbulo temporal lo que le permite intervenir en el procesamiento de la información visual y los procesos de control motor que son orientados por estímulos visuales[38]. En la figura 15 se pueden observar la conectividad del caudado con otras áreas de la corteza.

En conjunto estas tres regiones que integran el núcleo caudado juegan un papel importante dentro de las vías o circuitos neuronales de los NB, siendo la estructura (junto con el putamen) que recibe la información proveniente de la corteza y donde comienzan las vías directas e indirectas de los ganglios basales, las cuales están funcionalmente involucradas en el control motor[39].

Figura 15. La sincronización y la escala de los movimientos compuestos son funciones del circuito de control motor cognitivo empleado para la planeación de patrones motores dirigidos a objetivos específicos[10].

1.2.2.3 Núcleo accumbens

El núcleo accumbens es una estructura que se ubica medial a la cabeza del núcleo caudado y dorsal a la circunvolución caudal de la CPF. Según algunos autores, el núcleo accumbens forma parte del cuerpo estriado ventral, el cual se sabe que tiene fuertes conexiones de entradas provenientes del sistema límbico y algunas áreas de la CPF[40]. Funcionalmente, el núcleo accumbens se asocia con diversas funciones como las respuestas viscerales, el olfato, la alerta del sistema límbico y la actividad somato-motora[41]. También se sabe que forma parte del sistema de recompensa (dopaminérgico), o también llamada vía mesolímbica, que recorre desde el área tegmental ventral del mesencéfalo hasta la CPF pasando por el núcleo accumbens el cual juega un rol importante en procesos de adicción[40].

1.2.2.4 Globo pálido

El globo pálido es otra estructura subcortical de los NB, localizado medialmente a un costado del putamen presenta una forma triangular y una coloración pálida causada por la mielina de los axones que se encuentran dentro de esta región a diferencia de las neuronas del cuerpo estriado que no presentan mielinización y tienen un aspecto más oscuro[42].

El globo pálido se divide tanto anatómicamente como funcionalmente en 2 regiones, la parte interna (GPi) y la externa (GPe). La sección externa del globo pálido ocupa la mayor área dentro de este y recibe conexiones de entrada que provienen principalmente del cuerpo estriado, así mismo extiende sus conexiones de salida hacia el GPi y la sustancia negra[43]; mientras la región interna se encarga de integrar información motora proveniente del cuerpo estriado junto con la sustancia negra como las estaciones de salida en las vías neuronales de los NB[44].

1.2.2.5 Sustancia negra

Ubicada al interior del mesencéfalo, posterior al pedúnculo cerebral se localiza la sustancia negra, que debe su nombre a la pigmentación oscura causada por la alta concentración de melanina que contienen las neuronas de esta región. analizándola desde un punto de vista tanto anatómico como funcional, la sustancia negra se integra por dos regiones distintas, la sustancia negra pars compacta (SNpc) y la sustancia negra pars reticulata (SNpr). La SNpc contiene neuronas dopaminérgicas densamente empaquetadas que reciben información del núcleo pedúnculo-pontino y del sistema de activación reticular ascendente (SARA). Mientras que la SNpr está formada por neuronas conocidas como GABAérgicas que contienen el inhibidor del ácido gammaaminobutírico (GABA), por lo que la SNpr puede ser visto como un núcleo inhibidor GABAergico. Se considera que la SNpr en conjunto con el GPi son la salida final de las vías directas e indirectas de los ganglios basales[45].

1.2.2.6 Circuitos y vías de los núcleos basales

Según lo reportado en la literatura, son tres las principales vías neuronales por medio de los cuales interactúan la corteza cerebral y los NB para procesar y transmitir la información motora antes de ser ejecutado el movimiento:

Vía directa: La corteza motora envía información hacia el cuerpo estriado donde también convergen las proyecciones dopaminérgicas que provienen de la SNpc y hacen sinapsis con las neuronas receptoras (D1) al interior del cuerpo estriado, ahí se forman conexiones inhibidoras hacia el GPi, por lo tanto, en la vía directa se inhibe directamente al GPi y se desinhibe la actividad motora del tálamo hacia la corteza motora.

Vía indirecta: la SNpc también extiende proyecciones dopaminérgicas hacia otro tipo neuronas receptoras (D2) dentro del mismo cuerpo estriado, pero estas proyecciones no se dirigen hacia el GPi, sino que continúan hacia el GPe, que tiene una fuerte acción inhibitoria sobre el GPi y los núcleos subtalámicos (STN) que también convergen sus salidas hacía el GPi, de esta manera es que el GPi es estimulándolo indirectamente.

Vía hiperdirecta: los impulsos nerviosos salientes de las áreas motoras de la corteza llegan directamente a los STN, sin pasar por el cuerpo estriado. El resultado es la excitación hiperdirecta del GPi y la SNpr, estimulando la acción inhibitoria que tiene el GPi sobre tálamo, en consecuencia, no se transmite la información motora del tálamo hacia la corteza motora y no se ejecuta el movimiento[46][47].

Figura 16. El balance resultante de la interacción de las tres principales vías de los NB y que convergen en el GPi, determina si la actividad que tendrá el GPi sobre el tálamo será inhibitoria o desinhibitoria, permitiendo o impidiendo que este último, estimule la corteza motora para que se ejecute el estímulo nervioso que produce la acción motora muscular[45].

Los bucles o circuitos cortico-basales-talamocorticales se consideran circuitos paralelos que se encargan de procesar independientemente la información límbica, asociativa y sensoriomotora procedente de las correspondientes áreas de la corteza cerebral (figura 17)[35]. Las tres circuitos cortico-basales hacen uso de las mismas vías neuronales descritas anteriormente para circuito motor (figura 16), es decir, la información cortical que fluye a través de los NB puede viajar por cualquiera de las vías, ya sea directa, indirecta o hiperdirecta; dependiendo de la naturaleza del estímulo[48].

Figura 17. En cada uno de los circuitos cortico-basales (circuito motor en rojo, circuito asociativo en verde y circuito límbico en azul) se muestran las conexiones entre distintas áreas de la corteza con las principales estructuras de los NB: 1)putamen, 2)GPe, 3)GPi, 4)STN, 5)tálamo, 6)caudado[48].

1.2.3 Sistema Límbico

Desde el punto de vista anatómico, este sistema es conformado por estructuras distribuidas alrededor del tálamo, principalmente la amígdala, el hipocampo y algunas partes del tálamo, sin embargo, desde el punto de vista fisiológico también integra regiones de la corteza, tales como la llamada corteza límbica, las circunvoluciones del cíngulo, la parahipocampal y la dentada. Funcionalmente se considera el centro de las emociones y comportamiento, incluyendo tareas como el control de reacciones al estrés, miedo, atención y los instintos sexuales, además, interviene en procesos relacionados con la memoria[49].

1.2.3.1 Hipocampo

La descripción anatómica del hipocampo incluye un complejo estructural de materia gris en forma de "C" localizado dentro de la circunvolución parahipocampal del lóbulo temporal, se compone de tres regiones principales: la circunvolución dentada, el hipocampo propiamente dicho y el subículo. En lo que respecta al hipocampo propiamente dicho, se extiende desde la parte anterior de la amígdala hasta el extremo posterior cerca del cuerpo calloso y se divide en cabeza cuerpo y cola. Establece conectividad con la mayoría de las áreas asociativas de la corteza cerebral a través de la llamada corteza entorrinal; mientras que sus conexiones salientes viajan atravesando el fórnix en dirección al tálamo, hipotálamo y otras estructuras del sistema límbico[50].

Funcionalmente se le atribuye un papel importante en algunos tipos de memoria, interviniendo principalmente en tareas de consolidación de la memoria a largo plazo, además de tener participación en otras tipos de memoria, como la memoria espacial y la memoria explícita[51].

1.2.3.2 Amígdala

La amígdala en un conjunto de diminutos núcleos localizados en las profundidades de ambos lóbulos temporales, se relaciona principalmente con el hipotálamo mediante múltiples conexiones bidireccionales, no obstante también presenta una estrecha relación con otras estructuras del sistema límbico[10]. Debido a esta conectividad anatómica que presenta, se sabe que funcionalmente es una pieza central en el circuito de las emociones, jugando un rol importante en la modulación del comportamiento al intervenir en las reacciones a emociones tales como el miedo, la ansiedad, agresividad; también es conocida su participación en procesos cognitivos tales como el aprendizaje relacionado con la emoción, la memoria emocional y en ciertos aspectos de cognición social[49][52].

1.2.3.3 Tálamo

Es una agrupación de núcleos que funciona como centro de relevo o conexión. Toda la información sensorial sobre el tacto, la presión, la vibración y la propiocepción mediante la vía dorsal-lemniscal medial, salvo en el caso del sentido del olfato. La información acerca del dolor y la temperatura se transmite al tálamo por la vía espino-talámica, mientras que la información del tálamo es enviada a la corteza somato-sensitiva primaria vía tálamo-cortical. La información del sonido se transmite al cuerpo geniculado medial del tálamo y después a la corteza auditiva. La mayoría de los estímulos sensoriales se filtran y se refinan en el tálamo antes de ser transmitidos a la corteza, también conecta la información del cerebelo y de los ganglios basales con la corteza motora para proporcionar una retroalimentación en el control del movimiento, por lo que se puede ver como un centro de coordinación en actividades motoras conscientes y subconscientes[4][14].

1.2.4 Tallo cerebral

El tallo cerebral se encuentra ubicado por encima de la médula espinal y por debajo del diencéfalo (véase en la figura 9), está formada por 3 estructuras: bulbo raquídeo o médula oblongada, el puente de Varolio o protuberancia y el mesencéfalo o cerebro medio. Diez de los doce pares craneales salen del tallo cerebral, estos pares craneales son estructuras nerviosas que inervan distintas zonas de la cabeza tal como los nervios raquídeos que salen de la médula espinal a distintas zonas del resto del cuerpo[53].

El SARA, es un conjunto de neuronas que también se localizan dentro del tallo cerebral en su parte dorsal, se extienden desde el bulbo raquídeo hasta el diencéfalo. Es un sistema primitivo que tiene participación en funciones relacionadas con cambios en el estado de consciencia (ej. sueño-vigilia), estado de alerta, atención, conciencia, propiocepción, modulación del dolor e incluso ciertos procesos de regulación autónoma[4][21][7].

1.2.4.1 Mesencéfalo

Llamado también cerebro medio, el mesencéfalo es una estructura en forma de trapecio superior que pertenece al tronco cerebral, une la protuberancia o puente de Varolio y el cerebelo con el diencéfalo; a través de él acueducto de Silvio. Dentro del mesencéfalo se encuentran la sustancia negra y el área tegmental

ventral. Entre las funciones autónomas que regula, se sabe que están los reflejos visuales y movimientos oculares como el enfoque del lente y dilatación pupilar[21].

Los pedúnculos cerebrales son dos masas o cordones nerviosos blancos, cuya función principal es unir y comunicar, el mesencéfalo con el cerebro. Se encuentran estructurados por fibras nerviosas, incluyendo las fibras de los tractos corticopontino (que une la corteza cerebral con la protuberancia) y corticoespinal (el cual comunica a la corteza cerebral con la médula espinal)[7].

1.2.4.2 Protuberancia o puente de Varolio

Está formado por fibras nerviosas que conectan al mesencéfalo con la médula, anterior al cerebelo y por encima del bulbo, controla la función respiratoria basal, pues contiene los centros neumotáxico y apneústico descritos en secciones anteriores[9].

El locus coeruleus (LC), está localizado dentro de la protuberancia, funcionalmente se asocia con el alertamiento, la atención y la vigilia. Además, es una de las estructuras ampliamente relacionadas con la presencia de trastornos de ansiedad, es responsable de la mayor parte de la producción de noradrenalina en el sistema nervioso central y es ampliamente conocido por su papel en la inhibición descendente de la trasmisión dolorosa de tipo aguda y por su participación en el estado atencional ante un estímulo biológicamente relevante como sería el dolor o la falta de aire[22][21].

1.2.4.3 Bulbo raquídeo o médula oblongada

Es la parte inferior del tallo cerebral, conecta al tallo con la médula espinal a través de los diversos tractos motores y sensoriales. Dentro del bulbo raquídeo se encuentran núcleos importantes, tales como el núcleo ambiguo, el dorsal del vago, el del tracto solitario. Contiene los sitios vitales que regulan funciones autónomas como la frecuencia cardiaca, frecuencia respiratoria (centro respiratorio bulbar) y reflejos como la vasoconstricción, vasodilatación, deglución, vómito, estornudo y tos[7][8].

1.2.5 Cerebelo

Se trata de una estructura simétrica bilateral, con una corteza externa y núcleos internos, que se encuentra en la región posterior del encéfalo. Cuenta además con tres lóbulos y dos grandes fisuras transversales que los forman: los primeros son los lóbulos anterior, intermedio y posterior; en cuanto a las fisuras, se encuentran el vermis y los hemisferios cerebelares. Los elementos principales del cerebelo son (figura 18):

Vermis: se trata de una estructura en forma de gusano que separa a ambos hemisferios cerebelosos[7]. *Núcleos cerebelosos*: son el núcleo dentado, fastigio globoso y arboriforme; estructuras de materia blanca[9]. *Corteza cerebelar:* consta 3 distintas capas: la *Capa externa o molecular* prácticamente *no* está formada por neuronas, sino por axones de la capa granular y dendritas de las celulas de Purkinje; la *Capa intermedia o Células de Purkinje*, también inhibitorias, permiten las vías de comunicación entre la corteza cerebral y los núcleos cerebelosos; mientras que la *Capa interna o granular* es conformada por neuronas con forma granular y las únicas que poseen una accion excitatoria[54][55].

El cerebelo tiene participación en la función motora y el equilibrio, aportando información de retorno a los sistemas motores para garantizar que los ojos y el cuerpo se muevan con precisión. interviene en los ajustes del aprendizaje que facilitan la coordinación cuando se realiza una tarea determinada repetidamente.
Conforme se aprende la tarea motora, la actividad en el cerebro pasa de las áreas prefrontales a la corteza parietal, motora y finalmente al cerebelo[7].

Figura 18. a) Principales estructuras anatómicas del cerebelo[54]. b) capas neuronales que conforman la corteza cerebelar; donde, 1) capa molecular, 2) capa granular, 3) celula de Purkinje, 4) axón de celula de Purkinje, 5) fibras musgosas, 6) fibras trepadoras, 7) sustancia blanca [55].

El cerebelo también se encarga de regular la actividad de las vías conscientes (corticoespinales) y subconscientes (mediales y laterales). Las actividades de integración efectuadas por las neuronas de la corteza cerebelosa y los núcleos cerebelosos son indispensables para el control preciso de los movimientos voluntarios e involuntarios, después de realizarse una tarea motora voluntaria, se desencadena la activación de muchas más unidades motoras que las requeridas, el cerebelo regula la inhibición de las unidades motoras innecesarias reduciendo el número de órdenes motoras hasta un mínimo eficaz para completar el patrón de actividad[4].

Otras tareas de las que también se encarga el cerebelo son el control de la sensibilidad propioceptiva (posicional), procesamiento de la información visual procedente de los ojos, coordinación de movimientos para mantener el equilibrio por medio de la información procedente del oído interno; el cerebelo también almacena recuerdos de actividades motoras, de tal manera que movimientos que han sido ejecutados repetidamente en el pasado, pueden ser refinados y ejecutados con más precisión en ejecuciones futuras[14].

1.3 Regulación fisiológica autónoma durante períodos de apnea

La respiración puede ser visto como el único acceso voluntario que tenemos para modificar la actividad autónoma de nuestro organismo, o bien, visto desde otra perspectiva, se puede decir que es el punto donde se cruzan o interrelacionan (funcionalmente) el sistema nervioso autónomo y el sistema nervioso somático. Se piensa en esto, debido a que los seres humanos tenemos la capacidad de controlar a "voluntad" nuestra respiración, es decir, podemos modular o incluso suspender temporalmente nuestro ritmo respiratorio en el momento que queramos, al modificar este ritmo voluntariamente (hipoventilación o hiperventilación), o al retener la respiración por un periodo prolongado de tiempo (apnea inducida), provocamos cambios en las

variables fisiológicas del organismo que se traducen en actividad nerviosa simpática y/o parasimpática (según seas el caso) con el fin de mantener un equilibrio homeostático[56].

Durante estos periodos de interrupción respiratoria, también conocidos como apneas o BH (por sus siglas en inglés, Breath Holding), el organismo tiene la capacidad de responder a la falta de O_2 mediante modificaciones (involuntarias) en el funcionamiento corporal, estas adaptaciones ayudan a mejorar el rendimiento en situaciones fisiológicas con déficit de O_2 . La exposición del organismo a estas situaciones de estrés fisiológico provocan respuestas autónomas simpáticas como dilatación de las vías respiratorias y aumentos en la capacidad pulmonar, lo que mejora la ventilación alveolar y aumenta disponibilidad de O_2 favoreciendo la difusión de gases; también provoca la dilatación en la neurovasculatura, lo que incrementa el flujo sanguíneo en cerebro, aumentando así la entrega de O_2 en sus tejidos; además, como respuestas simpáticas, se relajan músculos periféricos que no son indispensables y como parte de las respuestas simpáticas, se presenta vasoconstricción periférica, un aumento en la presión arterial y en el flujo sanguíneo cerebral, a su vez, esto provoca una disminución en la perfusión sanguínea de estas zonas musculares que no son vitales para la supervivencia bajo estas situaciones de estrés fisiológico. Otra respuesta parasimpática ante un periodo de apnea, es la disminución de la frecuencia cardiaca y gasto cardiaco. Atreves de estas respuestas en las que se ven implicados tanto el sistema nervioso simpático como parasimpático se asegura una mejor oxigenación de los órganos de mayor importancia para sostener con vida al organismo[57][56].

1.3.1 Fases de la apnea

Durante la realización de un periodo de apnea se pueden distinguir 2 fases por las que pasa el apneista:

La primera fase es conocida como la fase placentera, se caracteriza por que durante este periodo el apneista experimenta un estado psicológico de tranquilidad y bienestar, debido a que aún se cuenta con una proporción alta de O_2 y apenas se ha acumulado muy poco CO_2 y ácido láctico. El sistema parasimpático entra en acción y disminuye la frecuencia cardiaca propiciando un estado de relajación sin sentir urgencia de respirar.

Figura 19. Diagrama que muestra las fases de apnea y las características en los movimientos torácicos que las distingue[56].

La segunda fase es de hipercapnia, también es conocida como fase de estrés o estrangulamiento y se caracteriza por la aparición de una sensación de urgencia por respira y por la presencia de movimientos diafragmáticos involutarios. Los niveles de CO_2 y ácido láctico aumentan a medida que los de O_2 se reducen, lo que causa un cambio en el pH sanguíneo, en consecuencia una acidosis que es censada por los quimioreceptores encargados de la regulación química de la respiración, estos transmiten una señal por vías aferentes provocando que la respuesta del SNA active reflejos fisiológicos generados en el cerebro lo cuales

son enviados por vías eferentes hacia los músculos respiratorios y así producir contracciones en el diafragma, costillas y abdomen, incitando así la acción de respirar y provocando movimientos respiratorios involuntarios.

Figura 20. Diagrama temporal de los niveles de CO_2 y O_2 , desde el inicio de una apnea hasta el punto de quiebre (sincope) [imagen modificada de <u>www.freedivng-apnea.com</u>].

A partir de la primera contracción involuntaria (limite que separa una fase de la otra como se muestra en la figura 19) aún es posible retener la respiración por un periodo de tiempo prolongado antes de que se llegue al punto de quiebre respiratorio, esto es debido a que la mayor parte de la reserva de O_2 aún se encuentra combinada con la hemoglobina dentro de los glóbulos rojos y no en el aire de las vías respiratorias o en el oxígeno disuelto en el plasma. A medida que se prolonga el tiempo sin respirar el apneista experimenta sensaciones que van desde incomodidad hasta sufrimiento, las reservas de O_2 se van agotando, hay una mayor acumulación de CO_2 y ácido láctico, lo que aumenta la acidosis (figura 20) y provoca reflejos de contracción en el diafragma con mayor frecuencia y de mayor intensidad. Depende del nivel de entrenamiento y capacidad del apneista cuánto tiempo más se puede prolongar una apnea, si la capacidad mental del apneista es tal que puede sobrepasar las capacidades fisiológicas y continuar reteniendo la respiración más allá del punto de quiebre se produce un síncope (perdida de consciencia), terminando con la apnea de forma involuntaria, pues la perdida de conciencia conlleva a que el SNA retome el control de la respiración[58][59][56][57].

Ignorar la sensacion de asfixia durante la segunda fase de la apnea, no solo requiere de un gran esfuerzo fisiológico, sino que también supone una carga emocional considerablemente fuerte, ya que el respirar es uno, si no es que el más fuerte de los instintos en los seres vivos, por lo que inhibirlo por periodos prolongados, provoca que se enciendan las alarmas de una posible amenaza para la vida misma, esto desata sensaciones sumamente incomodas y desagradables que suman dificultad al realizar una apnea voluntaria. Para continuar prolongando el tiempo de la apnea a pesar de estas dificultades psicológicas, también es necesario ejercer un fuerte control cognitivo, tanto motivacional para lograr el objetivo, como atencional en cuanto a los estados internos del organismo (interocepción propiocepción)[60].

Una síntesis de los procesos de regulación autónomos que ocurren durante la retención de la respiración están representados en la figura 21 que se muestra a continuación.

Figura 21. Diagrama de flujo de los principales cambios en variables fisiológicas y procesos de regulación autónoma en el transcurso temporal de un periodo de apnea.

1.4 Imágenes por Resonancia Magnética

La imagenología por resonancia magnética (MRI) es una técnica de diagnóstico no invasiva que utiliza las propiedades magnéticas de los núcleos atómicos de la materia para obtener información de un objeto en estudio y formar imágenes estructurales que permiten analizar cualidades del objeto en estudio que no son observables a simple vista. Los cimientos en el desarrollo de la RM se encuentran en los conocimientos de la estructura atómica y la teoría cuántica, por lo que inicialmente esta técnica fue desarrollada como una herramienta para analizar compuestos químicos y sus propiedades físicas.

Durante la evolución y desarrollo de la técnica de resonancia magnética se dieron importantes descubrimientos en distintas áreas de la ciencia, 4 premios nobeles fueron recibidos por trabajos relacionados con el fenómeno de resonancia magnética. Cornelius J. Gorter fue el primero en utilizar el término de Resonancia Magnética Nuclear (RMN) en una publicación que hace constar los resultados de un experimento fallido, fracaso por el que no pudo validar este fenómeno y paso a la historia como el hombre que casi descubre la Resonancia magnética nuclear, siendo Isidor Rabí quien apoyado en datos de Gorter logra demostrar el fenómeno del momento magnético nuclear por lo cual fue galardonado con el premio nobel de física en 1944[61]. El siguiente gran avance en el desarrollo de esta técnica fue en 1945 gracias a los científicos Eduard Purcell y Félix Bloch quienes independientemente lograron implementar el fenómeno de la resonancia magnética para obtener una señal de espectro que permite diferenciar propiedades nucleares de los compuestos, ambos recibieron el premio nobel por la invención de la espectroscopia por resonancia magnética nuclear[62].

En la década de 1960 el químico Richard Ernst implemento el concepto matemático de la transformada de Fourier a la señal obtenida por la técnica de RMN logrando una sensibilidad mucho mayor (premio nobel de química por desarrollo de espectroscopia por resonancia magnética de alta resolución) permitiendo un análisis de la estructura molecular en 3D y dejando el punto de partida para la obtención de imágenes por

resonancia magnética. Durante algunos años se realizaron considerables avances en la ciencia gracias a la espectroscopia por resonancia magnética, pero no fue hasta que Paul Lauterbur continuo desarrollando la RMN de alta resolución logrando obtener imágenes por RMN de un tejido biológico, dando inicio a las imágenes por resonancia magnética (MRI), que sumado a los avances generados por Peter Mansfield quien desarrollo un método conocido como EPI (Echo Planar Imaging) que reduce el tiempo de adquisición de imágenes de horas a milisegundos, abrieron las posibilidades para aplicaciones clínicas, razón por la que ambos se hicieron merecedores del premio nobel de medicina en 2003[63].

1.4.1 Principios físicos de funcionamiento

La técnica de imagenología por resonancia magnética se basa en la interacción que tienen ciertos núcleos atómicos (elementos con numero impar de protones) con un campo magnético externo (B0) y ondas de radiofrecuencia (RF), los protones de estos núcleos atómicos poseen un momento angular y magnético (spin) diferente de 0[64]. Los protones al ser sometidos a un campo magnético externo se alinean en dirección longitudinal al campo B0 ya sea en posición paralela o antiparalela al campo B0, además de alinearse los protones giran sobre si mismos desplazando únicamente la dirección del spin alrededor de la dirección de B0 produciendo el fenómeno que se conoce como movimiento de precesión (figura 22)[65].

Figura 22. a) Protón y el movimiento de spin. b) Protón con movimiento de precesión y spin en dirección paralela a B0. c) Protón con movimiento de precesión y spin dirección antiparalela a B0[65].

Los protones precesan a una frecuencia (número de precesiones por segundo) directamente proporcional a la magnitud del campo B0, dando lugar a la famosa ecuación de Larmor[66].

$$w0 = \gamma.B0$$

donde:

w0 = frecuencia de precesión o velocidad angular $\gamma =$ constante giromagnética (específica para elemento) B0 = campo magnético externo

Considerando que cualquier muestra que se disponga a analizar contendrá una gran cantidad de protones, el resultado al aplicar el campo magnético será que una gran cantidad de ellos se disponen en posición antiparalela a B0 y una cantidad aún mayor en posición paralela (tal como se muestra en la figura 23), debido a que requiere un estado de menor energía esta última. Teniendo en cuenta que un vector en posición antiparalela anula uno en posición paralela, el resultado es un vector de magnetización longitudinal (ML) en dirección paralela al campo externo.

Figura 23. Esquematización del efecto que tiene un campo magnético externo en múltiples núcleos (H^+) donde se observa una mayoría de protones orientados en dirección paralela en comparación con la dirección antiparalela[65].

Este vector resultante no es posible detectarlo debido a que se encuentra en la misma dirección que B0 de una magnitud mucho mayor (figura 24a) por lo que es necesario aplicar un pulso de radiofrecuencia con una frecuencia igual a la frecuencia de precesión de los protones en estudio. De esta manera al entrar los dos sistemas en resonancia, los spin entran en fase y se produce un vector de magnetización transversal (MT) como se ilustra en la figura 24b [67].

Figura 24. Esquematización del fenómeno de a) ML sin RF y b) MT con RF.[66]

En el momento que se interrumpe los pulsos de RF, los protones se relajan, regresan a su posición de equilibrio liberando energía en forma de ondas de radio, las cuales son detectadas por el escáner y enviadas a un ordenador para su procesamiento y así formar una imagen por resonancia magnética[66].

Los tiempos que son necesarios para que los núcleos regresen al 63% de los valores base de ML Y MT al término de la emisión de RF son mejor conocidos como relajación longitudinal (T1) y relajación transversal (T2) respectivamente, siendo la T2 de menor duración en comparación con T1. Estos tiempos de relajación son característicos para cada tipo de tejido, gracias a esto es posible diferenciar y cuantificar tanto el estado de agregación como la estructura molecular de cada tejido (figura 25a)[66].

Otro tiempo de suma importancia para las MRI, en especial para imágenes funcionales, es el conocido como T2*, para entender este concepto es necesario observar que el T2 es solo un tiempo teórico producto de inhomogeneidades en el campo magnético inducidas a causa de las estructura molecular de la muestra en estudio, sin embargo al observar el tiempo real en las mediciones se obtienen tiempos menores al T2 ideal, esto se debe a que en el campo B0 existen inhomogeneidades propias de la naturaleza de este mismo por lo que este tiempo de menor duración (T2*) es el resultado de las inhomogeneidades del T2 + las inhomogeneidades propias de B0(figura 25b)[68].

Figura 25. a) Diferencias temporales en señal MR entre diversos tipos de tejido (materia blanca, materia gris, grasa y liquido cerebroespinal). b) Diferencias en los tiempos T2 y T2* en un mismo tejido[68].

Una vez que se analiza una región del espacio y se obtiene una medición, este valor se transfiere y almacena en una matriz conocida como el espacio K, que no es otra cosa más que la relación entre un valor correspondiente a un nivel de intensidad en escala de grises con las coordenadas de frecuencia espacial en 2D (X y Y), siendo esta relación un solo elemento del espacio K. Es gracias a la implementación de un gradiente magnético generado por bobinas secundarias, que se logra desplazar la ubicación de la región a medir para así poder llenar la matriz del espacio K, que al final contiene toda la información (cruda) obtenida por el escáner después de la adquisición, sin embargo, esta aun no es la imagen final de RM, para esto es necesario la aplicación de una transformada de Fourier en 2D para lograr pasar del dominio de la frecuencia (del espacio K) al dominio de la imagen, generando como resultado la reconstrucción de la imagen final[69].

1.4.2 Componentes de un escáner de resonancia magnética

Los principales componentes por los cuales está constituido un escáner de RM son los siguientes:

Imán superconductor: consta de una bobina de un material superconductor el cual es necesario mantener a temperaturas cercanas al 0K, su función es la generación del campo magnético principal (B0).

Gradientes (Gx, Gy, Gz): son bobinas secundarias cuya función es la de realizar el desplazamiento tanto en fase como en frecuencia (en X y Y) a través del espacio K, mientras que un tercer gradiente desplaza los cortes o planos sobre los cuales se van capturando valores en la matriz.

Antena (RF): es la encargada de emitir los pulsos de RF, así como también de captar la señal de decaimiento por inducción libre (FID, por sus siglas en inglés, *Free Induction Decay*) que llega de regreso tras el pulso de RF emitido.

Ordenador: se refiere a la unidad de control y procesamiento encargada de la planeación y el control tanto de los gradientes como de la antena, este ordenador también se encarga de almacenar los datos en el espacio K y su procesamiento (transformada de Fourier) para la obtención de la imagen final[68].

1.4.3 Imagen eco-planar

En el campo de la resonancia magnética, se dice que Peter Mansfield fue quien acelero el proceso de la obtención de MRI, al describir los principios de la obtención de imágenes eco planares provocó una revolución e impulsó en gran medida el uso de esta técnica en la investigación científica, clínica y diagnóstico médico. las imágenes eco planares (EPI) abrieron las posibilidades en distintas aplicaciones que no serían posibles sin este novedoso método para la obtención de imágenes, ya que es capaz de obtener una MRI completa, de una alta calidad en un tiempo mucho menor (en el orden de los milisegundos) comparado con la forma convencional en la que se adquieren las MRI, además, solo es necesario una sola emisión de RF para obtener una imagen completa. Entre las ventajas de reducir el tiempo de adquisición de imágenes es que se reduce también los artefactos por movimiento y permite captar imágenes de procesos fisiológicos que solo son perceptibles en lapsos de tiempo muy cortos.

El método EPI tiene distintas aplicaciones en la obtención de imágenes del cuerpo humano, sin embargo, la principal aplicación que se le ha dado ha sido en el campo de la neuroimagen, gracias a esta modalidad de adquisición han surgido aplicaciones clínicas como las imágenes de difusión, imágenes de perfusión e imágenes funcionales. Las imágenes de difusión se obtienen debido al movimiento térmico de las moléculas (principalmente agua) que provocan distorsiones en la intensidad de la señal de resonancia, es utilizada para diagnosticar y caracterizar isquemia cerebral. Otra aplicación valiosa de este tipo de imágenes es la tractografía por RM donde se pueden mapear las conexiones axonales (materia blanca) en el cerebro o incluso médula espinal, lo que ha sido de gran interés en la comunidad científica por la capacidad de obtener el conectoma del cerebro humano (mapa de conexiones de un cerebro completo). Las imágenes de perfusión son capaces de generar un mapeo del flujo sanguíneo cerebral (CBF) y el volumen sanguíneo cerebral (CBV), además, con el uso de agentes de contraste como el gadolinio es posible generar imágenes de angiografías (imágenes de venas y arterias) por resonancia magnética (MRA) lo que permite la medición de parámetros y variables fisiológicas (CBF y CBV) y así como la obtención de datos anatómicos. Las imágenes funcionales en lo que a MRI se refiere, concierne a la localización de actividad cerebral con una alta resolución espacial[70].

1.4.4 Imagen funcional por resonancia magnética y Contraste BOLD

Existen diferentes métodos para la obtención de imágenes funcionales por resonancia magnética (fMRI), sin embargo, por mucho, el más utilizado es el contraste dependiente del nivel de oxígeno en sangre mejor conocido como BOLD (por sus siglas en ingles Blood Oxigen Level Dependent). Dentro del campo de la investigación de las neurociencias, la fMRI BOLD ha sido una herramienta de gran ayuda en la exploración y entendimiento del funcionamiento cerebral, por tener la capacidad para describir de manera indirecta la actividad neuronal en regiones especificas durante dos condiciones diferentes, en reposo y en tarea, así han logrado asociar regiones cerebrales (delimitadas) con tareas o procesos cognitivos específicos[71][72].

El contraste BOLD aprovecha las diferencias en las propiedades magnéticas que presenta la hemoglobina al estar o no combinada con O_2 . La Hb O_2 presenta propiedades diamagnéticas comparadas con la HHb que tiene propiedades más paramagnéticas, debido a esta diferencia, los tiempos de relajación en los núcleos de hidrógeno es distinta para cada una, esto hace posible que el cambio en las concentraciones de O_2 sea percibida por la antena del escáner de RM[73].

Sabemos que las células del cuerpo humano, incluidas las neuronas, requieren de O_2 para la obtención de energía, de manera que una región del cerebro con mayor actividad tendrá mayores requerimientos

energéticos y por consiguiente de O_2 , esto provoca un aumento de volumen de sangre oxigenada en la zona con actividad, así el O_2 es transportado a través de la oxihemoglobina que se encuentra en los glóbulos rojos de los capilares más cercanos a las neuronas de la región activa y satisfacer la demanda energética. Tanto el incremento de sangre oxigenada como el intercambio gaseoso donde la Hb O_2 pasa a HHb, son procesos metabólicos que pueden ser detectados por el escáner para obtener una medición indirecta de la actividad cerebral y posteriormente formar un mapa funcional que se superpone en imágenes anatómicas resultando en una fMRI con contraste BOLD[72].

Se conoce como Respuesta Hemodinámica (HDR por sus siglas en inglés) al cambio en la señal BOLD, al tiempo que tarda en verse reflejado en la señal el aumento de sangre oxigenada (a causa de una tarea mental o proceso cognitivo) que se detecta en un área específica (figura 26). Es importante tener en consideración que a partir del momento real en el que la región del cerebro inicia el estímulo, es necesario que transcurra un breve lapso temporal (2-5s aprox.) para que se presente el aumento en la oxigenación, equivalente al tiempo que tarda la sangre en llegar a dicha zona, es por eso que se dice que la fMRI tiene baja resolución temporal en comparación con técnicas como EEG donde se registran los cambios provocados por un estímulo en el orden de los milisegundos[67][72].

Figura 26. Grafica que describe la función de respuesta hemodinámica partiendo de un registro de señal BOLD con estímulo al tiempo 0, hasta el regreso al nivel basal (HDR)[74].

Diseño de Paradigmas: Los diseños experimentales, o como también se les conoce, diseño de paradigmas, son formas de diseñar el experimento para posteriormente poder realizar el análisis de un estudio fMRI BOLD que permita observar los fenómenos deseados. Una característica de los estudios de fMRI es que la magnitud absoluta de la señal BOLD obtenida no posee un significado fisiológico directo, es decir que son unidades arbitrarias, razón por la cual es necesario realizar una comparación entre diferentes estados conocidos como condiciones experimentales y condiciones control. Entre los tipos de diseños de paradigmas que se utilizan en procedimientos de fMRI con contraste BOLD están el diseño por bloques, el diseño por eventos y la combinación de ambos.

En el diseño por bloques el experimento se divide en 2 o más condiciones (figura 27a), donde cada condición corresponde a un bloque de temporal en el cual el sujeto deberá realizar diferentes tareas o procesos mentales, los cuales serán sometidos a una comparación de las intensidades de las señales BOLD obtenidas en cada bloque o condición, generalmente se comparan las condiciones experimentales contra una condición control. Entre las bondades de este tipo de paradigmas es que son de muy fácil implementación y un análisis poco

complicado, con lo que se puede obtener una alta potencia estadística con muy bajo margen de error, razón por la cual este tipo de paradigmas es el más utilizado en el ámbito clínico.

Por otra parte, en el diseño por eventos los estímulos o condiciones son presentadas en forma aleatoria (figura 27b), similar a experimentos de psicología y ciencias cognitivas, entre las bondades de este tipo de diseño de paradigmas con respecto al de bloques es que brinda la posibilidad de analizar procesos en los no pueden generarse estímulos en forma continua y repetida, los diseños por eventos son menos susceptibles al fenómeno de la habituación (es decir, la reducción de la respuesta neuronal a estímulos repetidos), expectación y, posiblemente, la disminución de la atención. Sin embargo, estos diseños tienen una menor potencia estadística y mucho mayor tiempos de adquisición[67].

Figura 27. *a)* Del lado izquierdo un diseño por bloques; b) del lado derecho un diseño por eventos, donde el color azul corresponde a un estímulo A y el rojo corresponde a un estímulo B.

1.5 fMRI en fenómenos fisiológicos autónomos asociados a tareas respiratorias

En la década de los 90's comenzaron a realizarse las primeras investigaciones donde se implementan técnicas de fMRI en tareas respiratorias, estas primeras investigaciones buscaban simplemente saber si era posible detectar cambios en la señal de RM causados por la respuesta hemodinámica cerebral al contener la respiración. Los primeros resultados no parecían apuntar en alguna dirección en concreto. Por un lado, surgieron estudios en humanos con resultados que parecían indicar un notable decremento en la intensidad de la señal de resonancia de materia gris durante los periodos de apnea, algún otro estudio que sugería que no había cambios significativos durante un periodo de contención de la respiración[75] y por otra parte ya había estudios en modelos animales que sugerían un incremento en la intensidad de la señal de resonancia en materia gris[76]; coincidiendo únicamente en que ninguno encontró cambios significativos en materia blanca durante los periodos de BH. Estos resultados divergentes llevaron a una búsqueda de la verdadera respuesta hemodinámica cerebral, comprobando que existe un aumento en la señal de resonancia en la materia gris durante periodos de apneas cercanas a 60 segundos [76] [77] [78] e incluso en apneas de 30-40 segundos[79][80][81]. En estudios posteriores se ha reportado cambios en la señal BOLD en tiempos desde 5 segundos de apneas con resonadores magnéticos de 3 o más Teslas (T) en comparación con estudios realizados bajo un campo magnético de 1.5 T, demostrando que a mayor campo magnético mayor sensibilidad a los cambios de la señal BOLD inducidos por el periodo de apnea[82][83].

Gracias a los avances de esta primera década de investigación se sabe que, durante un periodo de interrupción respiratoria, se presentan variaciones en la saturación de O_2 en venas y arterias del cerebro a causa de dos procesos fisiológicos que actúan de manera antagónica. Uno de ellos se presenta como un reflejo vaso-motor debido a un aumento en la concentración de CO_2 en sangre, lo que provoca un aumento en el flujo sanguíneo cerebral el cual oxigena la sangre venosa, y contrarresta el aumento de concentración de CO_2 ; el otro se debe que a medida que se prolonga la duración de la apnea, la reserva de O_2 disminuye[76]. Por lo tanto, es importante tener en cuenta que durante un estudio de resonancia magnética funcional (fMRI) con un paradigma de apnea, lo que se puede observar en los cambios de intensidad en la señal BOLD, es el balance entre estos dos procesos fisiológicos simultáneos[50][51][53][54].

Una vez solucionada la controversia de los cambios en la intensidad de la señal de la materia gris durante los periodos de apnea, en la década primera década del siglo XXI se comenzó a explorar cuales eran las regiones específicas del cerebro que presentan dichos cambios al realizar distintas tareas respiratorias. Entre los principales hallazgos se encuentran cambios en la intensidad de la señal de RM en áreas discretas de la protuberancia ventral y dorsal, el núcleo interpeduncular, el prosencéfalo basal, el putamen, ínsula, núcleos basales, tálamo, hipotálamo y las regiones cerebelosas al realizar una tarea de carga inspiratoria, sugiriendo que estas estructuras están involucradas en el control y regulación de la respiración[84][85][86][87][88][89], también se han observado cambios inducidos por hipercapnia que son significativamente diferentes en la señal BOLD en regiones de la corteza sensoriomotora, lóbulo frontal, núcleos basales, corteza visual y cerebelo[84][86][90][91]. En diversos casos de estudio de fMRI con paradigmas que implican distintas tareas respiratorias se han documentado importantes variaciones en la señal BOLD en regiones cerebrales[76][92][93][94][95].

La próxima incógnita a resolver seria identificar si la respuesta cerebro-vascular es la misma en cualquier tipo de población de estudio, por lo que se comenzó por estudiar si los cambios en la señal BOLD bajo un paradigma de BH seria la misma para niños y adultos, las investigaciones llevaron a la conclusión que es muy distinta la respuesta entre ambas poblaciones, en adultos ya se había demostrado que principalmente se produce un aumento de intensidad de señal en materia gris en comparación con la materia blanca en la cual era menor o en algunos caso inexistente, mientras que en la población de niños se encontró todo lo contrario, un mayor aumento de la señal BOLD en materia blanca y menor en materia gris, además de una menor activación total de vóxeles que en los adultos y un mayor porcentaje de variación en la señal acompañado de mayor ruido, así como también una respuesta más rápida al paradigma de BH[96].

Estos hallazgos sugirieron la posibilidad de realizar calibraciones entre diferentes grupos de edades con los datos obtenidos en un estudio de fMRI utilizando el paradigma de BH, con lo que sería posible reducir o eliminar ruido fisiológico (respuesta cerebro vascular) y obtener datos más precisos a la hora de evaluar activaciones de origen exclusivamente neuronal en diversos tipos tareas[97] y así poder estudiar por separado de respuestas propiamente cerebrovasculares[81][98][99]. Con esto se inicia una serie de investigaciones para llevar a cabo dichas calibraciones y correcciones, obteniendo resultados significativos en la reducción de fluctuaciones inducidas por los distintos patrones respiratorios[93][100][101][102], en tareas cognitivas[103], motoras e incluso en tareas de decisión[92]. Un claro ejemplo de esto se observó al aplicar un paradigma de tarea motora en hiperventilación contra la misma tarea motora en ventilación normal, el resultado fue un aumento en la intensidad de la señal y una menor área (pixeles) de activación cuando se lleva a cabo la tarea motora al mismo tiempo que se hiperventila en comparación de cuando se ventila normalmente. Estos resultados apuntan a una mayor precisión en las regiones de activación relacionadas con la tarea motora[104]. Otros experimentos utilizaron retroalimentaciones en tiempo real, aplicando postprocesamiento a los resultados obtenidos tanto en la fase de respiración como en la fase de apnea utilizando diferentes regresores relacionados a las mediciones de los niveles de acumulación de $CO_2[105][106]$.

También se ha demostrado que en sujetos que inspiran más profundamente en las fases iniciales, se obtiene una mayor reducción en la intensidad de la señal BOLD y una mayor diferencia general entre el valle y el pico en la forma de onda de la señal BOLD inducida por BH, lo que sugiere una sensibilidad de la señal BOLD a los patrones respiratorios en sí mismos[92][93][102]. Los resultados de estas investigaciones apuntan a que, con la retroalimentación de profundidad de inspiración, el paradigma BH logra una mayor confiabilidad al reducir la varianza de la medición y sugiere que el BH puede cumplir ampliamente los objetivos de un método de calibración para diversos estudios de fMRI[101]. A pesar de todas estas

variaciones inducidas por la respiración, la activación neuronal puede y suele estudiarse incluso en presencia de estas variaciones o ruido fisiológicos sin ningún problema[97].

En 2004 se realizó la primera caracterización con fMRI de los sitios localizados en el tallo cerebral que están involucrados en el control autónomo del ser humano durante tareas respiratorias (maniobra de Valsalva y BH), en este estudio se encontraron activaciones específicamente en el NTS localizado a nivel del bulbo raquídeo caudal, PBN a nivel pontino y de mesencéfalo así como también se observaron activaciones en el PAG (área gris periacueductal) al nivel del mesencéfalo en ambas maniobras; mientras que la activación de núcleos de rafe a nivel del bulbo raquídeo se observó únicamente en la maniobra de apnea con máxima inspiración[107]. Otros experimentos de mediciones de la señal de fMRI con contraste BOLD y mediciones de la actividad del nervio simpático muscular (MSNA) (simultáneamente[108] y por separadas[89]), también encontraron correlaciones de las activaciones de estos núcleos (a nivel del bulbo raquídeo) con incrementos en la MSNA.

AÑO	AUTORES	n =	EDAD	TR (S)	Bo (T)	DURACION APNEA (S)
1993	Stehling et al. [75]	4	-	1.5	1	120
1995	Stillman et al.[76]	4	26 - 34	9.6	4	60
1995	Kwong et al.[77]	5	-	2	1.5	30, 50 y 60
1995	Moritz et al [78]	3	28	3	1.5	60
1998	Kastrup et al.[80]	6	27 - 33	3	1.5	18, 30 y 40
1999	Li et al.[79]	6	30 ± 4	3	1.5	30
1999	Kastrup et al.[90]	10	28 - 32	3	1.5	30, 60 y 90
2001	Kastrup et al.[109]	9	27 - 35	3.8	1.5	36
2002	Kannurpatti et al.[110]	5	-	1	3	20
2006	Macefield et al.[86]	15	-	4	3	40
2008	Mckay et al.[111]	8	25 - 35	5.2	2	15
2008	Thomason et al.[101]	13	23 - 64	3	3	13.5
2009	Birn et al [97]	18	21 - 44	2	3	20
2010	Macefield et al.[108]	8	18 - 29	8	3	40
2010	Hsu et al.[82]	6, 6*	19 - 26	3	3	5, 10, 15, 20, 25 y 30
2011	Murphy et al.[105]	12	29.2 ± 4.6	3	3	20
2013	Kimmerly et al.[89]	16	35 ± 4	2	3	16
2015	Wu et al.[112]	9	21 - 37	.4	3	5, 10, 15, 20 y 30
2016	Hendrik et al.[81]	5*	-	2	3	44
2016	Campos et al.[99]	7, 15*	51 - 90	2	3	24
2019	Cohen et al.[98]	14	20 - 50	4	3	16
2020	Zerweck et al.[83]	14	21 - 40	3	3	3, 6, 9 y 12

Tabla 1. Antecedentes donde se utilizan paradigmas de fMRI que involucran periodos de apnea en sujetos sanos, con excepciones marcadas por * para estudios en pacientes con patologías.

En la actualidad existen dos métodos predominantes para la medición de respuestas neuro-vasculares en periodos de hipercapnia en estudios de fMRI (BOLD): el suministro controlado de inhalación de CO_2/O_2 artificialmente y la retención voluntaria de la respiración (BH). Para comparar ambos métodos se realizó un experimento implementando ambas técnicas por separado, los resultados arrojaron resultados equiparables[109]. Sin embargo, en la mayoría de los estudios con fMRI con paradigmas de apneas inducidas se utiliza el paradigma de BH, debido a que su proceso de adquisición de datos es similar al de la exploración

de tareas cognitivas y a que requiere parámetros de adquisición típicos de la mayoría de estudios de resonancia en humanos, además de no tener necesidad de implementación de equipo adicional[101].

También se han determinado 2 formas para ejecutar un paradigma de BH: una es conteniendo la respiración después de una inspiración y la otra conteniendo la respiración después de una expiración[80]. Se ha demostrado que ambos métodos para realizar el paradigma de BH son efectivos y comparables para la medición de actividad neuro-vascular, aunque se ha registrado que es más común la facilidad para retener la respiración después de una inspiración en comparación de la realizada después de una expiración [80][90].

Por otra parte, también se ha demostrado una respuesta similar en la señal BOLD tanto en paradigmas de apnea como en la maniobra de Valsalva, sugiriendo que se pueden utilizar con propósitos similares en estudios de fMRI para respuestas autónomas[112].

2 Justificación

Durante los periodos de una apnea inspiratoria y las fases que esta atraviesa, se evocan grandes aumentos en la MSNA. En la fase estática de la apnea los músculos de la bomba inspiratoria están inactivos y los constrictores laríngeos activos, la presión intratorácica se mantiene alta a causa de una glotis cerrada simultáneamente al retroceso elástico de pulmones y pared torácica, la regulación autonómica por baro-receptores disminuye la frecuencia cardiaca y provoca un decremento en el CBF en consecuencia el decremento de la Hb O_2 reduce la intensidad de la señal BOLD, estas maniobras provocan cambios en la intensidad de la señal de fMRI en diversas regiones del cerebro que se asocian al control autonómico en animales y humanos[86]. Con el transcurso del tiempo en un BH, se produce un aumento gradual de CO_2 en sangre, con lo que aumenta nuevamente el CBF y la Hb O_2 , en consecuencia, también aumenta la intensidad de la señal BOLD[96][101], esto hace posible la implementación de fMRI con contraste BOLD para determinar el origen central de la actividad en las redes neuronales asociadas con dichas excitaciones, así como el curso temporal de la activación de diferentes áreas del cerebro en tareas respiratorias[89][109].

Entre las bondades de los paradigmas a bloques, es que son de muy fácil implementación y un análisis poco complicado, con lo que se puede obtener una alta potencia estadística con muy bajo margen de error, razón por la cual este tipo de paradigmas es el elegido en nuestro estudio[67].

Según la bibliografía consultada, anteriormente se han observado cambios en la intensidad de la señal de RM en áreas discretas de la protuberancia ventral y dorsal, el núcleo interpeduncular, el prosencéfalo basal, el putamen, talamos, hipotálamo y las regiones cerebelosas al realizar tareas respiratorias. Sugiriendo que estas estructuras están involucradas en el control y regulación cardio-respiratoria[84], aun así, la localización precisa del centro respiratorio apneústico permanece sin conocerse.

También se han observado cambios en la señal BOLD inducidos por hipercapnia en regiones de la corteza frontal y los núcleos basales[90], siendo estas regiones de particular interés para nuestra exploración con fMRI en un paradigma de apnea.

Por otra parte, se han identificado mecanismos que contribuyen a trastornos caracterizados por una MSNA basal elevada y respuestas simpáticas exageradas durante apneas simuladas en trastornos como la apnea del sueño, la insuficiencia cardíaca y ciertos tumores cerebrales. A pesar de la alta prevalencia de enfermedades caracterizadas por alteraciones en la función autónoma, los sitios neuronales responsables del control autónomo en los humanos permanecen en gran medida sin explorar y son relativamente pocos los estudios dedicados a esta exploración[1][15][88][103][108][113].

Dicho lo anterior, contribuir al entendimiento del funcionamiento del cerebro sano e identificar las regiones que intervienen en tareas respiratorias que evocan respuestas autónomas, así como determinar el rol que tiene cada estructura involucrada, es de relevancia para comprender e intervenir las patologías de los mecanismos que emplean este sistema encargado de mantener la homeostasis.

3 Hipótesis

Mediante el uso de la técnica de fMRI con contraste BOLD, procesamiento de imágenes y realizando una comparación estadistica entre condiciones de apnea con distintas tareas de respiración (reposo, preparacion y recuperacion), se podrán diferenciar los cambios de actividad en las zonas de interés: corteza cerebral (corteza prefrontal, premotora, motora suplementaria, motora primaria e insular), núcleos basales (putamen, caudado, globo pálido, accumbens y sustancia negra), sistema límbico (amígdala, hipocampo y tálamo), tallo cerebral (bulbo raquídeo, protuberancia y mesencéfalo) y cerebelo.

4 Objetivos

4.1 Objetivo general

Por medio de procesamiento de imágenes de resonancia magnética funcional, la comparación entre las distintas condiciones y analizando las variaciones significativas en la señal BOLD en las regiones de la corteza cerebral, núcleos basales, sistema límbico, tallo cerebral y cerebelo. Identificar estructuras cerebrales con actividad durante los estados de reposo (respiración normal), preparación (máxima inspiración), respiración interrumpida (apnea inducida) y recuperación (respiración post-apnea).

4.2 Objetivos particulares

Localizar los sitios cerebrales que muestran variaciones significativas positivas (activación) en las diferentes comparaciones entre condiciones experimentales del estado de no respiración (apnea) contra los estados de respiración (reposo, preparación y recuperación).

Localizar los sitios cerebrales que muestran variaciones significativas positivas (activación) en las diferentes comparaciones entre condiciones experimentales de respiración (reposo, preparación y recuperación) contra el estado de no respiración.

Identificando las estructuras cerebrales que presentan un cambio significativo en la señal BOLD, proponer posibles tractos y circuitos neuronales involucrados en tareas respiratorias.

Plantear la posible asociación entre los diversos procesos neuro-fisiológicos ocurridos durante un periodo de apnea y las variaciones de la señal BOLD observadas en el cerebro durante las distintas tareas respiratorias.

5 Materiales y métodos

Se realizó el estudio de resonancia magnética en 5 sujetos sanos, sexo masculino, con un promedio de 32 ± 3 años de edad, nacionalidad mexicana, sin patologías pre-diagnosticadas en el sistema nervioso, cardiaco ni respiratorio (véase anexo 10.23); se les solicitó presentarse al estudio de resonancia magnética sin consumir fármacos (incluida cafeína) al menos en 24 horas anterior al estudio.

En caso de cumplir con los criterios de inclusión, aceptar las etapas y actividades de su participación en el proyecto, se les otorgó una carta de consentimiento informado (véase anexo 10.24). El protocolo de adquisición se realizó en las instalaciones del centro de investigaciones en instrumentación e imagenología médica (CI3M) con un resonador magnético Philips Achieva de 3 Teslas, con secuencias estándares ponderadas en T1, así como imágenes de fMRI con contraste BOLD.

Criterios de inclusión:

- Reducido o nulo consumo de nicotina.
- Reducido o nulo consumo de alcohol.
- Nulo consumo de sustancias psicoactivas ilegales.
- Otorgar consentimiento informado.
- No contar con patologías pre-diagnosticadas en sistema cardiovascular, nervioso, respiratorio o endócrino

Criterios de exclusión:

- No cumplir con las normas de seguridad necesarias para el estudio por Resonancia Magnética como, ejemplo: portar Implantes metálicos, tatuajes realizados recientemente, perforaciones metálicas, marcapasos, implantes cocleares, claustrofobia, entre otros.
- Estar consumiendo algún medicamento que altere la función cerebral.
- No otorgar consentimiento informado.
- No cumplir con el paradigma experimental.
- Encontrar anomalías en estructura y función cerebral en las imágenes adquiridas

5.1 Imágenes anatómicas

Imágenes ponderas en T1-gradient-echo (T1-weighted Fast Field Echo), con un FOV de 256mm X 256mm, MAT de 256 x 256, TR de 2500ms, TE de 1869ms, 150 cortes en plano sagital con 2 mm de espesor por rebanada. Utilizando para transmitir y recibir RF una bobina para cabeza de 8 canales (SENSE HEAD 8). Estas adquisiciones son imágenes de alta resolución con fines de localización anatómica en zonas de interés.

5.2 Imágenes Funcionales

Imágenes EPI-BOLD, utilizando para transmitir y recibir RF una bobina para cabeza de 8 canales (SENSE HEAD 8). Usando secuencias FE-EPI, MAT 128X128 con FOV de 230mm X 230mm y TE de 25ms para cada corte en plano axial de 4mm de espesor, cada volumen con 30 cortes y un TR de 2000ms.

5.3 Paradigmas

Las tareas respiratorias se desarrollaron de acuerdo a 3 paradigmas de bloques con las estructuras que se disponen en la figura 28.

Paradigma apnea 30: consiste en un bloque de 60 segundos de reposo (respiración normal), seguido de un bloque de 20 segundos de preparación (hiperventilación y máxima inspiración antes de la apnea), otro bloque 30 segundos de apnea (retención de la respiración) y finalmente uno de 30 segundos de recuperación (respiración normal post-apnea). Se realizaron 3 repeticiones de cada bloque (con excepción del bloque de reposo, solo al inicio) para un total de 300 segundos de adquisición y 150 volúmenes cerebrales.

Paradigma apnea 60: consiste en un bloque de 60 segundos de reposo (respiración normal), seguido de un bloque de 20 segundos de preparación (hiperventilación y máxima inspiración antes de la apnea), otro bloque 60 segundos de apnea (retención de la respiración) y finalmente uno de 60 segundos de recuperación (respiración normal post-apnea). Se realizaron 3 repeticiones de cada bloque (con excepción del bloque de reposo, solo al inicio) para un total de 480 segundos de adquisición y 240 volúmenes cerebrales.

Paradigma apnea 90: consiste en un bloque de 60 segundos de reposo (respiración normal), seguido de un bloque de 20 segundos de preparación (hiperventilación y máxima inspiración antes de la apnea), otro bloque de 90 segundos de apnea (retención de la respiración) y finalmente uno de 90 segundos de recuperación (respiración normal post-apnea). Se realizaron 3 repeticiones de cada bloque (con excepción del bloque de reposo, solo al inicio) para un total de 660 segundos de adquisición y 330 volúmenes cerebrales.

Apnea 30 segundos

Figura 28. Diagramas temporales con los 3 distintos diseños de paradigmas a bloques que son implementados donde; azul=reposo, amarillo=preparacion, rojo=apnea y verde= recuperacion (duración en segundos).

Tiempo de adquisición BOLD de 24 min. por sujeto.

Tiempo de adquisición anatómica 3 min. por sujeto.

Tiempo total de protocolo por sujeto de 27 min. de adquisición + 5 min. de preparación (set-up).

Las frecuencias respiratorias se monitorearon en tiempo real mediante un transductor de cinturón neumático abdominal para garantizar el cumplimiento de los bloques del paradigma de apnea.

5.4 Preprocesamiento

Todos los datos de adquisición se procesaron mediante el uso del software de uso libre Statistical Parametric Mapping 12 (SPM12) desarrollado por miembros y colaboradores del Departamento de Neurociencia de Imágenes perteneciente al Wellcome Trust Center for Neuroimaging en el Institute of Neurology del University College London (UCL), Londres, Reino Unido.

Realineado

Los datos anatómicos y funcionales adquiridos mediante MRI se corrigieron en movimiento y realinearon espacialmente utilizando una interpolación B-Spline de 4to grado mediante un procedimiento de doble realineado a la media de las imágenes a procesar, esto con el fin de colocar los volúmenes de todos los sujetos en la misma posición. Además de la implementación de un kernel gaussiano FWHM de 5mm para suavizar.

Normalización

Los volúmenes realineados entre sujetos fueron nuevamente realineados aplicando una interpolación B-Spline de 4to grado y deformados no-linealmente mediante la implementación del atlas TPM (mapa probabilístico de tejidos) y la plantilla ICBM152 (promedio de 152 cerebros europeos) para conseguir el mejor ajuste de superposición de las imágenes individuales a la plantilla y al atlas. Además de la implementación de un kernel gaussiano FWHM de 60mm para suavizar las no-uniformidades en intensidad.

Suavizado

Los datos resultantes después del proceso de realineado y normalizado se suavizaron con un núcleo gaussiano FWHM de 8mm X 8mm X 8mm.

5.5 Análisis estadístico

Matriz de diseño

La matriz de diseño (anexo 10.22) es construida con los datos adquiridos de las 4 tareas que se desempeñan en los 3 paradigmas, también son incluidos como regresores los 3 parámetros de corrección de movimiento espacial y los 3 parámetros de corrección movimiento rotacional generados durante el proceso de realineado (anexos 10.19 - 10.21).

Contrastes

Una vez determinado la matriz de diseño a utilizar, se procede a definir los contrastes a los cuales se les realiza la inferencia estadística, siendo los contrastes de interés a analizar *apnea vs reposo, apnea vs preparación, apnea vs recuperación, reposo vs apnea, preparación vs apnea y recuperación vs apnea*.

Prueba T-student y mapeo estadístico paramétrico

Para mapear qué regiones están activas durante cada tarea de los paradigmas se utiliza una prueba comparativa T-student con un umbral estadístico fijado en P < 001. Los datos son escalados al cambio porcentual de la media entre sujetos y se promedian entre ensayos con el fin de obtener un curso de tiempo de ensayo único para cada tarea en los 3 distintos paradigmas utilizados.

Con el objetivo de estudiar por separado la actividad cerebral en diversas ROIs cerebrales, se implementa el atlas cerebral AAL3 para realizar una segmentación anatómica de los puntos de referencia definidos como máscaras de las principales ROIs, siendo estas la corteza cerebral, los núcleos basales, estructuras límbicas, el tallo cerebral y el cerebelo; sobre la cuales se realiza el mapeo estadístico con los datos que arroja la prueba estadística y son montados sobre una imagen anatómica T1 de la plantilla ICBM152.

6 Resultados

Las variaciones positivas de la señal BOLD, resultante de una comparación estadística (prueba T-student) de la información adquirida durante los diferentes bloques del paradigma. El mapeo paramétrico estadístico fue construido con valores estadísticos de T=3.09 y p=.0001. Estos datos se presentan en el capítulo de Anexos en forma de tablas numéricas donde se muestran las agrupaciones de actividad cerebral en diversas regiones neuroanatómicas (segmentadas mediante el uso del atlas cerebral AAL3), sus tamaños en vóxeles junto con sus parámetros estadísticos y se presentan en este capítulo a manera de tablas con las imágenes resultantes del mapeo paramétrico estadístico que produce una representación de un montaje de los conjuntos de pixeles que representan actividad cerebral, superpuestos contra una imagen anatómica del cerebro en tres dimensiones, por lo que en las tablas se presenta los cortes más representativos en cada una de las tres dimensiones.

Cabe mencionar que se excluye la información resultante del análisis comparativo de 6 de los 12 contrastes posibles, debido a que sale de nuestro interés el estudio comparativo entre bloques donde no existe un periodo de apnea. Así como también se excluye la información adquirida de un sujeto por incumplimiento del paradigma.

6.1 Corteza cerebral

Tabla 2. Render 3D con activaciones corticales durante los 3 paradigmas vistos bajo el contraste deapnea vs reposo.

	Reposo vs apnea			
Paradigma/vista	Lateral	Frontal	Superior	Inferior
30 segundos				
60 segundos				
90 segundos				

Tabla 3. Render 3D con activaciones corticales durante los 3 paradigmas vistos bajo el contraste dereposo vs apnea.

Apnea vs preparación					
Paradigma/vista	Lateral	Frontal	Superior	Inferior	
30 segundos					
60 segundos					
90 segundos					

Tabla 4. Render 3D con activaciones corticales durante los 3 paradigmas vistos bajo el contraste deapnea vs preparación.

Tabla 5. Render 3D con activaciones corticales durante los 3 paradigmas vistos bajo el contrastepreparación vs apnea.

Tabla 6. Render 3D con activaciones corticales durante los 3 paradigmas vistos bajo el contraste deapnea vs recuperación.

Tabla 7. Render 3D con activaciones corticales durante los 3 paradigmas vistos bajo el contraste derecuperación vs apnea.

6.2 Corteza insular

Apnea vs reposo				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos	Sin conjuntos de	Sin conjuntos de	Sin conjuntos de	
	actividad que superen	actividad que superen	actividad que superen	
	el umbral	el umbral	el umbral	
60 segundos				
90 segundos				

Tabla 8. Imágenes anatómicas T1 con actividad neuronal en la corteza insular durante los 3 paradigmas,
vistos bajo el contraste de apnea vs reposo.

Reposo vs apnea				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos				
60 segundos				
90 segundos				

Tabla 9. Imágenes anatómicas T1 con actividad neuronal en la corteza insular durante los 3 paradigmas,
vistos bajo el contraste de reposo vs apnea.

Apnea vs preparación					
Paradigma/corte	Sagital	Coronal	Axial		
30 segundos					
60 segundos					
90 segundos					

 Tabla 10. Imágenes anatómicas T1 con actividad neuronal en la corteza insular durante los 3 paradigmas vistos bajo el contraste de apnea vs preparación.

Preparación vs apnea				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos				
60 segundos				
90 segundos				

 Tabla 11. Imágenes anatómicas T1 con activaciones en la corteza insular durante los 3 paradigmas vistos bajo el contraste de preparación vs apnea.

Apnea vs recuperación				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos				
60 segundos				
90 segundos				

Tabla 12. Imágenes anatómicas T1 con actividad neuronal en la corteza insular durante los 3 paradigmas,
vistos bajo el contraste de apnea vs recuperación.

Recuperación vs apnea				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos				
60 segundos				
90 segundos				

 Tabla 13. Imágenes anatómicas T1 con activaciones en la corteza insular durante los 3 paradigmas vistos bajo el contraste de recuperación vs apnea.

6.3 Núcleos basales

Apnea vs reposo				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos	Sin conjuntos de	Sin conjuntos de	Sin conjuntos de	
	actividad que superen	actividad que superen	actividad que superen	
	el umbral	el umbral	el umbral	
60 segundos				
90 segundos				

 Tabla 14. Imágenes anatómicas T1 con activaciones en núcleos basales durante los 3 paradigmas vistos bajo el contraste de apnea vs reposo.

Reposo vs apnea				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos				
60 segundos				
90 segundos				

 Tabla 15. Imágenes anatómicas T1 con activaciones en núcleos basales durante los 3 paradigmas vistos bajo el contraste de reposo vs apnea.

Apnea vs preparación				
Paradigma/corte	Sagital	Coronal	Axial	
30 segundos				
60 segundos				
90 segundos				

 Tabla 16. Imágenes anatómicas T1 con activaciones en núcleos basales durante los 3 paradigmas vistos bajo el contraste de apnea vs preparación.

Paradigma/corte	Sagital	Coronal	ΔχίαΙ
30 segundos	Jagran		
60 segundos			
90 segundos			

Tabla 17. Imágenes anatómicas T1 con activaciones en núcleos basales durante los 3 paradigmas vistosbajo el contraste de preparación vs apnea.

	Apnea vs recuperación		
Paradigma/corte	Sagital	Coronal	Axial
30 segundos	0		
60 segundos			
90 segundos			

 Tabla 18. Imágenes anatómicas T1 con activaciones en núcleos basales durante los 3 paradigmas vistos bajo el contraste de apnea vs recuperación.

	Recuperación vs apnea		
Paradigma/corte	Sagital	Coronal	Axial
30 segundos			
60 segundos			
90 segundos			

Tabla 19. Imágenes anatómicas T1 con activaciones en núcleos basales durante los 3 paradigmasvistos bajo el contraste de recuperación vs apnea

6.4 Sistema límbico

Apnea vs reposo			
Paradigma/corte	Sagital	Coronal	Axial
30 segundos			
60 segundos			
90 segundos			

Tabla 20. Imágenes anatómicas T1 con activaciones en sistema límbico durante los 3 paradigmas vistosbajo el contraste de apnea vs reposo y reposo vs apnea.

	Reposo vs apnea		
Paradigma/corte	Sagital	Coronal	Axial
30 segundos			
60 segundos			
90 segundos			

Tabla 21. Imágenes anatómicas T1 con activaciones en sistema límbico durante los 3 paradigmas vistos
bajo el contraste de reposo vs apnea.

Apnea vs preparación			
Paradigma/corte	Sagital	Coronal	Axial
30 segundos			
60 segundos			
90 segundos			

 Tabla 22. Imágenes anatómicas T1 con activaciones en sistema límbico durante los 3 paradigmas vistos bajo el contraste de apnea vs preparación.

Preparación vs apnea			
Paradigma/corte	Sagital	Coronal	Axial
30 segundos			
60 segundos			
90 segundos			

 Tabla 23. Imágenes anatómicas T1 con activaciones en sistema límbico durante los 3 paradigmas vistos bajo el contraste de preparación vs apnea.

	Apnea vs recuperación		
Paradigma/corte	Sagital	Coronal	Axial
30 segundos			
60 segundos			
90 segundos			

 Tabla 24. Imágenes anatómicas T1 con activaciones en sistema límbico durante los 3 paradigmas vistos bajo el contraste de apnea vs recuperación.

Recuperación vs apnea			
Paradigma/corte	Sagital	Coronal	Axial
30 segundos			
60 segundos			
90 segundos			

Tabla 25. Imágenes anatómicas T1 con activaciones en sistema límbico durante los 3 paradigmas vistosbajo el contraste de recuperación vs apnea.

6.5 Tallo cerebral

	Apnea vs reposo		
Paradigma/corte	Sagital	Coronal	Axial
30 segundos	Sin conjuntos de	Sin conjuntos de	Sin conjuntos de
	actividad que superen	actividad que superen el	actividad que superen
	el umbral	umbral	el umbral
60 segundos	Store Star		
90 segundos	Soft B		

 Tabla 26. Imágenes anatómicas T1 con activaciones en tallo cerebral durante los 3 paradigmas vistos bajo el contraste de apnea vs reposo.

	Reposo vs apnea		
Paradigma/corte	Sagital	Coronal	Axial
30 segundos	Sin conjuntos de	Sin conjuntos de	Sin conjuntos de
	actividad que superen	actividad que superen el	actividad que superen
	el umbral	umbral	el umbral
60 segundos			
90 segundos	Ser B		

Tabla 27. Imágenes anatómicas T1 con activaciones en tallo cerebral durante los 3 paradigmas vistosbajo el contraste de reposo vs apnea.

	Apnea vs preparación		
Paradigma/corte	Sagital	Coronal	Axial
30 segundos	Sold Barrier		600
60 segundos	Store Start		Kal
90 segundos	Store Starter		

 Tabla 28. Imágenes anatómicas T1 con activaciones en tallo cerebral durante los 3 paradigmas vistos bajo el contraste de apnea vs preparación.

Preparación vs apnea					
Paradigma/corte	Sagital	Coronal	Axial		
30 segundos	St B		all a		
60 segundos	SPP 8		8		
90 segundos	Sold Barrier		S		

 Tabla 29. Imágenes anatómicas T1 con activaciones en tallo cerebral durante los 3 paradigmas vistos bajo el contraste de preparación vs apnea.

Apnea vs recuperación					
Paradigma/corte	Sagital	Coronal	Axial		
30 segundos	Store Starter		52		
60 segundos	Store Start				
90 segundos	St.				

 Tabla 30. Imágenes anatómicas T1 con activaciones en tallo cerebral durante los 3 paradigmas vistos bajo el contraste de apnea vs recuperación.

Recuperación vs apnea					
Paradigma/corte	Sagital	Coronal	Axial		
30 segundos	Store Barrier				
60 segundos	SP		S		
90 segundos	Store B		S.		

 Tabla 31. Imágenes anatómicas T1 con activaciones en tallo cerebral durante los 3 paradigmas vistos bajo el contraste de recuperación vs apnea.
6.6 Cerebelo

Apnea vs reposo							
Paradigma/corte	Sagital	Coronal	Axial				
30 segundos							
60 segundos		8					
90 segundos							

Tabla 32. Imágenes anatómicas T1 con activaciones en cerebelo durante los 3 paradigmas vistos bajo elcontraste de apnea vs reposo.

Reposo vs apnea							
Paradigma/corte	Sagital	Coronal	Axial				
30 segundos	See 5		100				
60 segundos		00					
90 segundos	Const and a second						

 Tabla 33. Imágenes anatómicas T1 con activaciones en cerebelo durante los 3 paradigmas vistos bajo el contraste de reposo vs apnea.

Apnea vs preparación								
Paradigma/corte	Sagital	Coronal	Axial					
30 segundos	SP3							
60 segundos	SP3							
90 segundos	SP 8							

 Tabla 34. Imágenes anatómicas T1 con activaciones en cerebelo durante los 3 paradigmas vistos bajo el contraste de apnea vs preparación.

Preparación vs apnea								
Paradigma/corte	Sagital	Coronal	Axial					
30 segundos	Contraction of the second seco							
60 segundos	epp							
90 segundos	CP-S							

 Tabla 35. Imágenes anatómicas T1 con activaciones en cerebelo durante los 3 paradigmas vistos bajo el contraste de preparación vs apnea.

Apnea vs recuperación							
Paradigma/corte	Sagital	Coronal	Axial				
30 segundos							
60 segundos							
90 segundos							

 Tabla 36. Imágenes anatómicas T1 con activaciones en cerebelo durante los 3 paradigmas vistos bajo el contraste de apnea vs recuperación.

Recuperación vs apnea							
Paradigma/corte	Sagital	Coronal	Axial				
30 segundos	CP-P						
60 segundos	6PP						
90 segundos	BPS						

 Tabla 37. Imágenes anatómicas T1 con activaciones en cerebelo durante los 3 paradigmas vistos bajo el contraste de apnea vs recuperación.

6.7 Resumen de resultados

Contraste	Ap	nea-rep	oso	1	Apnea	-Prep	araciór	1	Apnea-recuperación		
ROI/paradigma	30	60	90		30	60	90		30	60	90
C. Prefrontal	b	b	b		b	b	b		b	b	b
C. premotora	-	b	i		i	b	b		b	b	b
C. motora prim	i	b	b		i	b	b		b	b	b
C. motora sup	d	b	b		b	b	b		b	b	b
C. insular	i	b	b		b	b	b		b	b	b
Putamen	-	b	b		b	b	b		b	b	b
Globo pálido	-	b	b		b	b	b		b	b	b
Caudado	-	b	b		b	b	b		b	b	b
Accumbens	-	b	b		-	d	b		b	b	b
SNpc	-	-	-		-	-	-		-	-	-
SNpr	-	-	-		-	-	-		-	-	-
Amígdala	i	b	b		i	b	b		i	b	i
Hipocampo	i	b	b		b	b	b		i	b	i
Tálamo	-	b	b		b	b	b		b	b	b
Mesencéfalo	-	-	-		-	b	b		-	b	-
puente ventral	-	-	-		-	-	-		-	-	-
puente dorsal	-	b*	-		b	b*	b*		b*	b*	b*
Bulbo dorsal	-	b	b		-	b	-		b	b	b
Bulbo ventral	-	-	-		-	-	-		-	-	-
Cerebelo	b	b	b		b	b	b		b	b	b

Tabla 38. Actividad neuronal para todos los paradigmas en cada una de las estructuras de las principalesROIs. En azul las estructuras pertenecientes a la corteza, en rojo las estructuras de los NB, en amarillo lasestructuras límbicas, en verde las estructuras del tallo cerebral y en gris el cerebelo; vistos bajo loscontrastes de apnea vs reposo, apnea vs preparación y apnea vs recuperación.

Los hallazgos más relevantes encontrado en la corteza bajo los contrastes donde se analizan los bloques de apnea contra los bloques de respiración (tablas 2, 4 y 6) se encuentran variaciones significativas de la señal BOLD en las zonas prefrontales, premotoras, motoras suplementarias y motora primaria de la corteza cerebral (ver la tabla 38); también se tiene actividad en la corteza insular (tablas 8, 10 y 12), donde los grupos de activación tienden a incrementar en tamaño e intensidad en los paradigmas de apnea de mayor duración.

En zonas de los NB se presenta gran actividad en todos los paradigmas de los 3 contrastes (tablas 14, 16 y 18), destacando el núcleo caudado, putamen, globo pálido e incluso el estriado ventral (donde se encuentra el núcleo accumbens, por el contrario, no se observa actividad en la sustancia negra en alguno de los paradigmas (ver la tabla 38).

En cuanto a las estructuras que comprende al sistema límbico es evidente que tanto la amígdala como el hipocampo y el tálamo, juegan un rol importante en la ejecución de las tareas de apnea que se realizaron en este trabajo de investigación donde se observa que los paradigmas de 60 y 90 presentan más y mayores agrupaciones de actividad en estas ROIs en comparación con el paradigma de 30 (tablas 20, 22 y 24).

Los resultados obtenidos en el tallo cerebral visto bajo los 3 contrastes de apnea contra respiración (Tablas 26, 28 y 30), muestran nula actividad en la parte ventral del bulbo raquídeo y la protuberancia, sin embargo,

se identifican grupos de activación focalizados en la parte dorsal de estas mismas estructuras. Las regiones dorsales de activación coinciden con la localización anatómica de la FR, región donde se ubica el SARA. En lo que corresponde a la actividad registrada en la parte dorsal de la protuberancia se identifican variaciones (en todos los paradigmas) dentro de la FR (pontina), donde se localizan los centros respiratorios neumotáxico y apnéustico.

La actividad observada en la región del cerebelo para los contrastes de apnea contra respiración (tablas 32, 34 y 36), se concentra hacia la capa interna de la corteza del cerebelo (cercana a la división con la materia blanca) y tienen una mínima variación entre paradigmas; es decir, en un mismo contraste, las activaciones son similares en tamaño, morfología e intensidad para sus tres paradigmas (30, 60 y 90), sin embargo, bajo los otros contrastes de observación también se localizan conjuntos de activaciones en las mismas regiones pero las morfologías e intensidades de los conjuntos difieren de un contraste a otro.

Contraste:	Rej	poso-ap	nea	Prepa	ración	-apnea	a Recuperación-apne		
ROI/paradigma	30	60	90	30	60	90	30	60	90
C. Prefrontal	d	b	b	b	b	b	b	b	b
C. premotora	-	-	-	-	-	-	-	-	-
C. motora prim	b	b	b	b	b	d	i	d	b
C. motora sup	d	b	b	b	b	b	b	b	b
C. insular	d	b	b	b	b	d	b	b	b
Putamen	d	d	-	d	-	-	i	d	-
Globo pálido	-	-	-	-	-	-	-	-	-
Caudado	b	b	b	b	b	b	b	b	b
Accumbens	-	-	-	-	-	-	-	d	-
SNpr	-	-	-	i	d	b	b	d	b
SNpc	-	-	-	b	-	b	b	-	b
Amígdala	b	b	b	b	b	b	b	b	b
Hipocampo	-	b	b	i	b	b	b	b	b
Tálamo	b	b	b	d	b	b	b	b	b
Mesencéfalo	-	-	-	b+/	b	b/	b+/	b	b/
Puente ventral	-	-	b	b	b	b	b	b	b
Puente dorsal	-	-	-	-	-	-	-	-	-
Bulbo dorsal	-	-	-	-	-	-	-	-	-
Bulbo ventral	-	-	-	-	b	b	-	d	i
Cerebelo	b	b	b	b	b	b	b	b	b

Tabla 39. Actividad neuronal para todos los paradigmas en cada una de las estructuras de las principales ROIs. En azul las estructuras pertenecientes a la corteza, en rojo las estructuras de los NB, en amarillo las estructuras límbicas, en verde las estructuras del tallo cerebral y en gris el cerebelo; vistos bajo los contrastes de reposo vs apnea, preparación vs apnea y recuperación vs apnea.

En los resultados que arroja el análisis estadístico para los contrastes donde se analizan los bloques de respiración contra los bloques de apnea (tablas 3, 5 y 7), se observa una disminución en la actividad cortical en cuanto al tamaño e intensidad de las agrupaciones en comparación con el contraste inverso de las mismas ROIs (tablas 2, 4 y 6). No se encontró actividad en la zona de la corteza premotora para todos los paradigmas de los 3 contrastes (ver tabla 39); así como patrones de actividad cortical muy similares morfológicamente entre los paradigmas de cada contraste. La actividad en la corteza se concentra en las ROI de la CPF y en

corteza motora, en esta última, la actividad se localiza en las regiones de los homúnculos encargadas de controlar el movimiento del tronco y la región bucofaríngea. Comparado con los contrastes inversos, la actividad en la región insular de estos contrastes (tablas 9, 11 y 13) se encuentra disminuida en tamaño e intensidad.

En lo que respecta a la región de los NB, se puede decir que para todos los paradigmas en los contrastes donde se analizan los bloques de respiración contra los bloques de apnea (tablas 15, 17 y 19) se presentan grupos de activación aislados y muy pequeños en comparación de los que se observan bajo los contrastes del bloque de apnea contra los bloques de respiración. El núcleo accumbens y el globo pálido no muestran activación alguna bajo los contrastes de respiración contra apnea, mientras que el putamen, el núcleo caudado y las sustancias negras son las estructuras de los NB que presentan actividad bajo este análisis comparativo (ver tabla 39).

Las estructuras que conforman el sistema límbico presentan menor área de activación en los contrastes de los bloques de respiración contra los bloques de apnea (tablas 21, 23 y 25) en comparación con los contrastes inversos, donde a pesar de contar con las mismas estructuras activadas (ver tabla 39), son distintas zonas dentro de estas, en donde se localizan las variaciones de la señal BOLD.

En lo que respecta al tallo cerebral en los contrastes de los bloques de respiración contra el bloque de apnea, los grupos de activación ocupan un volumen pequeño y definido, se localizan en la parte ventral del bulbo y el puente. No se registra actividad en la FR del tallo cerebral. La parte ventral del bulbo raquídeo, registra actividad en los bloques de preparación y recuperación (tablas 29 y 31) para los paradigmas de 60 y 90, estos conjuntos de activación se localizan en las zonas quimio-sensibles del tallo cerebral y del VRG. Las activaciones detectadas a nivel del mesencéfalo para los bloques de preparación y recuperación abarcan las zonas del área tegmental ventral (VTA) y el núcleo rojo que fueron localizadas por medio de la segmentación con el atlas AAL3 (ver tabla 39).

En el análisis de los bloques de respiración contra el bloque de apnea, el cerebelo muestra actividad en sus zonas externas (tablas 33, 35 y 37), es decir en las regiones de superficiales de la corteza, principalmente del lóbulo posterior, sin presentar mucha variabilidad en el tamaño, morfología y ubicación de los grupos de activación, entre los 3 paradigmas de los 3 contrastes mencionados.

7 Discusión

La presente discusión se construye partir de la interpretación fisiológica que se les da a los resultados obtenidos del estudio de fMRI durante los paradigmas de apnea propuestos, los cuales arrojan datos relevantes acerca de cuáles son las principales estructuras involucradas en las tareas respiratorias que se ejecutaron durante el paradigma de adquisición de imágenes funcionales. También se discute en referencia a los resultados obtenidos en estudios similares, los cuales fueron revisados como parte de los antecedentes.

Entre las estructuras corticales que destacan con variaciones significativas en la señal BOLD (dentro del intervalo de confianza del 99.9%) se encuentran las cortezas prefrontal, premotora, motora primaria, motora suplementaria e insular.

Observando a través de los distintos contrastes de interés, se aprecia actividad en estructuras subcorticales pertenecientes a los NB tales como el putamen, globo pálido y los núcleos caudados. Acorde a lo consultado en la literatura, estos núcleos están involucrados tanto en el procesamiento de señales motoras, como en la inhibición de movimientos[47].

Por otra parte, también se hallaron variaciones en la señal BOLD en estructuras que forman parte del sistema límbico, específicamente en el hipocampo, la amígdala y el tálamo. Se sabe que estas estructuras tienen una participación activa en el control de emociones, pero también tienen influencia en aspectos conductuales como la reacción al estrés y en aspectos cognitivos como la memoria y la atención; incluso juegan un rol importante en algunas reacciones autónomas[49].

En cuanto al análisis estadístico que se realizó en la región del tallo cerebral, los resultados indican patrones de actividad neural en zonas muy específicas para los estados de respiración y otros sitios activos distintos durante el estado de apnea. De manera similar se observan distintos conjuntos de actividad en la corteza cerebelar para los contrastes donde se analiza la apnea y los bloques de respiración.

Debido a la similitud entre las tareas realizadas durante cada uno de los bloques de los paradigmas y a la similitud de los patrones de actividad cerebral encontrada bajo los distintos contrastes de interés, se aborda la discusión de resultados agrupando los contrastes en 2 categorías: los contrastes de bloques donde hay respiración comparados contra el bloque de apnea; y la categoría de los contrastes donde se compara el bloque de apnea contra los bloques donde hay respiración.

7.1 Contrastes del Bloque de apnea contra los bloques de respiración.

Esta categoría se conforma por 3 contrastes que presentan similitudes tanto en la ejecución de las tareas del paradigma, como en los resultados obtenidos mediante el análisis estadístico de las variaciones en la señal BOLD en las regiones de interés. Los contrastes de interés que se discuten en esta sección son: *apnea vs reposo, apnea vs preparación* y *apnea vs recuperación*.

7.1.1 Corteza cerebral

Los mapas funcionales que resultan del análisis estadístico, revelan variaciones significativas de la señal BOLD en las zonas prefrontales, premotoras, motoras suplementarias y motora primaria de la corteza

cerebral; de manera similar a lo observado en estudios anteriores en los que han encontrado asociaciones en la activación de estas regiones, con el desempeño de tareas respiratorias que inducen hipercapnia[108][114].

Los grupos de activación tienden a incrementar en tamaño e intensidad en los paradigmas de apnea de mayor duración (ver tabla 22), los grupos de activación se distribuyen por gran parte de la corteza cerebral de manera similar a estudios previos en los que analizan el comportamiento de la hemodinámica cerebral en materia gris, donde encontraron que la intensidad de la señal se ve incrementada al transcurrir el tiempo de apnea (hasta 60 segundos) [76][77][78][79][80][82][90][101][109][110];

Paradigma/vista	Lateral	Frontal	Superior	Inferior
30 segundos Apnea vs recuperación				
60 segundos Apnea vs preparación				
90 segundos Apnea vs preparación				

Tabla 22. Actividad cortical vista bajo los contrastes más representativos de cada paradigma.

Entre las regiones que destacan tanto de los estudios previamente mencionados como en los hallazgos de este trabajo, se encuentra la actividad de la CPF, que se considera que juega un rol inhibidor de expresiones autonómicas y emocionales, debido a que tiene conexiones con centros autonómicos tales como el hipotálamo, tallo cerebral y la médula espinal, conectividad que relaciona directamente a la CPF (específicamente la porción ventromedial) con funciones autónomas tales como la respiración, el ritmo cardiaco, la presión sanguínea y la nocicepción[26]. La CPF también es asociada con actividades que representan metas, manteniendo activos los recursos que son necesarios para cumplir dichos propósitos[27], en nuestro caso, retener la respiración.

De igual manera en los estudios ya mencionados, así como en este, se observa actividad en áreas sensoriomotoras, motora suplementaria y premotora, las que se piensan estan involucradas en la planeación e inhibición de los movimientos respiratorios de forma voluntaria, debido a que se conoce que el área motora pre-suplementaria (pre-SMA), presenta actividad inhibitoria sobre el movimiento, otorgándole la capacidad de filtrar, controlar y decidir qué movimientos no realizar[27].

Dicho lo anterior, se piensa que este efecto de aumento en la actividad cortical sea debido a la acción voluntaria de inhibir la respuesta fisiológica autónoma que acompaña a los largos periodos de contención de la respiración, ya que se sabe que durante un periodo de apnea voluntaria, existe una fase conocida como

"placentera" donde el sujeto no experimenta incomodidad, ni el cuerpo tiene deficiencias homeostáticas[58], mientras que, durante la fase de estrés, el apneista comienza a recibir señales (periféricas) de alerta que desencadenan una serie de respuestas cardiovasculares autónomas (principalmente simpáticas), una de estas respuestas es la disminución en el flujo sanguíneo del cuerpo con el fin de incrementar el flujo sanguíneo cerebral[56], junto con vasodilatación a nivel cerebral, con lo que se aumenta la disponibilidad de O_2 en este órgano vital. Es por eso que se piensa que la actividad en corteza se ve incrementa al surgir la sensacion de urgencia por respirar, como ya han propuesto otros autores[86][114][111]. De acuerdo con lo observado en los resultados, cabe la posibilidad que, durante el paradigma de 30 segundos de apnea, los sujetos experimentaban la fase placentera; mientras que durante las apneas de 60 segundos y 90 segundos ya se encuentran en la fase de estrés, provocando tanto la sensacion de urgencia por respirar como un aumento del flujo sanguíneo cerebral, lo que explicaría el aumento de la oxigenación detectada en los paradigmas de 60 y 90 segundos de apnea en comparación con el paradigma de 30 segundos.

Dentro de la actividad cortical registrada en el área de la CPF se encuentra el área de Broca, región caracterizada por agrupar neuronas que tienen la capacidad de integrar las secuencias motoras requeridas para la articulación del lenguaje oral e iniciación del habla[27]. Estos procesos del habla, involucran una cierta la modulación o incluso interrupción de la respiración para poder ser ejecutados, por lo que no sorprende encontrar actividad en esta ROI al suprimir voluntariamente la respiración, ademas de ya haber sido reportada anteriormente la activación de esta área en estudios con fMRI y paradigmas de apnea[87].

7.1.2 Corteza insular

Tras la segmentación de la región insular para el análisis de los mapas de activación, se observa un aumento en el tamaño e intensidad de los conjuntos de activación en relación con el tiempo de duración del bloque de apnea según sea el paradigma, de manera similar a lo que ocurre en la corteza, donde los paradigmas de 60 y 90 segundos presentan mayor intensidad en la actividad-oxigenación comparados con el paradigma de 30 segundos como se puede observar en la tabla 23.

 Tabla 23. Actividad insular vista bajo los contrastes más representativos de cada paradigma.

En investigaciones previas donde se aplicaron protocolos de apnea y otros desafíos cardio-respiratorios en estudios de fMRI, han observado asociaciones con mecanismos de regulación autónoma simpática[86][88] [89]; también se conoce la intervención de la ínsula en procesos propioceptivos tales como hacer conciencia de los latidos del corazón, del movimiento visceral, de la sensación de sed e incluso de la sensación de urgencia por respirar (percepción disnea)[33][88][114]; otros estudios demuestran actividad insular en tareas de planificación motora necesaria para articular palabras[27] e incluso se conoce actividad insular involucrada en paradigmas que estudian la inhibición de señales motoras en curso[88].

Por lo tanto, se sospecha que la actividad detectada en la ínsula podría ser resultado tanto de actividad de regulación autonoma, producto de algún proceso propioceptivo, o bien, estar actuando en la planificación motora requerida para contener la respiración voluntariamente, también queda la posibilidad de que la actividad en la ínsula este controlando una o varias de estas tareas simultáneamente.

7.1.3 Núcleos basales

En general, los NB presentan gran actividad en todos los paradigmas de los 3 contrastes que se discuten en esta sección, destacando la actividad en núcleo caudado, putamen, globo pálido e incluso el estriado ventral (donde se encuentra el núcleo accumbens estrechamente relacionado con el circuito límbico y el sistema de recompensas y adicciones), por el contrario, no se observa actividad en la sustancia negra en alguno de los paradigmas. Sabiéndose que la SNpr es considerada como la puerta de salida de información motora de los NB[45], se especula que lo observado en las imágenes bajo los contrastes en discusión, es consecuencia de la inhibición motora que supone el contener la respiración.

Tabla 24. Cerebro de cristal con actividad de NB, vista bajo los contrastes más representativos de cada
paradigma.

En la bibliografía consultada como parte de los antecedentes (tabla1), se revisaron estudios de fMRI con paradigmas de apnea o que inducen hipercapnia, en estas investigaciones reportan grupos de activaciones en núcleos basales[90], algunos más específicos reportan diferencias significativas en el putamen[88][114],

caudado[114] e incluso en el núcleo Ventrolateral (VL) del tálamo[88]; e igual que en este trabajo, asocian la intervención de estas estructuras con la inhibición de la respiración.

También se conoce que las proyecciones aferentes provenientes de la CPF envían información al cuerpo estriado dorsal (caudado y putamen), jugando un papel activo en procesos de orden superior como la toma de decisiones consciente, el razonamiento e inhibición motora [28]. Por lo que se especula que la actividad observada en la CPF (analizada en la sección anterior), podria tener relación con lo observado en el caudado y putamen de los NB, actuando todas estas estructuras en conjunto como una red inhibidora de movimientos respiratorios. Los resultados obtenidos en el globo pálido, donde se observa actividad significativa, refuerzan estas sospechas, ya que se sabe que tanto en la vía indirecta como hiperdirecta (ambas de accion inhibitoria), la estimulación del GPi desenlaza en la inhibición de señales motoras hacia el tálamo[46][47].

Bajo los 3 contrastes de observación que se discuten en esta sección, los resultados muestran actividad e inactividad (tabla 24) exactamente en las misma estructuras de los NB que conforman el circuito del caudado (incluidos los núcleos talámicos ventroanterior (VA) y VL), también conocido como circuito asociativo (fig.15), el cual se sabe está implicado en la planificación cognitiva de patrones motores complejos que tienen como fin lograr un objetivo consciente específico[10], que en nuestro caso de estudio, podría corresponder al conjunto inhibitorio de movimientos (vía indirecta) para lograr el objetivo consciente de contener la respiración por el tiempo que indique cada paradigma.

7.1.4 Sistema límbico

Al observar la actividad en la región del sistema límbico visto desde un contraste de apnea comparado con un estado de respiración (tabla 25), es evidente que tanto la amígdala como el hipocampo y el tálamo, juegan un rol importante en la ejecución de las tareas de apnea que se realizaron en este trabajo de investigación; estos hallazgos concuerdan con investigaciones pasadas en las que se han asociado activaciones de la amígdala[88][114] y el tálamo [88][82][114] con paradigmas respiratorios que provocan la sensacion de urgencia por respirar. Basados en los antecedentes en los que concordamos en cuanto a la actividad de la amígdala, se piensa que (de manera similar a la ínsula) pueda estar relacionada con la percepción de sensaciones desagradables y/o la modulación de la sensacion de asfixia e incluso involucrada en respuestas autónomas. Contrario a estudios previos donde encontraron disminución en la actividad hipocampal bajo condiciones de apnea[86][89], los resultados de este trabajo indican incrementos en la actividad del hipocampo.

En general para los paradigmas de los contrastes de esta sección, prácticamente todo el sistema límbico (subcortical) presenta actividad intensa. Estos hallazgos concuerdan con estudios que proponen a la amígdala y el hipocampo como sitios de control de la respiración límbica en los seres humanos[115].

Analizando más profundamente, se observa que los paradigmas de 60 y 90 presentan más y mayores agrupaciones de actividad en esta ROI, sugiriendo que la actividad límbica puede estar relacionada con las emociones que surgen durante la fase de estrangulación con las que el apneista debe lidiar al continuar prolongando el BH, sin embargo, es notorio que, en el paradigma de 90 segundos, la intensidad y tamaño de los grupos de activaciones son menores respecto al paradigma de 60 segundos. Dicho lo anterior se sospecha que el efecto se debe a la disminución global en las reservas de oxígeno cerebral.

Tabla 25. Cerebro de cristal con actividad límbica visto bajo los contrastes más representativos

7.1.5 Tallo cerebral

Los resultados obtenidos en el tallo cerebral visto bajo los 3 contrastes que se discuten en esta sección (tabla 26), muestran nula actividad en la parte ventral del bulbo raquídeo y la protuberancia, sin embargo, se identifican grupos de activación focalizados en la parte dorsal de estas mismas estructuras, resultados que son muy similares en cuanto a la localización de los grupos de activación encontrados en estudios anteriores[86][88][108]. Las regiones dorsales de activación coinciden con la localización anatómica de la FR, región donde se ubica el SARA. Se sabe que el SARA tiene diversas funciones, por lo tanto, la actividad registrada en esta ROI puede deberse a diversos procesos, ya sean propioceptivos, nociceptivos (percepción del dolor), señales de alerta (sensación de peligro), cambios a nivel de conciencia (sueño-vigilia), motores, sensitivos y de regulación autonómica (cardiaca, vasculares y respiratorios)[4].

La FR, principalmente a nivel del bulbo raquídeo, interactúa con estructuras límbicas como la amígdala con el objetivo de preparar respuestas cardiovasculares autónomas[45]; por lo que resulta interesante hallar actividad en esta región después de observar actividad intensa en las estructuras límbicas del apartado anterior, lo que nos lleva a pensar que parte de la actividad detectada en el área de la FR y en el área límbica está vinculada con las respuestas cardiovasculares autónomas que se desencadenan tras un periodo voluntario de interrupción de respiración.

Es posible que este conjunto de activación incluya el área del NTS, que se sabe tiene función estrictamente sensorial de estímulos como el estiramiento de los pulmones y tiene comunicación con estructuras límbicas y otros núcleos del tallo cerebral implicados en respuestas viscerales respiratorias[20].

En lo que corresponde a la actividad registrada en la parte dorsal de la protuberancia mediante la segmentación realizada con el atlas AAL3, también se identifica actividad (en todos los paradigmas) dentro de la FR (pontina), que a nivel de la protuberancia contiene a los centros respiratorios neumotáxico y apnéustico, centros que se encargan de la modulación de los centros respiratorios autónomos del bulbo raquídeo (ritmo respiración basal). De modo que en nuestro caso de estudio podría corresponder a la actividad inhibitoria ejercida por parte de la protuberancia sobre los centros autónomos del bulbo (como se sugiere en

estudio previo[88]), necesaria para mantener un control voluntario de la musculatura respiratoria o a los movimientos involuntarios que se producen en la fase de estrés.

Paradigma/corte	Sagital	Coronal	Axial
30 segundos Apnea vs recuperación	Star Star		Sel.
60 segundos Apnea vs recuperación	Store Start		Kal
90 segundos Apnea vs recuperación	Store Starter		Con Con

Tabla 26. Actividad en tallo cerebral vista bajo los contrastes más representativos de cada paradigma

Además de los centros respiratorios autónomos, la región del LC también es parte de la FR y se encuentra activa durante los bloques de apnea. Es conocido que el LC está involucrado en procesos que requieren atención, cambios de estados de conciencia (sueño-vigilia) y estados de alerta[116][117]. En investigaciones anteriores se ha demostrado la intervención de LC en la modulación e inhibición de estímulos desagradables como el dolor y picazón [32][118]. En este caso particular, se piensa que el sujeto al estar practicando una apnea, pueda experimentar una amplia propiocepción en comparación con un estado de respiración. Esto puede tener relación con las tareas que se realizan durante el paradigma, ya que este implica reducir todos los movimientos corporales al mínimo; para lo que puede ser necesario prestar atención a todos los músculos del cuerpo. Al tiempo que va transcurriendo el periodo de apnea, pueden dispararse mecanismos de alertamiento causados por el estrés que supone dejar de respirar (falta de O_2 y acumulación de CO_2), lo que provoca la sensación de urgencia por respirar con la que el apneista debe lidiar para poder continuar el ejercicio, proceso similar a la inhibición o modulación del dolor o de sensaciones incomodas. De modo que, durante la ejecución de la apnea, se estarían integrando procesos propioceptivos, de alerta, junto con la modulación de estímulos nociceptivos en la región de la FR y el LC. Por otra parte también se conoce que el LC tiene acción noradrenérgica que le confiere la capacidad de modular (autónomamente) el volumen sanguíneo y la permeabilidad de la barrera hematoencefálica[116]. Lo que parece corresponder con las reacciones fisiológicas autónomas indispensables para mantener la homeostasis cerebral durante periodos prolongados de suspensión respiratoria.

Todas estas posibles situaciones producirían un aumento en la señal BOLD en las regiones de la FR, acorde a lo que observamos en las imágenes. Sin embargo, no es posible identificar cual o cuales mecanismos son los que están actuando y provocando un incremento de señal BOLD en esta ROI.

En el mesencéfalo se presenta actividad durante los paradigmas de 60 y 90 (tabla 27), los cambios en la señal BOLD se focalizan hacia el extremo dorsal, donde se localiza el colículo superior, área que se conoce tiene

participación en reflejos motores oculares, lo que sugiere, actividad ocular autónoma durante la fase de estrés en paradigma de apnea[117].

Tabla 27. Actividad en región del tallo cerebral a nivel de mesencéfalo en los paradigmas de 60 y 90.

7.1.6 Cerebelo

Tabla 28. Actividad en cerebelo vista bajo los contrastes más representativos de cada paradigma

Se encontraron activaciones en cerebelo similarmente a lo observado en otros estudios de fMRI con paradigmas similares a los aquí propuestos[86][89][90][114]. La actividad observada en la región del cerebelo bajo los contrastes del bloque de apnea contra los bloques donde hay respiración, se concentra hacia el interior de la corteza del cerebelo, principalmente en el lóbulo posterior con una mínima variación entre paradigmas; es decir, en un mismo contraste, las activaciones son similares en tamaño, morfología e intensidad para sus tres paradigmas (30, 60 y 90 segundos), sin embargo, bajo los otros contrastes de

observación también se localizan conjuntos de activaciones en las mismas regiones, pero las morfologías e intensidades de los conjuntos difieren de un contraste a otro (ver tabla 28).

Entre las funciones en las que se conoce que interviene el cerebelo se especula que lo observado en los resultados pueda deberse a la inhibición voluntaria a las respuestas autónomas que desencadenan las señales sensoriales del tallo cerebral, específicamente de la FR, ya que según la literatura consultada, la informacion sensorial proveniente de la protuberancia del tallo cerebral es enviada a través del tracto pedúnculo-pontino a la capa granular de la corteza cerebelar, esta ejerce una accion excitatoria sobre las celulas de Purkinje que se encargan de procesar esta informacion y enviar eferencias con respuestas excitatorias-inhibitorias sobre los núcleos del tallo cerebral[55]. También cabe la posibilidad que parte de la actividad encontrada en el cerebelo esté relacionada con la coordinación de información motora procedente de las regiones superiores para la modulación excitatoria-inhibitoria entre los músculos que permiten sea posible un tono muscular adecuado para contener la respiración[10].

7.2 Contrastes de Bloques de respiración en contra del bloque de apnea.

Esta categoría se conforma por los otros 3 contrastes que presentan similitudes tanto en la ejecución de las tareas del paradigma como en los resultados obtenidos mediante el análisis estadístico de las variaciones en la señal BOLD en las ROIs. Los contrastes de interés que se discuten en esta sección son: *reposo vs apnea*, *preparación vs apnea* y *recuperación vs apnea*.

7.2.1 Corteza cerebral

Tabla 29. Actividad cortical vista bajo los contrastes más representativos de cada paradigma.

Observando lo resultados que arroja la prueba estadística T-student en los contrastes de este apartado (tabla 29), es fácil percibir una disminución en la actividad cortical en cuanto al tamaño e intensidad de las agrupaciones de actividad comparado con los contrastes inversos de la misma ROI analizados en el apartado 7.1.1. También es notorio encontrar nula actividad en la zona de la corteza premotora para todos los

paradigmas de los 3 contrastes; así como patrones de actividad cortical muy similares morfológicamente entre los paradigmas de cada contraste. La actividad en la corteza se concentra en las ROI de la CPF y regiones de la SMA involucrada en la planeación de movimientos, posiblemente respiratorios, lo que concuerda con estudios anteriores donde se asocia la activación de la SMA con tareas de respiración voluntaria[119][120][121]. y en la corteza motora primaria, donde la actividad se localiza en las regiones de los homúnculos encargadas de controlar el movimiento del tronco y la región bucofaríngea, músculos involucrados en los movimientos necesarios para llevar a cabo la respiración de forma voluntaria.

7.2.2 Corteza insular

Comparado contra los paradigmas de la sección 7.1.2, la actividad en la región insular se encuentra disminuida (ver tabla 30 y 23), este efecto se le podría atribuir la desaparición de la sensación de urgencia por respirar y/o a la desaparición de respuestas simpáticas, ya que en este apartado se discute la actividad cerebral durante los estados de respiración en comparación con un bloque de apnea. Por otra parte, también se especula que la actividad registrada pueda deberse a las señales evocadas por las eferencias motoras necesarias para los movimientos respiratorios.

Tabla 30. Cerebro de cristal con actividad insular vista bajo los contrastes más representativos.

7.2.3 Núcleos basales

En lo que respecta a la región de los NB, se puede decir que para todos los paradigmas se presentan grupos de activación aislados y muy pequeños en comparación de los que se observan bajo los contrastes del bloque de apnea contra los bloques de respiración (sección 7.2.1), no se tiene activación alguna en las estructuras del núcleo accumbens ni en el globo pálido bajo los contrastes de respiración contra apnea. Se sabe que en la vía directa de los NB, el GPi se encuentra inhibido, lo que permite que la actividad motora viaje del tálamo hacia la corteza motora[46][47], por lo que se sugiere que esta vía sea la que esté actuando para efectuar los movimientos respiratorios. Por otra parte, el putamen, el núcleo caudado y las sustancias negras son las estructuras de los NB que presentan actividad bajo este análisis comparativo (tabla 31). La actividad encontrada en las sustancias negras sugiere un flujo de información motora proveniente de la corteza, en otras palabras, movimiento voluntario, que en nuestro caso correspondería a la respiración voluntaria

efectuada durante estos bloques y que no se presentan durante el bloque de apnea. En congruencia con estos hallazgos, se tiene registro de actividad en el caudado en tareas de respiración voluntaria en humanos[119][120][121].

Tabla 31. Cerebro de cristal con actividad de NB vista bajo los contrastes más representativos

7.2.4 Sistema límbico

Tabla 32. Cerebro de cristal con actividad en estructuras límbicas vista bajo los contrastes másrepresentativos

Se observa menor área de activación del sistema límbico en esta categoría de contrastes en comparación con sus inversos del apartado 7.1.3, donde a pesar de contar con las mismas estructuras activadas, son distintas zonas dentro de estas estructuras límbicas donde se localizan las variaciones de la señal BOLD (ver tabla 32 y 25). Esto puede estar relacionado con la disminución de actividad en la FR, así como con la desaparición

de la sensación de urgencia por respirar y el cambio en las respuestas autónomas que evocaban los paradigmas de apneas. En investigaciones previas se han observado activaciones en áreas del tálamo durante maniobras de inspiración y expiración voluntarias (activas)[119][120][121], lo que es consistente con los resultados obtenidos en este trabajo.

7.2.5 Tallo cerebral

A diferencia de los datos visualizados a través de los contrastes del bloque de apnea contra los bloques de respiración (sección 7.1.5), donde se observa que la actividad en esta ROI se concentra hacia las zonas dorsales; en los contrastes de los bloques de respiración contra el bloque de apnea, los grupos de actividad ocupan un menor volumen y se localizan en la parte ventral del bulbo y el puente. Durante los bloques de respiración, no se registra actividad en la FR del tallo cerebral, lo que podría indicar un cambio negativo en el nivel de conciencia, es decir, un estado de menor alerta y propiocepción en los estados de respiración.

La parte ventral el bulbo raquídeo, registra actividad en los bloques de preparación y recuperación para los paradigmas de 60 y 90, los conjuntos de activación se localizan en las zonas quimio-sensibles del tallo cerebral y del VRG, región donde se localizan las neuronas espiratorias activas durante exhalaciones autónomas profundas[22]. Se piensa que, en el caso del bloque de recuperación, la actividad observada corresponde a esta respuesta autónoma para modular el ritmo respiratorio, esta actividad se presenta en los paradigmas que presuntamente corresponden a una apnea prolongada hasta la fase de estrés, lo que provoca inspiraciones y espiraciones más profundas cuando los niveles de oxígeno son bajos. Por otro lado, la actividad registrada durante los bloques de preparación puede corresponder al reflejo Hering Bauer que se produce durante una máxima inspiración (la cual forma parte del protocolo experimental de los bloques de preparación) que también es procesada en el VRG. mientras lo que corresponde al reposo no se encontró actividad en estas zonas.

Paradigma/corte	Sagital	Coronal	Axial
30 segundos Recuperación vs apnea	Star Star		Sec.
60 segundos Preparación vs apnea	SP -		Res 1
90 segundos Preparación vs apnea	Store Barrier		and a

Tabla 33. Cerebro de cristal con actividad en tallo cerebral visto bajo los contrastes másrepresentativos de cada paradigma.

Otro aspecto relevante encontrado, es el hecho de que las activaciones detectadas a nivel del mesencéfalo para los bloques de preparación y recuperación (ver tabla 33) abarcan las zonas del área tegmental ventral

(VTA) y el núcleo rojo, localizadas mediante la segmentación del AAL3. Debido a la funcionalidad conocida de estas regiones, estas activaciones podrían estar asociadas a señales motoras para el caso del núcleo rojo. Mientras que la actividad en el VTA puede estar asociada con el sistema de recompensa activado tras saciar la necesidad de respirar[122].

7.2.6 Cerebelo

En el análisis de los bloques de respiración contra el bloque de apnea, el cerebelo muestra actividad en las regiones superficiales de la corteza que pertenece al lóbulo posterior, sin presentar mucha variabilidad en el tamaño, morfología y ubicación de los grupos de activación, entre los 3 paradigmas de los 3 contrastes discutidos en este apartado (ver tabla 34).

La actividad encontrada en la región del cerebelo durante los bloques de respiración es comparable a lo reportado en un estudio donde analizan esta región durante una tarea de hiperventilación[119] y otros más [120][121] que relacionan la actividad de esta región directamente con movimientos voluntarios respiratorios.

Paradigma/corte	Sagital	Coronal	Axial
30 segundos Recuperación vs apnea	APP-		
60 segundos Preparación vs apnea	CPP P		
90 segundos reposo vs apnea	San - S		

 Tabla 34. Actividad cerebelo visto bajo los contrastes más representativos de cada paradigma

Entre las tantas funciones en las que se sabe interviene el cerebelo, algunas de las posibles tareas que se plantean que las regiones superficiales de la corteza cerebelar en las que se encontraron diferencias significativas puedan estar ejerciendo, son la coordinación motora para la modulación de la suavidad y velocidad con que se ejecutan los movimientos, en nuestro caso de estudio, movimientos respiratorios, ya que las activaciones detectadas se hallan principalmente en el lóbulo posterior, que se conoce tiene participación en el control de actividad motora voluntaria, coordinación de movimientos precisos, contracción y relajación de músculos agonistas-antagonistas, vinculándose con la corteza cerebral por medio de extensas conexiones aferentes[55].

8 Conclusiones

Por medio del uso de fMRI se lograron diferenciar cambios estadísticamente significativos en la intensidad de la señal BOLD, analizando las diferentes comparaciones entre condiciones experimentales del bloque de apnea contra los bloques de respiración (reposo, preparación y recuperación) en regiones de la corteza cerebral, núcleos basales, sistema límbico, tallo cerebral y cerebelo; sugiriendo que estas estructuras están involucradas en el control y regulación cardio-respiratoria, lo cual es consistente con diversos estudios de fMRI que utilizan paradigmas de apnea [84][85][86][87][88][89][90][91][114].

se propusieron los posibles eventos a los que se relacionan las diferencias significativas observadas:

- Se encontró actividad en la región de la FR del tallo cerebral, que se relaciona con señales de informacion sensorial y respuestas autónomas, además, se conoce que interviene en procesos cognitivos que requieren atencion, alerta y/o vigilia. Por lo que la actividad encontrada puede corresponder a una o varias de estas tareas.
- El incremento en la señal BOLD en las regiones de la corteza prefrontal y las áreas motoras corticales parecen tener relación con la actividad encontrada en la formación reticular del tallo cerebral, debido a que hay evidencia que, a mayor actividad del SARA, mayor es la activación de la corteza cerebral; esta actividad se relaciona con el nivel de conciencia y alerta[4]. También se conoce el papel de la CPF en procesos cognitivos, inhibitorios, procesamiento de emociones, motivaciones e información de estados internos (interocepción), incluyendo alteraciones homeostáticas[60]. De tal manera que es posible que la inhibición de la musculatura respiratoria reclute una red de control cognitivo superior que integraría la interocepción (incluida la falta de aire y los estados emocionales resultantes), al mismo tiempo que mantendría la motivación y atencion para conseguir el objetivo.
- Se sabe la estrecha relación que tienen las áreas corticales con los NB, por lo que, si la actividad del SARA incrementa, ocurre lo mismo con la actividad en la corteza cerebral y de igual manera se presenta una mayor actividad en los NB, tal como se observa en los resultados de este trabajo. También, se conoce una vía de comunicación axonal directa entre los NB y la FR, encargada de modular las señales motoras (excitatorias o inhibitorias) de los tractos retículo-espinales[4], dicho la anterior, la actividad en los NB y la corteza cerebral puede ser consecuencia directa y/o indirecta de la actividad en el SARA.
- Se tiene conocimiento de una vía de comunicación entre el SARA y el sistema límbico[45]. De acuerdo con investigaciones[117], se piensa que la actividad del LC se encarga de integrar información sensorial, mientras que las estructuras límbicas como la amígdala e hipocampo le podrían estar asignando un valor emocional a dicha información. También existe evidencia de que el procesamiento emocional está fuertemente relacionado con las percepciones sensoriales homeostáticas[60]. Así, la actividad límbica podria estar asociada a las emociones emergentes por la hipoxia y la sensacion de asfixia.
- Los hallazgos en la región del cerebelo se concentran en las zonas profundas de la corteza cerebelar del lóbulo posterior, por lo que se proponen estas regiones como posibles inhibidoras de los movimientos necesarios para llevar a cabo la ventilación de forma autonoma, así como ser las

responsables de mantener el control voluntario de la respiración e ignorar el control autónomo dependiente de señales sensoriales provenientes del tallo cerebral.

Por lo tanto, todo parece indicar que el incremento global de actividad cerebral al comparar un bloque de apneas frente a uno de respiración, sea consecuencia del aumento de actividad en la FR del tallo cerebral. De acuerdo con la literatura consultada, los resultados obtenidos indican un estado de mayor conciencia, alerta, sensibilidad y propiocepción durante la ejecución de una apnea voluntaria, comparado con los bloques de respiración que se llevaron a cabo en la fase experimental.

Por otro lado, también se localizaron los sitios cerebrales que muestran activación en las diferentes comparaciones entre condiciones experimentales de respiración (reposo, preparación y recuperación) contrastados con el bloque de apnea. Se proponen posibles causantes en los cambios en la señal BOLD detectados en las ROIs de la corteza cerebral, núcleos basales, sistema límbico, tallo cerebral y cerebelo:

- En la región del tallo cerebral, específicamente la FR, no se detectaron incrementos de la señal BOLD, por el contrario, si se observaron en las áreas quimio-sensibles de la región ventral del bulbo raquídeo y protuberancia, por lo que se propone la posibilidad de que la función que estan ejerciendo en las tareas que se analizan bajo estos contrastes, sean exclusivamente sensoriales y de regulación autonoma.
- los hallazgos en corteza, pueden estar relacionados con la planeación y ejecución de movimientos en músculos necesarios para llevar a cabo la respiración de forma voluntaria, ya que estos resultados se observan en regiones de la corteza premotora que se sabe está involucrada en la planeación de movimientos, también se observan en sitios de la corteza motora que se encargan de los movimientos de la región torácica y bucofaríngea. En ínsula se observó una actividad disminuida, ya sea a causa de la desaparición de la sensación de urgencia por respirar que no se presenta en estos contrastes o al cambio de mecanismos autónomos del tallo cerebral causados debido a la oxigenación por la respiración.
- Se encontraron grupos de activaciones en la sustancia negra de lo NB que no se observaron en los contrastes inversos, probablemente por los movimientos que se realizan al ventilar, ya que se sabe que la SN son las vías motoras eferentes de lo NB.
- La disminución en la señal BOLD en áreas del sistema límbico probablemente se relacionan con la disminución de actividad observada también en la FR, o incluso por la desaparición de la sensación de urgencia por respirar.
- Las diferencias significativas de la señal BOLD vista bajo estos contrastes se localizan en las regiones superficiales del lóbulo posterior de la corteza cerebelar, y se hallan localizadas hacia regiones superficiales de la corteza. Debido a lo consultado en la bibliografía, se propone que sean estas zonas las encargadas de tomar el control voluntario de los movimientos respiratorios.

8.1 Limitantes

Una limitante detectada, se encuentra en distinguir en un sujeto en estado de reposo, si su respiración es autónoma o voluntaria, de manera que para algunos sujetos podría estar en curso la respiración autónoma durante el reposo, mientras que para otros podría estar cursando una respiración voluntaria.

Distinguir entre una actividad neuronal y una respuesta cardiovascular cerebral se presenta como una limitante, sin embargo, ambas mediciones son de particular interés en este trabajo, lo que permitió discutir basándose en ellas.

Otro punto clave limitante encontrado, es determinar el funcionamiento normal en las funciones cerebrales, cardiovasculares, metabólicas, endocrinas y respiratorias de los sujetos de estudio, sin un estudio de diagnóstico previo al protocolo experimental.

8.2 Perspectivas

Dentro de los aspectos más importantes que agregarían gran valor a un estudio como el realizado, se encuentran: el aumentar la n en la población de estudio, incluir sujetos de sexo femenino, implementar un software robusto para la reducción de ruido y utilizar una herramienta de segmentación más completa, pues el uso del atlas AAL3 para la segmentación anatómica presenta limitantes a la hora de distinguir cuáles regiones funcionales específicas (motora, asociativa y límbica) dentro de las mismas estructuras que conforman a los NB, son las que muestran diferencias significativas en la señal BOLD bajo los paradigmas y contrastes establecidos. Lo mismo ocurre en el caso de algunos núcleos específicos del tallo cerebral, que, de contar con una segmentación más robusta, sería posible inferir con mayor certeza la funcionalidad especifica que cumple la actividad registrada en dicha ROI. También es relevante implementar y/o desarrollar una plantilla para el realineado que se ajuste mejor con la población de estudio, ya que la plantilla ICBM152 está basada en una población europea y no en una latinoamericana.

Algunas de las estructuras en las que se encontró diferencias significativas forman parte de los 3 circuitos cortico-basales (motor, límbico y asociativo), pudiendo ser estos circuitos los responsables de los resultados obtenidos. Es así, que se piensa en una posible asociación de estas diferencias observadas en los resultados, con procesos neurofisiológicos en los sujetos de estudio en los que ocurre una interacción sensoriomotora, cognitiva y emocional, con respuestas autónomas que se desencadenan tanto al contener voluntariamente la respiración por periodos de tiempo prolongados, así como otras respuestas causadas simplemente por respirar. Sin embargo, no fue posible determinar si fue uno, varios o todos los circuitos cortico-basales los que estuviesen actuando independientemente o simultáneamente, así, se prevé una futura investigacion para determinar dicha interrogante.

Realizar un estudio añadiendo mediciones de variables fisiológicas como presión arterial, frecuencia cardiaca, saturación de O_2 , concentración arterial de CO_2 , volumen inspiratorio, CBF y CBV; para implementar regresores que permitan correlacionar con mayor precisión los patrones de actividad cerebral con respuestas cardiovasculares y respiratorias que se desencadenan en el trascurso de una apnea voluntaria. También incluir estudios de imagenología tales como tractografía, angiografía, imágenes FLAIR y espectroscopia; lo cual aumentaría la exactitud en la interpretación de los resultados, permitiendo separar las respuestas cerebrovasculares de cambios metabólicos relacionados con actividad neuronal y el ruido introducido por la naturaleza de los ejercicios respiratorios, esto permitiría determinar con mayor precisión

las vías neuronales activas a través del tiempo en el que se contiene la respiración voluntariamente, ya que no se logró determinar con precisión cuales son los tractos y circuitos que están involucrados en las tareas realizadas durante la ejecución de los paradigmas.

Otra perspectiva a futuro es elaborar un diagnóstico previo basado en evidencias que permita determinar si los sujetos de estudio no cuentan con alguna patología que pueda afectar la exactitud en las mediciones de los parámetros en estudio.

Por último, implementar un modelo dinámico causal que permita relacionar las activaciones entre las distintas estructuras anatómicas encontradas, al mismo tiempo que se puedan correlacionar estadísticamente a sus respectivos procesos fisiológicos y con esto responder las preguntas de si la actividad encontrada es realmente causada por lo propuesto en la discusion.

9 Referencias

- [1] K. Saladin, Anatomy & Physiology: the unity of form and function. McGrawHill, 2003.
- [2] A. Aldasoro, J. Mintegui, and A. Iturrioz, *V Curso sobre la Función Pulmonar en el Niño (Principios y Aplicaciones)*, libro de ponencias, 2005.
- [3] T. Sánchez and I. Concha, "Estructura y funciones del sistema respiratorio," Neumol. Pediatr., vol. 13, 2018.
- [4] F. H. Martini, M. J.Timmons and R. B. Tallitsch, Anatomía humana. Pearon, 2009.
- [5] R. L. Drake, W. Vogl and A. Mitchell, Anatomia para Estudiantes de Gray, Elsevier, 2005.
- [6] L. R. Lopez, N. M. Viveros and J. I. Turpin, *Captulo 93. Anatomia y Embriologia de la laringe*, Tratado de Otorrinolaringología y Cirugía de Cabeza y Cuello, 2da ed., 2007.
- [7] K. E. Barret, S. M. Barman, S. Boitano, H. L. Brooks, *Ganong fisiología médica*, 23 ed, McGrawhill, 2010.
- [8] J. A. Garcia-Porrero and J. M. Hurlé, *Anatomía humana*, McGrawHill, 2005.
- [9] L. S. Costanzo, *Fisiología*, Cuarta edicion, Elsevier, 2011.
- [10] A. C. Guyton and J. E. Hall, *Textbook of Medical physiology*, 11a ed. Elsevier, 2006.
- [11] M. R. Miller, J. Hankinson and V. Brusasco, *Standardisation of spirometry*, Eur. Respir. J., vol. 26, 2005.
- [12] R. Hershel and L. Levitzky, Fisiologia Medica Un Enfoque Por Aparatos Y Sistemas, McGrawHill, 2013.
- [13] K. T. Patton and G. A. Thibodeau, Anatomy & physiology. 8^a Ed., Elsevier, 2013.
- [14] C. L. Stanfield, Principios de fisiología humana, 4a ed. Pearson, 2011.
- [15] S. A. Mora, J. M. Bello, J. Londoño, R. R. Valle-Oñate, and G. Quintana, Test de respiración única para la capacidad de difusión de monóxido de carbono (DLCO) y su interpretación en enfermedades autoinmunes. Historia y bases fisiológicas, Rev. Colomb. Reumatol., vol. 18, 2011.
- [16] J. M. Cárdenas, L. M. Lazaro and M. C. Juyol, *Capítulo 22: Fisiología y fisiopatología respiratorias. Pruebas de función pulmonar. Monitorización respiratoria. Manejo de la disnea aguda en urgencias,"* in Manual de urgencias cardiopulmonares, 2009.
- [17] J. B. West, A. M. Luks, *Respiratory Physiology: The Essentials*, 10a ed., Wolters Kluwer, 2016.
- [18] E. Cristancho, M. Serrato, and D. Böning, *Método simplificado para determinar la Curva de Disociación de Oxígeno (CDO)*, Acta Biológica Colomb., vol. 24, 2019.
- [19] O. A. Peñuela, Hemoglobina: *una molécula modelo para el investigador*, Colomb. Med., vol. 36, 2005.
- [20] M. A. Nogués and E. Benarroch, Alteraciones del control respiratorio y de la unidad motora respiratoria, Neurol. Argentina, vol. 3, 2011.
- [21] D. Martínez, Efectos de la estimulación eléctrica del nervio vago y del núcleo del tracto solitario sobre la actividad electroencefalográfica y la distribución temporal del ciclo sueño-vigilia en el gato, 2014.
- [22] J. O. Ramirez, Modulación somatostatinérgica del circuito generador del ritmo respiratorio, 2013.
- [23] J. Muñoz, E. Muñoz, L. López, L. Beltran, and C. Morgado, *The pre-Bötzinger complex: Generation and modulation of respiratory rhythm*, Neurol., vol. 34, 2016.
- [24] L. Beltran, R. Meza, F. Garcia, R. Toledo, J. Manzo, and C. Morgado, *Mecanismos centrales de la generación del ritmo respiratorio*, Rev Med, Vol. Espec. UV, vol. 52, 2012.
- [25] L. García, O. Reyes, and B. Rodríguez, *Regulación de la respiración: organización morfofuncional de su sistema de control*, Medisan, vol. 15, 2011.
- [26] I. Perlaza, E. Buriticá, J. Umbarila, G. Arteaga, H. J. Pimienta, *Corteza prefrontal humana: áreas 10m, 11o y 46d citoarquitectura e implicaciones funcionales*, Rev. la Univ. Ind. Santander. Salud, vol. 37, 2005.
- [27] M. C. Etchepareborda and M. J. López, *Estructura citoarquitectónica de las áreas del lenguaje*, Rev. Neurol., vol. 40, 2005.
- [28] C. A. Hanlon, L. T. Dowdle and J. L. Jones, *Biomarkers for Success: Using Neuroimaging to Predict Relapse and Develop Brain Stimulation Treatments for Cocaine-Dependent Individuals*, Elsevier, 2016.
- [29] A. Gabarrós, J. Martino, M. Juncadella, G. Plans, R. Pujol, J. Deus, O. Godino, A. Torres, A. Aparicio, G. Conesa and J.J. Acebes, *Identificación intraoperatoria del área motora suplementaria en cirugía neurooncológica,* Neurocirugia, 2011.
- [30] E. M. Monterroso, A. B. Avilez, and M. A. A. Vanegas, *Área Motora Suplementaria*, Arch. Neurociencias, vol. 13, 2008.
- [31] A. Benítez, , *Caracterización neuroanatómica y neurofisiológica del lenguaje humano*, Rev. española lingüística, vol. 35, 2006.

- [32] A. D. P. Papoiu, Functional MRI Advances to Reveal the Hidden Networks Behind the Cerebral Processing of Itch. Elsevier, 2016.
- [33] E. E. Benarroch, *Corteza insular*, neurology, vol. 93, 2019.
- [34] A. L. Bharat, T. Park, A. V. Wyk and A. L. Green, *Insula stroke: the weird and the worrisome*, Postgrad Med J., 2019.
- [35] W. Strik, K. Stegmayer, S. Walther, and T. Dierks, *Systems Neuroscience of Psychosis: Mapping Schizophrenia Symptoms onto Brain Systems*, Neuropsychobiology, vol. 75, 2018.
- [36] G. E. Alexander and M. D. Crutcher, *Functional architecture of basal ganglia circuits: neural substrates of parallel processing*, Trends Neurosci., vol. 13, 1990.
- [37] G. Mehrnoosh and M. Sunil, *Neuroanatomy*, *Putamen*, StatPearls, 2021.
- [38] M. E. Driscoll, P. C. Bollu, and P. Tadi, *Neuroanatomy, Nucleus Caudate*, StatPearls, 2020.
- [39] J. R. Villablanca, Why do we have a caudate nucleus?, Acta Neurobiol. Exp. (Wars)., vol. 70, 2010.
- [40] K. Basar, T. Sesia, H. Groenewegen, H. W. M. Steinbusch, V. Visser-Vandewalle, and Y. Temel, *Nucleus accumbens and impulsivity*, Prog. Neurobiol., vol. 92, 2010.
- [41] E. W. Powell and R. B. Leman, *Connections of the nucleus accumbens,* Brain Res., vol. 105, 1976.
- [42] N. Javed and M. Cascella, *Neuroanatomy*, *Globus Pallidus Blood Supply and Lymphatics*, StatPearls, 2021.
- [43] H. Kita, *Globus pallidus external segment*, Prog. Brain Res., vol. 160, 2007.
- [44] A. Nambu, *Globus pallidus internal segment,* Prog. Brain Res., vol. 160, 2007.
- [45] J. Sonne, V. Reddy, and M. R. Beato, *Neuroanatomy*, *Substantia Nigra*, StatPearls, 2021.
- [46] A. Nambu, A new dynamic model of the cortico-basal ganglia loop, Prog. Brain Res., vol. 143, 2004.
- [47] N. Ospina, C. Pérez, J. D. Vargas, A. Cervantes, and M. Rodríguez, *Revisión Ganglios Basales y Conducta Resumen Introducción*, Neurociencia, vol. 6, 2017.
- [48] J. A. Obeso, M. C. Rodriguez, B. Benítez, F. J. Blesa, J. Guridi, C. Marin and M. Rodriguez, *Functional organization of the basal ganglia: Therapeutic implications for Parkinson's disease,* Mov. Disord., vol. 23, 2008.
- [49] Q. Abuhasan, V. Reddy, and W. Siddiqui, *Neuroanatomy , Amygdala*, StatPearls, 2021.
- [50] L. A. Fogwe, V. Reddy, and F. B. Mesfin, *Neuroanatomy*, *Hippocampus*, StatPearls, 2021.
- [51] W. Almaguer and J. A. Bergado, *Interactions between the hippocampus and the amygdala in synaptic plasticity processes. A key to understanding the relations between motivation and memory*, Rev. Neurol., vol. 35, 2002.
- [52] M. T. Ledo, J. M. Giménez, and A. Llamas, *El complejo amigdalino humano y su implicación en los trastornos psiquiátricos*, An. Sist. Sanit. Navar., vol. 30, 2007.
- [53] A. R. Crossman & D. Neary, Neuroanatomia texto y atlas, 3 ed., Elsevier, 2007.
- [54] L. Manuel, K. N. nieto, A. V. González, L. F. Ovalle, J. A. Mora, C. Tramontini, *Anatomía Del Cerebelo En Imágenes De Resonancia Magnética Cerebral Con Correlación Funcional,* Rev. Médica Sanitas, vol. 21, 2018.
- [55] J. M. Díez, J. Salinas, A. Mañas, M. Mora, J. Navarro, and M. Arrizabalaga, *Cerebelo y tracto urinario inferior*, Arch. Esp. Urol., vol. 58, 2005.
- [56] A. R. Bain, P. N. Ainslie, I. Drvis, Z. Dujic, and D. B. Macleod, *Physiology of static breath holding in elite apneists,* Experimental Physiology, 2018.
- [57] E. Schagatay, M. V. Kampen, S. Emanuelsson and B. Holm, *Effects of physical and apnea training on apneic time and the diving response in humans,* Eur J Appl Physiol, 2000.
- [58] P. J. Winklewski, O. Barak, D. Madden, A. Gruszecka, M. Gruszecki, W. Guminski, J. Kot, A. F. Frydrychowski, I. Drvis, Z. Dujic Effect of Maximal Apnoea Easy-Going and Struggle Phases on Subarachnoid Width and Pial Artery Pulsation in Elite Breath-Hold Divers, Journal plos one, 2015.
- [59] S. A. Busch, C. D. Bruce, R. J. Skow, J. R. Pfoh, T. A. Day, M. H. Davenport & C. D. Steinback, *Mechanisms of sympathetic regulation during Apnea*, Physiol Rep., vol. 7, 2019.
- [60] F. Steinberg, N. H. Pixa, and M. Doppelmayr, electroencephalographic alpha activity modulations induced by breath-holding in apnoea divers and non-divers, *Physiol. Behav.*, 2017.
- [61] P. A. Rink, *Magnetic resonance in medicine*. A critical introduction, 12ed, The round table foundation, 2018.
- [62] J. S. Rigden, *Quantum states and precession: The two discoveries of NMR*, Reviews of Modern Physics, vol. 58, 1986.
- [63] N. Waksman and A. Saucedo, Breve historia de la Resonancia Magnética Nuclear: desde el descubrimiento hasta la aplicación en imagenología, Educ. Química, vol. 30, 2019.
- [64] N. Pebet, *Resonancia nuclear magnética*, Semin. ing. Biomed. 2004, vol. 13, 2004.
- [65] J. Gili, Introduccion biofisica a la Resonancia Magnetica en Neuroimagen, Reg. Prop. Int.: B-5124-02, 2016.

- [66] L. González, D.M. Elena, and M. C. Rosa, *Principios de Resonancia Magnética*. ISBN: 9788469558768, 2012.
- [67] J. L. Armony, D. Trejo-martínez, and D. Hernández, *Resonancia Magnética Funcional (RMf): Principios y aplicaciones en Neuropsicología y Neurociencias Cognitivas*, Neuropsicol. Latinoam., vol. 4, 2012.
- [68] D. W. McRobbie, E. A. Moore, and M. J. Graves, *MRI from picture to proton*, Cambridge university press, 2017.
- [69] D. Moratal, L. Martí, M. E. Brummer, J. Millet, and F. Castells, *Exploring k-space for improved MR imaging*, Radiologia, vol. 46, 2004.
- [70] M. Poustchi, S. A. Mirowitz, J. F. Brown, and T. Li, *Principles and applications of echo-planar imaging: A review for the general Radiologist*, RadioGraphics, vol. 21, 2001.
- [71] M. Sklerov, E. Dayan, and N. Browner, *Functional neuroimaging of the central autonomic network: recent developments and clinical implications*, Clin. Auton. Res., vol. 29, 2019.
- [72] E. Amaro and G. J. Barker, *Study design in fMRI: Basic principles*, Brain Cogn., vol. 60, 2006.
- [73] T. L. Davis, K. K. Kwong, R. M. Weisskoff, and B. R. Rosen, *Calibrated functional MRI: Mapping the dynamics of oxidative metabolism,*" Proc. Natl. Acad. Sci. U. S. A., vol. 95, 1998.
- [74] M. W. Voss, The Chronic Exercise-Cognition Interaction: FMRI Research. *Elsevier*, 2016.
- [75] M. K. Stehling, F. Schmitt, and R. Ladebeck, *Echo-planar MR imaging of human brain oxygenation changes*, J. Magn. Reson. Imaging, vol. 3, 1993.
- [76] A. E. Stillman, X. Hu, and M. Jerosch-Herold, Functional MRI of brain during breath holding at 4 T, *Magn. Reson. Imaging*, vol. 13, 1995.
- [77] K. K. Kwong, I. Wanke, K. M. Donahue, T. L. Davis, and B. R. Rosen, *EPI Imaging of Global Increase of Brain MR Signal with Breath-hold Preceded by Breathing O2*, Magn. Reson. Med., vol. 33, 1995.
- [78] C. H. Moritz, M. E. Meyerand, and A. J. Saykin, *BOLD Contrast Response in Human Brain During Simple Breathhold Measured at 1.5 Tesla*, Proc., ISMRM, 6th Annual Meeting Sydney, 1995.
- [79] T. Q. Li, A. Kastrup, A. M. Takahashi, and M. E. Moseley, Functional MRI of human brain during breath holding by BOLD and FAIR techniques, *Neuroimage*, vol. 9, 1999.
- [80] A. Kastrup, T. Li, A. Takahashi, G. H. Glover, and M. E. Moseley, Functional Magnetic Resonance Imaging of Regional Cerebral Blood Oxygenation Changes During Breath Holding, Stroke, 1998.
- [81] C. H. B. van Niftrik, M. Piccirelli,O Bozinov, A. Pangalu, A. Valavanis, L. Regli and J. Fierstra, *Fine tuning breath-hold-based cerebrovascular reactivity analysis models*, Brain Behav., vol. 6, 2016.
- [82] Y. Y. Hsu, W. C. Kuan, K. E. Lim, and H. L. Liu, *Breathhold-regulated blood oxygenation level-dependent (BOLD) MRI of human brain at 3 tesla*, J. Magn. Reson. Imaging, vol. 31, 2010.
- [83] L. Zerweck, T.-K. Hauser, C. Roder, and U. Klose, *Investigation of the BOLD-Based MRI Signal Time Course During Short Breath-Hold Periods for Estimation of the Cerebrovascular Reactivity*, SN Compr. Clin. Med., vol. 2, 2020.
- [84] D. Gozal, O. Omidvar, A. T. Kirlewt, G. M. Hathout, R. Hamiltont, R. B. Lufkint, and R. M. Harper, Identification of human brain regions underlying responses to resistive inspiratory loading with functional magnetic resonance imaging, Proc. Natl. Acad. Sci. U. S. A., vol. 92, 1995.
- [85] L. A. Henderson, P. M. Macey, K. E. Macey, R C. Frysinger, M. A. Woo, R. K. Harper, J. R. Alger, AND R. M. Harper, Brain responses associated with the Valsalva maneuver revealed by functional magnetic resonance imaging, J. Neurophysiol., vol. 88, 2002.
- [86] V. G. Macefield, S. C. Gandevia, and L. A. Henderson, *Neural sites involved in the sustained increase in muscle sympathetic nerve activity induced by inspiratory capacity apnea: A fMRI study, J. Appl. Physiol.*, vol. 100, 2006.
- [87] K. E. Macey, P. M. Macey, L. A. Henderson, R C. Frysinger, M. A. Woo, R. K. Harper, J. R. Alger, AND R. M. Harper, *Inspiratory loading elicits aberrant fMRI signal changes in obstructive sleep apnea*, Respir. Physiol. Neurobiol., vol. 151, 2006.
- [88] L.C. McKay,L. Adams, R. C. Frackowiak, A bilateral cortico-bulbar network associated with breath-holding in humans, determined by functional magnetic resonance imaging, vol. 40, 2008.
- [89] D. S. Kimmerly, B. L. Morris, and J. S. Floras, *Apnea-induced cortical BOLD-fMRI and peripheral sympathoneural firing response patterns of awake healthy humans*, PLoS One, vol. 8, 2013.
- [90] A. Kastrup, G. Kru, G. H. Glover, T. Neumann-haefelin, and M. E. Moseley, *Regional Variability of Cerebral Blood* Oxygenation Response to Hypercapnia, Neuroimage, vol. 10, 1999.
- [91] R. G. Wise, K. Ide, M. J. Poulin, and I. Tracey, *Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal*, Neuroimage, vol. 21, 2004.
- [92] R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, *Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI*, Neuroimage, vol. 31, 2006.

- [93] R. M. Birn, K. Murphy, and P. A. Bandettini, *The effect of respiration variations on independent component analysis results of resting state functional connectivity*, Hum. Brain Mapp., vol. 29, 2008.
- [94] R. F. Leoni, K. C. Mazzeto-Betti, K. C. Andrade, and D. B. de Araujo, *Quantitative evaluation of hemodynamic response after hypercapnia among different brain territories by fMRI*, Neuroimage, vol. 41, 2008.
- [95] G. Garreffa, S. Kena, M. A. Macria, G. Giuliettia, vF Giove, C. Colonnese, E. Venditti, E. De Cesare, V. Galasso, B. Maraviglia, *BOLD signal and vessel dynamics: a hierarchical cluster analysis*, Magn. Reson. Imaging, vol. 24, 2006.
- [96] M. E. Thomason, B. E. Burrows, J. D. E. Gabrieli, and G. H. Glover, *Breath holding reveals differences in fMRI BOLD signal in children and adults*, Neuroimage, vol. 25, 2005.
- [97] R. M. Birn, K. Murphy, D. A. Handwerker, and P. A. Bandettini, *fMRI in the presence of task-correlated breathing variations,* Neuroimage, vol. 47, 2009.
- [98] A. D. Cohen and Y. Wang, Improving the Assessment of Breath-Holding Induced Cerebral Vascular Reactivity Using a Multiband Multi-echo ASL / BOLD Sequence, scientific reports, 2019.
- [99] C. R. Campos Herrera, G. C. Beltramini, W. M. Avelar, F. O. Lima, and L. M. Li, *Cerebral vasomotor reactivity assessment using transcranial doppler and MRI with apnea test*, Brazilian J. Med. Biol. Res., vol. 49, 2016.
- [100] D. A. Handwerker, A. Gazzaley, B. A. Inglis, and M. D'Esposito, *Reducing vascular variability of fMRI data across aging populations using a breathholding task*, Hum. Brain Mapp., vol. 28, 2007.
- [101] M. E. Thomason and G. H. Glover, *Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal*, Neuroimage, vol. 39, 2008.
- [102] R. M. Birn, M. A. Smith, T. B. Jones, and P. A. Bandettini, *The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration*, Neuroimage, vol. 40, 2008.
- [103] M. E. Thomason, L. C. Foland, and G. H. Glover, *Calibration of BOLD fMRI Using Breath Holding Reduces Group* Variance During a Cognitive Task, vol. 68, 2007.
- [104] S. S. Kannurpatti, V. E. Sharoyan, and B. B. Biswal, *BOLD signal response in the Human sensorimotor cortex during hyperventilation*, Ajnr. Am. J. Neuroradiol., vol. 11, 2003.
- [105] K. Murphy, A. D. Harris, and R. G. Wise, *Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data*, Neuroimage, vol. 54, 2011.
- [106] R. G. Wise, TS Pattinson, D. P. Bulte, P. A. Chiarelli, S. D. Mayhew, G. M. Balanos, D. F. O'Connor, T. R. Pragnell, P. A. Robbins, I. Tracey, and P. Jezzard, *Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging, J. Cereb. Blood Flow Metab.*, vol. 27, 2007.
- [107] J. C. Topolovec, J. S. Gati, R. S. Menon, J. K. Shoemaker, and D. F. Cechetto, Human Cardiovascular and Gustatory Brainstem Sites Observed by Functional Magnetic Resonance Imaging, J. Comp. Neurol., vol. 471, 2004.
- [108] V. G. Macefield and L. A. Henderson, *Real-Time Imaging of the Medullary Circuitry Involved in the Generation of Spontaneous Muscle Sympathetic Nerve Activity in Awake Subjects,* vol. 31, 2010.
- [109] A. Kastrup, G. Krüger, T. Neumann-Haefelin, and M. E. Moseley, *Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: Comparison of CO2 and breath holding*, Magn. Reson. Imaging, vol. 19, 2001.
- [110] S. S. Kannurpatti, B. B. Biswal, and A. G. Hudetz, Differential fMRI-BOLD signal response to apnea in humans and anesthetized rats, Magn. Reson. Med., vol. 47, 2002.
- [111] L. C. Mckay, L. Adams, R. S. J. Frackowiak, and D. R. Corfield, "A bilateral cortico-bulbar network associated with breath holding in humans, determined by functional magnetic resonance imaging," vol. 40, 2008.
- [112] P. Wu, P. A. Bandettini, R. M. Harper, and D. A. Handwerker, *Effects of thoracic pressure changes on MRI signals in the brain,* J. Cereb. Blood Flow Metab., vol. 35, 2015.
- [113] V. G. Macefield and L. A. Henderson, *Imaging of Brainstem Sites Involved in Cardiovascular Control*, 3 Ed. Elsevier, 2012.
- [114] K. C. Evans, R. B. Banzett, L. Adams, L. McKay, R. S. J. Frackowiak, and D. R. Corfield, "Bold fMRI identifies limbic, paralimbic, and cerebellar activation during air hunger," *J. Neurophysiol.*, vol. 88, 2002.
- [115] N. Lacuey, B. Zonjy, L. Londono, and S. D. Lhatoo, "Amygdala and hippocampus are symptomatogenic zones for central apneic seizures," *Neurology*, vol. 88, 2017.
- [116] N. K. Khroud, V. Reddy, and A. Saadabadi, "Neuroanatomy, Locus Ceruleus," *StatPearls*, 2020.
- [117] P. Brodal, The Central Nervous System. Structure and fucntion, 4th ed., Oxford university press, vol. 91, 2012.
- [118] E. Szabadi, Modulation of physiological reflexes by pain: Role of the locus coeruleus, Front. Integr. Neurosci.,

2012.

- [119] L. C. McKay, K. C. Evans, R. S. J. Frackowiak, and D. R. Corfield, *Neural correlates of voluntary breathing in humans*, J. Appl. Physiol., vol. 95, 2003.
- [120] J.G. Colebatch, K. Murphy, A. J. Martin, A. A. Lammertsma, H. J. Tochon, J. C. Clark, and K. J. Friston, *regional cerebral blood flow during volitional breathing in man*, journal of physiology, 1991.
- [121] S. C. Ramsay, L. Adams, K. Murphy, D. R. Corfield, S. Grootoonk, D. L. Bailey, R. S. J. Frackowiak and A. Guz, *Regional cerebral blood flow during volitional expiration in man: a comparison with volitional inspiration*, journal of physiology, 1993.
- [122] F. Caminero and M. Cascella, *Neuroanatomy, Mesencephalon Midbrain,* Statpearls, 2021.

10 Anexos

10.1 Reposo vs apnea 30 segundos

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
2 - 28 72	Paracentral_Lobule_R	52.60	154	9.69	6688
	Paracentral_Lobule_L	30.52	154	3.48	10792
	Supp_Motor_Area_R	16.88	154	1.10	18968
32 -16 20	Insula_R	37.18	234	4.92	14160
	Temporal_Sup_R	30.34	234	2.26	25128
	Rolandic_Oper_R	27.78	234	4.88	10648
	SupraMarginal B	4.27	234	4.02	1992
-12 -84 -30	Cerebelum Crus2 L	61.43	70	2.27	15152
	Cerebelum Crusl L	38.57	70	1.04	20824
30 - 92 - 8	Cerebelum_Crus2_R	39.53	339	6.33	16936
	Cerebelum_Crusl_R	35.69	339	4.57	21184
	Occipital_Inf_R	10.91	339	3.74	7912
	Lingual_R	8.85	339	1.30	18400
	Cerebelum_7b_R	1.77	339	1.12	4272
	Cerebelum 6 R	1.77	339	0.33	14360
20 -16 22	Caudate R	00.50	339	5.04	20144
20 - 10 22	Thal VI. R	6 25	40	1 18	2032
	Thal VPL R	4.17	48	1.29	1244
58 12 -10	Temporal Pole Sup R	100.00	30	2.24	10704
28 6 - 24	Temporal_Pole_Sup_R	43.16	95	3.06	10704
	ParaHippocampal_R	29.47	95	2.47	9056
	Amygdala_R	22.11	95	8.47	1984
	Olfactory_R	4.21	95	1.40	2283
50 34 36	Dropost_k Excetal Inf Tri B	1.05	95	0.18	17200
20 24 20	Frontal Mid 2 P	40.55	111	2.60	2000
49 20 -29	Temporal Pole Sup P	70.15	67	3 51	10704
40 10 10	Temporal Pole Mid R	25.37	67	1.43	9496
	Temporal Mid R	4.48	67	0.07	35272
48 46 6	Frontal Mid 2 R	90.55	127	2.37	38880
	Frontal_Inf_Tri_R	6.30	127	0.37	17208
	Frontal_Sup_2_R	3.15	127	0.08	41008
-2 -16 10	Thal_MDm_L	92.31	13	10.42	921
	Thal_PuM_L	7.69	13	0.60	1343
-28 6-30	Temporal_Pole_Sup_L	63.64	22	1.09	10280
	Temporal_Pole_Mid_L	18.18	22	0.53	6040
	ParaHippocampal_L	18.18	22	0.41	7824
-48 -78 0	Occipital_Mid_L	52.63	19	0.31	26120
42 20 36	Frontal Mid 2 B	47.37	70	0.96	38880
42 20 50	Frontal Inf Oper B	40.00	70	2 00	11192
2 -14 8	Thal MDm R	92.59	27	22.40	893
	Thal FuM R	3.70	27	0.63	1280
	Thal_IL R	3.70	27	2.01	398
-28 -82 -34	Cerebelum_Crusl_L	57.69	26	0.58	20824
	Cerebelum_Crus2_L	42.31	26	0.58	15152
0 -8 30	Cingulate_Mid_R	85.71	7	0.27	17624
-34 56 10	ACC sup L Frontal Mid 2 L	14.29	10	0.17	4840
-18 0 -18	Amwrdala I.	90.00	10	4.09	1760
10 0 -10	ParaHippocampal L	10.00	10	0.10	7824
28 - 12 14	Putamen R	100.00	2	0.19	8499
54 32 0	Frontal Inf Tri R	100.00	7	0.33	17208
48 16 18	Frontal Inf Oper R	66.67	6	0.29	11192
	Frontal Inf Tri R	33.33	6	0.09	17208
-54 14 -14	Temporal Pole Sup L	100.00	2	0.16	10280
-38 24 -28	Temporal Pole_Sup_L	100.00	5	0.39	10280
58 14 6	Frontal_Inf_Oper_R	100.00	3	0.21	11192
64 -6 4	Temporal_Sup_R	100.00	2	0.06	25128
-16 -8 24	Caudate_L	100.00	3	0.38	6344
-14 66 14	Frontal_Sup_2_L	100.00	1	0.02	38960
4 64 20	Frontal_Sup_Medial_R	66.67	3	0.09	17072
	Frontal_Sup_Medial_L	33.33	3	0.03	23936
-58 4 -22	Temporal_Mid_L	100.00	3	0.06	39536
-32 -80 -34	Cerebelum_Crus2_L	100.00	1	0.05	15152
-4 -10 32	Cingulate_Mid_L	100.00	2	0.10	15528
34 -80 -30	Cerebelum_Crusl_R	100.00	2	0.08	21184
-4-56 8	Precuneus_L	100.00	1	0.03	28224

Height threshold: T = 3.09, p = 0.001 (0.999) Extent threshold: k = 0 voxels, p = 1.000 (0.999) Expected voxels per cluster, <> = 31.526 Expected number of clusters, <> = 6.78 Expected false discovery rate, <= NaN

Degrees of freedom = (1.0, 1998.0) Smoothness PWHM = 13.7 13.5 11.6 {mm} = 6.9 6.7 5.8 {voxels} Search vol: 1422936 cmm; 177867 voxels; 614.9 resels Voxel size: (2.0, 2.0, 2.0] mm (1 resel = 266.98 voxels) Page 3/3

10.2 Reposo vs apnea 60 segundos

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
32 -82 -20	Lingual R	11.73	5055	25.78	18400
	Cerebelum 6 R	8.84	50.5.5	24.90	14360
	Cerebelum Crusl_R	7.95	5055	15.18	21184
	Cerebelum_Crusl_L	7.87	5055	15.29	20824
	Cerebelum_6_L	7.22	5055	21.55	13552
	Lingual_L	6.94	5055	16.75	16760
	Fusiform_L	5.08	5055	11.13	18472
	FusiformR	5.06	5055	10.17	20144
	Calcarine_L	4.77	5055	10.67	18064
	Cerebelum Crus2 L	4.06	5055	10.82	15152
	Occipital Inf R	3.84	5055	19.62	7912
	Temporal Inf R	3.46	5055	4.92	28456
	Occipital Inf L	3.15	5055	16.90	7528
	Vermis_4_5	2.55	5055	19.40	5320
	Vermis_6	2.18	5055	29.65	2968
	Calcarine_R	2.04	5055	5.53	14888
	Cerebelum_7b_R	1.25	5055	11.80	4272
	Temporal_Inf_L	1.07	5055	1.69	25600
	Cerebelum 4 5 R	0.99	5055	5.81	6888
	Cerebelum 8 R	0.87	5055	4.72	19464
	Cerebelum 4 5 L	0.23	5055	3.47	9000
	Hippocampus R	0.57	5055	3.07	7568
	Vermis 7	0.53	50.5.5	13.92	1552
	Cuneus_R	0.45	5055	1.62	11392
	Cerebelum_7b_L	0.44	5055	3.76	4680
	Precuneus_L	0.44	5055	0.62	28224
	ParaHippocampal_L	0.44	5055	2.25	7824
	ParaHippocampal_R	0.26	5055	1.15	9056
	Decipital_Mid_L	0.20	5055	0.31	26120
	Vermis 8	0.12	5055	0.18	1944
	Cerebelum 8 L	0.02	50.5.5	0.05	15096
	Cerebelum 3 R	0.02	5055	0.48	1656
-56 10 -8	Temporal_Pole_Sup_L	26.50	1147	23.66	10280
	Temporal_Sup_L	21.71	1147	10.84	18368
	Insula_L	14.21	1147	8.77	14864
	Rolandic_Oper_L	12.73	1147	14.78	7904
	Frontal_Inf_Orb_2_L	9.50	1147	13.39	6512
	OFCpost_L	5.58	1147	11.29	4536
	Frontal_Inr_oper_L	2 19	1147	5.59	1900
	Frontal Inf Tri L	1 48	1147	0.67	20232
	Temporal Mid L	0.35	1147	0.08	39536
	OFClat L	0.35	1147	2.03	1576
	Temporal_Pole_Mid_L	0.26	1147	0.40	6040
	SupraMarginal_L	0.09	1147	0.08	10048
36 50 24	Frontal_Mid_2_R	16.63	4474	15.31	38880
	Frontal_Sup_Medial_L	15.74	4474	23.53	23936
	Frontal Sup 2 B	11 67	4474	10.19	41008
	Supp Motor Area L	11.18	4474	23.29	17176
	Frontal Sup Medial R	7.49	4474	15.70	17072
	Frontal_Sup_2_L	7.24	4474	6.65	38960
	Supp_Motor_Area_R	7.04	4474	13.29	18968
	Cingulate_Mid_L	1.77	4474	4.07	15528
	Cingulate_Mid_R	1.52	4474	3.09	17624
	Precentral_R	1.27	4474	1.69	27048
	Frontal_Inf_Tri_L	0.98	4474	1.74	20232
	Paracentral_Lobule_L	0.94	4474	5.11	10792
	Receiup_L Exectal Inf Tei B	0.32	4474	1.63	17200
	ACC pre L	0.76	4474	5.42	5016
	ACC pre R	0.60	4474	4.17	5184
	OFClat_L	0.45	4474	10.15	1576
	Precentral_L	0.36	4474	0.45	28208
	ACC_sup_R	0.13	4474	1.13	4264
	OFCant_R	0.11	4474	0.77	5184
	Frontal_Inf_Orb_2_R	0.07	4474	0.34	6992
	OFClat_R	0.02	4474	0.53	1504
-4 -64 58	Frecuneus_R	34.20	804	8.42	26120
	Cocinital Sup P	29.60	804	8.14	28224
	Cuneus R	7,96	804	4.49	11392
	-			'	

			Contractors, Mid D	4 35		1 (7	1 (70.4
			Occipital_Mid_R	4.35	804	1.67	16/84
			Cingulate_Mid_R	3.86	804	1.41	17624
			Parietal_Sup_L	1.99	804	0.77	16520
			Parietal_Sup_R	1.49	804	0.54	17776
			Paracentral_Lobule_R	1.24	804	1.20	6688
			Cingulate_Mid_L	0.87	804	0.36	15528
			Occipital Sup L	0.12	804	0.07	10928
54	18	-6	Temporal Pole Sup R	24.28	1079	19.58	10704
			Insula R	17.70	1079	10.79	14160
			Rolandic Oper R	14.74	1079	11.95	10648
			Temporal Sup B	8.90	1079	3.06	25128
			OFCOAST B	8 90	1079	17 11	4488
			December 1 Tell Oak 2 D	0.16	1075	10.07	6000
			Frontal Inf Orb 2 R	8.16	1079	10.07	6992
			Frontal_Inr_Oper_K	5.75	1079	4.43	11192
			Amygdala_R	3.24	1079	14.11	1984
			ParaHippocampal_R	2.69	1079	2.56	9056
			Olfactory_R	2.32	1079	8.76	2283
			Frontal_Inf_Tri_R	1.30	1079	0.65	17208
			Heschl R	1.20	1079	5.22	1992
			Postcentral R	0.28	1079	0.08	30584
			SupraMarginal R	0.19	1079	0.10	15792
			OFClat R	0.19	1079	1.06	1504
			Temporal Pole Mid R	0.09	1079	0.08	9496
			OFCmed B	0.09	1079	0.16	4968
-60	-38	24	SupraMarginal_L	72.64	201	11.62	10048
			Temporal Sup L	25.87	201	2.26	18368
			Postcentral L	1.49	201	0.08	31136
16		-16	hourdals.	60.04	64	17 73	1760
-10		-10	Anyguara_L	00.34	64	17.73	1760
			Paranippocampai_L	20.31	64	1.33	7824
			Olfactory_L	14.06	64	2.94	2449
			Hippocampus_L	4.69	64	0.32	7456
2	-18	44	Cingulate_Mid_R	47.90	167	3.63	17624
			Cinqulate Mid L	40.12	167	3.45	15528
			Supp Motor Area B	5 99	167	0.42	18969
			Supp Notor Area A	5.99	167	0.42	10000
	~ ~		Supp_Notor_Area_D	3.99	107	0.47	1/1/6
4	-20	10	Thal_MDm_R	73.53	34	22.40	893
			Thal_PuM_R	20.59	34	4.38	1280
			Thal_IL_R	2.94	34	2.01	398
			Thal LP R	2.94	34	4.52	177
-44	-46	56	Parietal Inf L	83.33	156	5.31	19576
			Parietal Sup L	13.46	156	1 02	16520
			De sheese has 1 X	2.01	150	0.33	20020
			Postcentral_L	3.21	156	0.13	31136
66	-12	-8	Temporal_Sup_R	82.35	34	0.89	25128
			Temporal_Mid_R	17.65	34	0.14	35272
-4	-20	10	Thal_MDm_L	86.96	23	17.37	921
			Thal PuM L	13.04	23	1.79	1343
3.8	-58	56	Parietal Sup B	49.12	114	2.52	17776
			Parietal Inf B	43.86	114	3 72	10760
			hamles h	7.00	114	0.10	10700
-12	-6	16	Caudate L	70.83	48	4 29	6344
		10		10.05		3.22	
			That_vL_L	18.75	48	3.33	2160
			Thal_VA_L	8.33	48	5.13	624
			Thal_AV_L	2.08	48	5.76	139
36	-82	20	Occipital Mid R	100.00	27	1.29	16784
-48	-4	52	Precentral L	69.03	113	2.21	28208
			Postcentral L	30 97	113	0 90	31136
-29	- 9 9	22	Oppinital Mid L	84.44	45	1 16	26120
-20	-00	~~	Occipital Mid L	04.44	43	1.10	26120
			Occipital_Sup_L	15.56	45	0.51	10928
-8	-58	-58	Cerebelum_9_L	100.00	5	0.58	6952
62	-40	34	SupraMarginal_R	100.00	49	2.48	15792
-24	-24	72	Precentral_L	66.67	24	0.45	28208
			Postcentral L	33.33	24	0.21	31136
44	-26	14	Temporal Sup R	48.00	25	0.38	25128
		-	Heschl B	36.00	25	3.61	1992
			Rolandia Oner D	16.00		0.30	10040
	- 0.4	76	Represented Tobula C	100.00	20	0.30	10048
6	-24	76	Paracentral_LODULE_R	100.00	5	0.60	6688
4	-60	-56	Cerebelum_9_R	80.00	5	0.49	6472
			Cerebelum_8_R	20.00	5	0.04	18464
-8	-40	50	Cingulate Mid L	100.00	23	1.18	15528
60	-54	4	Temporal Mid R	100.00	9	0.20	35272
30	4.0	-16	OFCant B	96 30	27	4 01	519.4
20	-		OPOnest P	3 70	27	0.10	3104
-		-	OFCpost_R	3.70	27	0.18	4488
-62	68	-8	Frontal Med Orb L	100.00	1	0.14	5752
- 62	- 42	2	Temporal Mid L	100.00	8	0.16	39536
-62	-50	-6	remporal Mid L	100.00	6	0.12	39536
24	6	-10	Futamen_R	100.00	1	0.09	8499
44	-66	-46	Cerebelum_Crus2_R	100.00	3	0.14	16936
52	40	-2	Frontal_Inf_Tri_R	66.67	3	0.09	17208
			Frontal Inf Orb 2 R	33.33	3	0.11	6992
12	6	10	Caudate R	100.00	6	0.70	6824
30	-18	72	Precentral R	100.00	3	0.09	27048
-28	-40	-40	Cerebelum 10 T.	66.67	-	1.39	11 5 2
			Carabalum 75 J	33 33	-	0.17	1000
-24		-12	Examinal Mid 2 7	100 00	3	0.17	4680
24	34		Temle I	100.00	-	0.02	30036
-34	20	в	insula_L	100.00	3	0.16	14864
50	10	22	Frontal_Inf_Oper_R	100.00	4	0.29	11192
-34	2	64	Precentral_L	100.00	1	0.03	28208
12	-74	-52	Cerebelum_8_R	100.00	1	0.04	18464
4	16	52	Supp_Motor_Area R	100.00	1	0.04	18968
32	54	-14	OFCant R	100.00	1	0.15	5184
			Cerebelum Crus2 B	100.00	1	0.05	16936
42	-68	-48	COLUMN THE CLARK IN	100.00	-		

Height threshold: T = 3.09, p = 0.001 (0.999) Extent threshold: k = 0 voxels, p = 1.000 (0.999) Expected voxels per cluster, \ll = 31.526 Expected number of clusters, \ll = 6.78

Degrees of freedom = [1.0, 1998.0] Smoothness PWHM = 13.7 13.5 11.6 {mm} = 6.9 6.7 5.8 {voxels} Search vol: 1422936 cmm; 177867 voxels; 614.9 resels Voxel size: [2.0, 2.0, 2.0] mm (1 resel = 266.98 voxels)

10.3 Reposo vs apnea 90 segundos

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
32 -82 -22	Cerebelum Crusl L	12.37	3639	17.29	20824
JL UL 11	Cerebelum Crusl R	11.84	3639	16.28	21184
	Cerebelum 6 L	11.27	3639	24.20	13552
	Cerebelum_6_R	9.29	3639	18.83	14360
	Cerebelum_Crus2_L	7.97	3639	15.31	15152
	Lingual_R	7.53	3639	11.91	18400
	Cerebelum_Crus2_R	6.68	3639	11.48	16936
	FusiformL	5.22	3639	8.23	18472
	Occipital_Inf_R	5.03	3639	18.50	7912
	Fusiform B	4.73	3639	6.35	20144
	Occipital Inf L	3.49	3639	13.50	7528
	Lingual L	2.61	3639	4.53	16760
	Vermis_6	2.09	3639	20.49	2968
	Calcarine_L	2.01	3639	3.23	18064
	Cerebelum_7b_R	0.96	3639	6.55	4272
	Vermis_7	0.77	3639	14.43	1552
	Cerebelum_7b_L	0.63	3639	3.93	4680
	Temporal_Inf_L	0.47	3639	0.53	25600
	Occipital_Mid_L	0.22	3639	0.25	26120
	Cerebelum 8 R	0.14	3639	2.06	19464
	Calcarine R	0.11	3639	0.21	14888
	Occipital Mid R	0.08	3639	0.14	16784
36 26 - 26	Temporal_Pole_Sup_R	34.77	857	22.27	10704
	Rolandic_Oper_R	11.67	857	7.51	10648
	Temporal_Sup_R	10.27	857	2.80	25128
	OFCpost_R	9.92	857	15.15	4488
	Frontal_Inf_OFD_2_R	7.82	857	7.67	6992
	Parahippocampai_k	5.3/	857	4.06	9056
	hmurdala R	4.78	857	16.53	1984
	Frontal Inf Oper R	3.97	857	2.43	11192
	Olfactory R	2.80	857	8.41	2283
	Heschl_R	1.17	857	4.02	1992
	Frontal_Inf_Tri_R	1.17	857	0.46	17208
	Temporal_Pole_Mid_R	0.58	857	0.42	9496
	OFClat_R	0.23	857	1.06	1504
	Postcentral_R	0.12	857	0.03	30584
36 50 24	Frontal Mid 2 R	0.12	857	7 59	4968
30 30 14	Frontal Sup 2 B	38.07	662	4 92	41008
	Frontal Inf Tri R	4.08	662	1.26	17208
	Frontal Inf Orb 2 R	1.66	662	1.26	6992
	OFClat_R	0.15	662	0.53	1504
	OFCant_R	0.15	662	0.15	5184
	Frontal_Sup_Medial_R	0.15	662	0.05	17072
-54 14 -10	Temporal_Pole_Sup_L	49.50	501	19.30	10280
	Temporal Sup L Rolandic Oper L	13.37	501 501	2.92	18368 7904
	Frontal Inf Orb 2 L	11.98	501	7.37	6512
	OFCpost L	5.19	501	4.59	4536
	Frontal_Inf_Oper_L	3.99	501	1.93	8304
	Insula_L	1.60	501	0.43	14864
	Frontal_Inf_Tri_L	0.80	501	0.16	20232
	Temporal_Pole_Mid_L	0.60	501	0.40	6040
	Temporal_Mid_L	0.40	501	0.04	39536
-20 46 20	Dectat_L	0.40	501	1.02	1576
-30 46 20	Frontal Sup 2 L	42.96	426	3.76	38960
	OFClat L	2.35	426	5.08	1576
	Frontal Sup Medial L	1.88	426	0.27	23936
	Frontal_Inf_Tri_L	0.70	426	0.12	20232
22 -26 -12	Lingual_R	58.72	235	6.00	18400
	Hippocampus_R	25.11	235	6.24	7568
	ParaHippocampal_R	13.62	235	2.83	9056
	Cerebelum_4_5_R	1.70	235	0.46	6888
	Precuneus_R	0.85	235	0.06	26120
-18 -26 -12	Hippocampus_L	38.61	158	6.55	7456
	BaraHinnocampal T	20.80	156	3. 37	10/00
	Cerebelum 4 5 T.	4.43	158	0.62	9000
	Precuneus_L	0.63	158	0.03	28224

-18	0	-18	Amygdala_L	66.13	62	18.64	1760
			ParaHippocampal L	22.58	62	1.43	7824
			al factories a	c	c0		
			OIEactory_L	6.45	62	1.31	2449
			Hippocampus_L	3.23	62	0.21	7456
			Temporal Pole Sup L	1.61	62	0.08	10280
	2.0	10		56.00		22.25	0.0.2
	-20	10	That_para_k	36.92	6.5	33.15	933
			Thal_AV_R	18.46	65	56.80	169
			Thal PuM R	10.77	65	4.38	1280
			Thal MD1 P	6 15	65	11 31	202
			Thai_BDI_K	6.13	6.5	11.31	203
			Thal_IL_R	3.08	65	4.02	398
			Thal LP R	3.08	65	9.04	177
			Thal WI D	1 54	65	0 30	2022
			That_VL_K	1.34	6.5	0.39	2032
6	-74	54	Precuneus_R	47.19	178	2.57	26120
			Occipital Sup R	20.22	178	2.55	11304
			Cupping R	13.40	178	1 69	11202
			Cuneus_k	13.40	1/8	1.69	11392
			Parietal_Sup_R	10.11	178	0.81	17776
			Occipital Mid R	8.99	178	0.76	16784
	60		Events 1 Med Orb 7	20.26	73	2 00	535.0
	00	- 0	Froncar_Mad_OED_L	38.36	73	3.89	5752
			Frontal_Sup_Medial_L	30.14	73	0.74	23936
			Frontal Med Orb R	21.92	73	1.87	68.4.8
			Decetal Sup Medial D	0.00	73	0.00	1 20 2 2
			Froncal_sup_medial_K	8.22	73	0.28	17072
			Frontal_Sup_2_L	1.37	73	0.02	38960
-4	-10	74	Supp Motor Area L	56.13	155	4.05	17176
	10		Supp Hotor Actual D	22.20	155	1.05	100.00
			Supp_Motor_Area_K	21.29	155	1.39	19969
			Paracentral Lobule L	18.71	155	2.15	10792
			Frontal_Sup_2_L	1.94	155	0.06	38960
			Precentral L	1.94	155	0.09	28208
		24	Exectel Sup Medial I	74.47	1.41	3 51	22026
-	20	34	Froncal_sup_medial_L	14.47	141	3.31	23930
			Frontal_Sup_Medial_R	25.53	141	1.69	17072
36	-2	60	Frontal Mid 2 R	65.59	93	1.26	38880
			Frontal Sup 2 B	30.11	93	0.55	41008
						0.30	12000
			Precentral_R	4.30	93	0.12	27048
40	-26	16	Temporal_Sup_R	42.67	75	1.02	25128
			Heschl R	32.00	75	9.64	1992
			Rolandia Oper R	25 22	75	1 42	10649
			Rotandic oper k	25.35	73	1.43	10040
-50	-12	50	Postcentral_L	79.45	73	1.49	31136
			Precentral_L	20.55	73	0.43	28208
18	-12	20	Caudate R	79.66	59	5.51	6824
			Thal W. B	20.34	5.9	4 72	2032
-				20.34		4.14	2032
6	16	66	Supp_Motor_Area_R	79.59	49	1.64	18968
			Supp_Motor_Area_L	14.29	49	0.33	17176
			Frontal Sup Medial R	6.12	49	0.14	17072
	- 2.2	10	Thal NDm I	71 43	14	0 60	0.01
	-22	10	THAL_NON_L	71.43	14	8.65	921
			Thal_PuM_L	28.57	14	2.38	1343
-4	-6	10	Thal VL L	30.00	30	3.33	2160
			Thal VA L	23.33	30	8.97	624
			The last r	22.22	20	40.00	120
			That_AV_L	23.33	30	40.29	139
			Caudate_L	23.33	30	0.88	6344
36	-56	-54	Cerebelum 8 R	100.00	29	1.26	18464
-24	-22	72	Precentral_L	90.91	22	0.57	28208
			Postcentral L	9.09	22	0.05	31136
	2	72	Sume Motor Area P	82.00	25	0.87	19869
	-	12	Supp_Notor_Atea_K	52.00	23	0.97	10900
			Frontal_Sup_2_R	8.00	25	0.04	41008
66	-12	-6	Temporal_Sup_R	86.96	23	0.64	25128
			Temporal Mid R	13.04	23	0.07	35272
				100.00		0.00	
-2	- 4	26	Supp_Motor_Area_L	100.00	51	2.38	1/1/6
12	-98	6	Calcarine_R	75.00	8	0.32	14888
			Cuneus R	25.00	8	0.14	11392
3.4	-84	22	Occipital Mid P	100.00	8	0.38	16794
-			Description Mid K	100.00	-	0.04	20704
ь	-24	74	Paracentral_Lobule_R	100.00	7	0.84	6688
34	-40	-28	Cerebelum_6_R	61.90	21	0.72	14360
			Cerebelum Crusl R	23.81	21	0.19	21184
			Comphelum A 5 P	14 29	21	0.35	69.93
	-	-	Cereberdi 4 5 K	14.25		0.35	0000
-66	-26	-6	Temporal_Mid_L	100.00	8	0.16	39536
14	68	10	Frontal Sup_Medial R	100.00	1	0.05	17072
-42	2	-4	Insula L	87.50	16	0.75	14864
	-	-	Companyal Grow 7	10 50		0.00	10100
			Temporal_Sup_L	12.50	16	0.09	18368
-8	-54	4	Lingual_L	50.00	10	0.24	16760
			Calcarine L	50.00	10	0.22	18064
- 9	-76	52	Precuneus T.	100.00	2	0 06	28224
- 0		32	- recurrents_L	100.00	-	0.00	28224
44	-82	2	Occipital_Mid_R	100.00	2	0.10	16784
-24	6	-30	Temporal_Pole_Sup_L	100.00	2	0.16	10280
30	-18	70	Precentral R	100.00	5	0.15	27048
-26	10	-30	Temporal Pole Sup L	100.00	1	0.08	10280
-29	19	- 32	Temporal Pole Sup I	100.00	1	0.08	10280
20		- 32	remporar rore pup h	100.00	-	0.00	10200
34	-60	58	Farietal_Sup_R	100.00	1	0.05	17776
-2	-64	56	Precuneus_L	100.00	1	0.03	28224
4	36	56	Frontal_Sup_Medial_R	100.00	1	0.05	17072
32	54	-14	OFCant R	100.00	1	0.35	51.8.4
		-		table chows first local ma	vimum ner cluster		

Height threshold: T = 3.09, p = 0.001 (0.999) Extent threshold: k = 0 voxels, p = 1.000 (0.999) Expected voxels per cluster, \ll = 31.526 Expected number of clusters, \ll = 6.78 showsfirst local maximum per cluster.

Degrees of freedom = (1.0, 1998.0) Smoothness PWHM = 13.7 13.5 11.6 {mm} = 6.9 6.7 5.8 {voxels} Search vol: 1422936 cmm; 177867 voxels; 614.9 resels Voxel size: [2.0, 2.0, 2.0] mm (1 resel = 266.98 voxels)

10.4 Apnea vs reposo 30 segundos

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
14 -72 -36	Cerebelum 8 R	18.28	2068	16.38	18464
	Cerebelum_8_L	10.54	2068	11.55	15096
	Cerebelum_6_R	9.57	2068	11.03	14360
	Cerebelum_Crusl_L	8.41	2068	6.68	20824
	Vermis_8	8.27	2068	70.37	1944
	OUTSIDE	7.45	2068	0.00	0
	Cerebelum Crus2 R	7.40	2068	5.78	21184
	Vermis 7	4.98	2068	53.09	1552
	Cerebelum Crus2 L	4.98	2068	5.44	15152
	Cerebelum_7b_L	3.92	2068	13.85	4680
	Cerebelum_9_R	3.82	2068	9.77	6472
	Cerebelum_6_L	1.93	2068	2.36	13552
	Cerebelum_7b_R	1.89	2068	7.30	4272
	Vermis_9	0.82	2068	9.77	1392
-49 -40 -19	Vermis_6	62 88	2068	4.58	2968
-40 -40 -10	Temporal Mid L	20.45	132	0.55	39536
	Fusiform L	10.61	132	0.61	18472
	OUTSIDE	6.06	132	0.00	0
-34 -6 -16	OUTSIDE	74.58	59	0.00	0
	Hippocampus_L	18.64	59	1.18	7456
	Amygdala_L	5.08	59	1.36	1760
	Insula_L	1.69	59	0.05	14864
22 48 16	Frontal_Sup_2_R	43.22	118	0.99	41008
	OUTSIDE	33.05	118	0.00	0
	Frontal_Sup_Medial_K	21.19	118	1.17	17072
-10 56 20	Frontal Sup Medial L	80.65	31	0.84	23936
	Frontal Sup 2 L	19.35	31	0.12	38960
-24 -2 66	Frontal Sup 2 L	57.35	68	0.80	38960
	Precentral L	36.76	68	0.71	28208
	Postcentral_L	5.88	68	0.10	31136
-54 -18 40	Postcentral_L	89.29	28	0.64	31136
	Parietal Inr L	7.14	28	0.08	19576
12 34 54	Erontal Sun Medial R	50.00	28	0.08	17072
11 34 34	Frontal Sup 2 R	50.00	14	0.14	41008
50 -42 -18	Temporal_Inf_R	100.00	16	0.45	28456
10 16 48	Supp_Motor_Area_R	77.55	49	1.60	18968
	Frontal_Sup_2_R	20.41	49	0.20	41008
	Cingulate_Mid_R	2.04	49	0.05	17624
-36 -72 18	Occipital_Mid_L	77.19	57	1.35	26120
	Temporal_Mid_L	21.05	57	0.24	39536
-12 42 10	ACC pre L	51 76	34	3 35	5016
	OUTSIDE	38.24	34	0.00	0
-18 42 28	Frontal Sup 2 L	100.00	12	0.25	38960
-36 8 58	Frontal_Mid_2_L	100.00	7	0.16	36056
-30 -18 -34	FusiformL	100.00	1	0.04	18472
12 40 6	ACC_pre_K	67.74	31	3.24	5184
-10 26 60	Erontal Sun Medial L	100.00	31	0.13	23936
-24 52 0	Frontal Sup 2 L	70.83	24	0.35	38960
	Frontal Mid 2 L	25.00	24	0.13	36056
	OUTSIDE	4.17	24	0.00	0
-44 -12 -12	Temporal_Sup_L	100.00	3	0.13	18368
16 22 60	Frontal_Sup_2_R	100.00	2	0.04	41008
18 26 58	Frontal_Sup_2_R	100.00	1	0.02	41008
-34 -16 -34	Fusiform L	100.00	1	0.04	18472
-56 -4 18	Postcentral_L	100.00	2	0.05	31136
PA 04 44	nee aup n	table shows first local i	navimum nar clustar	v	16.51
		table anomarraciocarr	contractor per creatier.		

Height threshold: T = 3.09, p = 0.001 (0.999) Extent threshold: k = 0 voxels, p = 1.000 (0.999) Expected voxels per cluster, \ll > = 31.526 Expected number of clusters, \ll > = 6.78 Expected false discovery rate, \ll NaN

Degrees of freedom = [1.0, 1998.0] Smoothness FWHM = 13.7 13.5 11.6 {mm} = 6.9 6.7 5.8 {voxels} Search vol: 1422936 cmm; 177867 voxels; 614.9 resels Voxel size: [2.0, 2.0, 2.0] mm (1 resel = 266.98 voxels) Page 3/3

10.5 Apnea vs reposo 60 segundos

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
-30 -4 -20	OUTSIDE	44.91	55892	0.00	0
	Frontal_Sup_2_L	2.92	55892	33.55	4870
	Frontal Sup 2 R	2.84	55892	31.02	5126
	Frontal Mid 2 L	1.98	55892	24.52	4507
	Postcentral R	1.87	55892	27.31	3823
	Temporal Mid L	1.73	55892	19.53	4942
	Temporal Mid R	1.61	55892	20.44	4409
	Occipital Mid L	1 57	55892	26.92	3265
	Tomoral Sup R	1 45	55002	25.00	21.41
	Decourses D	1.45	550.02	23.00	22.65
	Precuneus R	1.30	55002	20.00	3536
	Frederic D	1.32	550.02	20.50	3520
	Fusiform	1.24	55892	27.52	2318
	FusirormL	1.24	55892	30.01	2309
	Frontal_Mid_2_K	1.24	55892	14.24	4860
	H1ppocampus_R	1.15	55892	67.97	946
	Frontal_Inf_Tri_L	1.11	55892	24.44	2529
	Precentral_R	1.03	55892	17.10	3381
	Precuneus_L	1.02	55892	16.13	3528
	Angular_R	1.01	55892	32.08	1752
	Postcentral_L	0.99	55892	14.18	3892
	Lingual_L	0.89	55892	23.77	2095
	Frontal_Sup_Medial_L	0.88	55892	16.44	2992
	Temporal_Sup_L	0.83	55892	20.25	2296
	Hippocampus_L	0.83	55892	49.57	932
	Calcarine R	0.80	55892	23.97	1861
	Temporal_Inf_L	0.79	55892	13.78	3200
	Frontal_Sup_Medial_R	0.79	55892	20.67	2134
	Lingual_R	0.75	55892	18.30	2300
	Cingulate_Mid_R	0.75	55892	18.97	2203
	Angular_L	0.73	55892	34.70	1173
	Cuneus_L	0.72	55892	26.43	1521
	Supp_Motor_Area_R	0.70	55892	16.45	2371
	Supp_Motor_Area_L	0.62	55892	16.12	2147
	Calcarine_L	0.62	55892	15.28	2258
	Parietal Inf L	0.62	55892	14.06	2447
	Occipital_Sup_L	0.61	55892	25.11	1366
	ACC sup R	0.61	55892	63.79	533
	ParaHippocampal R	0.57	55892	28.36	1132
	Temporal Inf R	0.57	55892	8.94	3557
	Cuneus R	0.56	55892	22.12	1424
	Occipital Sup R	0.55	55892	21.87	1413
	Paracentral Lobule L	0.55	55892	22.83	1349
	Cingulate Mid L	0.51	55892	14.58	1941
	Frontal Inf Orb 2 L	0.51	55892	34.77	814
	Parietal Sup R	0.49	55892	12.42	22.2.2
	SupraMarginal L	0.49	55892	21.89	1256
	Insula L	0.48	55892	14.48	1858
	Occipital Mid B	0.48	55892	12 73	20.9.8
	ACC sup L	0.39	55892	36.36	605
	Occipital Inf L	0 39	55892	23 38	941
	Frontal Inf Tri B	0.39	55892	10.23	2151
	ACC DEC R	0.39	55892	32 72	649
	Proptal Inf Orb 2 P	0.37	55802	23.57	974
	SupraMarrinal P	0.36	55802	10.13	1074
	ParaHippocampal L	0 35	55892	20.25	978
	Parietal Sun L	0 34	55892	9 10	20.65
	Temporal Pole Mid R	0 31	55892	14 57	1187
	Cingulate Post R	0.30	55892	50.45	335
	Paracentral Jobule B	0.23	55892	15 43	836
	Bolandic Oper L	0 23	55892	12.85	988
	Amyrdala R	0.23	55892	50.81	248
	Frontal Inf Oper L	0.21	55892	11.56	1038
	Cinquiate Post L	0.21	55892	25.49	463
	Insula R	0.21	55892	6.67	1770
	Putamen R	0.21	55892	10.92	1062
	Frontal Inf Oper R	0.21	55892	8.22	1399
	Temporal Pole Sup R	0.17	55892	7.10	1338
	Rolandic Oper R	0.17	55892	7.14	1331
	Temporal Pole Mid L	0.16	55892	12.05	755
	ACC pre L	0.16	55892	13.88	627
	Thal VL L	0.15	55892	30.37	270
	Parietal Inf R	0.15	55892	6.10	1345
	Occipital Inf R	0.15	55892	8.29	989
	Amygdala L	0.14	55892	36.82	220
	Thal_VPL_L	0.12	55892	40.61	165

		0.00			
	Caudate_R	0.12	55892	7.78	861
	Thal VA R	0.10	55892	23.02	232
	OFCpost R	0.10	55892	9.80	561
	OFCpost L	0.09	55892	8.47	567
	Caudate_L	0.08	55892	5.84	805
	Thal_VPL_R	0.08	55892	28.22	163
	Vent_Str_R	0.07	55892	27.27	143
	Thal_VA_L	0.05	55892	38.96	77
	Putamen_L Termoral Bale Sup I	0.05	55892	2.90	999
	OFCant R	0.05	55892	4.32	648
	Vent Str L	0.04	55892	15.34	163
	Heschl_R	0.04	55892	8.84	249
	Thal_PuM_R	0.04	55892	13.64	154
	Thal_PuM_L	0.04	55892	12.42	161
	Pallidum_R	0.04	55892	7.14	280
	Thal_PuA_L	0.03	55892	70.83	24
	Thai_PUA_R	0.03	55892	55.17	29
	OFCned R	0.02	55892	2.09	621
	OFClat R	0.02	55892	5.85	188
	Thal_LGN_R	0.02	55892	43.48	23
	Thal_MGN_L	0.02	55892	45.00	20
	Thal_MGN_R	0.01	55892	35.00	20
	Thal_IL_K	0.01	55892	12.00	50
	OFCIAE_L Chal But B	0.01	55892	3.05	197
	Frontal Med Orb L	0.01	55892	20.00	23
	Thal PuL R	0.01	55892	12.90	31
	Thal PuL L	0.01	55892	10.53	38
	Olfactory L	0.01	55892	1.37	291
	Thal_IL_L	0.01	55892	5.17	58
	Pallidum_L	0.01	55892	1.02	293
	Thal_MD1_R	0.00	55892	5.13	39
	Thal_Re_R	0.00	55892	100.00	2
	Cerebelum_4_5_L	0.00	55892	0.18	1125
	Thal_MDm_R	0.00	55892	0.87	115
	Thal_MDm_L	0.00	5.58.92	0.90	111
	Heschl_L	0.00	55892	0.44	225
	OFCant_L Excepted Med Orb R	0.00	55892	0.23	443
	Olfactory R	0.00	55992	0.35	299
20 -68 -40	OUTSIDE	28.51	6405	0.00	200
20 00 10	Cerebelum 8 R	14.04	6405	38.95	2308
	Cerebelum 8 L	12.05	6405	40.91	1887
	Cerebelum 9 L	8.34	6405	61.45	869
	Cerebelum 9 R	6.60	6405	52.29	809
	Cerebelum_Crus2_L	4.39	6405	14.84	1894
	Cerebelum 6 R	4.32	6405	15.43	1795
	Cerebelum Crus2 R	3.92	6405	9.46	2048
	Vermic 9	3.33	6405	20.00	2117
	Compholum Crush I	2.97	6405	6 94	243
	Cerebelum 7h L	2.45	6405	26.84	585
	Vermis 7	1,33	6405	43.81	194
	Vermis 9	1.22	6405	44.83	174
	Vermis 10	1.16	6405	66.07	112
	Cerebelum 7b R	1.14	6405	13.67	534
	Cerebelum 6 L	0.92	6405	3.48	1694
	Vermis_6	0.14	6405	2.43	371
	LC_R	0.08	6405	100.00	5
	Cerebelum 10 L	0.05	6405	2.08	144
	LC_L	0.03	6405	40.00	5
	Cerebelum_4_5_L	0.03	6405	0.18	1125
	Vermis_4_5	0.02	6405	0.15	665
58 26 10	Frontal_Inf_Tri_R	100.00	25	1.16	2151
-26 -58 64	Parietal_Sup_L	100.00	12	0.58	2065
64 - 14 28	Postcentral_R	76.92	13	0.26	3823
	SupraMarginal_R	23.08	13	0.15	1974
-16 -48 64	Frecuneus_L	72.00	25	0.51	3528
	Parietal_Sup_L	24.00	25	0.29	2065
-50 10 14	OUTSIDE Excepted Inf Tot I	4.00	25	0.00	0
-58 18 14	Frontal_Inf_Tri_L	50.00	2	0.04	2529
60 10 20	Frontal_Inf_Oper_L Frontal_Inf_Oper_R	50.00	2	0.10	1038
50 10 EV	Precentral P	50.00	2	0.03	3391
30 2 - 38	Fusiform R	100.00	1	0.04	2519
		table shows first local m	aximum per cluster.		2.510

Height threshold: T = 3.09, p = 0.001 (0.999) Extent threshold: k = 0 voxels, p = 1.000 (0.999) Expected voxels per cluster, \ll = 31.526Expected number of clusters, <c> = 6.78

Degrees of freedom = [1.0, 1998.0] Smoothness PWHM = 13.7 13.5 11.6 {mm} = 6.9 6.7 5.8 {voxels} Search vol: 1422936 cmm; 177867 voxels; 614.9 resels Voxel size: [2.0, 2.0, 2.0] mm (1 resel = 266.98 voxels)
10.6 Apnea vs reposo 90 segundos

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
-10 42 2	OUTSIDE	35.41	31923	0.00	0
	Frontal_Sup_2_L	4.60	31923	30.16	38960
	Frontal Mid 2 L	3.49	31923	24.69	36056
	Frontal_Sup_2_R	3.41	31923	21.24	41008
	Occipital_Mid_L	3.16	31923	30.93	26120
	Precentral_L	2.71	31923	24.53	28208
	Precuneus_R	2.70	31923	26.40	26120
	Precuneus_L	2.50	31923	22.62	28224
	Frontal_Sup_Medial_L	2.34	31923	25.00	23936
	Angular_L	2.08	31923	56.61	9384
	Parietal_Inf_L	1.90	31923	24.85	19576
	Temporal_Mid_L	1.89	31923	12.18	39536
	Cuneus_L	1.72	31923	36.16	12168
	Frontal_Inf_Tri_L	1.68	31923	21.23	20232
	Supramarginal_L	1.64	31923	41.56	10048
	Frontal Sup_Medial_K	1.45	31923	21.65	5194
	Puei form I	1.20	31923	16 50	10472
	Putamon R	1.20	31923	23 86	10472
	Occipital Sup L	1 12	31923	26.13	10929
	ACC sup R	1.11	31923	66.60	4264
	Postcentral L	1.05	31923	8.58	31136
	ACC pre L	1.01	31923	51.36	5016
	Frontal Inf Oper L	1.00	31923	30.83	8304
	Cinqulate Mid L	0.93	31923	15.35	15528
	Cingulate_Mid_R	0.79	31923	11.48	17624
	ACC_sup_L	0.79	31923	41.65	4840
	Cuneus_R	0.78	31923	17.56	11392
	Fusiform_R	0.76	31923	9.69	20144
	Parietal_Sup_L	0.75	31923	11.67	16520
	Insula_L	0.74	31923	12.76	14864
	Putamen_L	0.73	31923	23.50	7967
	Lingual_R	0.72	31923	10.00	18400
	Frontal_Inf_OFD_2_L	0.66	31923	25.80	6512
	Lipmal L	0.65	31923	9 93	16760
	Temporal Inf L	0.59	31923	5.78	25600
	Calcarine R	0.58	31923	9.94	14888
	Calcarine L	0.52	31923	7.31	18064
	Rolandic Oper L	0.52	31923	16.70	7904
	Frontal Mid 2 R	0.51	31923	3.33	38880
	Occipital_Inf_L	0.47	31923	15.83	7528
	Occipital_Sup_R	0.44	31923	9.91	11304
	Supp_Motor_Area_R	0.43	31923	5.82	18968
	Temporal_Sup_L	0.40	31923	5.57	18368
	Pallidum_R	0.36	31923	41.43	2240
	Pallidum_L	0.32	31923	34.47	2344
	Erontal Inf Tri B	0.31	31923	4 65	17208
	Frontal Med Orb L	0 31	31923	13.77	5752
	Supp_Motor_Area_L	0.30	31923	4.47	17176
	Temporal Mid R	0.23	31923	1.70	35272
	OFCpost L	0.23	31923	13.23	4536
	Frontal Inf Orb 2 R	0.23	31923	8.47	6992
	Caudate_R	0.21	31923	7.85	6824
	Cingulate_Post_R	0.21	31923	20.00	2680
	OFCpost R	0.21	31923	11.76	4488
	OFCant R	0.16	31923	7.87	5184
	Thal VL L	0.14	31923	17.04	2160
	Postcentral R	0.13	31923	1.10	30584
	Insula R	0.13	31923	2.32	14160
	Frontal Med Orb R	0.13	31923	4.67	6848
	Vent Str R	0.12	31923	25.48	1193
	Vent_Str_L	0.12	31923	23.44	1297
	Caudate L	0.12	31923	4.79	6344
	Thal VA R	0.10	31923	44.30	596
	ParaHippocampal L	0.09	31923	3.07	7824
	Occipital Mid R	0.07	31923	1.05	16784
	Thal VA L	0.07	31923	26.92	624
	OFCant L	0.06	31923	4.29	3544
	Parietal Sup R	0.05	31923	0.77	17776
	Amwrdala B	0.05	31923	6.85	1984
	Thal MDm L	0.04	31923	11 29	921
	Temporal Inf B	0.04	31923	0.34	28456
	OFCned B	0.03	31923	1.77	4968

	Thal_IL_L	0.03	31923	13.94	459
	Thal_VL_R	0.02	31923	2.76	2032
	Occipital Inf R	0.02	31923	0.71	7912
	Thal MD1 L	0 02	31923	14 60	274
	Thal TL P	0.01	31923	8 04	300
		0.01	31923	0.04	220.40
	Precentral_R	0.01	31923	0.12	27048
	Parietal_Inf_R	0.01	31923	0.22	10760
	Thal_Re_R	0.01	31923	200.00	8
	Paracentral_Lobule_L	0.01	31923	0.15	10792
	Thal MD1 R	0.00	31923	2.83	283
	Thal MDm R	0.00	31923	0.90	893
	Thal Bo I	0.00	31023	100.00	
	That_Re_L	0.00	31923	100.00	
	Temporal_Sup_R	0.00	31923	0.03	25128
	SupraMarginal_R	0.00	31923	0.05	15792
	ParaHippocampal_R	0.00	31923	0.09	9056
	Hippocampus L	0.00	31923	0.11	7456
	OFClat L	0.00	31923	0.51	1576
	OFOred I	0.00	31023	0.18	4400
	OFCHEG_E	0.00	31923	0.18	4400
-38 -2 -38	Temporal_Inr_L	24.26	940	7.12	25600
	OUTSIDE	23.83	940	0.00	0
	Temporal_Mid_L	18.19	940	3.46	39536
	Fusiform L	10.11	940	4.11	18472
	Temporal Sup L	6.06	940	2.48	18368
	Himocamous L	5.32	940	5.36	7456
	Tomoral Bale Mid I	4.26	840	5 30	60.40
	hmurdala L	3 93	940	16 36	1760
	Sanguara_s		240	10.30	1,00
	ParaHippocampal_L	2.87	940	2.76	7824
	Temporal_Pole_Sup_L	1.28	940	0.93	10280
14 -70 -36	Cerebelum_8_R	33.57	1850	26.91	18464
	Cerebelum 8 L	21.41	1850	20.99	15096
	OUTSIDE	21 35	1850	0 00	0
	Comboling Th I		1050	0.00	
	Cereberum /D L	3.24	1850	10.58	4680
	Cerebelum_Crusl_R	3.73	1850	2.61	21184
	Cerebelum_Crus2_R	3.51	1850	3.07	16936
	Cerebelum 6 R	2.43	1850	2.51	14360
	Cerebelum 7b R	2.00	1850	6.93	4272
	Compholum B B	1 89	1850	4 33	6472
	Cereberdi 5_K	1.45	1850	4.33	0472
	Vermis_8	1.51	1850	11.52	1944
	Cerebelum_Crus2_L	1.41	1850	1.37	15152
	Cerebelum_9_L	1.08	1850	2.30	6952
	Cerebelum Crusl L	0.65	1850	0.46	20824
	Vermis 7	0.22	1850	2.06	1552
52 4 - 26	Temperal Mid R	20.05	1.80	1 69	35272
01-P 1C	Temporal_Mid_K	38.95	190	1.00	31212
	Temporal_Pole_Mid_R	31.05	190	4.97	9496
	Temporal_Pole_Sup_R	15.26	190	2.17	10704
	OUTSIDE	10.53	190	0.00	0
	Temporal Inf R	4.21	190	0.22	28456
29 - 44 4	OUTRIDE	91 17	222	0.00	
20 - 44 4	OUISIDE	81.17	223	0.00	
	Precuneus_R	8.52	223	0.58	26120
	Hippocampus_R	4.48	223	1.06	7568
	Temporal_Sup_K	2.69	223	0.19	25128
	Calcarine_R	1.35	223	0.16	14888
	ParaHippocampal R	1.35	223	0.27	9056
	Linmal B	0.45	223	0.04	18400
16 - 20 20	OUTRIDE	01 22	107	0.00	10100
16-30 20	OUISIDE	81.22	197	0.00	U
	Cingulate_Mid_R	18.78	197	1.68	17624
32 - 44 68	Postcentral_R	81.82	22	0.47	30584
	Parietal Sup R	18.18	22	0.18	17776
-14 8 68	Frontal Sup 2 L	91 11	45	0 84	38960
	Sum Motor here I	0 00		0.10	1 71 7 6
0 40 50	OUTFITTER	0.09	40	0.19	11116
2 -40 -52	OUISIDE	100.00	28	0.00	0
-44 -32 50	Postcentral_L	100.00	31	0.80	31136
-2 -48 -40	Cerebelum 9 L	100.00	13	1.50	6952
60 - 22 36	SupraMarginal R	77.78	18	0.71	15792
	Postcentral P	22 23	10	0.10	30594
	roscontral_R		10	0.10	30384
-24 -60 64	Farietal_Sup_L	100.00	1	0.05	16520
28 - 28 - 22	Fusiform R	75.00	4	0.12	20144
	ParaHippocampal R	25.00	4	0.09	9056
-8 14 10	Caudate L	100.00	1	0.13	6344
34 - 20 - 22	ParaWinno.campal B	100.00		1 15	0055
54 -20 -22	Faranippocampai_k	100.00	13	1.13	90.06
-58 -46 -2	Temporal_Mid_L	100.00	1	0.02	39536
50 -2 18	Rolandic_Oper_R	66.67	3	0.15	10648
	OUTSIDE	33.33	3	0.00	0
56 - 36 50	Parietal Inf R	100.00	1	0.07	10760
46 -28 30	OUTRIDE	100.00	-	0.00	10100
40 - 28 30	COIDIDE C	100.00		0.00	U
-6 12 12	Caudate_L	100.00	1	0.13	63.4.4
-46 -14 -10	Temporal_Sup_L	100.00	2	0.09	18368
38 - 44 20	OUTSIDE	100.00	5	0.00	0
30 - 38 36	OUTSIDE	100.00	5	0.00	0
-10 -59 -39	OUTSIDE	100.00	-	0 00	
-10 -30 -20	ODDIDE D	100.00		0.00	
42 38 -12	OFCIAE_R	33.33	3	0.53	1504
	OFCant_R	33.33	3	0.15	5184
	Frontal_Inf_Orb_2_R	33.33	3	0.11	6992
58 -16 46	Postcentral R	100.00	1	0.03	30584
0 - 38 70	Paracentral Lobule B	100.00	1	0.32	6688
					0000

10.7	Preparación	vs apnea 30	segundos
------	-------------	-------------	----------

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
22 -84 -44	Cerebelum_Crus2_R	15.14	2760	19.74	16936
	Cerebelum_Crusl_R	14.28	2760	14.88	21184
	Cerebelum_Crusl_L	12.36	2760	13.10	20824
	Cerebelum_Crus2_L	12.03	2760	17.53	15152
	OUTSIDE	11.59	2760	0.00	0
	Lingual_R	4.93	2760	5.91	18400
	Cerebelum 8 R	3.95	2760	4.72	18464
	Cerebelum 6 R	3.95	2760	5 79	14360
	Cerebelum 7b R	3.73	2760	19.29	4272
	Cerebelum 7b L	2.17	2760	10.26	4680
	Fusiform L	1.96	2760	2.34	18472
	Vermis_6	1.85	2760	13.75	2968
	Cerebelum_6_L	1.70	2760	2.77	13552
	Vermis_7	1.16	2760	16.49	1552
	Occipital_Mid_R	1.12	2760	1.48	16784
	Cerebelum_9_R	1.09	2760	3.71	6472
	Cerebelum_9_L	0.80	2760	2.53	6952
	Lingual_L	0.72	2760	0.95	16760
	Decipital_Inf_L	0.65	2760	1.91	20144
	Vermis 8	0.29	2760	3.29	1944
	Cerebelum 8 L	0.14	2760	0.21	15096
	Calcarine R	0.04	2760	0.05	14888
2 - 26 70	OUTSIDE	69.66	3233	0.00	0
	Paracentral_Lobule_R	7.15	3233	27.63	6688
	Postcentral_R	3.93	3233	3.32	30584
	Precentral_R	3.74	3233	3.58	27048
	Paracentral_LODUIe_L	3.31	3233	7.93	10792
	Bolandia Oper R	2.78	2222	5.00	10568
	Insula R	2.07	3233	3.79	14160
	Precuneus L	1.89	3233	1.73	28224
	Cingulate Mid R	1.24	3233	1.82	17624
	Caudate_R	0.74	3233	2.81	6824
	Precuneus_R	0.74	3233	0.74	26120
	Frontal_Inf_Oper_R	0.19	3233	0.43	11192
	Putamen_R	0.15	3233	0.47	8499
	Thal_VL_R	0.12	3233	1.57	2032
	Thal_VPL_R	0.06	3233	1.29	1244
	Supramarginal_K	0.03	3233	0.05	15792
24 6 - 20	Temperal Bole Sup B	45 41	301	12.02	1008
14 0 50	ParaHippocampal R	23.88	381	8 04	9056
	OFOpost R	13.39	381	9.09	4488
	OUTSIDE	9.45	381	0.00	0
	Amygdala_R	6.56	381	10.08	1984
	Fusiform R	0.52	381	0.08	20144
	Olfactory_R	0.52	381	0.70	2283
	Temporal Pole Mid R	0.26	381	0.08	9496
-8 68 12	Frontal_Sup_Medial_K	42.86	161	3.23	17072
	Frontal_Sup_Medial_L	42.24	161	2.2/	23936
	OUTSIDE	3.11	161	0.00	0
	Frontal Sup 2 R	1.24	161	0.04	41008
-20 -28 26	OUTSIDE	87.37	2811	0.00	0
	Vermis_4_5	2.17	2811	9.17	5320
	Insula_L	2.06	2811	3.12	14864
	Rolandic_Oper_L	1.32	2811	3.74	7904
	Cingulate_Mid_L	1.28	2811	1.85	15528
	Caudate_L	1.07	2811	3.78	6344
	Postcentral_L	0.89	2811	0.64	31136
	Faracentral_LoDule_L	0.82	2811	1.70	10792
	vennia_3 Lippual R	0.60	2011	0.74	18400
	Precentral L	0.46	2811	0.37	28208
	Cerebelum 4 5 L	0.39	2811	0.98	9000
	Frontal Inf Oper L	0.39	2811	1.06	8304
	Precuneus L	0.21	2811	0.17	28224
	Cingulate_Post_L	0.21	2811	1.30	3704
	Parietal_Inf_L	0.04	2811	0.04	19576
22 66 2	Frontal_Sup_2_R	52.98	151	1.56	41008
	Frontal_Mid_2_R	40.40	151	1.26	38880
	Frontal_Sup_Medial_R	5.30	151	0.37	17072

	Frontal Inf_Orb_2 R	1.32	151	0.23	6992
-38 46 24	Frontal Mid 2 L	92.45	53	1.09	36056
	Frontal_Inf_Tri_L	7.55	53	0.16	20232
-16 0 -18	Temporal_Pole_Sup_L	34.01	147	3.89	10280
	Amygdala_L	29.25	147	19.55	1760
	BaraHinnocampal L	14.29	147	2 15	7824
	Hippocampus L	3.40	147	0.54	7456
	Temporal Pole Mid L	1.36	147	0.26	6040
	Olfactory_L	0.68	147	0.33	2449
-8 -14 -14	OUTSIDE	51.72	145	0.00	0
	SN_pr_L	25.52	145	69.65	425
	SN_pc_L	10.34	145	47.81	251
	Ned_N_L	4.14	145	10.34	464
	SN nc B	2 07	145	8 89	270
	VTA R	2.07	145	36.92	65
	Hippocampus L	0.69	145	0.11	7456
-10 4 72	Supp_Motor_Area_L	65.06	83	2.52	17176
	Frontal_Sup_2_L	22.89	83	0.39	38960
	OUTSIDE	12.05	83	0.00	0
0 -28 -44	OUTSIDE	94.44	90	0.00	0
20 52 -12	Cerebelum 9 R	5.56	90	0.62	5472
20 32 -12	OFCant R	27 27	22	0.25	5184
	Frontal_Sup_2_R	9.09	22	0.04	41008
-34 58 8	Frontal Mid 2 L	52.83	53	0.62	36056
	Frontal_Sup_2_L	47.17	53	0.51	38960
-46 28 38	Frontal_Mid_2_L	100.00	18	0.40	36056
-30 -94 -8	Occipital_Inf_L	75.00	4	0.32	7528
-4 69 -9	Decipital_Mid_L	25.00	4	1 25	26120
-22 -34 66	Postcentral L	100.00	36	0.92	31136
-38 -18 -14	OUTSIDE	75.86	29	0.00	0
	Hippocampus_L	24.14	29	0.75	7456
12 - 98 6	Cuneus_R	50.00	4	0.14	11392
	Calcarine_R	25.00	4	0.05	14888
	OUTSIDE	25.00	4	0.00	0
4 10 20	OUTSIDE Frontal Sup Medial R	100.00	38	0.00	1 70 7 2
10 58 34	Frontal Sup 2 R	42.86	14	0.37	41008
50 34 28	Frontal Inf Tri R	63.64	11	0.33	17208
	Frontal Mid 2 R	36.36	11	0.08	38880
-44 50 -10	Frontal Mid 2 L	62.50	8	0.11	36056
	OFClat_L	25.00	8	1.02	1576
	OUTSIDE	12.50	8	0.00	0
40 38 38	Frontal_Mid_2_R	100.00	9	0.19	38880
-10 -26 -40	OUTSIDE Supp Motor Area B	100.00	2	0.00	19969
10 11 00	OUTSIDE	20.00	15	0.00	10500
34 48 32	Frontal_Mid_2_R	100.00	8	0.16	4860
32 -40 -28	Cerebelum_6_R	85.71	7	0.33	1795
	Cerebelum_4_5_R	14.29	7	0.12	861
-46 -58 -36	Cerebelum_Crusl_L	100.00	1	0.04	2603
10 -20 -24	ParaHippocampal R	3.45	29	0.09	1132
-52 30 24	Frontal Inf Tri L	85.71	7	0.24	2529
	Frontal Mid 2 L	14.29	7	0.02	4507
18 -96 10	Cuneus_R	100.00	2	0.14	1424
-30 -38 -30	Cerebelum_6_L	62.50	8	0.30	1694
50 20 20	Cerebelum_4_5_L Exected Mid 2 R	37.50	8	0.27	1125
-20 62 22	Frontal Sup 2 L	100.00	2	0.12	4870
-16 -28 -14	ParaHippocampal L	75.00	8	0.61	978
	Hippocampus_L	12.50	8	0.11	932
	OUTSIDE	12.50	8	0.00	0
-24 60 22	Frontal_Sup_2_L	100.00	2	0.04	4870
44 -54 -24	Temporal_Inf_R	50.00	4	0.06	3557
- 42 50 6	Fusiform K	50.00	4	0.08	2518
-4 24 8	OUTSIDE	100.00	3	0.00	4507
48 -56 -16	Temporal_Inf_R	100.00	4	0.11	3557
-16 24 14	OUTSIDE	100.00	7	0.00	0
-36 38 40 22 -30 -30	Frontal Mid 2 L OUTSIDE	188.88	12	8:02	4507
6 - 98 0	OUTSIDE	100.00	3	0.00	0
-34 -8 30	OUTSIDE	100.00	1	0.00	0
44 -54 -28	Cerebelum_Crusl_R	100.00	1	0.04	2648
12 - 30 - 30	Cerebelum 9 L	44.44	9	0.46	869
18 -96 -10	Lingual_R	100.00	1	0.04	2300
-36 -36 -2	OUTSIDE	100.00	3	0.00	0
-18 -20 74	Precentral_L	100.00	1	0.03	3526
20 56 -8	Frontal Sup 2 R	100.00	1	0.02	5126
20 58 30	Frontal_Sup_2_R	100.00	1	0.02	5126
		table showsfirst local max	imum per cluster.		

10.8	Preparación	vs apnea 6	0 segundos
	1	1	0

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
42 -72 -24	OUTSIDE	19.42	8754	0.00	0
	Cerebelum_Crusl_R	6.40	8754	21.15	21184
	Cerebelum_6_R	6.16	8754	30.03	14360
	Lingual_R Camebalum Crussl L	5.80	8754	22.09	18400
	Cerebelum 6 L	5.48 A 01	9754	25.39	13552
	Cerebelum Crus2 R	4.90	8754	19.84	16936
	Cerebelum Crus2 L	4.01	8754	18.53	15152
	Fusiform R	3.35	8754	11.64	20144
	Temporal_Pole_Sup_R	3.19	8754	20.85	10704
	Cerebelum_8_R	2.67	8754	10.14	18464
	Fusiform_L	2.62	8754	9.92	18472
	Temporal_Inf_R	2.49	8754	6.13	28456
	Occipital Inf R	2.08	8754	18 10	7912
	Vermis 4 5	1.78	8754	23.46	5320
	Rolandic Oper R	1.37	8754	9.02	10648
	Cerebelum 7b R	1.34	8754	21.91	4272
	Vermis_6	1.30	87.54	30.73	2968
	OFCpost_R	1.30	8754	20.32	4488
	Insula_R	1.29	8754	6.38	14160
	ParaHippocampal_R	1.28	8754	9.89	9056
	Calcarine L	1.25	8754	4.21	19064
	Cerebelum 4 5 R	0.90	8754	9.18	6888
	Cerebelum 9 R	0.86	8754	9.27	6472
	Cerebelum_7b_L	0.86	8754	12.82	4680
	Hippocampus_L	0.73	8754	6.87	7456
	Temporal_Inf_L	0.72	8754	1.97	25600
	Kimpogampus R	0.66	9754	6 13	7569
	Frontal Inf Orb 2 R	0.64	8754	6.41	6992
	ParaHippocampal L	0.59	8754	5.32	7824
	Cerebelum_4_5_L	0.54	8754	4.18	9000
	Cerebelum_10_L	0.53	8754	31.94	1152
	Frontal_Inf_Oper_R	0.50	8754	3.15	11192
	Amygdala_R	0.48	8754	16.94	1984
	Vermis 7	0.42	8754	12.97	2283
	Cerebellum 10 B	0.37	8754	20.13	1272
	Cerebelum 8 L	0.33	8754	1.54	15096
	Cingulate_Post_R	0.32	8754	8.36	2680
	Precuneus_L	0.31	8754	0.77	28224
	Precuneus_R	0.25	8754	0.67	26120
	Vermis_8	0.22	8754	7.82	1944
	Vermie 3	0.21	9754	6.59	1924
	Thal MDm R	0.15	8754	11.65	893
	Cingulate Post L	0.14	8754	2.59	3704
	Cerebelum 3 R	0.10	8754	4.35	1656
	Postcentral R	0.09	8754	0.18	35272
	Occipital Mid L	0.06	8754	0.15	26120
	Calcarine R	0.06	8754	0.27	14888
	SN_pr_R	0.05	8754	7.19	445
	Temporal_Mid_L	0.05	8754	0.08	39536
	Thal_AV_R	0.03	8754	14.20	169
	Temporal_Pole_Mid_R	0.03	8754	0.25	9496
	Thal_PUM_R	0.02	8754	1.25	1280
	Heschl R	0.02	8754	0.80	1992
	Precentral R	0.02	8754	0.06	27048
	OFClat_R	0.01	8754	0.53	1504
	OFGned_R	0.01	8754	0.16	4968
-6 2 74	Frontal_Sup_Madial_L	13.77	2599	11.97	23936
	Frontal Sup 2 L	13.35	2599	7.13	38960
	Frontal Mid 2 T	11 50	2599	6.50	36056
	Supp Motor Area L	11.39	2599	13.79	17176
	Frontal Mid 2 R	10.35	2599	5.53	38880
	Frontal_Sup_Medial_R	8.23	2599	10.03	17072
	Supp_Motor_Area_R	8.16	2599	8.94	18968
	OUTSIDE	2.69	2599	0.00	0
	OFCant_R	2.54	2599	10.19	5184
	Paracentral_Lobule_L	1.50	2599	2.89	10792

	Precentral_R	0.96	2599	0.74	3381
	Paracentral_Lobule_R	0.65	2599	2.03	836
	OFClat L	0.62	2599	8.12	197
	Eroptal Inf Tri I	0.42	25.0.0	0 43	25.2.0
	Frontal Inf Tri B	0.38	2599	0.45	2151
	oppose X	0.35	2555	0.40	
	OFCane_L	0.35	2599	2.03	443
	Frontal_Inf_Orb_2_R	0.23	2599	0.69	874
	OFClat_R	0.04	2599	0.53	188
	Frontal_Med_Orb_R	0.04	2599	0.12	856
-36 24 -24	Temporal Pole Sup L	30.12	966	22.65	1285
	Bolandic Oper L	11 39	966	11 13	988
	To all a l	10.00	0.00		2050
	Insula_L	10.66	966	5.54	1828
	OUTSIDE	9.42	966	0.00	0
	Temporal_Sup_L	8.59	966	3.61	2296
	Amygdala_L	8.07	966	35.45	220
	OFCpost L	5.38	966	9.17	567
	Frontal Inf Oper L	4.87	966	4.53	1038
	Exected Inf Orb 2 I	4 24	966	5 04	014
	Froncar_int_oeb_z_b	4.24	566	3.04	014
	ParaHippocampa1_L	3.42	966	3.37	978
	Olfactory_L	1.76	966	5.84	291
	Frontal_Inf_Tri_L	0.83	966	0.32	2529
	Hippocampus L	0.72	966	0.75	932
	Temporal Pole Mid L	0.31	966	0.40	755
	OFClat L	0.21	966	1.02	197
-6 -66 60	Precuneus L	37.12	458	4.82	3528
	Precuneus R	29.48	458	4.13	3265
	Occipital Sup B	11 14	459	3 61	1413
	occipical_sup_k	11.14	438	3.61	1415
	Cuneus_R	7.64	458	2.46	1424
	Occipital_Sup_L	3.93	458	1.32	1366
	OUTSIDE	3.28	458	0.00	0
	Parietal Sup R	2.62	458	0.54	2222
	Occipital Mid R	1.75	458	0.38	2098
	Parietal Sun L	1 53	458	0 34	20.65
	Democratical John Lo D	1.33	450	0.04	2005
	Paracentral_Lobule_R	0.87	458	0.48	836
	Cuneus_L	0.66	458	0.20	1521
8 - 98 8	Cuneus_R	39.02	41	1.12	1424
	OUTSIDE	34.15	41	0.00	0
	Calcarine R	19.51	41	0.43	1861
	Calcarine L	7.32	41	0.13	2258
-14 -22 -20	OUTRIDE	100.00	12	0.00	
-4 60 -0	Droptal Mad Orb I	70.00	18	1 81	710
-4 00 -0	Froncar_Dord_CED_L	12.22	18	1.81	719
	Frontal_Med_Orb_R	27.78	18	0.58	856
42 0 16	Rolandic_Oper_R	51.02	49	1.88	1331
	OUTSIDE	34.69	49	0.00	0
	Insula R	14.29	49	0.40	1770
-16 -8 26	OUTSIDE	70.73	41	0.00	0
10 0 10	Condate I	20.27	41	1 49	0.05
	cadace	29.27	41	1.49	803
22 -16 26	OUISIDE	92.79	222	0.00	U
	Insula_R	5.41	222	0.68	1770
	Cauda Ce_K	0.90	222	0.23	861
	Rolandic_Oper_R	0.90	222	0.15	1331
-42 -50 58	Parietal_Inf_L	100.00	20	0.82	2447
60 - 54 2	Temporal_Mid_R	100.00	13	0.29	4409
50 -4 54	Frontal_Mid_2_R	100.00	24	0.49	4860
26 20 62	Frontal Sup 2 R	55.56	18	0.20	5126
	Frontal Mid 2 R	33.33	18	0.12	4860
	OUTSIDE	11.11	18	0.00	0
38 - 62 56	Parietal Sun R	75.00	12	0 41	2222
50 01 50	howlar P	16 67	12	0.11	1752
	Rariotal Inf R	0.07	12	0.07	1345
~ ~ ~	Farietal_Inr_K	8.33	12	0.07	1345
64 -6 -10	Temporal_sup_K	77.78	9	0.22	3141
	Temporal Mid R	22.22	9	0.05	4409
-62 -34 26	supraMarginal_L	100.00	26	2.07	1256
8 - 34 50	Paracentral_Lobule_R	69.23	13	1.08	836
	Cingulate_Mid_R	23.08	13	0.14	2203
	Precuneus_R	7.69	13	0.03	3265
26 8 68	Frontal Sup 2 R	100.00	13	0.25	5126
36 24 52	Frontal Mid 2 R	75.00	12	0.19	4860
	Frontal Sup 2 B	25.00	12	0 06	5126
-46 -56 -38	Cambalum Crusl L	100.00	6	0.23	2603
52 -46 53	Pariotal Inf P	100.00	-	0.45	1345
32 -46 32	Farietal_Inr_K	100.00	6	0.45	1343
-4 -80 44	Precuneus_L	100.00	1	0.03	3528
-62 -22 20	supramarginal_L	83.33	12	0.80	1256
	Postcentral L	16.67	12	0.05	38 9 2
-40 -4 62	Precentral_L	100.00	2	0.06	3526
-46 -78 18	Occipital_Mid_L	100.00	1	0.03	3265
-46 -42 56	Parietal_Inf_L	100.00	2	0.08	2447
-28 -84 32	Occipital Mid L	100.00	3	0.09	3265
-60 -44 -8	Temporal Mid L	100.00	4	0.08	4942
48 -52 54	Parietal Inf B	100 00		0.15	1345
-30 40 36	OPCast I	100.00		1 35	1343
-36 -30 -16	Doctorotrol 7	100.00		1.35	2000
-20 -30 74	Forcentral_L	100.00	-	0.10	3892
-32 46 34	Frontal_Mid_2_L	100.00	1	0.02	4507
-54 -38 -12	Temporal_Mid_L	100.00	2	0.04	4942
-64 -18 -14	Temporal_Mid_L	100.00	1	0.02	4942
18 12 20	Caudate_R	100.00	2	0.23	861
-50 -44 52	Parietal Inf L	100.00	1	0.04	2447
36 -2 64	Frontal Mid 2 R	100.00	1	0.02	4860
-30 -92 -14	Lingual T.	100.00	1	0 05	20.95
					2023

table snowstirst local maximum per cluster.

10.9	Preparación	vs apnea 90) segundos
	1	1	0

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
38 -78 -22	OUTSIDE	22.26	8432	0.00	٥
	Cerebelum_6_L	8.17	8432	40.67	13552
	Cerebelum_6_R	7.76	8432	36.43	14360
	Cerebelum Crusl R	7.53	8432	24.39	20824
	Cerebelum Crus2 L	5.14	8432	22.86	15152
	Lingual R	4.34	8432	15.91	18400
	Cerebelum_Crus2_R	4.22	8432	16.82	16936
	Fusiform_L	3.17	8432	11.56	18472
	Fusiform_R	2.72	8432	9.09	20144
	Cerebelum_8_R	2.40	8432	8.75	18464
	Temporal_Inf_R	2.05	84.32	4.86	28456
	Occipital Inf R	1.67	8432	14.26	7912
	Lingual L	1.58	8432	6.35	16760
	Occipital_Inf_L	1.34	8432	12.01	7528
	Cerebelum_7b_R	1.33	8432	20.97	4272
	Vermis_6	1.30	8432	29.65	2968
	Hippocampus_L	1.29	8432	11.70	7456
	Cerebelum_9_L BaraHinnocommol I	1.15	8432	11.16	6952
	Temoral Inf L	1.14	8432	2 69	25600
	Cerebelum 9 R	0.94	8432	9.77	6472
	Cerebelum_4_5_R	0.91	8432	8.94	6888
	Cerebelum 7b L	0.82	8432	11.79	4680
	Hippocampus_R	0.79	8432	7.08	7568
	Carebolum 10 I	0.75	8432	2.79	1152
	ParaHippocampal R	0.56	8432	4.15	9056
	Cerebelum 4 5 L	0.52	8432	3.91	9000
	Vermis_7	0.47	8432	20.62	1552
	Vermis_3	0.33	8432	12.28	1824
	Cerebelum_8_L	0.31	8432	1.38	15096
	Cingulate_Post_R	0.31	8432	7.76	2680
	Vermis_8	0.26	8432	9.05	1944
	Precuneus L	0.25	8432	0.60	28224
	SN pr L	0.23	8432	35.76	425
	Precuneus_R	0.18	8432	0.46	26120
	Cingulate_Post_L	0.18	8432	3.24	3704
	SN_pc_L	0.17	8432	44.62	251
	Thal_MDm_R	0.14	8432	10.75	893
	Temporal Mid L	0.05	8432	3.86	39536
	Thal PuM R	0.04	8432	1.88	1280
	Thal_PuM_L	0.04	8432	1.79	1343
	Thal_MDm_L	0.04	8432	2.61	921
	Cerebellum_10_R	0.04	8432	1.89	1272
	Occipital_Mid_L	0.02	8432	0.06	26120
	SN_pr_k	0.01	8432	1.80	445
	SN_PC_R	0.01	9432	2.96	270
	Calcarine R	0.01	8432	0.05	14888
36 26 - 26	Temporal Pole Sup R	36.54	509	13.90	10704
	OFCpost_R	21.02	509	19.07	4488
	ParaHippocampal_R	14.34	509	6.45	9056
	OUTSIDE	10.22	509	0.00	0
	Olfactory_R	7.47	509	13.32	2283
	Amygdala_K Insula_R	2 36	509	12.90	14160
	Temporal Pole Mid R	0.79	509	0.34	9496
	OFClat_R	0.39	509	1.06	1504
	Frontal_Inf_Orb_2_R	0.39	509	0.23	6992
	OFOned_R	0.20	509	0.16	4968
-38 24 -28	Temporal Pole_Sup_L	44.59	545	18.91	10280
	OUTSIDE	10.28	545	0.00	1,60
	ParaHippocampal L	8.26	545	4.60	7824
	OFCpost_L	6.97	545	6.70	4536
	Rolandic_Oper_L	4.59	545	2.53	7904
	Olfactory_L	3.85	545	6.86	2449
	Temporal_Sup_L	2.02	545	0.48	18368
	Frontal Inf Oper L Temporal Polo Mid J	1.83	545	0.96	8304
	Frontal Inf Orb 2 L	0.55	545	0.37	6512
		0.30		0.01	War a di

	Hippocampus_L	0.37	545	0.21	7456
	Insula_L	0.37	545	0.11	14864
	OFClat_L	0.18	545	0.51	1576
-6 -66 60	Precuneus_L	52.50	200	2.98	28224
	Precuneus_K	41.00	200	2.51	26120
	OUTSIDE	2 50	200	0.27	1///6
	Parietal Sup L	1.00	200	0.10	16520
6 -12 76	Supp Motor Area L	39.58	528	9.73	17176
	Supp_Motor_Area_R	29.55	528	6.58	18968
	Paracentral Lobule L	11.17	528	4.37	10792
	OUTSIDE	7.58	528	0.00	0
	Paracentral_Lobule_R	7.01	528	4.43	6688
	Frontal_Sup_2_R	3.98	528	0.41	41008
	Frontal Sup Z L	0.76	528	0.08	38960
-18 -8 26	OUTSIDE	83.80	179	0.00	11012
	Caudate L	16.20	179	3.66	6344
4 64 18	Frontal Sup Medial R	75.00	16	0.56	17072
	Frontal Sup Medial L	25.00	16	0.13	23936
-4 68 -8	Frontal Med Orb L	82.35	17	1.95	5752
	Frontal_Sup_2_L	11.76	17	0.04	38960
	Frontal_Med_Orb_R	5.88	17	0.12	6848
36 50 24	Frontal_Mid_2_R	84.72	72	1.26	38880
	Frontal_Sup_2_R	15.28	72	0.21	41008
18 - 14 28	OUTSIDE	87.10	248	0.00	0
	Caudate_R	12.90	248	3.75	6824
20 64 -2	Prontal_Sup_2_R	45.00	60	0.53	41008
	Frontal Inf Orb 2 B	5.67	60	0.47	6992
	OFClat R	5.00	60	1.60	1504
	OFCant R	5.00	60	0.46	5184
-30 56 20	Frontal_Mid_2_L	62.50	96	1.33	36056
	Frontal_Sup_2_L	37.50	96	0.74	38960
-34 58 -4	Frontal_Mid_2_L	52.27	44	0.51	36056
	Frontal_Sup_2_L	40.91	44	0.37	38960
	OFClat_L	6.82	44	1.52	1576
26 - 38 - 40	Prontal_Sup_2_L	78 13	20	0.41	38960
10 50 40	Cerebellum 10 R	21.88	32	4.40	1272
2 54 38	Frontal Sup Medial L	79.31	29	0.77	23936
	Frontal_Sup_Medial_R	20.69	29	0.28	17072
32 -18 70	Precentral_R	97.50	40	1.15	27048
	Frontal_Sup_2_R	2.50	40	0.02	41008
60 2 10) Rolandic_Oper_R	95.65	46	3.31	10648
	Postcentral_R	4.35	46	0.05	30584
26 - 84 34	Occipital_Sup_R	100.00	5	0.35	11304
30 - 56 6	Calcarine_R	100.00	16	0.86	14888
44 - 20 - 20	Fusiform R	20.00	5	0.04	20144
32 18 60	Frontal_Mid_2_R	66.67	3	0.04	38880
	Frontal_Sup_2_R	33.33	3	0.02	41008
36 20 56	Frontal_Mid_2_R	100.00	3	0.06	38880
4 -96 10	Calcarine_L	100.00	2	0.09	18064
12 -82 46	Cuneus_R	100.00	1	0.07	11392
-24 -28 74	Fostcentral_L	100.00	12	0.31	31136
-16 -32 -30	Cerebelum 4 5 L	25.00		0.00	0000
-14 66 14	Frontal Sup 2 L	100.00	4	0.08	38960
30 52 -14	OFCant R	100.00	3	0.46	5184
16 -84 42	Cuneus_R	100.00	3	0.21	11392
42 2 16	OUTSIDE	66.67	3	0.00	0
	Rolandic_Oper_R	33.33	3	0.08	10648
52 -4 52	Frontal_Mid_2_R	100.00	2	0.04	38880
8 - 98 8	OUTSIDE	100.00	1	0.00	0
36 -8 26	Hippocampus B	100.00	3	0.00	75.69
60 - 54 4	Temporal Mid R	100.00	2	0.05	35272
48 -6 56	Frontal Mid 2 R	100.00	1	0.02	38880
-16 14 68	Frontal Sup 2 L	100.00	1	0.02	38960
	= =	table showsfirst local ma	aximum per cluster.		

10.10 Apnea vs prej	paración 30 segundos
---------------------	----------------------

,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
8 36 52	Frontal_Sup_Medial_L	12.47	8351	34.79	23936
	Frontal_Mid_2_L	11.70	8351	21.68	36056
	Frontal_Sup_2_L	10.59	8351	18.15	38960
	Frontal_Sup_2_R	7.89	8351	12.86	41008
	Frontal_Sup_Medial_R	7.42	8351	29.05	17072
	ACC_pre_L	5.71	8351	76.08	5016
	ACC_pre_R	5.03	8351	64.81	5184
	Supp_Motor_Area_L	5.01	8351	19.47	17176
	Supp_Motor_Area_R	4.55	8351	16.03	18968
	Frontal_Inf_Tri_L	4.41	8351	14.55	20232
	ACC_SUD_L	4.13	8351	57.02	4840
	ACC_SUD_R	3.07	8351	48.03	4264
	Precentral L	2.55	8351	6 52	28208
	Cinculate Mid B	2,39	8351	9.08	17624
	OUTSIDE	2.16	8351	0.00	0
	Frontal Inf Oper L	2.01	8351	16.18	8304
	Frontal Med Orb L	1.56	8351	18.08	5752
	Cingulate Mid L	1.21	8351	5.20	15528
	Frontal Inf Tri R	1.20	8351	4.65	17208
	Frontal_Med_Orb_R	0.84	8351	8.18	6848
	Frontal_Inf_Orb_2_L	0.57	8351	5.90	6512
	OFClat_L	0.24	8351	10.15	1576
	OFCpost_L	0.07	8351	1.06	4536
	Frontal_Inf_Orb_2_R	0.04	8351	0.34	6992
16 U -2	OUTSIDE Futamon P	22.75	2365	0.00	0
	Futamen_R	15.10	2365	33.60	8499
	Caudate_R	15.05	2365	41.74	6824
	Caudate_L	15.01	2365	44.77	2067
	Excepted Inf Tri R	5.06	2365	6 56	17209
	Ingula R	5.90	2365	7.06	14160
	Pallidum R	4.69	2365	39.64	2240
	Frontal Inf Oper R	3.89	2365	6.58	11192
	Pallidum L	2.75	2365	22.18	2344
	Frontal Inf Orb 2 R	0.93	2365	2.52	6992
	Thal_VL_R	0.25	2365	2.36	2032
	Rolandic_Oper_R	0.21	2365	0.38	10648
	Thal_AV_R	0.13	2365	14.20	169
	Thal_VA_R	0.08	2365	2.68	596
	Thal_VA_L	0.04	2365	1.28	624
	Thal_AV_L	0.04	2365	5.76	139
4 -76 40	Temporal_Sup_L	13.39	9767	56.97	18368
	Temporal Mid L	11.03	9767	21.79	39536
	Angular R	7.41	9767	41.32	14016
	Parietai_inr_L	7.04	9767	28.12	19576
	Angular_L Broompous R	5.19	9767	16.00	9384
	Precuneus T.	5.64 4 64	9767	12.84	28224
	Parietal Sup L	4.09	97.67	19.32	16520
	Cuneus_L	4.01	9767	25.77	12168
	Parietal Inf R	3.84	9767	27.88	10760
	Occipital_Sup_R	3.40	9767	23.50	11304
	Parietal_Sup_R	2.93	9767	12.87	17776
	Cuneus_R	2.87	9767	19.66	11392
	Occipital_Sup_L	2.75	9767	19.69	10928
	Occipital_Mid_L	2.68	9767	8.02	26120
	OUTSIDE	2.61	9767	0.00	0
	SupraMarginal_L	1.84	9767	14.33	10048
	Occipital_Mid_R	1.53	9767	7.10	16784
	Cingulate_Fost_L	1.45	9767	30.67	3704
	Futamen_L	1.29	9767	12.65	7967
	SupraMarrinal R	1 13	9767	5.57	15792
	Bolandic Oper L	1.06	9767	10.53	7904
	ParaHippocampal T	1 00	9767	10.02	7824
	Hippocampus L	0.85	9767	8.91	7456
	Cingulate Post R	0.77	9767	22.39	2680
	Insula L	0.71	9767	3.71	14864
	Postcentral L	0.61	9767	1.54	31136
	Cingulate Mid R	0.54	9767	2.41	17624
	Amygdala L	0.41	9767	18.18	1760
		0 33	07.67	0 97	25600
	Temporal inf L	0.32	2/0/	4.27	* 3000
	Temporal_Inf_L Temporal Pole Mid L	0.32	9767	4.11	6040

	Pallidum_L	0.10	9767	3.41	2344
	Temporal_Pole_Sup_L	0.08	9767	0.62	10280
	Temporal_Mid_R	0.01	9767	0.02	35272
	Cingulate_Mid_L	0.01	9767	0.05	15528
38 10 -36	Temporal_Pole_Mid_R	88.37	86	6.40	9496
	Temporal_Pole_Sup_R	11.63	86	0.75	10704
12 -66 -36	OUTSIDE	28.37	2002	0.00	0
	Cerebelum_8_R	22.48	2002	19.50	18464
	Cerebelum_8_L	17.83	2002	18.92	15096
	Vermis_8	7.89	2002	65.02	1944
	Cerebelum_7b_L	3.40	2002	11.62	4680
	Cerebelum_Crusl_L	3.20	2002	2.46	20824
	Cerebelum 9 L	2.85	2002	6.56	6952
	Campbolum Crus2 R	2.45	2002	28.16	1392
	Carabalum 0 P	2.15	2002	2.03	10936
	Vermis 10	1.90	2002	31 25	896
	Cerebelum Crus2 L	1 55	2002	1 64	15152
	Cerebelum 7h B	1 25	2002	4 68	4272
	Cerebelum Crusl R	1.05	2002	0.79	21184
	Vermis 7	1.00	2002	10.31	1552
	Cerebelum 6 R	0.70	2002	0.78	14360
	Vermis 6	0.15	2002	0.81	2968
	Cerebelum_4_5 R	0.05	2002	0.12	68.88
68 - 34 6	Temporal_Sup_R	39.52	1746	21.97	25128
	Temporal Mid R	31.44	1746	12.45	35272
	OUTSIDE	10.48	1746	0.00	0
	Heschl_R	5.73	1746	40.16	1992
	Insula_R	5.73	1746	5.65	14160
	Rolandic_Oper_R	3.61	1746	4.73	10648
	Putamen_R	2.41	1746	3.95	8499
	Occipital_Mid_R	0.92	1746	0.76	16784
	Temporal_Pole_Sup_R	0.11	1746	0.15	10704
	Hippocampus_R	0.06	1746	0.11	7568
-24 -64 -10	Fusiform_L	47.98	198	4.11	18472
	Lingual_L	44.44	198	4.20	16760
	Occipital_Inf_L	5.05	198	1.06	7528
	Cerebelum_6_L	1.52	198	0.18	13552
	OUTSIDE	1.01	198	0.00	0
16 - 90 - 4	Lingual_R	65.22	299	8.48	18400
	Fusicom R	20.07	299	2.30	20144
	Calcarine K	0 33	299	0.10	14000
22 40 -12	OFCast R	74.36	299	4 49	5194
22 40 -12	OUTSIDE	17.95	39	0.00	0
	Frontal Inf Orb 2 B	5.13	39	0.23	6992
	OFCoost B	2.56	39	0.18	4488
-42 -12 56	Precentral L	68.57	35	0.68	28208
	Postcentral L	31.43	35	0.28	31136
0 -22 28	OUTSIDE	66.67	45	0.00	0
	Cingulate_Mid_R	28.89	45	0.59	17624
	Cingulate_Mid_L	4.44	45	0.10	15528
8 -6 0	OUTSIDE	50.00	30	0.00	0
	Thal_VA_R	33.33	30	13.42	596
	Thal_IL_R	10.00	30	6.03	398
	Thal_Re_R	6.67	30	200.00	8
-56 -8 20	Postcentral_L	100.00	46	1.18	31136
-64 -20 24	Postcentral_L	91.30	23	0.54	31136
-22 28 -12	SupraMarginal L	8.70	23	0.16	10048
-22 30 -12	OFCast I	30.00	22	1 13	26036
	OFCast I	12 64	22	0.53	4536
	Frontal Inf Orb 2 L	9.09	22	0.35	4536
	Frontal Sup 2 L	4.55	22	0.02	38960
-52 -16 38	Postcentral L	100.00	32	0.82	31136
18 16 -16	Rectus R	83.33	12	1.34	5960
	OFGned R	8.33	12	0.16	4968
	OUTSIDE	8.33	12	0.00	0
-36 16 -8	Insula L	100.00	19	1.02	14864
30 -12 -28	ParaHippocampal R	50.00	40	1.77	9056
	Hippocampus_R	40.00	40	1.69	7568
	Hippocampus_R Fusiform_R	40.00	40 40	1.69	7568 20144

16	-28	14	Thal_PuM_R	52.00	25	8.13	1280
			OUTSIDE	48.00	25	0.00	0
-18	-92	-8	Occipital_Mid_L	53.33	15	0.25	26120
			Occipital Inf L	33.33	15	0.53	7528
			Fusiform L	6.67	15	0.04	18472
			OUTSIDE	6.67	15	0.00	0
66	-16	-8	Temporal_Mid_R	50.00	4	0.05	35272
			Temporal_Sup_R	50.00	4	0.06	25128
40	0	56	Frontal_Mid_2_R	100.00	8	0.16	38880
0	-78	10	Calcarine_L	92.31	26	1.06	18064
			Lingual_L	7.69	26	0.10	16760
30	-14	68	Precentral_R	80.00	5	0.12	27048
			Frontal_Sup_2_R	20.00	5	0.02	41008
-12	-78	4	Lingual_L	50.00	8	0.19	16760
			Calcarine_L	50.00	8	0.18	18064
-18	-32	0	Thal_PuA_L	44.44	9	17.20	186
			Thal_MGN_L	44.44	9	18.08	177
			Thal_PuM_L	11.11	9	0.60	1343
30	-24	-20	ParaHippocampal_R	100.00	5	0.44	9056
24	-8	70	Frontal_Sup_2_R	100.00	2	0.04	41008
-54	8	6	Frontal_Inf_Oper_L	100.00	2	0.19	8304
-36	-76	0	Occipital_Mid_L	100.00	2	0.06	26120
32	-10	66	Frontal_Sup_2_R	100.00	1	0.02	41008
-66	-40	2	Temporal_Mid_L	100.00	1	0.02	39536

table showsfirst local maximum per cluster.

Height threshold: T = 3.09, p = 0.001 (0.999) Extent threshold: k = 0 voxels, p = 1.000 (0.999) Expected voxels per cluster, \ll = 31.526 Expected number of clusters, \ll = 6.78

10.11 Apnea vs	preparación 60	segundos
----------------	----------------	----------

10,111-p	new (s preparation of	5 5 6 6 6 1 6 7 6	~		
x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
46 - 28 58	OUTSIDE	22.20	86277	0.00	0
	Frontal Sup 2 R	2.74	86277	46.10	41008
	Frontal Sup 2 L	2.71	86277	48.07	38960
	Postcentral_R	2.40	86277	54.20	30584
	Temporal_Mid_L	2.40	86277	41.83	39536
	Postcentral_L	2.28	86277	50.57	31136
	Precentral_L	2.27	86277	55.56	28208
	Precuneus_R	2.25	86277	59.54	26120
	Parietal_Inf_L	1.99	86277	70.17	19576
	Precuneus L	1.95	86277	47.59	28224
	Frontal_Mid_2_L	1.88	86277	36.08	36056
	Occipital Mid L	1.05	96277	46.40	26120
	Frontal Inf Tri L	1.66	86277	56.66	20232
	Temporal Sup R	1.59	86277	43.58	25128
	Precentral R	1.44	86277	36.73	27048
	Frontal_Sup_Medial_L	1.43	86277	41.21	23936
	Supp_Motor_Area_R	1.29	86277	46.86	18968
	Angular_R	1.25	86277	61.59	14016
	Temporal_Sup_L	1.23	86277	46.25	18368
	Cingulate_Mid_R	1.21	86277	47.25	17624
	Calcarine_L	1.20	86277	45.93	18064
	Parietal_Sup_L	1.20	86277	49.98	16520
	Calcarine_R	1.20	86277	55.45	14888
	Fusiform L	1.14	86277	42.44	18472
	Lingual_L	1.09	86277	45.01	16760
	Angular_L	1.09	86277	80.31	9384
	Cuneus_L	1.09	86277	61.74	12168
	Fusiform_R	1.05	86277	35.86	20144
	Cuneus_R	1.03	86277	62.36	11392
	Cingulate Mid L	1.02	86277	45.44	15528
	Farietal_Sup_K	0.99	86277	38.48	17776
	Supp_Notor_Area_L	0.99	86277	39.78	15782
	Occipital Mid R	0.94	86277	38.61	16784
	Parietal Inf R	0.85	86277	54.65	10760
	Cerebelum 8 R	0.82	86277	30.55	18464
	Lingual_R	0.80	86277	29.87	18400
	Frontal_Sup_Medial_R	0.78	86277	31.63	17072
	Cerebelum_8_L	0.77	86277	35.19	15096
	Paracentral_Lobule_L	0.69	86277	44.18	10792
	Occipital_Sup_R	0.69	86277	41.97	11304
	Occipital_Sup_L	0.68	86277	43.19	10928
	Frontal_Inf_Tri_R	0.67	86277	26.69	17208
	Putaman R	0.61	86277	10.44	23600
	Himocompus B	0.61	86277	55.07	7569
	Insula L	0.58	86277	26.96	14864
	SupraMarginal L	0.57	86277	38.85	10048
	ACC pre R	0.54	86277	72.53	5184
	ParaHippocampal R	0.54	86277	41.17	9056
	Putamen_L	0.52	86277	44.89	7967
	ACC_sup_R	0.51	86277	82.18	4264
	Frontal_Inf_Orb_2_L	0.50	86277	53.32	6512
	Frontal_Inf_Oper_L	0.49	86277	40.66	8304
	Occipital_Inf_L	0.47	86277	42.83	7528
	Hippocampus_L	0.45	86277	41.85	7456
	Temporal_Inf_R	0.44	86277	10.66	28456
	Cingulate_Post_L	0.42	86277	78.19	3704
	Caudate I	0.42	86277	44 01	6344
	Carebelum 9 L	0.39	86277	38 32	6952
	ACC pre L	0.36	86277	49.12	5016
	ParaHippocampal L	0.35	86277	30.47	7824
	Insula_R	0.33	86277	16.05	14160
	Cerebelum_6_R	0.30	86277	14.60	14360
	Frontal_Inf_Orb_2_R	0.30	86277	29.98	6992
	Temporal_Pole_Sup_L	0.29	86277	19.61	10280
	Cerebelum_9_R	0.29	86277	30.53	6472
	Temporal_Pole_Mid_R	0.27	86277	19.97	9496
	Paracentral_Lobule_R	0.26	86277	27.27	6688
	Caudate R	0.26	86277	26.03	6824
	Frontal_inf_Oper_R	0.25	86277	15.58	11192
	cinguiate_Post_K	0.24	0 64 / /	61.79	2080

	Pallidum L	0.19	96277	56 66	2344
	Polandia Oper P	0.19	0 62 7 7	12 22	10649
	Combolum Court I	0.19	0 (2 7 7	0 55	10040
	Cerebelum Crusz L	0.19	0 (2 7 7	8.33	13132
	Control Tof R	0.18	86277	3.97	21104
	Dellidur D	0.18	86277	15.67	7912
	Pallidum_K	0.17	86277	52.86	2240
	Temporal_Pole_Mid_L	0.16	86277	18.54	6040
	Cerebelum_4_5_L	0.16	86277	12.00	9000
	Vermis_8	0.15	86277	53.09	1944
	Cerebelum_Crus2_R	0.15	86277	6.05	16936
	Amygdala_R	0.15	86277	50.81	1984
	Thal_VPL_R	0.14	86277	80.39	1244
	Cerebelum_7b_L	0.14	86277	20.85	4680
	Thal_VL_L	0.13	86277	42.96	2160
	Heschl_L	0.13	86277	51.11	1800
	Cerebelum_Crusl_L	0.13	86277	4.19	20824
	Temporal_Pole_Sup_R	0.12	86277	8.00	10704
	Heschl_R	0.12	86277	41.37	1992
	Thal_VPL_L	0.12	86277	61.73	1309
	Thal VL R	0.12	86277	39.37	2032
	Thal PuM R	0.11	86277	61.88	1280
	Vermis 7	0.11	86277	48.45	1552
	Rolandic Oper L	0.09	86277	8.00	7904
	Frontal Med Orb L	0.09	86277	10.85	5752
	OFCoost R	0.09	86277	13.73	4488
	Vermis 10	0.09	86277	66.96	896
	OFCpost L	0.08	86277	11.82	4536
	Vermis 9	0.07	86277	36.78	1392
	Amundala I.	0.07	86277	28 64	1760
	Thal PuM L	0.06	86277	33.36	1343
	Thal II.I.	0.06	86277	94 12	459
	That ILL	0.06	06277	34.12	439
	Compalym 6 I	0.06	86277	3 13	13553
	Cerebelun_6_L	0.06	86277	3.13	13552
	Thai_IL_K	0.05	86277	90.45	398
	Cepebelum_7b_R	0.05	86277	8.24	4272
	OFCant_R	0.05	86277	6.17	5184
	Cerebelum_3_L	0.04	86277	27.94	1088
	Frontal_Med_Orb_R	0.04	86277	3.86	6848
	Thal_MDm_L	0.04	86277	26.93	921
	Thal_MDm_R	0.03	86277	25.08	893
	Thal_LP_L	0.03	86277	94.98	219
	Thal_PuI_R	0.03	86277	100.50	199
	Thal_PuL_R	0.03	86277	75.76	264
	Thal_PuA_R	0.03	86277	84.75	236
	Vent_Str_R	0.03	86277	15.42	1193
	Cerebelum_4_5_R	0.03	86277	2.67	6888
	Thal_PuA_L	0.03	86277	94.62	186
	Thal LGN L	0.03	86277	75.86	232
	Vermis_6	0.02	86277	5.39	2968
	Thal LGN R	0.02	86277	64.41	236
	Thal_VA_L	0.02	86277	24.36	624
	Thal_MGN_L	0.02	86277	72.32	177
	Thal_PuL_L	0.02	86277	44.80	250
	Thal MGN R	0.02	86277	65.12	172
	Thal_MD1_R	0.02	86277	36.75	283
	OFClat L	0.02	86277	6.60	1576
	Thal LP R	0.01	86277	54.24	177
	Thal MD1 L	0.01	86277	29.20	274
	OFCLAT R	0.01	86277	5.32	1504
	OFOmed B	0.01	86277	1 61	4968
	LC B	0 01	86277	75.47	53
	Vermis 3	0.00	86277	1 75	1824
	OFCant L	0.00	86277	0.90	35.4.4
	Thal Pull	0.00	86277	11 37	2044
	Thal AV L	0.00	0.000.00	17 37	120
	That_AV_L	0.00	002//	17.27	139
	Wennis 12	0.00	86277	5.76	417
	That No A	0.00	002/7	200.00	8
	Neccus_R	0.00	86277	0.27	2960
	Thai_Re_L	0.00	86277	100.00	8
-4 -64 -12	Vermis_4_5	58.82	68	6.02	5320
	Cerebelum_6_L	22.06	68	0.89	13552
	Vermis_6	10.29	68	1.89	2968
	Cerebelum 4 5 L	8.82	68	0.53	9000

table shows first local maximum per cluster.

10,12 riplica vs preparación >0 segundo	10.12	Apnea v	s preparación	90 segundos
---	-------	---------	---------------	-------------

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
8 12 0	8 OUTSIDE	9.53	56183	0.00	0
	Frontal_Sup_2_L	4.06	56183	46.88	38960
	Frontal_Sup_2_R	3.58	56183	39.21	41008
	Temporal_Mid_L	3.16	56183	35.98	39536
	Frontal_Sup_Medial_L	3.15	56183	59.09	23936
	Parietal_Inf_L	3.13	56183	71.80	19576
	Postcentral_L	3.03	56183	43.76	31136
	Frontal_Mid_2_L	3.03	56183	37.72	36056
	Precuneus_R	2.81	56183	48.30	26120
	Precentral_L	2.75	56183	43.85	28208
	Precuneus_L	2.47	56183	39.40	28224
	Frontal_Inf_Tri_L	2.37	56183	52.55	20232
	Temporal_Mid_R	2.11	56183	26.88	35272
	Occipital_Mid_L	1.85	56183	31.82	26120
	Postcentral_R	1.84	56183	27.05	30584
	Frontal_Sup_Medial_R	1.81	56183	47.56	17072
	Angular_R	1.77	56183	56.74	14016
	Parietal_Sup_L	1.75	56183	47.65	16520
	Angular_L	1.64	56183	78.60	9384
	Temporal_Sup_L	1.62	56183	39.63	18368
	Frontal Mid 2 R	1.58	56183	18.31	38880
	Cuneus_L	1.56	56183	57.53	12168
	Temporal_Sup_R	1.54	56183	27.57	25128
	Cuneus_R	1.50	56183	59.27	11392
	Putamen L Putamen R	1.40	56183	79.23	7967
	Calcarine L	1 39	56183	34 68	19064
	Parietal Sun R	1 26	56183	31 95	17776
	Sum Motor Area B	1 19	56193	29.13	19969
	Calcarine R	1.12	56183	33.75	14888
	Frontal Inf Oper L	1 08	56183	58 19	8304
	Precentral R	1 07	56183	17 75	27048
	ACC pre R	1.03	56183	89.35	5184
	Parietal Inf B	1.02	56183	42.45	10760
	Cinculate Mid B	1 01	56183	25.87	17624
	Supp Motor Area L	0.98	56183	25.62	17176
	Fusiform B	0.96	56183	21.53	20144
	Lingual L	0.93	56183	24.96	16760
	Fusiform L	0.91	56183	22.04	18472
	Insula L	0.90	56183	27.18	14864
	SupraMarrinal L	0.89	56183	39.81	10048
	ACC pre L	0.88	56183	79.27	5016
	Cinculate Mid L	0.87	56183	25.09	15528
	Caudate L	0.81	56183	57.25	6344
	Caudate B	0.80	56183	52.75	6824
	Frontal Inf Orb 2 L	0.78	56183	54.18	6512
	Frontal Inf Tri R	0.77	56183	20.22	17208
	Occipital Sup L	0.77	56183	31.55	10928
	ACC sup L	0.69	56183	63.64	4840
	ACC sup R	0.68	56183	72.05	42.64
	Occipital Sup R	0.66	56183	26.26	11304
	Lingual_R	0.65	56183	15.91	18400
	Cingulate Post L	0.60	56183	72.35	3704
	Occipital Mid R	0.57	56183	15.40	16784
	SupraMarginal R	0.54	56183	15.30	15792
	Paracentral Lobule L	0.47	56183	19.72	10792
	Insula_R	0.45	56183	14.35	14160
	ParaHippocampal_R	0.43	56183	21.11	9056
	Frontal_Inf_Oper_R	0.37	56183	14.94	11192
	Pallidum_R	0.37	56183	74.29	2240
	Occipital_Inf_L	0.34	56183	20.30	7528
	Pallidum_L	0.34	56183	64.51	2344
	Frontal_Inf_Orb_2 R	0.33	56183	21.28	6992
	Temporal_Inf_L	0.33	56183	5.75	25600
	Cingulate_Post_R	0.31	56183	52.54	2680
	Frontal_Med_Orb_L	0.30	56183	23.64	5752
	Temporal_Pole_Sup_L	0.30	56183	13.00	10280
	Heschl_L	0.29	56183	72.44	1800
	Rolandic Oper L	0.28	56183	15.89	7904
	Temporal Inf R	0.25	56183	3.99	28456
	Hippocampus_R	0.25	56183	14.59	7568
	ParaHippocampal L	0.23	56183	13.50	7824
	Temporal Pole Mid R	0.22	56183	10.36	9496
	Temporal Pole Mid L	0.20	56183	15.23	6040

	Hippocampus_L	0.16	56183	9.76	7456
	OFCpost_R	0.16	56183	16.22	4488
	OFCpost_L	0.15	56183	15.34	4536
	Frontal_Med_Orb_R	0.15	56183	9.93	6848
	OFCant_R	0.14	56183	11.88	5184
	Vent_Str_R	0.09	56183	32.19	1193
	Thal_VA_R	0.09	56183	64.43	596
	Temporal_Pole_Sup_R	0.08	56183	3.21	10704
	Amygdala_R	0.06	56183	14.52	1984
	Thal_PuM_R	0.05	56183	17.50	1280
	Thal_VL_R	0.05	56183	11.02	2032
	Occipital_Inf_R	0.04	56183	2.33	7912
	OFCant_L	0.04	56183	4.97	3544
	Vent_Str_L	0.03	56183	10.49	1297
	Thal_MDm_R	0.03	56183	15.23	893
	OFClat_L	0.03	56183	8.12	1576
	Thal_VL_L	0.02	56183	5.19	2160
	Thal_LP_L	0.02	56183	51.14	219
	Amygdala_L	0.02	56183	5.91	1760
	Thal_IL_R	0.02	56183	18.09	398
	Thal_MD1_R	0.01	56183	19.79	283
	Thal_Pul_R	0.01	56183	20.10	199
	Thal_VA_L	0.01	56183	6.41	624
	OFCmed_R	0.01	56183	0.81	4968
	Thal_IL_L Thal_IP_P	0.01	56183	6.97	459
	That LP K	0.01	56183	10.00	274
	Thai MDIL	0.01	56183	0.76	274
	OFCIAE_R Thele Marca	0.01	56183	1.60	1504
	Thal Ro R	0.00	56183	200.00	921
	Thal But B	0.00	56103	2 00.00	264
	Thal Bo L	0.00	56103	100.00	204
	Thal VPL L	0.00	56183	0.61	1309
	Thal AV L	0.00	56183	5 76	139
4 - 44 - 36	OUTSIDE	64 10	390	0.00	135
	Vermis 10	14.36	390	50.00	896
	Cerebelum 9 L	12 82	390	5 75	6952
	Cerebelum 9 R	6.15	390	2.97	6472
	Vermis 9	2.05	390	4.60	1392
	LC R	0.51	390	30.19	53
-4 -40 -12	Vermis 3	34.69	98	14.91	1824
	Cerebelum 4 5 L	31.63	98	2.76	9000
	Cerebelum 3 L	27.55	98	19.85	1088
	Cerebelum 3 R	4.08	98	1,93	1656
	OUTSIDE	2.04	98	0.00	0
-16 -70 -44	Cerebelum 8 L	79.40	335	14.10	15096
	Cerebelum 7b L	16.12	335	9.23	4680
	Cerebelum 9 L	3.58	335	1.38	6952
	OUTSIDE	0.90	335	0.00	0
18 -58 -50	Cerebelum_8_R	87.59	290	11.01	18464
	Cerebelum_9_R	12.41	290	4.45	6472
48 - 20 12	Hesch1_R	47.30	74	14.06	1992
	Rolandic_Oper_R	31.08	74	1.73	10648
	Temporal_Sup_R	21.62	74	0.51	25128
-12 -36 68	Paracentral_Lobule_L	82.86	35	2.15	10792
	Precuneus_L	17.14	35	0.17	28224
-18 -48 -38	OUTSIDE	100.00	22	0.00	0
34 6 34	Frontal_Inf_Oper_R	77.78	9	0.50	11192
	Frontal_Mid_2_R	11.11	9	0.02	38880
	Precentral_R	11.11	9	0.03	27048
34 - 48 - 48	Cerebelum_8_R	100.00	2	0.09	18464
12 -70 -32	Cerebelum_8_R	44.44	9	0.17	18464
	OUTSIDE	44.44	9	0.00	0
	Cerebelum_6_R	11.11	9	0.06	14360
-16 -32 16	OUTSIDE	100.00	2	0.00	0
54 - 32 0	Temporal_Mid_R	100.00	2	0.05	35272
-14 -90 12	Occipital_Sup_L	100.00	1	0.07	10928
40 44 -4	Frontal_Inf_Orb_2_R	100.00	5	0.57	6992
10 8 32	OUTSIDE	100.00 table showstirst local ma	ximum per cluster	0.00	0
		INTERNATION OF A DATE OF A	- TATENATA TATE AT AND		

10.1	3 R	lecuperació	ón vs	apnea	30 s	segundos
------	-----	-------------	-------	-------	------	----------

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
-12 -84 -30	OUTSIDE	20.46	9485	0.00	0
	Cerebelum_Crusl_R	6.08	9485	21.79	21184
	Cerebelum_Crusl_L	5.79	9485	21.09	20824
	Cerebelum_6_L	5.04	9485	28.22	13552
	Temporal Pole Sup B	4.69	9485	32 59	10204
	Cerebelum 6 R	4.43	9485	23.40	14360
	Cerebelum_Crus2_R	4.30	9485	19.27	16936
	Cerebelum_Crus2_L	3.87	9485	19.38	15152
	Lingual_L	2.80	9485	12.70	16760
	Occipital_Inf_R	2.37	9485	22.75	7912
	Calcarine L	2.27	9485	9.31	18972
	Vermis 4 5	2.11	9485	30.08	5320
	ParaHippocampal_R	2.03	9485	17.05	9056
	Insula_R	1.93	9485	10.34	14160
	Fusiform R	1.78	9485	6.71	20144
	Temporal_Inf_R	1.69	9485	4.50	28456
	Cerebelum 4 5 L	1.57	9485	15.85	9000
	OFQpost R	1.35	9485	22.82	4488
	Vermis_6	1.20	9485	30.73	2968
	Cerebelum_8_R	1.11	9485	4.55	18464
	Hippocampus_R	1.03	9485	10.36	7568
	Cerebelum_7b_R Rolandic Oper R	0.98	9485 9485	17.42	4272
	Hippocampus L	0.88	9485	8.91	7456
	ParaHippocampal_L	0.79	9485	7.67	7824
	Amygdala_R	0.78	9485	29.84	1984
	Temporal_Sup_R	0.67	9485	2.04	25128
	Vermis_3	0.64	9485	26.75	1824
	Cerebelum 7h L	0.51	9485	8.21	4680
	Caudate R	0.51	9485	5.63	6824
	Frontal_Inf_Orb_2_R	0.48	9485	5.26	6992
	Calcarine_R	0.45	9485	2.31	14888
	Thal_MDm_R	0.41	9485	34.94	893
	Vermis_7	0.40	9485	19.59	1552
	SN pr L	0.33	9485	58 35	425
	Thal MDm L	0.30	9485	24.32	921
	Thal_VL_L	0.28	9485	10.00	2160
	Cuneus_R	0.27	9485	1.83	11392
	Olfactory_R	0.24	9485	8.06	2283
	Precuneus_L	0.23	9485	0.62	28224
	SN nc L	0.22	9485	63.75	251
	Temporal Pole Mid R	0.20	9485	1.60	9496
	Cerebelum_9_R	0.17	9485	1.98	6472
	Thal_AV_L	0.14	9485	74.82	139
	Occipital_Mid_L	0.14	9485	0.40	26120
	Thal VI. R	0.13	9485	A 33	2032
	Thal LP R	0.12	9485	49.72	177
	Frontal_Inf_Oper_R	0.12	9485	0.79	11192
	Thal_AV_R	0.11	9485	47.34	169
	Occipital_Mid_R	0.11	9485	0.48	16784
	Thal_PuM_L	0.09	9485	5.36	1343
	Cepebelun_3_K	0.09	9485	4.35	1656
	Heschl R	0.08	9485	3.21	1992
	VTA_L	0.07	9485	78.87	71
	Red_N_L	0.06	9485	10.34	464
	Thal_PuM_R	0.06	9485	3.75	1280
	Thal_VA_L	0.06	9485	7.69	624
	Cerebelum 9 T	0.06	9485	2.47	1944
	VTA R	0.05	9485	61.54	65
	Thal VPL R	0.05	9485	3.22	1244
	Temporal_Mid_R	0.04	9485	0.09	35272
	Thal_MD1_L	0.03	9485	8.76	274
	Precuneus_R	0.03	9485	0.09	26120
	Thal_MD1_R Thal_II_R	0.02	9485	5.65	283
	Thal Pub B	0.02	9485	3, 39	386
	THAT_PUA_K	0.01	9465	3.39	230

_

			Thal MGN R	0.01	9485	4.65	172
			Cerebelum 3 L	0.01	9485	0.74	1088
			Caudate L	0.01	9485	0.13	63.4.4
			Bostcontral B	0.01	0495	0.03	20594
			OPClat R	0.01	0495	0.53	1504
			OFOred R	0.01	0495	0.16	4969
5.0	36	24	Exertal Mid 2 R	21.24	2220	0.10	30000
50	20	24	Frontal Aug Medial I	17.86	2279	13.50	20000
			Froncal_sup_medial_L	17.86	2279	13.60	23936
			Frontal Mid 2 L	14.70	2279	7.43	36036
			Frontal Sup 2 R	14.44	2279	6.42	41008
			Frontal_Sup_2_L	12.46	2279	5.83	38960
			Frontal_Sup_Medial_R	9.52	2279	10.17	17072
			Frontal_Inf_Tri_L	4.08	2279	3.68	20232
			Frontal_Inf_Tri_R	3.47	2279	3.67	17208
			OFClat_L	0.75	2279	8.63	1576
			OUTSIDE	0.61	2279	0.00	0
			Frontal_Inf_Orb_2_L	0.35	2279	0.98	6512
			Frontal_Inf_Orb_2_R	0.31	2279	0.80	6992
			OFCant_R	0.18	2279	0.62	5184
			OFClat_R	0.04	2279	0.53	1504
-58	8	-6	Temporal_Pole_Sup_L	39.40	802	24.59	10280
			OUTSIDE	12.34	802	0.00	0
			Temporal Sup L	11.85	802	4.14	18368
			Amygdala L	9.10	802	33.18	1760
			Insula L	8.23	802	3.55	14864
			Rolandic_Oper_L	4.74	802	3.85	7904
			ParaHippocampal L	3.99	802	3.27	7824
			Temporal Pole Mid L	3.49	802	3.71	6040
			OFCpost L	1.25	802	1.76	4536
			Hippocampus L	0.87	802	0.75	7456
			Olfactory L	0.87	802	2.29	2449
			Exectal Inf Orb 2 L	0.97	802	0.96	6512
			Heachl L	0.75	802	2.67	1800
			Temporal Mid L	0.62	802	0.10	20526
			Prophal Inf Open I	0.62	002	0.10	33330
			Temperal Inf I	0.62	802	0.40	25600
			Temporal Inf L	0.50	802	0.13	23600
			Frontal_Inf_Ifi_L	0.25	802	0.08	20232
			Putamen L	0.12	802	0.10	7967
			OFCIAEL	0.12	802	0.51	1576
4	-24	72	Supp_Motor_Area_L	37.91	823	14.53	17176
			Supp_Motor_Area_R	21.99	823	7.63	18968
			Paracentral_Lobule_L	16.77	823	10.23	10792
			Paracentral_Lobule_R	9.84	823	9.69	6688
			OUTSIDE	4.50	823	0.00	0
			Frontal_Sup_2_L	3.65	823	0.62	38960
			Frontal_Sup_2_R	2.07	823	0.33	41008
			Precentral_L	2.07	823	0.48	28208
			Frontal_Sup_Medial_R	1.22	823	0.47	17072
-2	-46	64	Precuneus R	43.97	423	5.70	26120
			Precuneus L	37.83	423	4.54	28224
			Cuneus_R	4.73	423	1.40	11392
			Cingulate_Mid_R	4.26	423	0.82	17624
			Cingulate_Mid_L	3.31	423	0.72	15528
			OUTSIDE	3.31	423	0.00	0
			Paracentral_Lobule_R	1.89	423	0.96	6688
			Parietal_Sup_R	0.71	423	0.14	17776
0	-28	-44	OUTSIDE	100.00	40	0.00	0
4	22	4	OUTSIDE	96.88	64	0.00	0
			Caudate R	3.13	64	0.23	6824
-18	-26	20	OUTSIDE	82.05	78	0.00	0
			Thal PuM L	10.26	78	4.77	1343
			Caudate L	6.41	78	0.63	6344
			Thal Pul L	1.28	78	3.79	211
4	-22	48	Cinculate Mid R	59.26	54	1.45	17624
-			Supp Motor Area R	25.93	54	0.59	18968
			Cinculate Mid L	14 81	5.4	0.41	15529
-46	-58	-36	Cerebelum Crusl L	100.00	3	0.12	20824
-14	-24	-32	OUTSIDE	100.00	-	0.00	
-24	-10	-36	Pusiform I	100.00	-	0.17	10470
-24	-10	- 36	Cambalum 10 T	100.00	4	0.17	18472
-26	-40	-40	Cerebelum_10_L	28.60	13	4.85	1152
			Combolum 25 7	38.46	13	0.00	0
			Cepebelum 75 L	7.69	13	0.17	4680
-28	20	58	Frontal Mid 2 L	100.00	8	0.18	36056
-38	20	52	Frontal Mid 2 L	100.00	5	0.11	36056

-16	-6	22	Caudate_L	100.00	13	1.64	6344
16	-40	-48	Cerebelum_9_R	52.94	17	1.11	6472
			OUTSIDE	47.06	17	0.00	0
-10	-26	-40	OUTSIDE	100.00	3	0.00	0
26	6	68	Frontal_Sup_2_R	100.00	17	0.33	41008
-58	4	-24	Temporal_Mid_L	100.00	2	0.04	39536
-34	18	56	Frontal_Mid_2_L	100.00	3	0.07	36056
40	-10	-32	Fusiform R	100.00	4	0.16	20144
-8	-96	8	Occipital_Sup_L	100.00	6	0.44	10928
28	-38	-40	Cerebellum_10_R	66.67	3	1.26	1272
			OUTSIDE	33.33	3	0.00	0
-34	42	38	Frontal_Mid_2_L	100.00	1	0.02	36056
-30	-94	-4	Occipital_Mid_L	100.00	2	0.06	26120
-4	68	-8	Frontal_Med_Orb_L	100.00	1	0.14	5752
-42	22	48	Frontal_Mid_2_L	100.00	1	0.02	36056
30	34	50	Frontal_Mid_2_R	66.67	3	0.04	38880
			Frontal_Sup_2_R	33.33	3	0.02	41008
34	60	-8	Frontal_Sup_2_R	100.00	1	0.02	41008
34	0	64	Frontal_Sup_2_R	100.00	2	0.04	41008
				tahla ehawefiret loogl mavi	mum nar olustar		

81118110 m per

10.14 Recuperación vs apnea 60 seg	undos
------------------------------------	-------

	Label	W Oberter	Nh 14: Objector	9/ Lobal	Nb \6 Labal
x,y,z mm	Labei	% Cluster	ND VX Cluster	% Label	ND VX Label
-24 -82 -46	Cerebelum_Crusl_R	9.80	4999	18.50	21184
	Corebelum Cruc? B	8.00	4999	0.00	16936
	Cerebelum Crusl L	7.46	4999	14.33	20824
	Cerebelum_Crus2_L	7.42	4999	19.59	15152
	Cerebelum_6_R	6.48	4999	18.05	14360
	Lingual_R	6.12	4999	13.30	18400
	Gecipital_Inf_R	5.14	4999	25.99	7912
	Cerebelum 6 L	4.38	4999	12.99	13552
	Fusiform_R	4.04	4999	8.02	20144
	Fusiform L	4.02	4999	8.71	18472
	Occipital_Inf_L	3.70	4999	19.66	7528
	Calcarine_L Vermis 6	3.32	4999	7.35	18064
	Lingual L	2.22	4999	5.30	16760
	Calcarine_R	2.14	4999	5.75	14888
	Cerebelum_7b_R	1.60	4999	14.98	4272
	Occipital_Mid_L	1.60	4999	2.45	26120
	Temporal_Inf_L Cupeus B	1.48	4999	2.31	25600
	Cerebelum 8 R	1.06	4999	2.30	18464
	Cerebelum_7b_L	0.88	4999	7.52	4680
	Vermis_7	0.78	4999	20.10	1552
	Occipital Mid R Cerebelum 9 L	0.64 0.58	4999	1.53	16784 6952
	Occipital_Sup_L	0.48	4999	1.76	10928
	Cerebelum 9 R	0.38	4999	2.35	6472
	Vermis_4_5	0.12	4999	0.90	5320
	Cuneus_L Occipital Sup R	0.12	4999	0.39	12168
	Vernis 8	0.08	4999	1.65	1944
	Cerebelum_8_L	0.08	4999	0.21	15096
42 54 -8	Frontal_Mid_2_R	19.95	4310	17.70	38880
	Frontal_Sup_2_R	18.14	4310	15.26	41008
	Frontal Sup 2 L	13.27	4310	12.69	38960
	Frontal Sup Medial L	11.55	4310	16.64	23936
	Frontal Sup Medial R	7.33	4310	14.81	17072
	Supp_Motor_Area_L	5.31	4310	10.67	17176
	Supp_Motor_Area_R	3.55	4310	6.45	18968
	Precentral R	1.72	4310	2.19	27048
	Frontal Inf_Tri_L	1.00	4310	1.70	20232
	OUTSIDE	0.74	4310	0.00	0
	Frontal_Inf_Orb_2_R	0.65	4310	3.20	6992
	OFCIAL_L	0.46	4310	10.15	1576
	Paracentral Lobule L	0.12	4310	0.37	10792
	OFClat_R	0.07	4310	1.60	1504
	ACC_pre_R	0.02	4310	0.15	5184
36 26 - 36	Frontal_Inf_Orb_2_L	0.02	4310	0.12	6512
30 10 -10	Temporal Pole Sup R	17.13	1967	25.19	10704
	Lingual_R	9.66	1967	8.26	18400
	ParaHippocampal_R	8.34	1967	14.49	9056
	Lingual_L	6.10	1967	5.73	16760
	UFCDOSE_R Himocomous_P	5.95	1967	20.86	4488
	Calcarine L	4.47	1967	3.90	18064
	Hippocampus_L	4.12	1967	8.69	7456
	ParaHippocampal_L	2.95	1967	5.93	7824
	Amygdala_R	2.69	1967	21.37	1984
	Olfactory R	2.39	1967	1.50	2283
	Cerebelum 4 5 L	1.58	1967	2.76	9000
	Temporal Pole Mid R	1.53	1967	2.53	9496
	Frontal_Inf_Orb_2_R	1.42	1967	3.20	6992
	Temporal_Mid_R	1.02	1967	0.45	35272
	vermis_4_5 Cerebelum 4 5 B	0.86	1967	2.56	5320
	Insula R	0.51	1967	0.56	14160
	Precuneus_L	0.46	1967	0.26	28224
	SN_pr_R	0.36	1967	12.58	445
	Rolandic_Oper_R	0.25	1967	0.38	10648

	Frontal_Inf_Oper_R	0.20	1967	0.29	11192
	Vermis_3	0.10	1967	0.88	1824
	Precuneus_R	0.10	1967	0.06	26120
	OFClat_R	0.05	1967	0.53	1504
	OFOned_R	0.05	1967	0.16	4968
-36 24 -24	Temporal_Pole_Sup_L	43.64	637	21.63	10280
	Temporal_Mid_L	21.82	637	2.81	39536
	Temporal_Sup_L	13.03	637	3.61	18368
	OFCDOSE_L Releadie Onen I	8.16	637	9.17	4536
	Frontal Inf Orb 2 L	3.45	637	3.64	7904
	OUTSIDE	2 83	637	0.00	0.0011
	Frontal Inf Oper L	0.63	637	0.39	8304
	Temporal Pole Mid L	0.47	637	0.40	6040
	OFClat L	0.31	637	1.02	1576
-16 0 -16	Amygdala L	40.54	222	40.91	1760
	OUTSIDE	22.07	222	0.00	0
	ParaHippocampal_L	13.96	222	3.17	7824
	Olfactory_L	10.81	222	7.84	2449
	Temporal_Pole_Sup_L	7.21	222	1.25	10280
	Hippocampus_L	5.41	222	1.29	7456
4 - 64 60	Precuneus_R	36.31	493	5.48	26120
	Precuneus_L	33.87	493	4.73	28224
	Occipital_Sup_R	17.24	493	6.02	11304
	Cupeus R	5.88	493	1.38	16784
	Parietal Sup R	1.01	493	0.23	17776
	OUTSIDE	1.01	493	0.00	0
4-10 8	OUTSIDE	72.54	863	0.00	0
	Thal_MDm_R	6.84	863	52.86	893
	Thal_VL_R	6.37	863	21.65	2032
	Caudate_R	3.71	863	3.75	6824
	Insula_R	3.24	863	1.58	14160
	Thal_MDm_L	2.32	863	17.37	921
	Thal_MD1_R	1.85	863	45.23	283
	Thal PuM R	0.81	863	47.34	1280
	Thal VPL R	0.58	863	3 22	1244
	Thal IL R	0.35	863	6.03	398
	Thal LP R	0.12	863	4.52	177
	Thal_AV_L	0.12	863	5.76	139
18 18 -8	Putamen R	56.94	72	3.86	8499
	Caudate_R	16.67	72	1.41	6824
	Vent_Str_R	15.28	72	7.38	1193
	OUTSIDE	9.72	72	0.00	0
	Rectus_R	1.39	72	0.13	5960
-4 68 -8	Frontal Med Orb L	75.00	24	2.50	5752
	Frontal Sup 2 L	8,33	24	0.04	38960
60 - 54 2	Temporal Mid R	100.00	49	1.11	35272
-50 -74 14	Occipital Mid L	72.00	25	0.55	26120
	Temporal_Mid_L	28.00	25	0.14	39536
34 -40 -28	Cerebelum_6_R	83.87	31	1.45	14360
	Cerebelum_4_5_R	9.68	31	0.35	6888
	Fusiform_R	6.45	31	0.08	20144
-42 4 -2	Insula_L	100.00	28	1.51	14864
44 - 74 28	Occipital_Mid_R	100.00	12	0.57	16784
-4 -34 -54	OUTSIDE	100.00	76	0.00	0
-26 -90 18	Occipital_Mid_L	100.00	14	0.43	26120
60 - 36 U	Temporal_Mid_K	100.00	25	0.57	35272
28 - 38 - 40	Combolium 10 P	10.00	10	0.00	1979
-20 62 -6	Eroptal Sup 2 L	100.00	10	0.02	39960
42 2 16	Rolandic Oper B	87 50	8	0.53	10648
	OUTSIDE	12.50	8	0.00	0
-18 -6 24	Caudate L	85.71	7	0.76	6344
	OUTSIDE	14.29	7	0.00	0
-38 4 12	Insula L	66.67	9	0.32	14864
	Rolandic Oper L	22.22	9	0.20	7904
	Frontal Inf Oper L	11.11	9	0.10	8304
38 - 50 - 34	Cerebelum_Crusl_R	100.00	4	0.15	21184
64 -10 8	Temporal_Sup_R	100.00	1	0.03	25128
4 -10 74	Supp_Motor_Area_R	100.00	2	0.08	18968
-14 -22 -30	OUTSIDE	100.00	1	0.00	0
20 - 72 58	Parietal_Sup_R	100.00	3	0.14	17776
62 -2 10	Rolandic_Oper_K	100.00	4	0.30	10648
50 6 -2	Insula R	100.00	2	0.11	14160
		table above first local or	winner and alustra		14100

10.15 Recuperación	vs apnea 90	segundos
--------------------	-------------	----------

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
-38 -76 -42	Cerebelum_Crusl_R	12.44	4285	20.13	21184
	Cerebelum_Crusl_L	10.53	4285	17.33	20824
	Cerebelum_6_L	9.92	4285	25.09	13552
	Cerebelum_Crus2_L Cerebelum_Crus2_R	9.26	4285	20.96	15152
	Cerebelum 6 R	8.21	4285	19.61	14360
	Temporal Mid L	5.74	4285	4.98	39536
	OUTSIDE	5.46	4285	0.00	0
	Occipital_Inf_R	4.55	4285	19.72	7912
	Lingual_R	4.06	4285	7.57	18400
	Fusiform_L	3.08	4285	5.72	18472
	Occipital_Inf_L	2.94	4285	13.39	7528
	Calcarine_L	2.54	4285	4.83	18064
	Lingual L	2.45	4285	5.01	16760
	Cerebelum 7b B	1.42	4285	11.42	4272
	Temporal Inf L	1.38	4285	1.84	25600
	Temporal_Inf_R	1.26	4285	1.52	28456
	Cerebelum_7b_L	0.75	4285	5.47	4680
	Vermis_6	0.58	4285	6.74	2968
	Occipital_Mid_R	0.49	4285	1.00	16784
	Cerebelum_9_L	0.35	4285	1.73	6952
	Vermis_7	0.30	4285	6.70	1552
	Complete A.B.	0.30	4285	0.40	26120
	Cerebelum 9 R	0.16	4285	0.30	6472
	Calcarine R	0.09	4285	0.21	14888
	Cerebelum 8 L	0.05	4285	0.11	15096
	Temporal Sup L	0.05	4285	0.09	18368
28 8 - 22	Temporal_Pole_Sup_R	32.30	647	15.62	10704
	OUTSIDE	19.32	647	0.00	0
	ParaHippocampal_R	13.76	647	7.86	9056
	OFQpost_R	12.36	647	14.26	4488
	Amygdala_R	8.35	647	21.77	1984
	Olfactory_R	6.03	647	13.67	2283
	Himocamus B	1 85	647	1.75	7568
	Temporal Pole Mid R	1.08	647	0.59	9496
	OFClat R	0.15	647	0.53	1504
4 - 28 74	Paracentral_Lobule_R	39.17	217	10.17	6688
	Paracentral_Lobule_L	29.03	217	4.67	10792
	Supp_Motor_Area_L	17.51	217	1.77	17176
	OUTSIDE	8.76	217	0.00	0
	Supp_Motor_Area_R	5.53	217	0.51	18968
-40 24 -28	OUTSIDE	34.68	3452	0.00	0
	Lingual_K	8.26	3452	21 20	18400
	Himocamus L	5.56	3452	20.60	7456
	ParaHippocampal L	3.77	3452	13.29	7824
	Hippocampus R	3.74	3452	13.64	7568
	Lingual_L	3.33	3452	5.49	16760
	Vermis_4_5	3.27	3452	16.99	5320
	OFCpost_L	2.61	3452	15.87	4536
	Amygdala_L	2.43	3452	38.18	1760
	Calcarine_R	2.38	3452	4.41	14888
	ParaHippocampal_R	2.32	3452	7.07	9056
	Calcarine_L Thal_MDm_R	2.14	3452	3.28	19064
	Thal MDm L	1.50	3452	47 77	921
	Thal VL R	1.56	34.52	21.26	2032
	Cerebelum 4 5 L	1.33	3452	4.09	9000
	Vermis 3	1.13	3452	17.11	1824
	Cerebelum_4_5_R	1.10	3452	4.41	6888
	Caudate_R	1.10	3452	4.45	6824
	Thal_PuM_R	0.70	3452	15.00	1280
	Thal_VPL_R	0.64	3452	14.15	1244
	Thal_MD1_R	0.61	3452	59.36	283
	Temporal_FOIE_MID_L	0.55	34.52	2.52	20224
	Olfactory L	0.35	34.52	6.21	2440
	SN pr L	0.55	34.52	30.12	425
	Frontal Inf Orb 2 L	0.46	34.52	1.97	6512
	SN_pc_L	0.32	3452	35.06	251
	Thal PuM L	0.29	3452	5.96	1343

	Precuneus_R	0.29	3452	0.31	26120
	Thal AV R	0.26	3452	42.60	169
	Thal MD1 L	0 23	3452	22.26	274
	inal_boi_b	0.23	3432	23.30	
	VTA_L	0.17	3452	67.61	71
	Cingulate_Post_L	0.17	3452	1.30	3704
	Insula_L	0.17	3452	0.32	14864
	Thal PuL R	0.14	3452	15.15	264
	Thal AV L	0.14	3452	28.78	139
	Cinculate Post B	0 14	3452	1 49	2680
	Cinguinda rosc k	0.10	3450	1.42	2000
	sn_pc_k	0.12	3452	11.85	270
	OFCIAt_L	0.12	3452	2.03	1576
	VTA_R	0.09	3452	36.92	65
	Thal IL R	0.09	3452	6.03	398
	Cerebelum 3 R	0.09	3452	1.45	1656
	SN pr R	0.03	3452	1.80	445
	Thal But I	0.03	3453	3 20	250
36 53 30	Exected Mid 2 P	50.36	2696	3.20	20000
36 32 20	Froncai_Mid_2_K	50.26	7.3-8	7.04	30000
	Frontal_Sup_2_R	30.61	758	4.53	41008
	Frontal_Inf_Tri_R	10.69	758	3.77	17208
	Frontal Inf Oper R	4.62	758	2.50	11192
	Frontal Inf Orb 2 R	3.03	758	2.63	6992
	OFClat B	0 53	758	2 13	1504
	operat p	0.35	750	0.33	1304
	OFCane_R	0.26	758	0.31	5184
0 54 38	Frontal_Sup_2_L	35.22	903	6.53	38960
	Frontal Mid 2 L	26.25	903	5.26	36056
	Frontal_Sup_Medial_L	24.03	903	7.25	23936
	Frontal_Sup_Medial_R	10.41	903	4.40	17072
	OFClat L	1.88	903	8.63	1576
	Frontal Sup 2 B	1.55	903	0.27	41008
	Frontal Inf Orb 2 L	0.22	903	0.25	6512
	Frankal Taf Bai I	0.22	000	0.25	20222
	Frontal_Inf_Ifi_L	0.22	903	0.08	20232
	OUTSIDE	0.22	903	0.00	0
2 -28 -46	OUTSIDE	100.00	130	0.00	0
-8 -72 56	Precuneus_L	56.18	178	2.83	28224
	Precuneus	34.83	178	1.90	26120
	Parietal Sup L	6 74	178	0 58	16520
	outertop.	0.05	170	0.00	10310
	OUISIDE	2.25	1/8	0.00	
-58 6 -16	Temporal_Mid_L	41.82	55	0.47	39536
	Temporal_Pole_Sup_L	32.73	55	1.40	10280
	Temporal Sup L	18.18	55	0.44	18368
	Rolandic Oper L	3.64	55	0.20	7904
	Frontal Inf Oper L	1.82	55	0.10	8304
	outering of the	1.02		0.20	0.504
	OUISIDE	1.82	55	0.00	U
36 22 54	Frontal_Mid_2_R	100.00	49	1.01	38880
-4 22 64	Supp_Motor_Area_L	44.83	58	1.21	17176
	Supp_Motor_Area_R	29.31	58	0.72	18968
	Frontal Sup Medial R	22.41	58	0.61	17072
	Erontal Sun Medial L	1 72	5.8	0 03	23936
	OUTRIDE	1 79	50	0.00	23330
48 18 18	Frontal Inf Oper R	38.10	42	1.14	1119ž
	OUTSIDE	33.33	42	0.00	0
	Proptal Inf Tri P	29.57	42	0.56	1 72 0.0
	Froncal_int_iti_k	28.57	42	0.36	17208
-26 18 60	Frontal_Mid_2_L	79.59	49	0.87	36056
	Frontal_Sup_2_L	20.41	49	0.21	38960
62 0 12	Rolandic_Oper_R	85.71	28	1.80	10648
	Postcentral R	14.29	28	0.10	30584
-16 -4 24	Caudate L	57.89	38	2.77	6344
	OUTSIDE	42 11	38	0 00	0
24 . 22 . 26	To mile D	10.00	50	1.00	14160
34 -12 16	insula_R	56.60	53	1.69	14160
	OUTSIDE	43.40	53	0.00	0
28 - 68 56	Parietal_Sup_R	100.00	35	1.58	17776
-10 -26 -40	OUTSIDE	100.00	3	0.00	0
-32 -90 -2	Occipital Mid L	100.00	23	0.70	26120
42 - 46 - 30	Cerebelum 6 B	68 42	19	0.72	14360
	Carebalum 4.5.2	15.34	10	0.75	14300
	Cerebelum 4 5 K	15.79	19	0.35	6888
	Cerebelum_Crusl_R	15.79	19	0.11	21184
0 -36 20	OUTSIDE	100.00	27	0.00	0
26 -6 -34	ParaHippocampal_R	100.00	7	0.62	9056
44 -74 28	Occipital Mid R	100.00	4	0.19	16784
20 62 -4	Frontal Sup 2 B	100.00	5	0.10	41008
38 16 36	Frontal Inf Gran B	50.00	10	0.64	11100
20 10 30	FIGHERI INF OPER	50.00	10	0.04	11192
	Frontal_Mid_2_R	50.00	18	0.19	38880
6 - 60 64	Precuneus_R	100.00	2	0.06	26120

30	-82	32	Occipital_Mid_R	50.00	12	0.29	16784
			Occipital_Sup_R	50.00	12	0.42	11304
-4	68	-8	Frontal Med_Orb_L	66.67	3	0.28	5752
			Frontal_Sup_2_L	33.33	3	0.02	38960
-22	-14	-32	ParaHippocampal_L	100.00	2	0.20	7824
-24	-10	-36	Fusiform_L	100.00	1	0.04	18472
56	14	-16	Temporal Pole Sup R	100.00	1	0.07	10704
-22	-26	72	Postcentral_L	100.00	2	0.05	31136
40	-56	44	Parietal_Inf_R	100.00	2	0.15	10760
0	66	-12	Frontal_Med_Orb_L	100.00	3	0.42	5752
-36	4	-2	Insula_L	50.00	2	0.05	14864
			OUTSIDE	50.00	2	0.00	0
58	12	-12	Temporal_Pole_Sup_R	100.00	1	0.07	10704
60	-56	8	Temporal_Mid_R	100.00	1	0.02	35272
-50	0	8	Rolandic_Oper_L	100.00	1	0.10	7904
18	52	40	Frontal_Sup_2_R	100.00	1	0.02	41008
				table showsfirst local max	imum per cluster.		

10.16 Apnea vs recu	peración 30 s	segundos
---------------------	---------------	----------

10.1011	neu (b leeupelu	eron 50 begundo	5		
x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
16 -72 -40	OUTSIDE	27.79	6397	0.00	0
10 11 10	Cerebelum 8 R	14.10	6397	39.08	18464
	Cerebelum 8 L	12.08	6397	40.96	15096
	Cerebelum_9_L	7.21	6397	53.05	6952
	Cerebelum_9_R	6.42	6397	50.80	6472
	Cerebelum_6_R	4.25	6397	15.15	14360
	Vermis_8	3.36	6397	88.48	1944
	Cerebelum_Crus2_L	3.35	6397	11.30	15152
	Carabalum Crusi R	3.28	6397	7.93	21184
	Cerebelum 7b L	2.41	63.97	26.32	4680
	Vermis 9	2.31	6397	85.06	1392
	Cerebelum_Crusl_L	2.24	63.97	5.49	20824
	Vermis_7	1.53	6397	50.52	1552
	Cerebelum_6_L	1.52	6397	5.73	13552
	Vermis_10	1.20	6397	68.75	896
	Cerebelum_/b_K	1.14	6397	13.67	4272
	Cerebelum 4 5 R	0.95	6397	6 97	6999
	Cerebelum 4 5 L	0.69	63.97	3.91	9000
	Vermis 4 5	0.42	6397	4.06	5320
	LC_R	0.06	6397	60.38	53
-46 4 24	OUTSIDE	24.10	45521	0.00	0
	Frontal_Sup_2_L	4.65	45521	43.45	38960
	Frontal Mid 2 L	3.75	45521	37.87	36056
	Precentral_L	3.44	45521	44.38	28208
	Temporal Mid L	2 53	45521	23.29	39536
	Postcentral L	2.44	45521	28.57	31136
	Frontal Inf Tri L	2.33	45521	41.87	20232
	Parietal_Inf_L	2.26	45521	42.09	19576
	Frontal_Sup_Medial_L	2.25	45521	34.16	23936
	Frontal_Mid_2_R	2.08	45521	19.53	38880
	Occipital_Mid_L	2.04	45521	28.45	26120
	Temporal_Mid_R	1.82	45521	18.83	35272
	Precentral B	1.68	45521	21 24	27048
	Angular B	1.47	45521	38.07	14016
	Frontal Sup Medial R	1.36	45521	29.10	17072
	Precuneus_R	1.29	45521	17.92	26120
	Fusiform_R	1.24	45521	22.44	20144
	Lingual_R	1.22	45521	24.13	18400
	Fusiform_L	1.17	45521	23.00	18472
	Cuneus_L SupraMarginal I	1.15	45521	34.32	12168
	Temporal Sup R	1.13	45521	15.95	25128
	Putamen R	1.09	45521	46.78	8499
	Occipital_Sup_R	1.07	45521	34.32	11304
	ACC_sup_L	1.03	45521	77.69	4840
	Frontal_Inf_Tri_R	1.03	45521	21.85	17208
	Angular_L Excepted Inf Ones I	1.02	45521	39.56	9384
	ACC sup R	1 00	45521	85.74	4264
	Lingual L	0.97	45521	21.15	16760
	Occipital Mid R	0.96	45521	20.73	16784
	Putamen L	0.90	45521	41.17	7967
	Insula_L	0.87	45521	21.37	14864
	ACC_pre_R	0.86	45521	60.65	5184
	Precuneus_L	0.86	45521	11.11	28224
	Frontal_Inf_Oper_R	0.82	45521	26.80	11192
	Sum Motor Anea L	0.78	45521	16.53	17176
	Cuneus R	0.70	45521	22.33	11392
	Frontal_Inf_Orb_2_L	0.68	45521	38.08	6512
	SupraMarginal R	0.67	45521	15.35	15792
	ACC_pre_L	0.66	45521	47.69	5016
	Occipital_Inf_L	0.65	45521	31.67	7528
	Temporal_Inf_L	0.62	45521	8.81	25600
	Supp_Motor_Area_R	0.59	45521	11.26	18968
	Calcarine R	0.57	45521	13.86	14888
	Insula R	0.57	45521	14.58	14160
	Parietal Inf R	0.52	45521	17.55	10760
	Parietal_Sup_R	0.51	45521	10.49	17776
	Rolandic_Oper_L	0.46	45521	21.15	7904

	Caudate R	0.45	45521	23.80	68.2.4
	Caudate L	0.45	45521	25.35	6344
	Temporal Inf R	0.43	45521	5.51	28456
	Frontal Inf Orb 2 R	0.42	45521	22.08	6992
	Parietal_Sup_L	0.42	45521	9.30	16520
	Pallidum_R	0.40	45521	64.29	2240
	Postcentral_R	0.38	45521	4.53	30584
	Cingulate_Mid_L	0.33	45521	7.68	15528
	Pallidum_L	0.29	45521	45.73	2344
	Hippocampus_L	0.25	45521	12.23	7456
	Calcarine L	0.15	45521	3.14	19064
	OFCoost R	0.15	45521	12.12	4488
	OFCpost L	0.14	45521	11.29	4536
	Amygdala_L	0.13	45521	25.91	1760
	Vent_Str_R	0.11	45521	33.53	1193
	Temporal_Pole_Mid_L	0.11	45521	6.62	6040
	Thal_VA_R	0.10	45521	63.09	596
	Thal_VL_L	0.10	45521	16.67	2160
	Thal VPL R	0.07	45521	3.27	1244
	Vent Str L	0.05	45521	15.42	1297
	Thal VPL L	0.05	45521	14.67	1309
	OFCant_R	0.04	45521	3.09	5184
	Frontal Med Orb L	0.04	45521	2.78	5752
	Heschl_R	0.04	45521	7.63	1992
	Thal_VL_R	0.04	45521	7.09	2032
	Heschl_L	0.04	45521	7.11	1800
	Temporal Pole Sup L	0.03	45521	1.13	10648
	OFClat L	0.03	45521	6.60	1576
	OFGned R	0.03	45521	2.09	4968
	OFCant_L	0.02	45521	2.48	3544
	Thal_PuM_R	0.02	45521	5.63	1280
	Amygdala_R	0.02	45521	3.63	1984
	Frontal_Med_Orb_R	0.02	45521	1.05	6848
	Thal_PuI_R	0.02	45521	32.16	199
	ParaHippocampal_R	0.02	45521	0.71	9056
	Thal VA L	0.01	43521	7 69	526
	Thal IL L	0.01	45521	8.71	459
	Hippocampus R	0.01	45521	0.53	7568
	Thal_PuA_R	0.01	45521	13.56	236
	Cingulate_Post_R	0.01	45521	1.19	2680
	OFClat_R	0.01	45521	2.13	1504
	Rectus_R	0.01	45521	0.54	5960
	Olfactory_R	0.01	45521	1.40	2283
	Olfactory_L	0.01	45521	1.31	2449
	Thal MON R	0.01	43521	13.95	172
	Thal MD1 R	0.01	45521	8.48	283
	Thal_MDm_R	0.01	45521	2.69	893
	Thal_Re_R	0.00	45521	200.00	8
	Thal_MDm_L	0.00	45521	0.87	921
	Thal_Re_L	0.00	45521	100.00	8
40 12 -34	Temporal_Pole_Mid_R	63.41	205	10.95	9496
	Temporal_Inf_R	22.44	205	1.29	28456
	Temporal Mid R	13.66	205	2.09	35272
-32 -24 -20	ParaHippocampal L	72.73	44	3.27	7824
	Fusiform L	15.91	44	0.30	18472
	OUTSIDE	6.82	44	0.00	0
	Hippocampus_L	4.55	44	0.21	7456
30 -14 -30	ParaHippocampal_R	64.29	28	1.59	9056
	Fusiform_R	32.14	28	0.36	20144
	Hippocampus_R	3.57	28	0.11	7568
24 -42 6	Nime compute R	73.91	23	0.00	75.60
	Recupous R	4 35	23	0.33	26120
28 - 26 - 22	ParaHippocampal R	66.67	24	1.41	9056
	Fusiform_R	33.33	24	0.32	20144
8 - 28 24	OUTSIDE	100.00	19	0.00	0
-46 10 6	Frontal_Inf_Oper_L	90.91	11	0.96	8304
	Frontal_Inf_Tri_L	9.09	11	0.04	20232
-10 -22 34	Cingulate_Mid_L	50.00	6	0.15	15528
- 20 - 2 - 20	OUTSIDE Duci form I	50.00	6	0.00	0
34 12 52	Frontal Mid 2 B	100.00	2	0.04	184/2
-40 -28 22	Rolandic Oper L	100.00	2	0.20	7904
6 52 -4	Frontal Med Orb R	100.00	1	0.12	6848
		table shows first local ma	wimum per cluster.		

num per clu

10.17 Ap	onea vs re	cuperación	60 s	segundos
1		1		0

10.17 1-p	neu (s reeupere	eron oo segunuo	8		
x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
12 -70 -36	OUTSIDE	24.82	43655	0.00	0
	Precentral_L	3.44	43655	42.60	28208
	Frontal_Sup_2_L	3.36	43655	30.14	38960
	Postcentral_L	3.11	43655	34.84	31136
	Frontal_Inf_Tri_L	2.40	43655	41.40	20232
	Cerebelum_8_R	2.33	43655	44.11	18464
	Parietal Inf L	2.21	43655	21.37	19576
	Cerebelum 8 L	2.13	43655	49.34	15096
	Frontal Sup 2 R	2.04	43655	17.34	41008
	Frontal_Sup_Medial_L	1.71	43655	24.90	23936
	Temporal_Sup_L	1.46	43655	27.74	18368
	Postcentral_R	1.42	43655	16.17	30584
	FusiformL	1.40	43655	26.50	18472
	Fusiform K	1.37	43655	23.79	20144
	Temporal Mid L	1.31	43655	11.45	39536
	Cerebelum 9 L	1.29	43655	64.67	6952
	Cuneus_L	1.29	43655	36.95	12168
	Cerebelum_6_R	1.26	43655	30.58	14360
	Temporal_Mid_R	1.20	43655	11.88	35272
	Occipital_Mid_L	1.01	43655	13.48	26120
	Frontal_Inf_Oper_L	0.99	43655	41.62	8304
	Fucatel Sup Medial R	0.96	43655	39.63	8499
	Cerebelum 6 L	0.95	43655	24.44	13552
	Cerebelum 9 R	0.93	43655	50.31	6472
	Lingual R	0.92	43655	17.52	18400
	Temporal_Inf_L	0.89	43655	12.16	25600
	Temporal Sup R	0.85	43655	11.81	25128
	Insula_L	0.85	43655	19.86	14864
	SupraMarginal_R	0.84	43655	18.59	15792
	Putamen_L	0.78	43655	34.14	7967
	SupraMarginal_L	0.77	43655	26.75	10048
	Cerebelum_Crusl_L	0.76	43655	12.72	20824
	ACC DEC B	0.74	43655	10.06	5184
	Lingual L	0.74	43655	15.37	16760
	Calcarine R	0.74	43655	17.30	14888
	Cuneus_R	0.72	43655	21.98	11392
	ACC_pre_L	0.70	43655	48.96	5016
	Precuneus_R	0.69	43655	9.28	26120
	Cerebelum_Crus2_L	0.66	43655	15.15	15152
	Frontal_Mid_2_R	0.66	43655	5.88	38880
	Precuneus_L	0.63	43655	7.82	28224
	Comparing Crinel B	0.62	43655	44.03	211.04
	Ingula R	0.58	43655	14 35	14160
	ACC SUD R	0.57	43655	47.09	4264
	Cerebelum 4 5 L	0.57	43655	21.96	9000
	Calcarine_L	0.55	43655	10.54	18064
	Supp_Motor_Area_R	0.52	43655	9.66	18968
	Temporal_Inf_R	0.49	43655	6.07	28456
	Rolandic_Oper_L	0.48	43655	21.26	7904
	Vermis_8	0.48	43655	30.00	1944
	Cerebelum Crus2 R	0.46	43655	9 45	16936
	Occipital Inf L	0.44	43655	20.62	7528
	Occipital Mid R	0.44	43655	9.10	16784
	Cerebelum_4_5_R	0.44	43655	22.07	6888
	Cerebelum 7b L	0.41	43655	30.60	4680
	Frontal_Inf_Oper_R	0.40	43655	12.44	11192
	Occipital_Sup_L	0.39	43655	12.59	10928
	Caudate_L	0.37	43655	20.55	6344
	Vermis_6	0.37	43655	43.67	2968
	Angular R	0.34	43655	8.39	14016
	Heachl L	ee 0	43655	10.01	1800
	Vermis 9	0.32	43655	79.89	1392
	Pallidum L	0.32	43655	47.44	2344
	Precentral R	0.32	43655	4.11	27048
	Pallidum R	0.31	43655	48.93	2240
	Temporal Pole_Mid_R	0.30	43655	10.95	9496
	Cingulate_Mid_L	0.29	43655	6.44	15528
	Hippocampus_R	0.28	43655	12.90	7568

		Frontal Inf Orb 2 L	0.27	43655	14.74	6512
		Parietal Inf R	0.27	43655	8.70	10760
		Normia 7	0.25	43655	55 15	1660
		Ciamia_r	0.25	43655	33.13	1552
		Cingulate_Mid_R	0.24	43655	4.77	17624
		ParaHippocampal_R	0.23	43655	9.01	90.56
		Vermis_10	0.23	43655	89.29	896
		Hippocampus_L	0.23	43655	10.73	7456
		Parietal Sup R	0.22	43655	4.28	17776
		ParaHippocampal L	0.21	43655	9.41	7824
		Frontal Med Orb L	0 21	43655	12 66	5752
		The WIT	0.10	43655	20.27	21.60
		That_VL_L	0.19	43635	30.37	2160
		Cerebelum_75_R	0.18	43655	14.61	4272
		Caudate_R	0.18	43655	9.03	6824
		Amygdala_R	0.16	43655	27.82	1984
		Frontal_Inf_Orb_2_R	0.16	43655	7.89	6992
		Thal VPL L	0.13	43655	34.22	1309
		Angular L	0.12	43655	4.43	9384
		hmurdala.	0.12	43655	22.64	1760
		Anyguara_D	0.12	43655	23.04	1760
		Cerebelum_3_L	0.11	43655	36.76	1088
		Frontal_Med_Orb_R	0.11	43655	5.84	6848
		Thal_VA_R	0.10	43655	56.38	596
		Occipital Inf R	0.08	43655	3.64	7912
		Thal PuM R	0.08	43655	21.88	1280
		Occipital Sup B	0.08	43655	2.41	11304
		OPOnest I	0.07	43655	5 20	4536
		Heschl R	0.06	43655	10.44	1992
		Thal II. I	0.05	43655	36 60	450
			0.05	43655	36.00	433
		That_LP_L	0.05	43655	76.71	219
		Cingulate_Post_L	0.04	43655	3.46	3704
		Temporal_Pole_Sup_L	0.03	43655	1.17	10280
		Thal_VPL_R	0.03	43655	9.00	1244
		Thal Pul R	0.03	43655	44.22	199
		OFCant R	0.02	43655	1.54	5184
		Vermis 1 2	0.02	43655	17 27	417
		Denistral Com I	0.02	43655	2,72	1 (500
		Parietal_Sup_L	0.02	43655	0.39	16520
		Vent_Str_R	0.02	43655	4.69	1193
		Cerebelum_10_L	0.02	43655	4.86	1152
		Temporal_Pole_Sup_R	0.02	43655	0.52	10704
		OFCant_L	0.02	43655	1.58	3544
		Thal VL R	0.01	43655	2.36	2032
		LC B	0 01	43655	75 47	53
		Thal Bub R	0.01	43655	16.95	226
		That Fun P	0.01	43655	10.00	130
		Thai MGN R	0.01	43655	18.60	172
		Thal_MDm_L	0.01	43655	3.47	921
		Thal_IL_R	0.01	43655	6.03	398
		Vermis_3	0.01	43655	1.32	1824
		LC L	0.00	43655	33.33	48
		Thal PuM L	0 00	43655	1 19	1343
		Thal Be B	0.00	43655	200.00	
		anar na n	0.00	43655	200.00	
		OFCDOSE R	0.00	43655	0.36	4488
		Kolandic_oper_k	0.00	43655	0.15	10648
		Vent_Str_L	0.00	43655	0.62	1297
		Thal_PuI_L	0.00	43655	3.79	211
		Thal_LGN_R	0.00	43655	3.39	236
		Thal_VA L	0.00	43655	1.28	624
		Cerebellum 10 R	0.00	43655	0.63	1272
		Cerebelum 3 R	0.00	43655	0.49	1656
		Ciprulate Bost R	0.00	43655	0.30	2690
		cingulate_Fost_R	0.00	43655	0.30	2000
-16 -34	16	OUISIDE	100.00	50	0.00	0
6 -28	32	Cingulate_Mid_R	38.83	188	3.31	17624
		OUTSIDE	34.04	188	0.00	0
		Cingulate_Mid_L	27.13	188	2.63	15528
0 -22	68	Paracentral Lobule L	70.59	51	2.67	10792
		Paracentral Lobule R	13.73	51	0.84	6688
		Sum Motor Area P	11 76	51	0.25	19969
		OUTOTOP	2 62	51	0.23	10200
40.30		Delegdie Come D	3.92	51	0.00	0
48 -18	14	Rolandic Oper R	71.11	45	2.40	10648
		Heschl_R	28.89	45	5.22	1992
10 -2	42	Cingulate_Mid_R	89.13	46	1.86	17624
		OUTSIDE	10.87	46	0.00	0
34 -40	44	OUTSIDE	46.97	66	0.00	0
	-	SupraMarginal R	34 85	66	1.17	15792
		Pariotal T-5 D	10.10	66	0.50	10100
		Parietal Inr K	12.12	66	0.39	10760
		Fostcentral_R	4.55	66	0.08	30584
		Parietal Sup R	1.52	66	0.05	17776

44	-4	48	Precentral_R	36.40	283	3.05	27048
			OUTSIDE	31.10	283	0.00	0
			Frontal_Sup_2_R	29.33	283	1.62	41008
			Frontal Mid 2 R	3.18	283	0.19	38880
-26	-60	64	Parietal_Sup_L	100.00	7	0.34	16520
0	-36	68	Paracentral_Lobule_R	50.00	8	0.48	6688
			Paracentral Lobule L	37.50	8	0.22	10792
			OUTSIDE	12.50	8	0.00	0
24	-30	-22	Fusiform_R	83.33	12	0.40	20144
			Cerebelum_4_5_R	16.67	12	0.23	6888
-30	-64	52	Parietal_Sup_L	100.00	18	0.87	16520
-42	-22	-6	OUTSIDE	87.50	8	0.00	0
			Temporal_Sup_L	12.50	8	0.04	18368
32	-58	48	Angular_R	45.83	24	0.63	14016
			Parietal_Inf_R	45.83	24	0.82	10760
			Parietal Sup R	8.33	24	0.09	17776
-20	-70	50	Parietal Sup L	100.00	13	0.63	16520
28	2	58	Frontal_Sup_2_R	100.00	3	0.06	41008
24	26	-16	OFGned_R	100.00	1	0.16	4968
52	8	8	Frontal_Inf_Oper_R	100.00	1	0.07	11192
0	-36	60	Paracentral_Lobule_L	50.00	2	0.07	10792
			OUTSIDE	50.00	2	0.00	0
-50	-66	32	Angular_L	100.00	1	0.09	9384
-36	-38	16	Rolandic_Oper_L	100.00	1	0.10	7904

table shows first local maximum per cluster.

Height threshold: T = 3.09, p = 0.001 (0.999) Extent threshold: k = 0 voxels, p = 1.000 (0.999) Expected voxels per cluster, \ll = 31.526 Expected number of clusters, \ll = 6.78

10.18	Apnea v	s recuperación	90 segundos
	1	1	U

x,y,z mm	Label	% Cluster	Nb Vx Cluster	% Label	Nb Vx Label
-8 40 4	OUTSIDE	21.67	12984	0.00	0
	Precentral_L	8.19	12984	30.18	28208
	Postcentral_L	5.81	12984	19.37	31136
	Frontal_Inf_Tri_L	4.56	12984	23.41	20232
	Frontal_Sup_Medial_L	4.53	12984	19.65	23936
	Prontal_Sup_2_K	4.47	12984	22.33	41008
	SupraMarginal L	4.19	12984	43.31	10048
	Frontal Sup 2 L	3.60	12984	9.59	38960
	Frontal_Mid_2_L	3.22	12984	9.27	36056
	Putamen_R	3.20	12984	39.06	8499
	Frontal_Inf_Oper_L	2.70	12984	33.82	8304
	ACC_pre_L Exceptel Sup Medial R	2.56	12984	52.95	5016
	ACC pre R	2.40	12984	47.84	5184
	Putamen L	1.89	12984	24.70	7967
	ACC_sup_R	1.84	12984	44.84	4264
	Caudate_R	1.76	12984	26.73	6824
	ACC_sup_L	1.63	12984	34.88	4840
	Supp_Motor_Area_R	1.49	12984	8.18	18968
	Caulate_L Pallidum P	1.40	12984	22.95	2240
	Pallidum L	1.11	12984	49.15	2344
	Cingulate Mid R	1.10	12984	6.49	17624
	Supp_Motor_Area_L	0.98	12984	5.92	17176
	Frontal_Med_Orb_L	0.96	12984	17.39	5752
	Temporal_Sup_L	0.76	12984	4.31	18368
	Cingulate_Mid_L	0.66	12984	4.43	15528
	OFCant R	0.63	12984	10.07	5184
	Frontal Med Orb R	0.50	12984	7.59	6848
	Vent Str L	0.45	12984	35.77	1297
	Frontal Mid 2 R	0.42	12984	1.11	38880
	Parietal_Sup_L	0.41	12984	2.57	16520
	Insula_R	0.34	12984	2.49	14160
	OFCoost L	0.33	12984	7.58	4536
	OFCpost R	0.31	12984	7.13	4488
	Frontal_Inf_Orb_2_R	0.25	12984	3.78	6992
	Thal_VA_R	0.15	12984	26.85	596
	Insula_L	0.15	12984	1.02	14864
	Bolandic Oper L	0.15	12984	1 01	7904
	Frontal Inf Tri R	0.06	12984	0.37	17208
	Precentral R	0.06	12984	0.24	27048
	OFOned_R	0.04	12984	0.81	4968
	Angular_L	0.03	12984	0.34	9384
	Thal_Re_R	0.01	12984	100.00	8
	Olfactory L	0.01	12984	0.33	2449
-34 -2 -24	OUTSIDE	22.65	1223	0.00	0
	Temporal_Inf_L	15.37	1223	5.88	25600
	Temporal_Sup_L	13.82	1223	7.36	18368
	Temporal Mid L Temporal Pole Sup L	11.69	1223	2.89	10280
	Temporal Pole Mid L	6.54	1223	10.60	6040
	Fusiform L	6.21	1223	3.29	18472
	Hippocampus_L	4.33	1223	5.69	7456
	Amygdala_L	3.35	1223	18.64	1760
	ParaHippocampal_L	2.37	1223	2.97	7824
14 -70 -48	OUTSIDE	33.64	5809	0.00	0
	Cerebelum 8 R	15.15	5809	38.13	18464
	Cerebelum_8_L	14.55	5809	44.78	15096
	Cerebelum_9_L	5.94	5809	39.70	6952
	Cerebelum_9_R	4.42	5809	31.77	6472
	Vermis 8	3.94	5809	76 54	1944
	Cerebelum 6 L	2.79	5809	9.56	13552
	Cerebelum_Crusl_L	2.51	5809	5.61	20824
	Cerebelum_7b_L	2.17	5809	21.54	4680
	Cerebelum_4_5_L	2.15	5809	11.11	9000
	Cerebelum 4 5 R Cerebelum Crus2 B	1.60	5809	10.80	6888
	Cerebelum Crus2 L	1.14	5809	3.48	15152

_

_

	Vermis 7	1.03	5809	30.93	1552
	Vermis 10	0.95	5809	49.11	896
	Cerebelum Crusl R	0.95	5809	2.08	21184
	Vermis 9	0.81	5809	27.01	1392
	Vermis 6	0.60	5809	9.43	2968
	Cerebelum 7b R	0.57	5809	6.18	4272
	Vermis 4 5	0.26	5809	2.26	5320
	Cerebelum 3 L	0.09	5809	3.68	1088
	LC R	0.07	5809	60.38	53
	Cerebelum 10 L	0.07	5809	2.78	1152
	LC L	0.02	5809	16.67	48
14 - 78 18	Cuneus R	21.73	2154	32.87	11392
	Calcarine R	15.09	2154	17.46	14888
	Fusiform R	13.32	2154	11.40	20144
	OUTSIDE	11.19	2154	0.00	0
	Cuneus L	9.33	2154	13.21	12168
	Precuneus R	8.03	2154	5.30	26120
	Lingual R	7.94	2154	7.43	18400
	Calcarine L	5.01	2154	4.78	18064
	Occipital Sup L	3.48	2154	5.49	10928
	Precuneus L	1.86	2154	1.13	28224
	Occipital Sup R	0.97	2154	1.49	11304
	Occipital Mid L	0.74	2154	0.49	26120
	Temporal Inf R	0.42	2154	0.25	28456
	Temporal Mid R	0.37	2154	0.18	35272
	Cingulate_Post_R	0.32	2154	2.09	2680
	Occipital_Inf_R	0.19	2154	0.40	7912
66 - 38 12	SupraMarginal_R	25.26	2237	28.62	15792
	Postcentral R	19.76	2237	11.56	30584
	Temporal_Mid_R	16.05	2237	8.14	35272
	OUTSIDE	13.10	2237	0.00	0
	Temporal_Sup_R	9.70	2237	6.91	25128
	Occipital_Mid_R	4.96	2237	5.29	16784
	Angular R	4.78	2237	6.11	14016
	Precentral R	2.50	2237	1.66	27048
	Parietal_Inf_R	1.97	2237	3.27	10760
	Rolandic_Oper_R	1.92	2237	3.23	10648
-36 -36 -20	Fusiform L	39.37	1082	18.45	18472
	OUTSIDE	14.70	1082	0.00	0
	Temporal_Mid_L	10.44	1082	2.29	39536
	Occipital_Mid_L	10.44	1082	3.46	26120
	Lingual_L	8.87	1082	4.58	16760
	Temporal Inf L	8.23	1082	2.78	25600
	Occipital_Inf_L	5.82	1082	6.70	7528
	ParaHippocampal L	2.13	1082	2.35	7824
66 -16 0	Temporal_Sup_R	100.00	59	1.88	25128
60 12 28	Precentral R	60.00	155	2.75	27048
	Frontal Inf Oper R	32.26	155	3.57	11192
	Frontal_Mid_2 R	7.74	155	0.25	38880
-26 -60 64	Parietal Sup L	100.00	80	3.87	16520
-30 -16 14	OUTSIDE	56.42	179	0.00	0
	Putamen_L	35.75	179	6.43	7967
	Insula_L	7.82	179	0.75	14864
36 42 12	Frontal_Mid_2_R	55.81	86	0.99	38880
	OUTSIDE	27.91	86	0.00	0
	Frontal_Inf_Tri_R	16.28	86	0.65	17208
40 14 -36	Temporal Pole Mid R	38.40	125	4.04	9496
	Temporal_Mid_R	30.40	125	0.86	35272
	Temporal_Inf_R	16.80	125	0.59	28456
	OUTSIDE	11.20	125	0.00	0
	Amygdala_R	3.20	125	1.61	1984
-20 -80 42	Occipital_Sup_L	85.00	20	1.24	10928
	Cuneus_L	10.00	20	0.13	12168
	Parietal_Sup_L	5.00	20	0.05	16520
-34 -34 16	Rolandic_Oper_L	55.56	27	1.52	7904
	OUTSIDE	33.33	27	0.00	0
	Temporal_Sup_L	7.41	27	0.09	18368
	Heschl_L	3.70	27	0.44	1800
-14 26 58	Frontal_Sup_2_L	75.00	16	0.25	38960
	Frontal Sup Medial L	25.00	16	0.13	23936
-60 -56 12	Temporal_Mid_L	100.00	40	0.81	39536
28 - 38 72	Postcentral_R	85.71	21	0.47	30584
	Parietal_Sup_R	14.29	21	0.14	17776

-66 -	24	8	Temporal_Sup_L	100.00	12	0.52	18368
-2 -	36	58	Paracentral Lobule L	60.00	45	2.00	10792
			Precuneus L	20.00	45	0.26	28224
			OUTSIDE	11.11	45	0.00	0
			Paracentral_Lobule_R	8.89	45	0.48	6688
-10 -	10	66	Supp_Motor_Area_L	72.73	22	0.75	17176
			Paracentral Lobule L	18.18	22	0.30	10792
			Precentral_L	9.09	22	0.06	28208
52	-6	-4	Temporal Sup R	65.85	41	0.86	25128
			Temporal Pole_Sup_R	34.15	41	1.05	10704
30 -	54	66	Parietal_Sup_R	100.00	2	0.09	17776
-24 -	48	6	OUTSIDE	71.43	21	0.00	0
			Precuneus_L	28.57	21	0.17	28224
-12	-4	74	Frontal_Sup_2_L	66.67	6	0.08	38960
			Supp_Motor_Area_L	33.33	6	0.09	17176
34 -	12	-10	OUTSIDE	71.43	7	0.00	0
			Putamen_R	28.57	7	0.19	8499
22 -	70	46	Occipital_Sup_R	69.23	13	0.64	11304
			Parietal_Sup_R	30.77	13	0.18	17776
-34 -	56	22	OUTSIDE	100.00	21	0.00	0
42 -	48	56	Parietal_Sup_R	83.33	6	0.23	17776
			Parietal_Inf_R	16.67	6	0.07	10760
-44 -	50	8	Temporal_Mid_L	100.00	4	0.08	39536
14 -	50	50	Precuneus_R	100.00	4	0.12	26120
-8 -	-24	30	OUTSIDE	100.00	7	0.00	0
40 -	34	20	OUTSIDE	60.00	5	0.00	0
			Rolandic_Oper_R	40.00	5	0.15	10648
48	32	10	Frontal_Inf_Tri_R	100.00	1	0.05	17208
30 -	-18	-30	Fusiform_R	50.00	6	0.12	20144
			ParaHippocampal_R	50.00	6	0.27	9056
14 -	-66	-2	Lingual_R	100.00	3	0.13	18400
-32 -	-72	48	Parietal Inf L	100.00	1	0.04	19576
-6 -	-12	58	Supp_Motor_Area_L	100.00	1	0.05	17176
-26	4	64	Frontal_Sup_2_L	100.00	1	0.02	38960
32 -	-24	-20	ParaHippocampal_R	100.00	2	0.18	9056
24 -	-44	10	OUTSIDE	100.00	1	0.00	0
-16 -	-18	38	OUTSIDE	100.00	2	0.00	0
34 -	-26	-18	ParaHippocampal_R	100.00	2	0.18	9056
56	8	16	Frontal_Inf_Oper_R	100.00	1	0.07	11192
-34 -	-74	46	Parietal_Inf_L	100.00	1	0.04	19576
4 -	24	62	Supp_Motor_Area_R	100.00	1	0.04	18968
-22 -	46	66	Parietal_Sup_L	100.00	1	0.05	16520
				table shows first local m	aximum ner cluster		

Sujeto 2

Sujeto 1

10.19 Regresores para corrección de movimiento en paradigma 30 segundos

Sujeto 4

10.20 Regresores para corrección de movimiento paradigma en 60 segundos

Sujeto 2

Sujeto 1

Sujeto 4

10.21 Regresores para corrección de movimiento en paradigma 90 segundos

Sujeto 2

image

Sujeto 4

10.22 Matriz de diseño

Global calculation : mean voxel value Grand mean scaling : session specific Global normalisation : Scaling

Statistical analysis: Design

Página | 146

10.23 Cuestionario historial clínico

		FECHA:/_		
NOMBRE:				
EDAD:	SEXO:	NACIONALIDAD:		
¿HA SIDO PREVIAMEN SIGUIENTES CATEGOF	TE DIAGNOSTICA RIAS?	ADO CON ALGUNA PATOLOGIA QUE SE ENCUENTRE	DENTRO) DE LAS
CARDIOVASCULAR	SI	DIAGNÓSTICO:		
RESPIRATORIA NO	SI	DIAGNÓSTICO:		
NEURÓLOGICA NO	SI	DIAGNÓSTICO:		
METABÓLICA NO	SI	DIAGNÓSTICO:		
ENDÓCRINA: NO	SI	DIAGNÓSTICO:		
		 FIRMA		

10.24 Consentimiento informado

CENTRO NACIONAL DE INVESTIGACIÓN EN IMAGENOLOGÍA E INSTRUMENTACIÓN MÉDICA

		Cu	estionario
Realización de Estud	lio de	Resonanci	ia Magnética
Información del Sistema		Rev.02	FM_034
Do cumental del CI3M		04,03,2017	Página 1 de 3

POR SU SEGURIDAD ES MUY IMPORTANTE QUE RESPONDA ADECUADAMENTE ESTE CUESTIONARIO Al realizarle el estudio de resonancia magnética, entrará a un área <u>con un campo magnético de gran intensidad</u>, <u>el cual estará presente todo el tiempo</u>. Responda las siguientes preguntas cuidadosamente e informe al personal si alguna no es clara para usted. <u>Todas sus respuestas son estrictamente confidenciales.</u>

	CAMPO EXCLUSIVO PARA USO DEL PERSONAL DEL CI3M								
Eachar (#D Paciente/Suj	eto					
i cuita.	<u>dd Imm Iaaaa</u>		#D Estudio						
,									
	⊡ Sí		o Sí 👘		🗆 Sí				
	🗆 No		🗆 No		□ No				
En caso de que el estudio sea parte de una investigabión complete:									
#D Protocolo de investigación:									
#D Proyecto de investigación:									

1. DATOS DEL PACIENTE / SUJETO

ndique el tipo de estudio que solicita:							
	TODOSLOS CAMPOS	SON OBLIGAT	ORIOS				
Nombre del Paciente/Suieto:							
Sexo Femenino Masculino	Fecha de Nacimiento: dd /mm /aaaa	Edad:	Altura (m):	Peso (Kg):			
Dirección: Calle		No. Ext:	No. Int.	•			
Colonia	CP.:	Delegación/Mu	nicipio:				
Teléfono Fijo:		Teléfono Móvil	:				
Correo electrónico: Desea que le enviemos noti	ificaciones, actualizaciones	ı y promociones a	su correo electrónico:	□Sí □No			

Centro Nacional de Investigación en Imagenología e Instrumentación Médica - CBM Anillo Perif Blvd. Adolfo López Mateos 5374, Olímpica, C.P. 04710 Ciudad de Mético - Tel. 65)6729-2774 -www.ci3m.ma

				Cuestionan			onano
Realización	de	Estuc	lio	de	Resonanci	a Ma	agnétic a
lufo mación de l Sistema				Reu. 02		FM_034	
Docume utal de ICI3 III				l	04/03/2017	Pá	gi∎a2de3

Requerimiento	Selección	Observaciones			
¿Tiene algún implante metálico, clips de aneurisma (clips que se ponen alrededor de las venas en cirugías), marcapasos, prótesis o tatuaje en el cuerpo? <i>Nota : El delinea</i> do <i>perm anente cuenta com</i> o tatuaje, <i>en cas</i> o de tener un tatuaje anote por cuánto tiempo <i>lo ha teni</i> do.	□ Sí □ No	¿Cuál? ¿En qué zona del cuerpo?			
; Ha sido operado alguna vez de alguna zona del cuerpo?	□ Sí □ No	Especifique:			
¿Tiene algún(os)tipo(s) de alergia(s)?	⊡ Sí ⊡ No	Especifique:			
¿Ha trabajado con material metálico sin protección para los ojos?	□ Sí □ No	¿Existe alguna posibilidad que se encuentre embarazada?	□ Sí □ No		
¿Ha recibido algún i mpacto de arma de fuego?	⊡ Sí ⊡ No	¿Tiene asma?	⊡ Sí ⊡ No		
¿Es claustrofóbico? <i>Claustrofóbico : Temora los espacios cerra</i> dos	⊡ Sí ⊡ No				
**** SI ALGUNA RESPUESTA ES POSITIVA INFORME AL PERSONAL PARA QUE LO ASISTA****					

2. SINTOMATOLOGÍA Y ESTADO DEL PACIENTE / SUJETO

¿Qué s'intomas presen	ta y desde cuàndo?

Describa brevemente la evolución de su padecimiento

3. OTROS DATOS

Nombre del médico solicitante / Investigador

¿Cómo se enteró de nuestros servicios? (Marque con una "X"):

🗆 Internet	□ Publicidad en el metro.	Recomendación Personal.	☐ Recomendación del médico.	☐ Otro. ¿Cuál?			
Se ha realizado algún estudio de resonancia magnética con anterioridad: DSÍ DNO Si su respuesta fue "Sí" conteste:							
¿En qué zona del cuerpo?							
¿Cuándo se lo realizó?							

Centro Nacional de Investigación en Imagenología e Instrumentación Médica - CI3M Anillo Perif Blvd. Adolfo López Maleov 5374, Olímpica, C.P. 04710 Gudad de México - Tel. 65)6729-2774 - www.ci3m.mx

	Cu	estionario	
Realización de Estu	dio de Resonan	cia Magnética	
Información del Sistema	Reul. D2	FM_034	
Documental del C 1300	04/03/2017	Página 3 de 3	

4. INFORMACIÓN IMPORTANTE

Durante el tiempo de realización del estudio usted deberá permanecer quieto, estará bajo constante vigilancia de nuestros profesionales. Cualquier duda o situación, por favor com uníquelo de inmediato a nuestro personal. Para poder realizar el estudio, <u>es necesario retirar del cuerpo cualquier objeto metálico</u> así como también artículos de joyería, accesorios, piezas dentales desmontables, barniz de las uñas, etc.

5. CONSENTIMENTO INFORMADO

Algunos estudios requieren la administración de contraste intravenoso (inyectado), este debe estar específicado en la orden médica que nos proporcione o establecido en el consentimiento informado del protocolo de investigación, dicho medio de contraste podría llegar a ocasionar reacciones alérgicas y se elimina por la orina en un periodo máximo de 24 horas, estando contraindicado para pacientes con insuficiencia renal y teniendo un <u>costo</u> extra al estudio si no forma parte de una investigación.

En caso de estar indicado ¿Autoriza usted la administración de dicho contraste? 🛛 DÍ 👘 DNO 🗆 DNO Aplica 👘

En caso de responder "No" específique los motivos

6. AVISO DE PRIVACIDAD

El <u>CENTRO NACIONAL DE INVESTIGACIÓN EN IMAGENOLOGÍA E INSTRUMENTACIÓN MÉDICA A.C.</u> con Domicilio Fiscal en Circuito Laguna Caxcana no. 111 Col. Brisas del Lago, Guanajuato, México utilizará sus datos personales aquí recabados únicamente para la realización y/o interpretación médica del estudio y su posterior entrega. Para mayor información acerca del tratamiento y de los derechos que puede hacer valer, puede acceder al aviso de privacidad completo solicitándolo en recepción donde le será proporcionado.

7. PROTOCOLO DE INVESTIGACIÓN

¿El estudio que se realizará es parte de una investigación? 🗆 Sí 👘 🗆 No

Si su respuesta fue "Sí" ¿Desea ser in formado en caso de apreciar alguna anomalía? 🗆 Sí 👘 🗆 No

HE COMPRENDIDO LA INFORMACIÓN AQUÍ PRESENTADA Y ACEPTO QUE SE ME REALICE EL ESTUDIO SOLICITADO EN ESTE DOCUMENTO.

Nombre, Fecha y Firma

ESTE CUESTIONARIO DEBE SER COMPLETADO, FIRMADO Y ENTREGADO ANTES DE ENTRAR AL ESTUDIO.

Centro Nacional de Investigación en Imagenología e Instrumentación Médica - CI3M Anillo Perif Blvd. Adolfo López Matelox 5374, Olímpica, C.P. 04710 Ciudad de Mético - Tel. \$5)6729-2774 -www.ci3m.ma