

UNIVERSIDAD AUTÓNOMA METROPOLITANA - IZTAPALAPA DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍA DEPARTAMENTO DE FÍSICA

EFECTOS DE CAMPOS ELÉCTRICOS Y MAGNÉTICOS SOBRE ALGUNOS SISTEMAS CUÁNTICOS CONFINADOS DE UN ELECTRÓN

Tesis que presenta: Elizabeth Cruz Osorio Para obtener el grado de: Doctora en ciencias (Física)

Asesor: Dr. Norberto Aquino Aquino

Jurado calificador:

Presidente: Dr. Robin Preenja Sagar Secretario: Dr. Salvador Antonio Cruz Jiménez Vocal: Dr. Julio Manuel Hernández Pérez Vocal: Dr. Antonio Flores Riveros Vocal: Dr. Norberto Aquino Aquino

Ciudad de México, 28 de abril de 2023.

Agradecimientos

Expreso mis más sinceros agradecimientos a varias personas e instituciones, ya que con su apoyo se ha logrado la realización de este trabajo.

Al Dr. Norberto Aquino Aquino, le agradezco por dirigir esta tesis doctoral, por compartir conmigo sus conocimientos, ideas y puntos de vista, por toda su atención, asesoría y paciencia al momento de resolver mis dudas, por el tiempo dedicado durante la realización de este trabajo, por todas las observaciones y sugerencias realizadas a este trabajo de tesis.

A los miembros del jurado evaluador de este trabajo: Dr. Salvador Antonio Cruz Jiménez, Dr. Antonio Flores Riveros, Dr Julio Manuel Hernández Pérez y al Dr. Robin Preenja Sagar, les agradezco por su participación como miembros del jurado, por el tiempo dedicado a la revisión cuidadosa de este trabajo, por todos sus comentarios tan útiles, las valiosas sugerencias y observaciones realizadas al trabajo.

Al Dr. Vinod Prasad, le agradezco por las útiles reuniones de discusión que mantuvimos al inicio de este trabajo de tesis, durante su estancia en el Departamento de Química. Por la colaboración en el artículo publicado como parte de los resultados de este trabajo.

A la Universidad Autónoma Metropolitana por la beca otorgada durante la mayor parte de la duración del posgrado, así como también por la beca de titulación proporcionada en la etapa final de la realización de este trabajo. Al Departamento de Física de la Unidad Iztapalapa por brindarme la oportunidad de continuar con mi formación académica.

Al Consejo Nacional de Ciencia y Tecnología por la beca otorgada por un periodo de tiempo durante la realización de este posgrado.

A mis padres Enrique Cruz y Blandina Osorio por toda la motivación y apoyo brindado para poder cumplir mis objetivos, por su amor incondicional que me ha impulsado a seguir adelante. A Eduardo Guzmán por su confianza en mí, por su apoyo brindado a lo largo de mi formación académica, por ser como un segundo padre para mí. A mis hermanos por apoyarme siempre, por todas esas palabras de ánimo en los momentos necesarios. A mi esposo Omar Vergara por todo su apoyo emocional y comprensión durante la realización de este trabajo.

A mis amigos por estar siempre al pendiente de la evolución de este trabajo, gracias.

Resumen

En este trabajo se estudiaron los efectos de campos eléctricos y magnéticos en sistemas cuánticos confinados de un electrón, mediante el espectro de energía y medidas de la información, como la entropía de Shannon e información de Fisher, tanto en el espacio de configuración, como en el espacio de momentos.

Comenzamos con el sistema de una partícula confinada en una región circular de radio r_0 , obtuvimos los valores propios de energías. Como es bien conocido, los niveles de energía para los estados con momento angular diferente de cero están doblemente degenerados. Como medidas de localización-deslocalización de la partícula, calculamos la entropía de Shannon y la información de Fisher como función del radio de confinamiento. Estudiamos este sistema con el propósito de comparar los resultados en ausencia de campos con aquellos obtenidos en los que la partícula confinada se encuentra en presencia de un campo eléctrico o magnético constante, según sea el caso.

Se estudió el caso de un electrón confinado en una región circular en presencia de un campo eléctrico constante, utilizando el método variacional lineal. Se obtuvieron las energías propias y funciones de onda aproximadas para algunos estados de este sistema. Estas funciones se construyeron como una combinación lineal de las funciones de onda de la partícula confinada en una región circular libre de campo. Obtuvimos algunos valores esperados de la posición, la desviación estándar, y también se calcularon medidas de información como la entropía de Shannon, el desequilibrio y la información de Fisher, como función de la magnitud del campo eléctrico. Observamos que el campo eléctrico polariza la densidad electrónica y además rompe la degeneración de los estados excitados. Se verificaron las relaciones de incertidumbre tanto para la entropía de Shannon como la información de Fisher, así como también se verificó el cumplimiento del principio de incertidumbre de Heisenberg generalizado.

El siguiente sistema que se estudió es el de un electrón sujeto a un potencial de oscilador armónico bidimensional confinado en una región circular plana en presencia de un campo eléctrico constante paralelo a uno de los diámetros. Obtuvimos los valores propios de energía como función de la magnitud del campo eléctrico y del tamaño de la región circular. Utilizando el método variacional lineal, las funciones de onda de algunos estados del sistema se construyeron como una combinación lineal de las funciones de onda de una partícula confinada en una región circular de radio r_0 y sujeta a un potencial de oscilador armónico. Además se calcularon algunas medidas entrópicas como función de la magnitud del campo eléctrico y radio de confinamiento. Al igual que en el sistema anterior, se satisfacen las relaciones de incertidumbre correspondientes a las entropías de Shannon y a la información de Fisher, así como también, se verificó el cumplimiento del principio de incertidumbre de Heisenberg generalizado.

Por último, obtuvimos los eigenvalores de energía y funciones de onda de algunos estados de un electrón confinado en una región circular de radio r_0 en presencia de un campo magnético constante perpendicular al plano definido por la región circular. Estos resultados se obtuvieron aplicando el método variacional lineal, diagonalizando la matriz hamiltoniana en la base de la partícula confinada en una región circular de radio r_0 . Como medidas de localización-deslocalización calculamos la desviación estándar, la entropía de Shannon y la información de Fisher, como función del radio de confinamiento y como función de la magnitud del campo magnético.

Abstract

In this work, the effects of electric and magnetic fields in confined quantum systems of one electron were studied by means of the energy spectrum and informational measures, such as Shannon entropy and Fisher information in the configuration space as well as in the momentum space.

We started with the study of a free particle confined in a circular region of radius r_0 , we obtained the energy eigenvalues. As is well known, the energy levels for states with non-zero angular momentum are doubly degenerate. As measures of localization-delocalization of the particle, we calculated the Shannon entropy and the Fisher information as a function of confinement radius. We study this system in order to compare the results in the absence of fields with those obtained when the confined particle is in the presence of a constant electric or magnetic fields.

An electron confined in a circular region in the presence of a constant electric field was studied using the linear variational method. Energy eigenvalues and approximate wave functions were obtained for some states of this system. The wave functions were constructed as a linear combination of the wave functions of the particle confined in a circular region without field. We obtained few position expectation values, the standard deviation, and also calculated few information measures such as Shannon entropy, disequilibrium and Fisher information, as a function of the magnitude of the electric field. We observed that the electric field polarizes the electron density and also breaks the degeneracy of excited states. The uncertainty relations for Shannon entropy and Fisher information were verified, as well as the fulfillment of the generalized Heisenberg uncertainty principle.

The next system studied was that of an electron subjected to a two-dimensional harmonic oscillator potential confined in a planar circular region in presence of a constant electric field parallel to one of the diameters. We obtained the energy eigenvalues as a function of the magnitude of the electric field and the size of the circular region. Using the linear variational method, the wave functions of some states of the system were constructed as a linear combination of the wave functions of a particle confined in a circular region of radius r_0 subjected to a harmonic oscillator potential. In addition, some entropic measures were calculated as a function of the magnitude of the electric field and confinement radius. As in the previous system, the uncertainty relations

corresponding to Shannon entropies and Fisher information are satisfied, as well as compliance with the generalized Heisenberg uncertainty principle.

Finally, we obtained the energy eigenvalues and wave functions of some states of an electron confined in a circular region of radius r_0 in presence of a constant magnetic field perpendicular to the plane defined by the circular region. This system was studied by applying the linear variational method, diagonalizing the hamiltonian matrix at the base of the particle confined in a circular region of radius r_0 . As measures of localization-delocalization we calculated the standard deviation, the Shannon entropy and the Fisher information, as a function of the confinement radius and as a function of the magnitude of the magnetic field.

Índice general

A	gradecimientos				III
Re	lesumen				\mathbf{V}
\mathbf{A}	bstract				VII
Ín	ndice de figuras			2	XVII
Ín	ndice de tablas				xx
1.	. Introducción				1
2.	. Objetivos				3
	2.1. Objetivo general		 •		3
	2.1.1. Objetivos particulares	•			3
3.	. Fundamentos teóricos				5
	3.1. Método variacional lineal		 •		5
	3.2. Desviación estándar				8
	3.3. Principio de incertidumbre de Heisenberg generalizado				9
	3.4. Entropía de Shannon				10
	3.5. Desequilibrio				12
	3.6. Información de Fisher	•			13
4.	. Partícula confinada en una región circular plana				15
	4.1. Eigenvalores de energía	•	 •		16
	4.2. Entropía de Shannon	•	 •		18
	4.3. Información de Fisher	•	 •		24
	4.4. Conclusiones		 •		27

5.	Par	tícula confinada en una región circular plana en presencia de un campo)
	eléc	trico constante	29
	5.1.	Eigenvalores de energía	33
	5.2.	Valores esperados de la posición y desviación estándar	35
	5.3.	Entropía de Shannon	41
		5.3.1. Potencia de la entropía de Shannon	47
	5.4.	Desequilibrio	50
	5.5.	Principio de Incerti dumbre de Heisenberg generalizado $\ \ldots \ $	53
	5.6.	Información de Fisher	54
	5.7.	Conclusiones	58
6.	Par	tícula sujeta a un potencial de oscilador armónico bidimensional confinada	L
	en ı	una región circular en presencia de un campo eléctrico constante	61
	6.1.	Energías propias	68
	6.2.	Valores esperados de $r \ge r^2$	70
	6.3.	Desviación estándar	74
	6.4.	Entropía de Shannon	76
		6.4.1. Potencia de entropía de Shannon	82
	6.5.	Desequilibrio	83
	6.6.	Principio de incertidumbre de Heisenberg generalizado	86
	6.7.	Información de Fisher	88
	6.8.	Conclusiones	92
7.	Par	tícula confinada en una region circular plana en presencia de un campo)
	mag	gnético constante	95
	7.1.	Eigenvalores de energía	98
	7.2.	Valores esperados de la posición	100
	7.3.	Desviación estándar	101
	7.4.	Entropía de Shannon	102
	7.5.	Información de Fisher	110
	7.6.	Conclusiones	115
8.	Con	nclusiones generales y perspectivas	117
	8.1.	Perspectivas	120
Re	efere	ncias	122

Apendices

A. Resultados numéricos correspondientes a las entropías de Shannon	131
B. Resultados numéricos correspondientes a la información de Fisher	139
Artículo: Localization-delocalization of a particle in a quantum corral in presence	е
of a constant magnetic field	147

Índice de figuras

4.1.	Eigenvalores de energía como función del radio de confinamiento $r_{\scriptscriptstyle 0}$ de los estados	
	(n,m) de una partícula confinada en una región circular	18
4.2.	Comportamiento de la entropía de Shannon en el espacio de configuración y espacio	
	de momentos para los estados (n,m) de una partícula confinada en una región	
	circular de radio r_0	21
4.3.	Comportamiento de la entropía de Shannon en el espacio de configuración, espacio	
	de momentos y la entropía total, para los estados (n,m) de una partícula confinada	
	en una región circular de radio $r_{\scriptscriptstyle 0}.$	23
4.4.	Comportamiento de la información de Fisher en el espacio de configuración y	
	espacio de momentos para los estados (n,m) de una partícula confinada en una	
	región circular de radio $r_{\scriptscriptstyle 0}.$	25
4.5.	$\label{eq:comportaniento} Comportamiento de la información de Fisher en el espacio de configuración, espacio$	
	de momentos y el producto de la información en ambos espacios, para los estados	
	(n,m) de una partícula confinada en una región circular de radio $r_{\scriptscriptstyle 0}.$	26
5.1.	Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del estado base, para valores	
	selectos de la intensidad del campo y radio de confinamiento	32
5.2.	Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado,	
	para valores selectos de la intensidad del campo y radio de confinamiento	32
5.3.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado,	32
5.3.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento	32 33
5.3. 5.4.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento Comportamiento de la energía del estado base y de algunos estados excitados como	32 33
5.3. 5.4.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f	32 33 35
5.3.5.4.5.5.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f	32 33 35
5.3.5.4.5.5.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f	32 33 35
5.3.5.4.5.5.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f	32 33 35 36
5.3.5.4.5.5.5.6.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f	32 33 35 36
5.3.5.4.5.5.5.6.	para valores selectos de la intensidad del campo y radio de confinamiento Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f	32 33 35 36

5.7.	Gráficas de las densidades de probabilidad radial $\rho(r)$ para los cinco estados más	
	bajos del sistema con un radio de confinamiento $r_0 = 2.0$ y tres valores del campo	
	eléctrico f	39
5.8.	Gráficas de las densidades de probabilidad radial $\rho(r)$ para los cinco estados más	
	bajos del sistema con un radio de confinamiento $r_0 = 3.0$ y tres valores del campo	
	eléctrico f	40
5.9.	Comportamiento de la desviación estándar σ para algunos estados del sistema	
	como función de la magnitud del campo eléctrico f y radio de confinamiento fijo	41
5.10	. Comportamiento de la entropía de Shannon en el espacio de configuración $S_{ ho}$ y en	
	el espacio de momentos S_{γ} para algunos estados del sistema como función de la	
	magnitud del campo eléctrico f y radio de confinamiento fijo	43
5.11	. Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} ,	
	espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$, como función de la magnitud	
	del campo eléctrico f y radio de confinamiento fijo en unidades atómicas	45
5.12	. Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} ,	
	espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$, como función de la magnitud	
	del campo eléctrico f y radio de confinamiento fijo en unidades atómicas	46
5.13	. Comportamiento de la potencia de entropía de Shannon en el espacio de configu-	
	ración J_{ρ} y en el espacio de momentos J_{γ} como función de la magnitud del campo	
	eléctrico f y radio de confinamiento fijo	48
5.14	. Comportamiento de la potencia de las entropías de Shannon como función de la	
	magnitud del campo eléctrico f y radio de confinamiento fijo	49
5.15	. Comportamiento del desequilibrio en el espacio de configuración y en el espacio	
	de momentos para algunos estados del sistema como función de la magnitud del	
	campo eléctrico f (u.a.) y radio de confinamiento $r_{_0}$ (u.a.) fijo	51
5.16	. Comportamiento del desequilibrio para algunos estados del sistema como función	
	de la magnitud del campo eléctrico f (u.a.) y radio de confinamiento $r_{\scriptscriptstyle 0}$ (u.a.) fijo.	52
5.17	. Comportamiento de $\left\langle r^2\right\rangle \left\langle p^2\right\rangle$ para algunos estados del sistema como función de la	
	magnitud del campo eléctrico f y radio de confinamiento fijo	54
5.18	. Comportamiento de la Información de Fisher en el espacio de configuración F_ρ y	
	en el espacio de momentos F_γ para algunos estados del sistema como función de	
	la magnitud del campo eléctrico f y radio de confinamiento fijo	56
5.19	. Comportamiento de la información de Fisher en el espacio de configuración F_{ρ} ,	
	espacio de momentos F_{γ} y el producto $F_{\rho}F_{\gamma}$ para algunos estados del sistema como	
	función de la magnitud del campo eléctrico f y radio de confinamiento fijo	57

6.1.	Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del estado base	
	(primera columna), primer y segundo estado excitado (segunda y tercera columna,	
	respectivamente) para $r_0 = 1.0$ (primera fila) y $r_0 = 2.0$ (segunda fila), en ausencia	
	de campo	66
6.2.	Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del estado base,	
	para valores selectos de la intensidad del campo y radio de confinamiento	66
6.3.	Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado	
	excitado, para valores selectos de la intensidad del campo y radio de confinamiento.	67
6.4.	Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del segundo	
	estado excitado, para valores selectos de la intensidad del campo y radio de confi-	
	namiento.	67
6.5.	Comportamiento de la energía del estado base y de algunos estados excitados como	
	función de la magnitud del campo eléctrico f	69
6.6.	Comportamiento del valor esperado de r para cinco estados del sistema como	
	función de la magnitud del campo eléctrico f y radio de confinamiento fijo	70
6.7.	Comportamiento del valor esperado de r^2 para cinco estados del sistema como	
	función de la magnitud del campo eléctrico f y radio de confinamiento fijo	70
6.8.	Gráficas de las densidades de probabilidad radial $\rho(r)$ para los cinco estados más	
	bajos del sistema con un radio de confinamiento $r_{\rm o}=1.0$ y tres valores del campo	
	eléctrico f	71
6.9.	Gráficas de las densidades de probabilidad radial $\rho(r)$ para los cinco estados más	
	bajos del sistema con un radio de confinamiento $r_{\rm o}=2.0$ y tres valores del campo	
	eléctrico f	72
6.10.	. Gráficas de las densidades de probabilidad radial $\rho(r)$ para los cinco estados más	
	bajos del sistema con un radio de confinamiento $r_{\rm o}=3.0$ y tres valores del campo	
	eléctrico f	73
6.11.	. Comportamiento de la desviación estándar como función de la magnitud del campo	
	eléctrico f y radio de confinamiento fijo	75
6.12.	. Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} para	
	algunos estados del sistema como función de la magnitud del campo eléctrico f y	
	radio de confinamiento fijo	78
6.13.	. Comportamiento de la entropía de Shannon en el espacio de momentos S_γ para	
	algunos estados del sistema como función de la magnitud del campo eléctrico f y	
	radio de confinamiento fijo	79
6.14.	. Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} ,	
	espacio de momentos S_{γ} y entropía total $S_{\rho}+S_{\gamma}$ del estado base, primer y segundo	
	estado excitado del sistema, como función de la magnitud del campo eléctrico f y	
	radio de confinamiento fijo	80

6.15.	Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} , espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$ del tercer y cuarto estado exci-	
	tado del sistema, como función de la magnitud del campo eléctrico f y radio de	
	confinamiento fijo.	81
6.16.	Comportamiento de la potencia de entropía de Shannon en el espacio de configura-	
	ción J_{ρ} como función de la magnitud del campo eléctrico f y radio de confinamiento	
	fijo	82
6.17.	Comportamiento de la potencia de entropía de Shannon en el espacio de momentos	
	J_{γ} como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.	83
6.18.	Comportamiento del desequilibrio en el espacio de configuración y en el espacio de	
	momentos para el estado base y los primeros cuatro estados excitados del sistema	
	como función de la magnitud del campo eléctrico f y radio de confinamiento fijo	84
6.19.	Comportamiento del desequilibrio para el estado base y los primeros cuatro estados	
	excitados del sistema como función de la magnitud del campo eléctrico f y radio	
	de confinamiento fijo	85
6.20.	Comportamiento de $\langle p^2 \rangle$ para algunos estados del sistema como función de la	
	magnitud del campo eléctrico f y radio de confinamiento fijo	87
6.21.	Comportamiento de $\langle p^2 \rangle \langle r^2 \rangle$ para algunos estados del sistema como función de la	
	magnitud del campo eléctrico f y radio de confinamiento fijo.	88
6.22.	Comportamiento de la Información de Fisher en el espacio de configuración F_{α}	
	para algunos estados del sistema como función de la magnitud del campo eléctrico	
	f v radio de confinamiento fijo.	89
6.23.	Comportamiento de la Información de Fisher en el espacio de momentos F_{α} para	
0.20.	algunos estados del sistema como función de la magnitud del campo eléctrico f y	
	radio de confinamiento fijo	90
6 24	Comportamiento de la información de Fisher en el espacio de configuración F	50
0.21.	espacio de momentos F , y el producto F F , para cinco estados del sistema como	
	función de la magnitud del campo eléctrico f y radio de confinamiento fijo	91
	función de la magnitud del campo electrico j y radio de commaniento njo	51
7.1.	Eigenvalores de energía para los estados (n,m) como función del campo magnético	
	$b^2,$ para un radio de confinamiento fijo $r_{\scriptscriptstyle 0}=1.5$ u.a. 	100
7.2.	Valores esperados de la posición $\langle r \rangle$ para seis estados (n,m) como función de la	
	magnitud del campo magnético b^2 con radio de confinamiento fijo $r_{\scriptscriptstyle 0}=1.5$ u.a	101
7.3.	Desviación estándar para los estados (n,m) como función de la magnitud del	
	campo magnético b^2 y radio de confinamiento fijo $r_0 = 1.5$ u.a.	102
7.4.	Entropía de Shannon en el espacio de configuración como función del radio de	
	confinamiento $r_{\scriptscriptstyle 0}$ y un valor fijo del campo magnético de b^2 = 1.5 u.a. para seis	
	estados diferentes (n,m)	104

- 7.5. Entropía de Shannon en el espacio de configuración, espacio de momentos y la entropía total, para los estados (n, m), como función del radio de confinamiento r_0 para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$ u.a. 106

- 7.9. Información de Fisher para los estados (n, m) en el espacio de configuración y en el espacio de momentos, como función de la magnitud del campo magnético b^2 para un radio de confinamiento fijo $r_0 = 1.5.$

XVIII

Índice de tablas

4.1.	Eigenvalores de energía de los estados (n, m) de una partícula confinada en una región circular de radio r_0	17
5.1.	Eigenvalores de energía de una partícula confinada en una región circular plana de radio r_0 , en presencia de un campo eléctrico constante	34
6.1.	Eigenvalores de energía de un electrón sujeto a un potencial de oscilador armónico y un campo eléctrico constante f , confinado en una región circular plana de radio r_0 . La energía está en unidades de $\hbar\omega$, la unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.	68
7.1.	Valores propios de energía de un electrón confinado en una región circular plana en presencia de un campo magnético constante b^2 , para un radio de confinamiento fijo $r_0 = 1.5$ u.a.	99
A.1.	Entropías de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total, de los estados (n, m) de una partícula confinada en una región	
	circular de radio $r_{\scriptscriptstyle 0}.$	132
A.2.	Entropías de Shannon en el espacio de configuración S_{ρ} , en el espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$ de una partícula confinada en una región circular plana	
A.3.	de radio r_0 en presencia de un campo eléctrico constante	133
A.4.	unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$. Entropías de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total como función del radio de confinamiento r_0 , para un valor de	135
A.5.	$b^2 = 1.5$ u.a	137
	radio de confinamiento fijo $r_{\scriptscriptstyle 0}=1.5$ u.a	138

B.1.	Información de Fisher en el espacio de configuración, en el espacio de momentos
	y el producto de la información en ambos espacios, como función del radio de
	confinamiento $r_{\scriptscriptstyle 0}.$
B.2.	Información de Fisher en el espacio de configuración, espacio de momentos y el
	producto de ambas informaciones de una partícula en presencia de un campo
	eléctrico constante, confinada en una región circular plana de radio $r_{\scriptscriptstyle 0}.$
B.3.	Información de Fisher en el espacio de configuración, espacio de momentos y el
	producto de ambas informaciones de un electrón sujeto a un potencial de oscilador
	armónico y un campo eléctrico constante confinado en una región circular plana
	de radio $r_{\scriptscriptstyle 0}.$ La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico
	es $(m_e \hbar \omega^3)^{1/2} / e 143$
B.4.	Información de Fisher en el espacio de configuración, en el espacio de momentos
	y el producto de las informaciones, como función del radio de confinamiento para
	un valor fijo de la magnitud del campo magnético $b^2=1.5$ u.a
B.5.	Información de Fisher en el espacio de configuración, en el espacio de momentos y el
	producto de las informaciones, como función de la magnitud del campo magnético
	$b^2,$ para un radio de confinamiento fijo $r_{\scriptscriptstyle 0}=1.5$ u.a.

Capítulo 1

Introducción

El estudio de los sistemas cuánticos confinados ha cobrado gran relevancia con el paso de los años [1]. Fue en 1937 cuando Michels y colaboradores estudiaron por primera vez el modelo del átomo de hidrógeno confinado, analizaron el cambio en la polarizabilidad cuando el átomo es sometido a una alta presión externa. En este modelo, se considera que el núcleo del átomo se encuentra fijo en el centro de una caja esférica de paredes impenetrables [2]. En 1979, Ley-Koo y Rubinstein estudiaron el átomo de hidrógeno confinado en una caja esférica con paredes penetrables, estudiaron el efecto del confinamiento sobre el espectro de energías, el desdoblamiento hiperfino, la polarizabilidad, entre algunas otras propiedades [3].

Existe un gran interés en el estudio de los sistemas cuánticos confinados, ya que el confinamiento espacial modifica significativamente las propiedades físicas del sistema con respecto al caso libre. Algunas de estas propiedades son: el espectro de energía, las probabilidades de transición, la polarizabilidad, entre otras [4,5]. Desde inicios de la mecánica cuántica se han estudiado principalmente los problemas tridimensionales, sin embargo, recientemente los sistemas bidimensionales han cobrado gran atención debido a los avances tecnológicos que permiten crear estructuras de baja dimensión como pozos, alambres y puntos cuánticos [6,7]. En física de los materiales se han utilizado los sistemas bidimensionales para estudiar las propiedades de los semiconductores [8,9], y moléculas en trampas cuánticas bidimensionales [10].

Uno de los sistemas que juega un papel importante en la mecánica cuántica, física atómica y molecular, química cuántica, entre otras áreas, es el oscilador armónico libre o confinado. Ikhdair y Sever estudiaron el oscilador armónico bidimensional relativista más potenciales de Cornell en presencia de campos magnéticos externos [11]. Aly estudió el calor específico, las fluctuaciones de la energía y entropía del oscilador armónico en una, dos y tres dimensiones [12]. Lumb y colaboradores estudiaron el oscilador armónico unidimensional sometido a un campo eléctrico constante y a un campo láser dependiente del tiempo [13].

La mayoría de estos estudios se han enfocado en las propiedades espectroscópicas y en el desarrollo de métodos computacionales aproximados como el método variacional, Hartree-Fock,

teoría del funcional de la densidad, etc. Sin embargo, pocos estudios se han realizado con las medidas de la teoría de la información en sistemas confinados multidimensionales. Una característica que ha cobrado gran interés es el estudio de las medidas entrópicas, como la entropía de Shannon y la información de Fisher, entre otras [14–16]. Corzo y colaboradores estudiaron la localización-deslocalización de una partícula libre en un corral cuántico usando la entropía de Shannon y la varianza radial [17].

En este trabajo se plantea estudiar los efectos de campos eléctricos y magnéticos sobre las medidas entrópicas y el espectro de energías, en sistemas cuánticos confinados bidimensionales de un electrón, obteniendo el espectro de energías, las entropías de Shannon, la información de Fisher, el desequilibrio, así como también la desviación estándar, como función de las dimensiones de la caja de confinamiento y de las magnitudes de los campos aplicados.

El estudio de la entropía de Shannon se ha empleado en el análisis de diferentes sistemas cuánticos tales como partículas, átomos y moléculas confinadas [14,17]. El interés de calcular las entropías de la información surge debido a que esta cantidad es una propiedad relevante del sistema, la cual nos proporciona información sobre la concentración o esparcimiento de la densidad de probabilidad, es decir, nos permite conocer que tan localizada o deslocalizada se encuentra la partícula en el sistema. Otra cantidad que también ha sido utilizada para medir esta localización es la desviación estándar, cuyo cálculo e interpretación en el contexto del presente trabajo tambien se incluye.

La organización de este trabajo es la siguiente: En el Capítulo 2 se inicia con el planteamiento de los objetivos a alcanzar durante el desarrollo de esta tesis para posteriormente, en el Capítulo 3, continuar con la fundamentación teórica y metodología, en la que se aborda el método de aproximación utilizado en este trabajo. En el Capítulo 4 se presentan los resultados obtenidos del sistema formado por una partícula confinada en una región circular de radio r_0 . En el Capítulo 5 estudiamos el sistema formado por un electrón confinado en una región circular en presencia de un campo eléctrico constante, donde se reportan los eigenvalores de energía y las medidas de información. En el Capítulo 6 se reportan los resultados obtenidos para el estudio de un electrón sujeto a un potencial de oscilador armónico confinado en una región circular, en presencia de un campo eléctrico constante. En el Capítulo 7 estudiamos el espectro de energía y medidas de localización-deslocalización de un electrón confinado en una región circular en presencia de un campo magnético constante dirigido perpendicularmente al plano de movimiento, parte de los resultados de este capítulo ya han sido publicados en la referencia [18]. Por último damos las conclusiones generales del trabajo realizado, así como también las perspectivas a futuro en relación al tema de investigación abordado en esta tesis.

Capítulo 2

Objetivos

2.1. Objetivo general

El objetivo general de este trabajo es estudiar los efectos de campos eléctricos y magnéticos sobre las medidas entrópicas y el espectro de energías, en sistemas cuánticos de un electrón confinado en una caja circular de paredes impenetrables, como función del tamaño de la caja de confinamiento y de las magnitudes de los campos aplicados.

2.1.1. Objetivos particulares

- Estudiar el sistema formado por una partícula confinada en una región circular plana impenetrable, libre de campos externos, mostrando el comportamiento de los eigenvalores de energía, entropía de Shannon e información de Fisher como función del radio de confinamiento.
- Estudiar el sistema correspondiente a una partícula confinada en una región circular plana en presencia de un campo eléctrico constante mediante el espectro de energía, valores esperados de la posición, desviación estándar, entropías de la información de Shannon y Fisher, la potencia entrópica de Shannon y el desequilibrio.
- Obtener el espectro de energía de una partícula sujeta a un potencial de oscilador armónico confinada en una región circular plana en presencia de un campo eléctrico constante. Analizar el comportamiento de los valores esperados de la posición, la desviación estándar, la entropía de Shannon y la información de Fisher, la potencia entrópica de Shannon y el desequilibrio.
- Estudiar el sistema partícula confinada en una región circular plana en presencia de un campo magnético constante. Calcular el espectro de energías y analizar el comportamiento de los valores esperados de la posición, la desviación estándar, la entropía de Shannon y la información de Fisher como función de la magnitud del campo magnético externo.

Capítulo 3

Fundamentos teóricos

El número de sistemas cuánticos con solución análitica exacta es muy reducido. En aquellos sistemas en que no es posible este tipo de solución o ésta es muy complicada de obtener, el problema se resuelve utilizando algún método aproximado. Este capítulo comienza abordando de manera breve el método de aproximación utilizado en este trabajo, se trata del método variacional lineal. Posteriormente, continuamos con las medidas de localización, como la desviación estándar, la entropía de Shannon, la información de Fisher, así como otras medidas de la información utilizadas en los diferentes sistemas que estudiamos en este trabajo.

3.1. Método variacional lineal

Mediante el método variacional lineal podemos aproximar la energía del estado base de un sistema sin resolver explícitamente la ecuación diferencial de Schrödinger. Este método se basa en el siguiente teorema [19].

Teorema variacional. Dado un sistema cuyo operador hamiltoniano \hat{H} es independiente del tiempo y eigenvalor más bajo de energía E_1 , si χ es una función bien comportada que depende de las coordenadas del sistema y satisface las condiciones de frontera del problema, entonces

$$\frac{\int \chi^* \hat{H} \chi \, d\tau}{\int \chi^* \chi \, d\tau} \ge E_1. \tag{3.1}$$

Si la función χ está normalizada, la expresión anterior se reduce a

$$\int \chi^* \hat{H} \chi \, d\tau \ge E_1. \tag{3.2}$$

A ambas expresiones se les conoce como integral variacional, mientras que a la función χ se le llama función variacional de prueba.

Sea χ una función variacional de prueba escrita como una combinación lineal de un número n de funciones linealmente independientes f_1, f_2, \dots, f_n , no necesariamente ortogonales, consideradas por simplicidad reales,

$$\chi = \sum_{j=1}^{n} c_j f_j,$$
(3.3)

donde los coeficientes c_j son parámetros que se determinan mediante la minimización de la integral variacional Ec. (3.1), las funciones $\{f_j\}$ son conocidas y satisfacen las condiciones de frontera del problema.

Aplicando el teorema variacional,

$$W \equiv \frac{\int \chi^* \hat{H} \chi \, d\tau}{\int \chi^* \chi \, d\tau} = \frac{\sum_{j=1}^n \sum_{k=1}^n c_j c_k H_{jk}}{\sum_{j=1}^n \sum_{k=1}^n c_j c_k S_{jk}},$$
(3.4)

donde

$$H_{jk} \equiv \int f_j^* \hat{H} f_k \, d\tau, \qquad (3.5)$$

es el elemento jk de la representación matricial del operador \hat{H} en la base de las funciones $\{f_j\}$. Por otra parte, S_{jk} es el elemento jk de la matriz de traslape,

$$S_{jk} \equiv \int f_j^* f_k \, d\tau. \tag{3.6}$$

Reescribiendo la Ec. (3.4)

$$W\sum_{j=1}^{n}\sum_{k=1}^{n}c_{j}c_{k}S_{jk} = \sum_{j=1}^{n}\sum_{k=1}^{n}c_{j}c_{k}H_{jk}.$$
(3.7)

Aplicando la condición necesaria para la minimización de la energía,

$$\frac{\partial W}{\partial c_i} = 0, \qquad i = 1, 2, \dots, n \tag{3.8}$$

derivando parcialmente la Ec. (3.7) con respecto a cada c_i , donde i = 1, 2, ..., n, obtenemos

$$\sum_{k=1}^{n} Wc_k S_{ik} + \sum_{j=1}^{n} Wc_j S_{ji} = \sum_{k=1}^{n} c_k H_{ik} + \sum_{j=1}^{n} c_j H_{ji},$$
(3.9)

dado que los índices son arbitrarios, las funciones $\{f_j\}$ son reales y \hat{H} es un operador hermitiano, entonces, $H_{ji} = H_{ij}$ y $S_{ji} = S_{ij}$, con lo que se obtiene la siguiente ecuación de valores propios,

$$\mathbf{Hc} = W\mathbf{Sc},\tag{3.10}$$

reescribiendo esta expresión,

$$\sum_{k=1}^{n} \left[\left(H_{ik} - S_{ik} W \right) c_k \right] = 0, \qquad i = 1, 2, \dots, n \qquad (3.11)$$

a este conjunto de n ecuaciones lineales simultáneas homogéneas en las variables c_1, c_2, \ldots, c_n se les denomina ecuaciones seculares,

Para que la solución del sistema de ecuaciones (3.12) no sea la trivial, requerimos que

$$|\mathbf{H} - W\mathbf{S}| = 0, \tag{3.13}$$

esto es,

Con esto obtenemos una ecuación algebraica de grado n en la variable W. Esta ecuación tiene n raíces, correspondientes a los diferentes valores aproximados de energía, si las ordenamos de menor a mayor tenemos,

$$W_1 \leq W_2 \leq \ldots \leq W_n$$

Si numeramos los estados del sistema en orden de energía creciente,

$$E_1 \leq E_2 \leq \ldots \leq E_n \leq E_{n+1} \leq \ldots,$$

donde E_n es la energía exacta del estado n. Del teorema variacional conocemos que,

$$W_1 \ge E_1, \qquad W_2 \ge E_2, \qquad W_3 \ge E_3, \qquad \dots, \qquad W_n \ge E_n.$$
 (3.15)

Así, el método variacional lineal provee una cota superior para la energía de los n estados más bajos del sistema en estudio. Si queremos aproximaciones de las energías de más estados excitados, es necesario aumentar el número de funciones f_k en la función variacional de prueba χ . Además, el hecho de aumentar el número de funciones en la función de prueba, puede mejorar la precisión de las energías calculadas, en la mayoría de los casos para lograr este objetivo se recurre a programas computacionales, debido a que aumenta la complejidad de la solución del problema matricial. Si las funciones f_k en $\chi = \sum_{k}^{\infty} c_k f_k$ forman un conjunto completo, podríamos obtener la función de onda exacta, desafortunadamente necesitamos un número infinito de funciones, por lo que la función variacional de prueba es solamente una aproximación.

3.2. Desviación estándar

En estadística, la desviación estándar es una medida que cuantifica la dispersión de una variable aleatoria alrededor del valor medio. En física clásica cuando hablamos de una incertidumbre en la medición de alguna cantidad física, regularmente nos referimos al error causado por la falta de precisión del instrumento que estamos utilizando en la medición de dicha cantidad. En cambio, en física cuántica la incertidumbre en la medición de una observable nos da la noción del grado de dispersión de la distribución de probabilidad. La forma mas común de calcular la dispersión de una densidad de probabilidad es mediante la desviación estándar.

En mecánica cuántica se ha empleado a la desviación estándar de la posición como una medida de la incertidumbre de la posición de la partícula, como medida cuantitativa de localización o deslocalización [17]. La expresión que permite el cálculo de la desviación estándar en un sistema unidimensional es:

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2},\tag{3.16}$$

donde, $\langle x^2 \rangle$ y $\langle x \rangle$ son los valores esperados de x^2 y de la posición x de la partícula, respectivamente. A una desviación estándar baja se le asocia una distribución más localizada, es decir, la densidad de probabilidad se concentra; mientras que a valores grandes de σ_x le asociamos una distribución más deslocalizada; en este caso la densidad de probabilidad se encuentra más extendida espacialmente. Sin embargo, se presentan algunos sistemas en los que la desviación estándar no es un buen indicador de incertidumbre en la medida de la observable [20,21], es ahí donde recurrimos a otras medidas que describan mejor la incertidumbre, tales como las medidas de incertidumbre entrópicas.

3.3. Principio de incertidumbre de Heisenberg generalizado

El principio de incertidumbre de posición-momento formulado por Heisenberg lo que nos dice es que aunque es posible medir con precisión el momento o la posición de la partícula es imposible medir simultaneamente estas dos observables con una precisión arbitraria, la expresión matemática es,

$$\Delta x \Delta p_x \ge \frac{\hbar}{2} \tag{3.17}$$

Así, Δp_x es la incertidumbre al medir la componente p_x del momento de la partícula, por lo que la posición x no puede medirse al mismo tiempo con mayor precisión que $\Delta x = \frac{\hbar}{2\Delta p_x}$, es decir, la precisión con la que se pueden medir simultaneamente estas variables está sujeta a la restricción de que el producto de la incertidumbres en las dos mediciones es al menos del orden de la constante de Planck [22]. Este principio de incertidumbre se puede generalizar a cualquier par de variables dinámicas complementarias o canónicamente conjugadas [23]. En 1929 Robertson generalizó la relación de incertidumbre para dos operadores hermitianos \hat{A} y \hat{B} , como [22],

$$\left(\Delta \hat{A}\right) \left(\Delta \hat{B}\right) \ge \frac{1}{2} \left| \left\langle [\hat{A}, \hat{B}] \right\rangle \right| \tag{3.18}$$

donde, $\Delta \hat{A}$ y $\Delta \hat{B}$ son las desviaciones estándar como medidas de incertidumbre cuántica. La relación general de incertidumbre se puede escribir como,

$$\left(\Delta \hat{A}\right)^{2} \left(\Delta \hat{B}\right)^{2} \ge \left(\frac{1}{2i} \left\langle [\hat{A}, \hat{B}] \right\rangle\right)^{2}.$$
(3.19)

Considerando a los operadores de posición y momento en la relación de incertidumbre generalizada dada por la Ec. (3.19), se obtiene [24],

$$\left(\Delta x\right)^2 \left(\Delta p_x\right)^2 \ge \frac{\hbar^2}{4} \tag{3.20}$$

donde $(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2$ y $(\Delta p_x)^2 = \langle p_x^2 \rangle - \langle p_x \rangle^2$ son las varianzas de posición y momento, respectivamente. Al imponer la condición que $\langle x \rangle = 0$ y $\langle p_x \rangle = 0$ [25],

$$\left\langle x^2 \right\rangle \left\langle p_x^2 \right\rangle \ge \frac{\hbar^2}{4}.$$
 (3.21)

Para un sistema de dimensión D el principio de incertidumbre de posición-momento se reescribe como [25-27],

$$\langle r^2 \rangle \langle p^2 \rangle \ge \frac{D^2}{4}.$$
 (3.22)

3.4. Entropía de Shannon

La teoría de la información se ha aplicado en diversas áreas del conocimiento como en física atómica y molecular, la criptografía, la computación cuántica, entre otras. En esta sección nos enfocaremos en una de las medidas de información de esta teoría. Claude E. Shannon en el artículo A Mathematical Theory of Communication [28] define a la entropía de la información o entropía de Shannon como una medida de incertidumbre o cantidad de información en una distribución de probabilidad dada. En teoría de la información la entropía es una medida de la incertidumbre asociada a una variable aleatoria, que en este contexto cuantifica el valor esperado de la información contenida en un mensaje, generalmente en unidades de bits, proporcionando una medida del promedio de la información faltante en el mensaje cuando se desconoce el valor de la variable aleatoria.

La definición de la entropía de Shannon para una distribución de probabilidad que proviene de una fuente que emite señales discretas es,

$$H(p_1, \dots, p_n) = -\sum_{i}^{n} p_i \ln[p_i], \qquad (3.23)$$

donde p_i es la probabilidad de ocurrencia de cada evento *i*. Shannon conectó la medida del contenido de la información con una distribución de probabilidad. De manera análoga se define la entropía para el caso de una distribución continua con una función de distribución de probabilidad en una dimensión p(x),

$$H(p(x)) = -\int p(x) \ln[p(x)] \, dx, \qquad (3.24)$$

donde $\int_{-\infty}^{\infty} p(x) dx = 1$. En el caso de *n* dimensiones con una densidad de probabilidad $p(x_1, \ldots, x_n)$,

$$H(p(x_1,...,x_n)) = -\int \cdots \int p(x_1,...,x_n) \ln [p(x_1,...,x_n)] \, dx_1...dx_n.$$
(3.25)

La entropía de Shannon es una medida global de la dispersión de la distribución de probabilidad. De acuerdo con la definición de la entropía de Shannon, esta cantidad se construye a partir de una distribución de probabilidad, entonces, en el ámbito de la mecánica cuántica podemos analizar esta cantidad usando las densidades de probabilidad de los sistemas cuánticos.

Sea $\psi(\vec{r})$ una función de onda en el espacio de posiciones, la densidad de probabilidad de una distribución continua $\rho(\vec{r})$ está dada por,

$$\rho(\vec{r}) = |\psi(\vec{r})|^2 = \psi^*(\vec{r})\psi(\vec{r}), \qquad (3.26)$$

la expresión para la entropía de Shannon en el espacio de configuración es [27,29],

$$S_{\rho} = -\int \rho(\vec{r}) \ln\left[\rho(\vec{r})\right] d\vec{r}.$$
(3.27)

La entropía de Shannon en el espacio de configuración se interpreta como la incertidumbre asociada a la posición de la partícula en el espacio [30]. Cuanto menor es esta entropía, indica que la función de onda está más concentrada, la distribución de probabilidad es mas estrecha, disminuyendo así la incertidumbre y aumentando la precisión para predecir la localización de la partícula en el espacio.

Sabemos que al aplicar la transformada de Fourier a la funcion de onda $\psi(\vec{r})$ en el espacio de posiciones, obtenemos su representación en el espacio de momentos $\phi(\vec{p})$ y como consecuencia la densidad de probabilidad correspodiente $\gamma(\vec{p})$. Así, la entropía de Shannon en el espacio de momentos está dada por,

$$S_{\gamma} = -\int \gamma(\vec{p}) \ln\left[\gamma(\vec{p})\right] d\vec{p}, \qquad (3.28)$$

donde,

$$\gamma(\vec{p}) = |\phi(\vec{p})|^2 = \phi^*(\vec{p})\phi(\vec{p}).$$
(3.29)

La entropía de Shannon en el espacio de momentos se interpreta como la incertidumbre del momento lineal de la partícula. En general, la interpretación que se le da a la entropía de Shannon es que a valores grandes de esta entropía se le asocia una densidad de probabilidad más deslocalizada, mientras que cuando los valores son pequeños, se dice que la densidad de probabilidad se encuentra más localizada.

I. Bialynicki-Birula y J.Mycielski (BBM) [31] obtuvieron una importante relación de incertidumbre de posición-momento para la entropía de Shannon en la mecánica cuántica [32, 33]. Esta relación nos indica que la incertidumbre total en las posiciones y momentos no pueden disminuir mas allá de una cota [27], dada por la siguiente expresión,

$$S_{\rho} + S_{\gamma} \ge D(1 + \ln[\pi])$$
 (3.30)

donde D es la dimensionalidad del sistema.

Una cantidad que está directamente relacionada con la entropía de Shannon corresponde a la potencia de entropía de Shannon que describe de manera más adecuada el grado de localización o deslocalización de la nube electrónica en un sistema ya que al ser una cantidad siempre positiva evita la confusión cuando la entropía de Shannon de una distribución continua toma valores negativos. La potencia de entropía de Shannon tiene la misma interpretación que la entropía de

Shannon y se define en el espacio de configuración y en el espacio de momentos de la siguiente manera [27,29]:

$$J_{\rho} = \frac{1}{2\pi e} e^{\frac{2}{D}S_{\rho}},$$
(3.31)

$$J_{\gamma} = \frac{1}{2\pi e} e^{\frac{2}{D}S_{\gamma}}.$$
(3.32)

donde, e = 2.71828 es la constante de Napier y D es la dimensionalidad del sistema¹.

3.5. Desequilibrio

En 1966 Onicescu introduce en la Teoría de la Información una nueva medida de la información contenida en una variable aleatoria, se trata del desequilibrio también conocido como energía informacional o energía Onicescu [29,34]. En el caso de una distribución de probabilidad discreta, se define como la suma del cuadrado de las probabilidades, mientras que en el caso continuo, se define como la integral del cuadrado de la función de densidad de probabilidad sobre del dominio de la variable aleatoria [35].

Cuando se tiene una distribución continua con función de densidad f(x), el desequilibrio se define como:

$$D(f) = \int f(x)^2 dx. \qquad (3.33)$$

Considerando las densidades de probabilidad, en el espacio de configuración $\rho(\vec{r})$ (Ec.(3.26)) y en el espacio de momentos $\gamma(\vec{p})$ (Ec.(3.29)), el desequilibrio D_{ρ} y D_{γ} , respectivamente, están dados por:

$$D_{\rho} = \int (\rho(\vec{r}))^2 d\vec{r}, \qquad (3.34)$$

$$D_{\gamma} = \int (\gamma(\vec{p}))^2 d\vec{p}. \tag{3.35}$$

Es importante mencionar que para una distribución normal el desequilibrio es una medida directa de la raíz cuadrada del inverso de la varianza [36]. Bajo esta consideración, si la varianza aumenta nos indica que la densidad de probabilidad se encuentra dispersa en el espacio (deslocalización), en este caso el desequilibrio disminuye. Por otro lado, cuando la densidad de probabilidad se encuentra concentrada (localización), la varianza disminuye y el desequilibrio aumenta, indicando mayor localización.

¹No debe confundirse con $D(f), D_{\rho}$ o D_{γ} que se discute en la sección 3.5

3.6. Información de Fisher

Así como hay una medida de incertidumbre global del comportamiento de una distribución de probabilidad, dada por la entropía de Shannon, también existe una medida de carácter local de la misma distribución de probabilidad, dada por la información de Fisher. Estas medidas de incertidumbre global y local son conocidas como medidas complementarias de incertidumbre. Cuando la información de Fisher aumenta, indica que la densidad de probabilidad es más localizada y menor es la incertidumbre, aumentando así la precisión de estimar la localización de la partícula [37].

La información de Fisher se ha empleado en el área de la física atómica y molecular para el estudio de las propiedades de correlación en sistemas de dos electrones [38], así cómo en el estudio de los cruces espectrales evitados de átomos bajo campos externos [39].

Dada una distribución de densidad de probabilidad continua, tanto en el espacio de configuración como en el espacio de momentos, las expresiones que nos permiten calcular la información de Fisher en cada uno de estos espacios están dadas por [40]

$$F_{\rho} = \int \frac{|\vec{\nabla}\rho(\vec{r})|^2}{\rho(\vec{r})} d\vec{r}, \qquad (3.36)$$

$$F_{\gamma} = \int \frac{|\vec{\nabla}\gamma(\vec{p})|^2}{\gamma(\vec{p})} d\vec{p}, \qquad (3.37)$$

donde $\rho(\vec{r})$ y $\gamma(\vec{p})$ son las densidades de probabilidad en el espacio de configuración y de momentos dadas por las ecuaciones (3.26) y (3.29), respectivamente. Si la función de onda en el espacio de posiciones $\psi(\vec{r})$ es real, las informaciones de Fisher F_{ρ} y F_{γ} satisfacen la siguiente relación de incertidumbre de posición-momento [41],

$$F_{\rho}F_{\gamma} \ge 4D^2, \tag{3.38}$$

donde D es la dimensionalidad del sistema.

A lo largo de este capítulo hemos abordado los diferentes conceptos así como el método de aproximación, los cuales emplearemos para el estudio de los sistemas planteados en los objetivos de este trabajo. Por lo tanto tenemos la fudamentación teórica para la continuación del desarrollo de este trabajo.

Capítulo 4

Partícula confinada en una región circular plana

En este capítulo se aborda de manera breve el sistema que consiste en una partícula de masa m_e que se mueve en el interior de una región circular de radio r_0 y paredes impenetrables. Este sistema ya ha sido ampliamente estudiado [42–44] por lo que conocemos la solución exacta del mismo, razón por la cual no abundaremos en detalles de como hallarla sino únicamente tomaremos la solución del sistema y calcularemos las medidas de información correspondientes a la entropía de Shannon y la información de Fisher.

El hamiltoniano que describe al sistema es el siguiente,

$$H = \frac{p^2}{2m_e} + V_c(r),$$
(4.1)

donde $V_c(r)$ es el potencial de confinamiento que modela las paredes impenetrables de la caja, descrito por,

$$V_{c}(r) = \begin{cases} 0 & \text{si} & 0 \le r \le r_{0} \\ & & \\ \infty & \text{si} & r > r_{0} \end{cases}$$
(4.2)

Considerando el operador laplaciano en coordenadas polares, la ecuación de Schrödinger se escribe como,

$$-\frac{\hbar^2}{2m_e}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2}{\partial \phi^2}\right)\psi(r,\phi) = E\psi(r,\phi).$$
(4.3)

El potencial de confinamiento impone la condición de frontera de Dirichlet a las funciones de onda del sistema, $\psi(r = r_0, \phi) = 0$, es decir, se deben de anular fuera de la caja. Las funciones propias y eigenvalores de energías de H están dadas por [42,45],

$$\psi_{n,m}(r,\phi) = R_{n,m}(r)\varphi(\phi), \qquad (4.4)$$

donde,

$$R_{n,m}(r) = \frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,m})} J_m(X_{n,m} \frac{r}{r_0}), \qquad (4.5)$$

$$\varphi(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi},\tag{4.6}$$

$$E_{n,m} = \frac{\hbar^2 X_{n,|m|}^2}{2m_e r_o^2},\tag{4.7}$$

donde *n* es el número cuántico radial, n = 0, 1, 2, 3, ..., m es el número cuántico de momento angular en la dirección $z, |m| = 0, 1, 2, ..., J_m$ son las funciones de Bessel de primera clase de orden *m* y $X_{n,|m|}$ el n-ésimo cero de la función de Bessel de orden *m*.

Los niveles de energía (Ec. (4.7)) están doblemente degenerados para $m \neq 0$, ya que tanto J_m como J_{-m} tienen los mismos ceros, $X_{n,m} = X_{n,-m} = X_{n,|m|}$ para m entero.

4.1. Eigenvalores de energía

De acuerdo con la ecuación (4.7) para conocer los valores propios de energía basta con conocer los ceros de la funciones de Bessel y definir el radio de la región circular en donde se encuentra la partícula. Trabajando con unidades atómicas (u.a.) ($\hbar = m_e = e = 1$) se reportan a continuación los eigenvalores de energía de algunos estados de la partícula confinada en una región circular, en donde $E_{n,-m} = E_{n,m}$ para $m \neq 0$.
4.1.

r_0	m = 0	m = 1	m = 2					
n = 0								
0.3	32.12881090	81.56650356	146.52564681					
0.5	11.56637192	29.36394128	52.74923285					
1.0	2.89159298	7.34098532	13.18730821					
1.5	1.28515243	3.26266014	5.86102587					
2.0	0.72289824	1.83524633	3.29682705					
2.5	0.46265487	1.17455765	2.10996931					
3.0	0.32128810	0.81566503	1.46525646					
3.5	0.23604840	0.59926410	1.07651495					
4.0	0.18072456	0.45881158	0.82420676					
4.5	0.14279471	0.36251779	0.65122509					
5.0	0.11566371	0.29363941	0.52749232					
5.5	0.09558985	0.24267720	0.43594407					
6.0	0.08032202	0.20391625	0.36631411					
n = 1								
0.3	169.28479079	273.43586845	393.61110510					
0.5	60.94252468	98.43691264	141.69999783					
1.0	15.23563117	24.60922816	35.42499945					
1.5	6.77139163	10.93743473	15.74444420					
2.0	3.80890779	6.15230704	8.85624986					
2.5	2.43770098	3.93747650	5.66799991					
3.0	1.69284790	2.73435868	3.93611105					
3.5	1.24372499	2.00891658	2.89183669					
4.0	0.95222694	1.53807676	2.21406246					
4.5	0.75237684	1.21527052	1.74938268					
5.0	0.60942524	0.98436912	1.41699997					
5.5	0.50365722	0.81352820	1.17107436					
6.0	0.42321197	0.68358967	0.98402776					
n=2								
0.3	416.03892661	574.99696608	750.11504925					
0.5	149.77401358	206.99890779	270.04141773					
1.0	37.44350339	51.74972694	67.51035443					
1.5	16.64155706	22.99987864	30.00460197					
2.0	9.36087584	12.93743173	16.87758860					
2.5	5.99096054	8.27995631	10.80165670					
3.0	4.16038926	5.74996966	7.50115049					
3.5	3.05661252	4.22446750	5.51104934					
4.0	2.34021896	3.23435793	4.21939715					
4.5	1.84906189	2.55554207	3.33384466					
5.0	1.49774013	2.06998907	2.70041417					
5.5	1.23780176	1.71073477	2.23174725					
6.0	1.04009731	1.43749241	1.87528762					

Figura 4.1: Eigenvalores de energía como función del radio de confinamiento r_0 de los estados (n, m) de una partícula confinada en una región circular.

Como se puede apreciar en la Figura 4.1, el comportamiento de la energía es decreciente para todos los estados conforme el radio de confinamiento aumenta. Al aumentar el radio de confinamiento la incertidumbre en la posición de la partícula tambien aumenta y por el principio de incertidumbre de Heisenberg, la incertidumbre en el momento lineal de la partícula disminuye. Por lo tanto como la energía de la partícula es únicamente energía cinética, esta disminuye con el aumento del radio de confinamiento.

4.2. Entropía de Shannon

Se consideró importante calcular medidas de información como son, la entropía de Shannon y la información de Fisher. Estas cantidades nos describen que tan concentrada o dispersa se encuentra la densidad de probabilidad y también se les interpreta como la incertidumbre al estimar la posición de la partícula en el espacio. En este apartado reportamos los resultados de las entropías de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total, como función del radio de confinamiento. Los resultados de la información de Fisher se reportan en la siguiente sección de este capítulo.

Retomando la solución de este sistema dada por,

$$\psi_{n,m}(r,\phi) = \frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,m})} J_m(X_{n,m} \frac{r}{r_0}) \frac{1}{\sqrt{2\pi}} e^{im\phi}.$$
(4.8)

De la definición de entropía de Shannon en el espacio de configuración, la expresión para calcular esta cantidad es,

$$S_{\rho} = -\int_{0}^{2\pi} \int_{0}^{r_{0}} \rho(r,\phi) \ln\left[\rho(r,\phi)\right] r dr d\phi, \qquad (4.9)$$

donde, $\rho(r,\phi) = |\psi_{n,m}(r,\phi)|^2 = \psi_{n,m}^*(r,\phi)\psi_{n,m}(r,\phi)$. Debido a la forma de la ecuación (4.8), vemos claramente que la densidad de probabilidad dependerá únicamente de la variable radial por lo que podemos escribirla como,

$$\rho(r) = \left(\frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,m})} J_m(X_{n,m} \frac{r}{r_0})\right)^2 \frac{1}{2\pi},\tag{4.10}$$

por lo que la ecuación (4.9) se puede reescribir como,

$$S_{\rho} = -2\pi \int_{0}^{r_{0}} \rho(r) \ln\left[\rho(r)\right] r dr.$$
(4.11)

Ahora, para la obtención de la entropía de Shannon en el espacio de momentos, necesitamos conocer la representación de $\psi_{n,m}(r,\phi)$ en este espacio, lo que nos lleva a aplicar la transformada de Fourier a la función de onda (4.8). De acuerdo con la definición de la transformada de Fourier, se tiene,

$$\Phi_{n,m}(p,\theta) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{r_0} \psi_{n,m}(r,\phi) e^{-i\vec{p}\cdot\vec{r}} r dr d\phi \qquad \text{sustituyendo a} \quad \psi_{n,m}(r,\phi),$$

$$= \frac{1}{(2\pi)^{\frac{3}{2}}} \frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,m})} \int_0^{2\pi} \int_0^{r_0} J_m(X_{n,m}\frac{r}{r_0}) e^{im\phi} e^{-i\vec{p}\cdot\vec{r}} r dr d\phi \qquad (4.12)$$

donde, $\vec{p} \cdot \vec{r} = pr\cos(\theta - \phi)$, siendo $\phi \neq \theta$ los ángulos polares en el espacio de configuración y en el espacio de momentos, respectivamente.

Escribiendo la integral sobre la variable angular de la siguiente manera,

$$\int_{0}^{2\pi} e^{im\phi} e^{-ipr\cos(\theta-\phi)} d\phi = \int_{0}^{2\pi} e^{-ipr\cos(\theta-\phi)} \left\{ \begin{array}{c} \cos(m\phi) \\ i\sin(m\phi) \end{array} \right\} d\phi, \tag{4.13}$$

en esta expresión aplicamos la siguiente identidad que nos proporciona la referencia [46],

$$\int_{0}^{2\pi} e^{-ikr\cos(\phi-t)} \left\{ \begin{array}{c} \cos(mt) \\ \sin(mt) \end{array} \right\} dt = 2\pi i^{m} \left\{ \begin{array}{c} \cos(m\phi) \\ \sin(m\phi) \end{array} \right\} J_{m}(kr), \tag{4.14}$$

obteniendo que,

$$\int_0^{2\pi} e^{im\phi} e^{-ipr\cos(\theta-\phi)} d\phi = 2\pi i^m e^{im\theta} J_m(pr), \qquad (4.15)$$

sustituyendo este resultado (Ec. (4.15)) en la ecuación (4.12) se llega a la siguiente expresión,

$$\Phi_{n,m}(p,\theta) = \frac{i^m e^{im\theta}}{\sqrt{2\pi}} \frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,|m|})} \int_0^{r_0} J_m(X_{n,|m|} \frac{r}{r_0}) J_m(pr) r dr.$$
(4.16)

Para obtener el valor de la integral se realiza el siguiente cambio de variable $u = \frac{r}{r_o}$,

$$\int_{0}^{r_{0}} J_{m}(X_{n,|m|}\frac{r}{r_{0}})J_{m}(pr)rdr = r_{0}^{2}\int_{0}^{1} J_{m}(X_{n,|m|}u)J_{m}(r_{0}pu)udu,$$
(4.17)

lo que nos permite aplicar la siguiente identidad [47]

$$\int_{0}^{1} x J_{\nu}(\alpha x) J_{\nu}(\beta x) dx = \frac{\beta J_{\nu-1}(\beta) J_{\nu}(\alpha) - \alpha J_{\nu-1}(\alpha) J_{\nu}(\beta)}{\alpha^{2} - \beta^{2}},$$
(4.18)

en este caso, sustituimos $\alpha = X_{n,|m|}$, $\beta = r_0 p$ y aplicando que $J_m(X_{n,m}) = 0$ debido a que $X_{n,m}$ es un cero de J_m . Finalmente, obtenemos que la expresión para la función de onda en el espacio de momentos es,

$$\Phi_{n,m}(p,\theta) = \frac{i^m e^{im\theta} r_0^2}{\sqrt{2\pi}} \left(\frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,|m|})} \left\{ \frac{X_{n,|m|} J_{m-1}(X_{n,|m|}) J_m(r_0 p)}{(r_0 p)^2 - X_{n,|m|}^2} \right\} \right).$$
(4.19)

Esta función $\Phi_{n,m}(p,\theta)$, está definida en todo el espacio de momentos y satisface la condición de normalización de acuerdo con el teorema de Parseval [23], puesto que la función de onda en el espacio de configuración $\psi_{n,m}(r,\phi)$ está normalizada,

$$\int_{0}^{2\pi} \int_{0}^{\infty} \Phi_{n,m}^{*}(p,\theta) \Phi_{n,m}(p,\theta) p dp d\theta = 1.$$
(4.20)

Por lo tanto, con la función de onda $\Phi_{n,m}(p,\theta)$ conocida continuamos con el cálculo de la entropía de Shannon en el espacio de momentos,

$$S_{\gamma} = -\int_{0}^{2\pi} \int_{0}^{\infty} \gamma(p,\theta) \ln\left[\gamma(p,\theta)\right] p dp d\theta, \qquad (4.21)$$

donde $\gamma(p,\theta) = \Phi^*_{\scriptscriptstyle n,m}(p,\theta) \Phi_{\scriptscriptstyle n,m}(p,\theta)$ es

$$\gamma(p,\theta) = \frac{r_0^4}{2\pi} \left(\frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,|m|})} \left\{ \frac{X_{n,|m|} J_{m-1}(X_{n,|m|}) J_m(r_0 p)}{(r_0 p)^2 - X_{n,|m|}^2} \right\} \right)^2.$$
(4.22)

Para obtener los valores de S_{γ} , necesitamos sustituir en la integral el límite superior de la variable p por un límite finito que llamamos p_{max} ,

$$S_{\gamma} = -\int_{0}^{2\pi} \int_{0}^{p_{max}} \gamma(p,\theta) \ln\left[\gamma(p,\theta)\right] p dp d\theta.$$
(4.23)

Para determinar el valor específico de p_{max} , evaluamos la integral de normalización de la función $\Phi_{n,m}(p,\theta)$ en el espacio de momentos y elegimos el valor de p_{max} en el cual, el resultado de la normalización es cercana a la unidad,

$$\int_{0}^{2\pi} \int_{0}^{p_{max}} \Phi_{k,m}^{*}(p,\theta) \Phi_{k,m}(p,\theta) p dp d\theta = 0.9999999.$$
(4.24)

Una vez determinado el límite superior finito $p_{max} = 300$, calulamos numéricamente los valores de S_{γ} utilizando el programa Mathematica 11,

$$S_{\gamma} = -\int_{0}^{2\pi} \int_{0}^{300} \gamma(p,\theta) \ln\left[\gamma(p,\theta)\right] p dp d\theta.$$
(4.25)

Los resultados numéricos de la entropía de Shannon en el espacio de configuración S_{ρ} , en el espacio de momentos S_{γ} y la entropía total S_t se reportan en el Apendice A Tabla A.1.

En las gráficas de la Figura 4.2 podemos apreciar el comportamiento de la entropía de Shannon como función del radio de confinamiento. Observamos que la entropía de Shannon en el espacio de configuración aumenta conforme el radio de confinamiento aumenta, indicando la deslocalización de la posición de la partícula, mientras que en el espacio de momentos ocurre lo contrario, la entropía disminuye cuando aumentamos el radio de confinamiento. En este caso, la interpretación es que la densidad de probabilidad en el espacio de momentos se encuentra más concentrada.

Figura 4.2: Comportamiento de la entropía de Shannon en el espacio de configuración y espacio de momentos para los estados (n, m) de una partícula confinada en una región circular de radio r_0 .

En la Figura 4.3 se muestran las gráficas de la entropía de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total como función del radio de confinamiento para diferentes estados de la partícula confinada en una región circular de radio r_0 . El comportamiento que se observa en las entropías S_{ρ} y S_{γ} es que son bastante simétricas entre sí, aumentando en el espacio de configuración y disminuyendo en el espacio de momentos con el incremento del radio de confinamiento. En lo que respecta a la entropía total observamos que permanece constante como función del radio de confinamiento y satisface la relación de incertidumbre establecida por I. Bialynicki-Birula y J.Mycielski, ecuación (3.30) en dos dimensiones,

$$S_{\rho} + S_{\gamma} \ge 2 \left(1 + \ln\left[\pi\right]\right) \ge 4.289560.$$
 (4.26)

Figura 4.3: Comportamiento de la entropía de Shannon en el espacio de configuración, espacio de momentos y la entropía total, para los estados (n, m) de una partícula confinada en una región circular de radio r_0 .

4.3. Información de Fisher

Como medida de incertidumbre complementaria a la entropía de Shannon calculamos la información de Fisher como función del radio de confinamiento. Recurriendo a la expresión para el cálculo de estas cantidades tanto en el espacio de configuración como en el espacio de momentos,

$$F_{\rho} = \int_{0}^{2\pi} \int_{0}^{r_{0}} \frac{|\vec{\nabla}\rho(r,\phi)|^{2}}{\rho(r,\phi)} r dr d\phi, \qquad (4.27)$$

$$F_{\gamma} = \int_{0}^{2\pi} \int_{0}^{p_{max}} \frac{|\vec{\nabla}\gamma(p,\theta)|^2}{\gamma(p,\theta)} p dp d\theta, \qquad (4.28)$$

donde las densidades de probabilidad están dadas en la sección anterior por la ecuaciones (4.10) y (4.22). El operador gradiente en coordenadas polares está dado por,

$$\vec{\nabla} = \frac{\partial}{\partial r}\hat{e_r} + \frac{1}{r}\frac{\partial}{\partial \phi}\hat{e_{\phi}}.$$
(4.29)

Al calcular el gradiente de la densidad de probabilidad en el espacio de configuración, la expresión para calcular la información de Fisher en este espacio se reduce bastante debido a que esta densidad de probabilidad depende únicamente de la variable radial, por lo tanto, después de realizar la integral sobre la variable angular ϕ , la expresión a calcular es,

$$F_{\rho} = 4 \int_{0}^{r_{0}} \left(\frac{d}{dr} R_{n,m}(r)\right)^{2} r dr.$$
(4.30)

De manera similar, después de haber integrado sobre la variable angular θ , la expresión final para obtener la información de Fisher en el espacio de momentos se reduce a,

$$F_{\gamma} = 4r_0^4 \int_0^{p_{max}} \left(\frac{d}{dp} \left(\frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{n,|m|})} \left\{ \frac{X_{n,|m|} J_{m-1}(X_{n,|m|}) J_m(r_0 p)}{(r_0 p)^2 - X_{n,|m|}^2} \right\} \right) \right)^2 p dp.$$
(4.31)

Los valores numéricos correspondientes a la información de Fisher se encuentran en el Apéndice B Tabla B.1.

En la Figura 4.4 se muestra de manera gráfica el comportamiento de la información de Fisher en el espacio de configuración y en el espacio de momentos como función del radio de confinamiento. Podemos apreciar que en los estados estudiados la información de Fisher en el espacio de configuración disminuye conforme aumenta el radio de confinamiento, indicando una deslocalización de la densidad de probabilidad y como consecuencia aumentando la incertidumbre al estimar la posición de la partícula. En cambio, la información de Fisher en el espacio de momentos aumenta con el incremento del radio de confinamiento, lo cual indica que la densidad de probabilidad en este espacio se encuentra más concentrada.

Figura 4.4: Comportamiento de la información de Fisher en el espacio de configuración y espacio de momentos para los estados (n, m) de una partícula confinada en una región circular de radio r_0 .

En las siguientes gráficas de la Figura 4.5 se muestra el comportamiento de la información de Fisher para seis estados (n, m), en el espacio de configuración, en el espacio de momentos y el producto de ambas informaciones, como función del radio de confinamiento. Se puede observar el comportamiento simétrico entre F_{ρ} y $F\gamma$ como función de r_0 . La información de Fisher en el espacio de configuración disminuye (deslocalización), mientras que en el espacio de momentos aumenta (localización) con el incremento del radio de confinamiento. El producto de las informaciones $F_{\rho}F\gamma$ se mantiene constante como función del radio de confinamiento.

Figura 4.5: Comportamiento de la información de Fisher en el espacio de configuración, espacio de momentos y el producto de la información en ambos espacios, para los estados (n,m) de una partícula confinada en una región circular de radio r_0 .

4.4. Conclusiones

Se obtuvo el comportamiento decreciente de los valores propios de energía con el aumento del radio de confinamiento tal como se esperaría físicamente (como consecuencia del Principio de Incertidumbre de Heisenberg).

En base a los resultados proporcionados por la entropía de Shannon en el espacio de configuración, la partícula se deslocaliza en este espacio al aumentar el radio de confinamiento, mientras que en el espacio de momentos tiende a localizarse. Estos resultados eran de esperarse ya que al aumentar el radio de confinamiento el espacio en el cual podemos encontrar a la partícula cuántica es mayor. La entropía total de Shannon de los estados estudiados se mantiene constante como función del radio de confinamiento y satisfacen la relación de incertidumbre BBM.

Para valores fijos del radio de confinamiento y del momento angular, las entropías de Shannon (Tabla A.1) en el espacio de configuración como función del número cuántico radial disminuyen (la densidad se localiza) en concordancia con los resultados de la referencia [17]. Mientras que en el espacio de momentos ocurre lo opuesto, la entropía de Shannon aumenta (la densidad se deslocaliza).

Al calcular la información de Fisher en el espacio de configuración como función del radio de confinamiento, los resultados obtenidos indican que la partícula se deslocaliza al aumentar el radio de confinamiento, es decir la densidad de probabilidad se extiende por todo el espacio delimitado por el radio de confinamiento. En el espacio de momentos la información de Fisher aumenta con el radio de confinamiento, por lo tanto, en este espacio la densidad de probabilidad se localiza. El producto de las informaciones de Fisher es constante como función del radio de confinamiento. Las interpretaciones de los resultados proporcionados por la información de Fisher como función del radio de confinamiento son consistentes con las entropías de Shannon.

De la Tabla B.1 podemos observar que la información de Fisher en el espacio de configuración y en el espacio de momentos aumentan (la densidad se localiza) con el incremento del número cuántico radial para valores fijos del radio de confinamiento y número cuántico de momento angular. En los estados estudiados, los resultados de la información de Fisher en el espacio de momentos como función del número cuántico radial indican que la densidad de probabilidad se localiza contrario a los resultados de la entropía de Shannon en el espacio de momentos (como función del número cuántico radial que muestra una deslocalización de la densidad de probabilidad).

Capítulo 5

Partícula confinada en una región circular plana en presencia de un campo eléctrico constante

El sistema que estudiamos en este capítulo consiste de un electrón de masa m_e y carga -e confinado en una región circular de radio r_0 , en presencia de un campo eléctrico constante en la dirección del eje x. Utilizando el método variacional lineal, obtenemos las energías propias de algunos estados del sistema y las funciones de onda aproximadas con la cuales calcularemos valores esperados de la posición y algunas medidas de información.

El hamiltoniano correspondiente a este sistema es el siguiente,

$$H' = \frac{p'^2}{2m_e} + ef'x' + V(r'), \tag{5.1}$$

donde f' es la magnitud del campo eléctrico y V(r') es el potencial de confinamiento,

$$V(r') = \begin{cases} 0 & \text{si } 0 \le r' \le r'_0 \\ \\ \infty & \text{si } r' > r'_0. \end{cases}$$

Utilizando coordenadas polares y por simplicidad adimensionalizamos el hamiltoniano H' al hacer el cambio de variable $r' = a_0 r$ donde, $a_0 = \frac{\hbar^2}{m_e e^2}$ es el radio de Bohr y la variable r es la variable radial adimensional,

$$H = \frac{p^2}{2} + fr\cos(\phi) + V(r), \qquad (5.2)$$

así, la unidad de longitud es el radio de Bohr, la unidad de energía el Hartree $\frac{m_e e^4}{\hbar^2} = \frac{e^2}{a_0}$ y la unidad de campo eléctrico f' es $\frac{m_e^2 e^5}{\hbar^4} = \frac{e}{a_0^2} = 5.142 \times 10^9 \frac{Volt}{cm}$.

La ecuación de Schrödinger independiente del tiempo, en unidades atómicas es,

$$-\frac{1}{2}\left\{\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2}{\partial\phi^2}\right\}\Psi(r,\phi) + fr\cos(\phi)\Psi(r,\phi) = E\Psi(r,\phi),\tag{5.3}$$

debido a la forma del potencial de confinamiento, $\Psi(r, \phi)$ debe de satisfacer la condición de frontera de Dirichlet, $\Psi(r = r_0, \phi) = 0$.

El hamiltoniano dado en la ecuación (5.2), se puede escribir como,

$$H = H^0 + H^1,$$

donde, $H^0 = \frac{p^2}{2} + V(r)$ representa al sistema partícula confinada en una región circular cuyas funciones de onda y eigenvalores de energía son conocidas y se mostraron en el capítulo anterior, y el término H^1 es, $H^1 = fr \cos(\phi)$.

Al emplear el método variacional lineal, las funciones de onda de H se construyen como una combinación lineal de las soluciones de H^0 ,

$$\Psi(r,\phi) = \sum_{k=-M}^{M} c_{n,k} R_{n,k}(r) \varphi_k(\phi) = \sum_{k=-M}^{M} \left(c_{n,k} \frac{\sqrt{2}}{r_0 J_{|k|+1}(X_{n,|k|})} J_k(X_{n,|k|} \frac{r}{r_0}) \frac{1}{\sqrt{2\pi}} e^{ik\phi} \right), \quad (5.4)$$

donde, $\{c_{n,k}\}$ son los coeficientes lineales y M es el momento angular máximo a considerar. Empleando esta metodología, las soluciones a la ecuación de Schrödinger (Ec.(5.3)) se encuentran al resolver el siguiente problema de valores propios,

$$H\vec{c} = E\vec{c},\tag{5.5}$$

donde, E denota a los eigenvalores de energía, \vec{c} es el vector de coeficientes $\vec{c} = (c_{n,-M}, c_{n,-M+1}, c_{n,-M+2}, \cdots, c_{n,M})$ y H es la matriz hamiltoniana cuyos elementos son los siguientes,

$$H_{ij} = \left\langle \psi_{n,i}^{0} | H | \psi_{n,j}^{0} \right\rangle = \left\langle \psi_{n,i}^{0} | H^{0} | \psi_{n,j}^{0} \right\rangle + \left\langle \psi_{n,i}^{0} | H^{1} | \psi_{n,j}^{0} \right\rangle$$
$$= E_{nj}^{0} \delta_{ij} + \frac{f}{2} \left\langle R_{n,i} | r | R_{n,j} \right\rangle \left(\delta_{i,j-1} + \delta_{i,j+1} \right), \qquad (5.6)$$

donde, E_{nj}^0 está dado por la ecuación (4.7) y $R_{n,j}$ es la solución radial de H^0 dada por (4.5).

Para construir la matriz hamiltoniana y resolver numéricamente el problema de valores propios (Ec. (5.5)), utilizamos el programa Mathematica 11 [48]. Para realizar el cálculo numérico se seleccionan los valores del radio de confinamiento r_0 , el número cuántico radial n = 0 y la magnitud del campo eléctrico f. Como el campo eléctrico rompe la simetría angular del problema, la función de onda variacional se construye sumando sobre el número cuántico de momento angular. En este sistema se usan los siguientes valores, $m = -5, -4, \dots, 0, 1, \dots, 4, 5$. Por lo tanto, el momento angular máximo para realizar los cálculos es M = 5 y el número total de funciones base consideradas para la construcción de la función de onda aproximada es de 11 funciones. El criterio que utilizamos para considerar una base de once funciones es la convergencia en los eigenvalores de energía observando como se comportan estos valores con respecto al incremento del número de funciones base.

Al obtener el vector de coeficientes, observamos que para el estado base, segundo y cuarto estado excitado, los coeficientes correspondientes a -m y m, son iguales, ambos tienen el mismo signo, mientras para el primer y tercer estado excitado los signos de estos coeficientes son diferentes. Esto simplifica la construcción de la función de onda aproximada (Ec.(5.4)), puesto que al hacer la combinación lineal, en la parte angular nos permite aplicar la identidad de Euler, escribiendo a las funciones de onda de la siguiente manera,

$$\Psi(r,\phi)_{2j} = \frac{c_{0,0}}{\sqrt{2\pi}} R_{0,0}(r) + \sum_{k=1}^{M} \frac{2c_{0,k}}{\sqrt{2\pi}} R_{0,k}(r) \cos(k\phi), \qquad j = 0, 1, 2$$
(5.7)

$$\Psi(r,\phi)_{2j+1} = \sum_{k=1}^{M} \frac{2c_{0,k}}{\sqrt{2\pi}} R_{0,k}(r) \sin(k\phi). \qquad j = 0,1$$
(5.8)

A continuación se muestran las densidades de probabilidad del estado base y dos estados excitados. Para un radio de confinamiento $r_0 = 1.0$, en las Figuras 5.1, 5.2 y 5.3, podemos observar que la densidad de probabilidad se encuentra distribuida en la mayor parte de la región circular. Para un radio de confinamiento $r_0 = 2.0$, a medida que aumentamos la magnitud del campo eléctrico los máximos en la distribución de probabilidad se desplazan en la dirección opuesta al campo, concentrándose en una determinada región del círculo. La modificación de las densidades de probabilidad del primer y segundo estado excitado para $r_0 = 1.0$, no son tan apreciables como en el caso de $r_0 = 2.0$. En ambos radios de confinamiento para campos cercanos a cero la distribución de probabilidad del estado base tiene simetría radial, en el primer estado excitado la distribución es simétrica con respecto al eje x, mientras que en el segundo estado excitado la distribución es simétrica respecto al eje y. Al aumentar la magnitud del campo eléctrico observamos como se pierde la simetría que tiene cada una de estas densidades de probabilidad.

Figura 5.1: Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del estado base, para valores selectos de la intensidad del campo y radio de confinamiento.

Figura 5.2: Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento.

Figura 5.3: Densidades de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del segundo estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento.

5.1. Eigenvalores de energía

En esta sección se reportan los valores propios de energía de algunos estados del sistema como función del campo eléctrico, para tres diferentes radios de confinamiento, obtenidos mediante la diagonalización de la matriz hamiltoniana. Como mencionamos anteriormente, para la solución del problema de valores propios utilizamos el programa Mathematica 11. En la siguiente tabla se muestran los eigenvalores de energía que se obtuvieron al diagonalizar una matriz hamiltoniana de 11×11 .

número cuántico radial $n = 0$							
f (u.a)	Estado base	1 Excitado	2 Excitado	3 Excitado	4 Excitado		
$r_0 = 1.0 \text{ (u.a)}$							
0.05	2.89153	7.34094	7.34101	13.18730	13.18730		
0.3	2.88940	7.33970	7.34189	13.18730	13.18730		
0.5	2.88551	7.33744	7.34352	13.18729	13.18730		
1.0	2.86733	7.32682	7.35105	13.18726	13.18728		
1.5	2.83725	7.30917	7.36337	13.18716	13.18729		
2.0	2.79559	7.28453	7.38012	13.18695	13.18736		
2.5	2.74274	7.25298	7.40085	13.18656	13.18754		
3.0	2.67921	7.21463	7.42498	13.18588	13.18790		
3.5	2.60554	7.16959	7.45192	13.18483	13.18853		
4.0	2.52230	7.11798	7.48097	13.18326	13.18953		
4.5	2.43010	7.05995	7.51146	13.18107	13.19100		
5.0	2.32953	6.99566	7.54267	13.17809	13.19304		
5.5	2.22117	6.92527	7.57393	13.17419	13.19579		
6.0	2.10557	6.84896	7.60455	13.16920	13.19936		
$r_0 = 2.0 \text{ (u.a)}$							
0.05	0.72192	1.83467	1.83565	3.29682	3.29682		
0.3	0.68854	1.81496	1.84910	3.29666	3.29687		
0.5	0.63057	1.77949	1.87024	3.29581	3.29738		
1.0	0.39520	1.62200	1.92713	3.28384	3.30606		
1.5	0.07783	1.38397	1.93298	3.24303	3.33546		
2.0	-0.28696	1.08587	1.85378	3.16009	3.38476		
2.5	-0.68244	0.74294	1.69226	3.03111	3.43364		
3.0	-1.09985	0.36568	1.46575	2.85944	3.45789		
3.5	-1.53413	-0.03861	1.19112	2.65194	3.44423		
4.0	-1.98207	-0.46477	0.88096	2.41618	3.39231		
4.5	-2.44149	-0.90893	0.54424	2.15891	3.30900		
5.0	-2.91080	-1.36815	0.18742	1.88560	3.20264		
5.5	-3.38882	-1.84008	-0.18474	1.60046	3.08021		
6.0	-3.87458	-2.32285	-0.56867	1.30660	2.94681		
$r_0 = 3.0 \text{ (u.a)}$							
0.05	0.31639	0.81280	0.81768	1.46524	1.46525		
0.3	0.17247	0.71864	0.85694	1.45922	1.46955		
0.5	-0.02425	0.56812	0.85052	1.42989	1.48995		
1.0	-0.63296	0.02874	0.56156	1.20300	1.53395		
1.5	-1.32004	-0.63399	0.06296	0.82246	1.41693		
2.0	-2.05160	-1.36179	-0.51594	0.37971	1.21488		
2.5	-2.81411	-2.12823	-1.12755	-0.08534	0.98859		
3.0	-3.59965	-2.91901	-1.75221	-0.55861	0.75530		
3.5	-4.40272	-3.72583	-2.38146	-1.03502	0.51996		
4.0	-5.21928	-4.54361	-3.01166	-1.51262	0.28414		
4.5	-6.04630	-5.36915	-3.64133	-1.99064	0.04836		
5.0	-6.88149	-6.20035	-4.26991	-2.46876	-0.18719		
5.5	-7.72313	-7.03579	-4.89727	-2.94684	-0.42248		
6.0	-8.56992	-7.87447	-5.52348	-3.42483	-0.65751		

Tabla 5.1: Eigenvalores de energía de una partícula confinada en una región circular plana de radio r_0 , en presencia de un campo eléctrico constante de intensidad f.

A continuación se muestran las gráficas del comportamiento de la energía como función de la magnitud del campo eléctrico para diferentes estados del sistema con radio de confinamiento fijo.

Figura 5.4: Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f.

Sabemos que en f = 0, los niveles de energía son los de la partícula confinada en una región circular, cuyo espectro de energía es doblemente degenerado para $m \neq 0$, esta degeneración se rompe para $f \neq 0$. En las gráficas de la Figura 5.4 se puede apreciar el comportamiento de los niveles de energía como función de la magnitud del campo eléctrico f. Observamos como la degeneración de los estados excitados se rompe al aumentar la magnitud del campo eléctrico, el valor de la magnitud de f en el cual se da este rompimiento es distinto para cada radio de confinamiento. Nótese que conforme se aumenta el radio de confinamiento, la separación de los niveles de energía de los estados excitados se alcanza mas rápidamente.

5.2. Valores esperados de la posición y desviación estándar

El objetivo de esta sección es presentar los resultados de la desviación estándar como una medida cuantitativa de localización o deslocalización ya que nos indica que tan concentrada o dispersa se encuentra la densidad de probabilidad de los estados del sistema que estamos estudiando. Para obtener este resultado, primero calculamos los valores esperados de $r y r^2$,

$$\langle r \rangle = \int_0^{2\pi} \int_0^{r_0} \Psi^*(r,\phi) r \Psi(r,\phi) r dr d\phi, \qquad (5.9)$$

$$\left\langle r^2 \right\rangle = \int_0^{2\pi} \int_0^{r_0} \Psi^*(r,\phi) r^2 \Psi(r,\phi) r dr d\phi.$$
(5.10)

Esto nos permite calcular los valores de la desviación estándar como función de la magnitud del campo eléctrico de algunos estados del sistema para radios de confinamiento fijos, y hacer un análisis sobre la localización de la partícula con el aumento de la magnitud del campo eléctrico,

$$\sigma = \sqrt{\langle r^2 \rangle - \langle r \rangle^2}.$$
(5.11)

A continuación presentamos los resultados gráficos del comportamiento de los valores esperados de la posición y de la desviación estándar.

En la Figura 5.5 se presentan las gráficas de los valores esperados de la posición para el estado base y cuatro estados excitados como función de la magnitud del campo eléctrico y radios de confinamiento fijos. Para tener una mejor comprensión acerca del comportamiento de los valores esperados de la posición con el aumento del campo, presentamos las gráficas de las distribuciones radiales en las Figuras 5.6, 5.7 y 5.8 para valores selectos de f. Estas densidades radiales de probabilidad se obtienen al integrar sobre la parte angular la densidad de probabilidad total, es decir

$$\rho(r) = \int_0^{2\pi} \Psi^*(r,\phi) \Psi(r,\phi) r d\phi.$$

Figura 5.5: Comportamiento del valor esperado de r para el estado base y cuatro estados excitados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

Los valores esperados de la posición, para el estado base y el primer estado excitado tienen un comportamiento creciente con el aumento del campo eléctrico, para los tres radios de confinamiento estudiados. Para $r_0 = 1.0$ el valor esperado de la posición crece lentamente con el campo, mientras que para los radios de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ el crecimiento de $\langle r \rangle$ es mucho más rápido. El comportamiento del $\langle r \rangle$ lo podemos reafirmar analizando las gráficas de las densidades radiales. Para $r_0 = 1.0$, en la Figura 5.6 (a) correspondiente al estado base, observamos que hay un ligero desplazamiento del valor máximo de la densidad de probabilidad

con el aumento del campo. En la Figura 5.6 (b) se muestra la densidad radial del primer estado excitado, se observa que no hay un desplazamiento apreciable del máximo de la distribución. En cambio, para $r_0 = 2.0$ y $r_0 = 3.0$ en las Figuras 5.7 (a), (b) y 5.8 (a), (b), correspondientes al estado base y primer estado excitado, se observa que el desplazamiento del valor máximo de la densidad de probabilidad con el aumento del campo es mayor, en estos casos el valor esperado de la posición aumenta rápidamente.

En las Figuras 5.6 (d) y (e), correspondientes a $r_0 = 1.0$, se observa que las densidades radiales de probabilidad del tercer y cuarto estado excitado prácticamente no se ven modificadas con el aumento del campo eléctrico, en estos estados el valor esperado de la posición permanece aproximadamente constante.

Para un radio de confinamiento $r_0 = 2.0$, los valores esperados de la posición para el segundo y cuarto estado excitado comienzan a disminuir con el aumento del campo alcanzando un valor mínimo para posteriormente aumentar con el incremento de la magnitud del campo eléctrico. Este comportamiento se debe a las diversas modificaciones que experimentan las densidades de probabilidad de estos estados con el aumento del campo. En las Figuras 5.7 (c) y (e) se observa que al aumentar el campo eléctrico, el valor máximo de la densidad de probabilidad se mueve hacia la derecha, hay una redistribución de esta densidad abarcando regiones a la izquierda de este valor máximo y como consecuencia el valor esperado de la posición disminuye. Al seguir aumentando la magnitud del campo eléctrico, la densidad de probabilidad se redistribuye nuevamente, el valor máximo se desplaza hacia la derecha pero la densidad a la izquierda de este valor disminuye, provocando un aumento en el valor esperado de la posición.

En el caso del tercer estado excitado el valor esperado de la posición disminuye ligeramente al aumentar el campo para posteriormente aumentar conforme se sigue incrementando la magnitud del campo eléctrico. En la Figura 5.7 (d) se observa que al aumentar la magnitud del campo, el máximo de la densidad radial se desplaza ligeramente hacia la derecha, por lo tanto la variación del valor esperado de r es muy pequeña.

Para $r_0 = 3.0$, la explicación del comportamiento del valor esperado de r para todos los estados en función del campo eléctrico, es similar a la que se dio para el caso de $r_0 = 2.0$.

5.2.

Figura 5.6: Gráficas de la densidad de probabilidad radial $\rho(r)$ para los cinco estados mas bajos del sistema con un radio de confinamiento $r_0 = 1.0$ y tres valores del campo eléctrico f.

5.2.

(e) Cuarto estado excitado

Figura 5.7: Gráficas de la densidad de probabilidad radial $\rho(r)$ para los cinco estados mas bajos del sistema con un radio de confinamiento $r_0 = 2.0$ y tres valores del campo eléctrico f.

5.2.

Figura 5.8: Gráficas de la densidad de probabilidad radial $\rho(r)$ para los cinco estados mas bajos del sistema con un radio de confinamiento $r_0 = 3.0$ y tres valores del campo eléctrico f.

En las gráficas de la Figura 5.9, se muestra el comportamiento de la desviación estándar como función del campo eléctrico, para cinco estados del sistema y tres radios de confinamiento. Para el radio de confinamiento $r_0 = 1.0$, la desviación estándar del primer estado excitado disminuye ligeramente con el aumento del campo eléctrico, indicando una localización de la partícula, mientras que para el resto de los estados, σ crece lentamente con el incremento del campo, la partícula se deslocaliza. Se puede apreciar que para los radios de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ la desviación estándar del primer estado excitado disminuye con el aumento del

campo eléctrico, la densidad de probabilidad se localiza, mientras que para el resto de los estados excitados y el estado base, la desviación estándar aumenta con el campo eléctrico hasta alcanzar un valor máximo y luego comienza a disminuir. El valor en el cual se da este valor máximo es diferente para cada estado y cada radio de confinamiento. Indicando que la densidad de probabilidad se encuentra dispersa en esos valores del campo eléctrico en el que σ aumenta, sin embargo, al continuar aumentado la magnitud del campo eléctrico la densidad de probabilidad tiende a concentrarse.

Figura 5.9: Comportamiento de la desviación estándar σ para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

5.3. Entropía de Shannon

Para tener conocimiento sobre la localización-deslocalización de la partícula se calculó la entropía de Shannon en el espacio de configuración (Ec.(4.9)) y en el espacio de momentos (Ec.(4.23))para el estado base y los primeros cuatro estados excitados. Además se obtuvo la entropía total para verificar la relación de incertidumbre posición-momento (Ec. (3.30)).

La densidad de probabilidad $\rho(r, \phi)$ se construyó con la función de onda $\Psi(r, \phi)$ dada por la ecuación (5.7) o (5.8), según el caso. Para obtener la densidad de probabilidad en el espacio de momentos $\gamma(p, \theta)$ necesitamos conocer la función $\Phi(p, \theta)$, la cual se obtiene al aplicar la transformada de Fourier a la función $\Psi(r, \phi)$ (ver Sección 4.2),

$$\Phi(p,\theta) = \sum_{k=-M}^{M} c_{n,k} \frac{i^k e^{ik\theta} r_0^2}{\sqrt{2\pi}} \left(\frac{\sqrt{2}}{r_0 J_{|k|+1}(X_{n,|k|})} \left\{ \frac{X_{n,|k|} J_{k-1}(X_{n,|k|}) J_k(r_0 p)}{(r_0 p)^2 - X_{n,|k|}^2} \right\} \right).$$
(5.12)

Para encontrar el valor de p_{max} en la integral de la ecuación (4.23) se siguió el mismo procedimiento realizado en el capítulo anterior, verificando la condición de normalización de $\Phi(p, \theta)$, solo que en esta ocasión el valor de p_{max} es diferente para cada valor del radio de confinamiento y magnitud del campo eléctrico.

Los resultados numéricos de la entropía de Shannon se encuentran en la Tabla A.2 en el Apéndice A.

En la Figura 5.10 se muestran las gráficas del comportamiento de las entropías de Shannon como función de la magnitud del campo eléctrico.

Para un radio de confinamiento $r_0 = 1.0$, la entropía de Shannon S_{ρ} del estado base y del primer estado excitado disminuye con el aumento del campo eléctrico, indicando un aumento en la localización de la partícula. Mientras que en el espacio de momentos S_{γ} aumenta como función del campo interpretándose como una deslocalización en este espacio. En el caso del segundo estado excitado tanto S_{ρ} como S_{γ} aumentan ligeramente con el incremento de f. En las gráficas de la Figura 5.3 (a), (b) y (c), observamos que para $r_0 = 1.0$, la densidad de probabilidad del segundo estado excitado se encuentra distribuida alrededor de dos máximos, ocupando la mayor parte de la región circular, en este caso los resultados de la entropía de Shannon en el espacio de configuración indican una deslocalización del electrón. El comportamiento constante de la entropía S_{ρ} para el tercer y cuarto estado excitado se mantiene hasta f = 4, en el espacio de momentos S_{γ} aumenta ligeramente con el campo. Para valores de f en el intervalo [4.5, 6] se aprecia que S_{ρ} comienza a diferir en ambos estados, en el tercer estado excitado S_{ρ} disminuye ligeramente mientras que en el cuarto estado excitado aumenta lentamente. Para el mismo intervalo del campo, en el espacio de momentos S_{γ} continúa aumentando en los dos estados, solo que el aumento es maś lento para el tercer estado excitado.

Para un radio de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ la entropía S_{ρ} del estado base, primer y tercer estado excitado disminuyen a medida que el campo eléctrico aumenta, mientras que para el segundo y cuarto estado excitado S_{ρ} aumenta hasta alcanzar un valor máximo y luego disminuye conforme aumenta el campo f.

El comportamiento que sigue S_{ρ} con el aumento del campo para el segundo estado excitado se puede comprender si analizamos las gráficas de las densidades de probabilidad para un radio de confinamiento $r_0 = 2.0$. En la Figura 5.3 (d), (e) y (f) observamos que para campos pequeños la densidad de probabilidad se encuentra distribuida alrededor de dos máximos simétricos respecto al eje y, ocupando la mayor parte de la región circular. En f = 3 esta densidad se va concentrando en dirección opuesta al campo y en f = 6 la densidad de probabilidad se encuentra concentrada aproximadamente en una mitad de la región circular. Estos cambios en la densidad de probabilidad con el aumento del campo están siendo captadas por la entropía de Shannon S_{ρ} primero como una deslocalización y luego como una localización.

Figura 5.10: Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} y en el espacio de momentos S_{γ} para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. 43

Como medidas de localización hemos empleado a la desviación estándar y la entropía de Shannon, aunque para algunos estados del sistema los resultados de ambas medidas no son consistentes entre ellas. Para los tres radios de confinamiento $r_0 = 1.0, 2.0$ y 3.0 los resultados proporcionados por la entropía de Shannon en el espacio de configuración, para el estado base y el tercer estado excitado son diferentes a los proporcionados por la desviación estándar para ciertos intervalos de la magnitud del campo eléctrico. Si observamos la gráfica de la densidad de probabilidad del estado base para $r_0 = 1.0$ Figura 5.1, observamos que al aumentar la magnitud del campo eléctrico la densidad de probabilidad se va concentrando, es decir el ancho de la distribución disminuye y la altura crece, aumentando la localización de la partícula. Estos cambios en la densidad de probabilidad están siendo captados por la entropía de Shannon como una localización como se muestra en la Figura 5.10 (S_{ρ} para $r_0 = 1.0$), contrario a la desviación estándar que lo detecta como una deslocalización, Figura 5.9 para $r_0 = 1.0$.

A continuación en las Figuras 5.11 y 5.12 se muestran el comportamiento de las entropías de Shannon S_{ρ} , S_{γ} y la entropía total $S_{\rho} + S_{\gamma}$ como función del campo eléctrico, para tres radios de confinamiento. En general, en los estados estudiados las cantidades S_{ρ} y S_{γ} satisfacen la relación de incertidumbre BBM, $S_{\rho} + S_{\gamma} \ge 2(1 + \ln [\pi]) \ge 4.289560$.

Al observar las gráficas del estado base y del primer estado excitado con $r_0 = 1.0$ y $r_0 = 2.0$ Figura 5.11 (a), (b), (d) y (e), vemos que S_{ρ} y S_{γ} son muy simétricas entre sí y la entropía total de estos estados permanece aproximadamente constante como función del campo eléctrico, mientras que para $r_0 = 3.0$ Figura 5.11(c) la entropía total disminuye ligeramente en f = 0.5 y 1.0 y después aumenta con el campo.

Figura 5.11: Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} , espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$, como función de la magnitud del campo eléctrico f y radio de confinamiento fijo en unidades atómicas.

Para un radio de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ en la Figura 5.12 (b) y (c) las curvas de la entropía de Shannon S_{ρ} y S_{γ} del segundo estado excitado ya no son simétricas entre ellas, la entropía total aumenta como función del campo eléctrico alcanzando rápidamente un valor aproximadamente constante. El comportamiento de las entropías del tercer y cuarto estado excitado es muy similar entre ellos para el mismo radio de confinamiento.

Figura 5.12: Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} , espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$, como función de la magnitud del campo eléctrico f y radio de confinamiento fijo en unidades atómicas.

5.3.1. Potencia de la entropía de Shannon

Esta cantidad está directamente relacionada con las entropías de Shannon, previamente calculadas, de igual manera se define en el espacio de configuración y en el espacio de momentos, dadas por las ecuaciones (3.31) y (3.32), respectivamente. Como el sistema en análisis es bidimensional,

$$J_{\rho} = \frac{1}{2\pi e} e^{S_{\rho}},$$
 (5.13)

$$J_{\gamma} = \frac{1}{2\pi e} e^{S_{\gamma}}.\tag{5.14}$$

La potencia de entropía de Shannon se utiliza en el cálculo de la complejidad Fisher-Shannon ya que esta cantidad se obtiene como el producto de la potencia de entropía de Shannon y la información de Fisher. Esta medida de complejidad se empleado como una medida de correlación de electrones [38]. En este trabajo únicamente reportamos los resultados de las potencias de entropía de Shannon, el cálculo de la complejidad Fisher-Shannon se incluye como perspectiva.

A continuación, en las siguientes figuras se muestra la descripción gráfica de los datos de las potencias entrópicas.

En la Figura 5.13 se muestran las gráficas del comportamiento de las potencias de entropía de Shannon en el espacio de configuración J_{ρ} y en el espacio de momentos J_{γ} como función de la magnitud del campo eléctrico y radio de confinamiento fijo. Como se puede observar, el comportamiento que siguen las curvas de J_{ρ} y J_{γ} es el mismo que ya se describió para las entropías de Shannon como función del campo eléctrico.

En la Figura 5.14 se muestra el comportamiento de J_{ρ} y J_{γ} así como el producto $J_{\rho}J_{\gamma}$. Se observa que para un un radio de confinamiento $r_0 = 1.0$ el comportamiento de J_{ρ} y $J_{\rho}J_{\gamma}$ del estado base y los estados excitados es aproximadamente constante con el incremento del campo, mientras que J_{γ} aumenta ligeramente con el campo f.

5

5

Base 1º E. Excitado 2º E. Excitado 3º E. Excitado

5

6

E. Excitado

6

6

Figura 5.13: Comportamiento de la potencia de entropía de Shannon en el espacio de configuración J_{ρ} y en el espacio de momentos J_{γ} como función de la magnitud del campo eléctrico fy radio de confinamiento fijo.

Figura 5.14: Comportamiento de la potencia de las entropías de Shannon como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

Continuación de la Figura 5.14. Comportamiento de la potencia de las entropías de Shannon como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

5.4. Desequilibrio

En esta sección se reportan los resultados correspondientes al desequilibrio, como una medida de localización-deslocalización de la densidad de probabilidad. Las expresiones que utilizamos para calcular esta cantidad en el espacio de configuración y en el espacio de momentos son,

$$D_{\rho} = \int_{0}^{2\pi} \int_{0}^{r_{0}} (\rho(r,\phi))^{2} r dr d\phi, \qquad (5.15)$$

$$D_{\gamma} = \int_{0}^{2\pi} \int_{0}^{p_{max}} (\gamma(p,\theta))^2 p dp d\theta,.$$
 (5.16)

En las Figuras 5.15 y 5.16 se reportan los resultados gráficos que describen el comportamiento del desequilibrio en el espacio de posiciones D_{ρ} , en el espacio de momentos D_{γ} y el producto $D_{\rho}D_{\gamma}$ como función del campo eléctrico.

Como se puede observar en la Figura 5.15, en el espacio de posiciones el desequilibrio aumenta con el incremento de la magnitud del campo eléctrico, indicando que la partícula se encuentra más localizada en este espacio. En el espacio de momentos el desequilibrio disminuye cuando aumenta la magnitud del campo, la densidad se deslocaliza. Para $r_0 = 1$ el comportamiento del desequilibrio del segundo estado excitado difiere del comportamiento de los demás estados, D_{ρ} disminuye con el aumento de f en los valores estudiados, la partícula se deslocaliza en el espacio de posiciones.

En la Figura 5.16 observamos que para el primer estado excitado el comportamiento de $D_{\rho}D_{\gamma}$ se mantiene constante como función del campo eléctrico en $r_0 = 1.0, 2.0$ y 3.0. Para $r_0 = 1.0$ el comportamiento de $D_{\rho}D_{\gamma}$ es aproximadamente constante para todos los estados estudiados.

Figura 5.15: Comportamiento del desequilibrio en el espacio de configuración y en el espacio de momentos para algunos estados del sistema como función de la magnitud del campo eléctrico f (u.a.) y radio de confinamiento r_0 (u.a.) fijo. 51

Figura 5.16: Comportamiento del desequilibrio para algunos estados del sistema como función de la magnitud del campo eléctrico f (u.a.) y radio de confinamiento r_0 (u.a.) fijo.

Continuación de la Figura 5.16. Comportamiento del desequilibrio para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

5.5. Principio de Incertidumbre de Heisenberg generalizado

Para algunos estados del sistema en estudio se calcularon los valores de $\langle r^2 \rangle$ y $\langle p^2 \rangle$, donde $\langle r^2 \rangle$ se calcula con la función de onda en el espacio de configuración, mientras que $\langle p^2 \rangle$ se calcula de la siguiente forma:

$$\left\langle p^2 \right\rangle = \int_0^{2\pi} \int_0^{p_{max}} \Phi^*(p,\theta) p^2 \Phi(p,\theta) p dp d\theta, \qquad (5.17)$$

donde la función de onda en el espacio de momentos está dada por la ecuación (5.12).

Como se trata de un sistema bidimensional (D = 2), el Principio de Incertidumbre de Heisenberg Generalizado (PIHG), ecuación (3.22), se reduce a,

$$\langle r^2 \rangle \langle p^2 \rangle \ge 1.$$
 (5.18)

A continuación en la Figura 5.17 se presentan las curvas de $\langle r^2 \rangle \langle p^2 \rangle$ como función del campo eléctrico f, para algunos valores seleccionados de r_0 . Se observa que en todos los estados estudiados se satisface la ecuación (5.18). Para $r_0 = 2.0$, observamos que el PIHG presenta un valor mínimo para el segundo y cuarto estado excitado, el mínimo del PIHG para el segundo estado excitado se encuentra alrededor de f = 1, mientras que para el cuarto estado excitado el valor mínimo del PIHG se encuentra alrededor de f = 2.0. Para $r_0 = 3.0$ en el segundo estado excitado el PIHG presenta un mínimo alrededor de f = 0.2, mientras que para el cuarto estado excitado el valor mínimo del PIHG se encuentra alrededor de f = 0.5. En estos valores del campo eléctrico donde se dan los mínimos de $\langle r^2 \rangle \langle p^2 \rangle$, tanto la incertidumbre de la posición del electrón como la incertidumbre del momento, ambas son mínimas.

Figura 5.17: Comportamiento de $\langle r^2 \rangle \langle p^2 \rangle$ para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

5.6. Información de Fisher

Como última sección de este capítulo presentamos los resultados correpondientes a la información de Fisher en el espacio de configuración y en el espacio de momentos. Las expresiones que nos permitieron obtener los resultados son las siguientes,

$$F_{\rho} = \int_{0}^{2\pi} \int_{0}^{r_{0}} \frac{|\vec{\nabla}\rho(r,\phi)|^{2}}{\rho(r,\phi)} r dr d\phi, \qquad (5.19)$$

$$F_{\gamma} = \int_{0}^{2\pi} \int_{0}^{p_{max}} \frac{|\vec{\nabla}\gamma(p,\theta)|^2}{\gamma(p,\theta)} p dp d\theta.$$
(5.20)

Estas integrales se calcularon numéricamente en el programa elaborado en Mathematica 11.

En la Tabla B.2 en el Apendice B, se muestran los valores numéricos de la información de Fisher como función de la magnitud del campo eléctrico para tres valores del radio de confinamiento. Aquí únicamente se presentan las gráficas correspondientes a estos valores. En la Figura 5.18 se muestra el comportamiento de la información de Fisher en el espacio de configuración y en el espacio de momentos como función de la magnitud del campo eléctrico para el estado base y algunos estados excitados.

Como se puede observar en la Figura 5.18, el comportamiento de la información de Fisher en el espacio de configuración para el estado base es creciente para los tres valores de r_0 indicando la localización del electrón en este espacio, y decreciente (deslocalización) en el espacio de momentos. En $r_0 = 1$, el comportamiento de la información de Fisher en el espacio de momentos como función del campo es decreciente para todos los estados. Para $r_0 = 2$, el comportamiento de F_{ρ} del primer y tercer estado excitado aumentan con el campo eléctrico, indicando la localización en este espacio, en el segundo y cuarto estado excitado F_{ρ} comienza a disminuir ligeramente (deslocalización) pero al seguir incrementado f, F_{ρ} aumenta (localización). La información de Fisher en el espacio de momentos para $r_0 = 2$ en los primeros tres estados excitados disminuyen (deslocalización) con el incremento de f, mientras que el comportamiento del cuarto estado excitado es distinto, primero disminuye (se deslocaliza) alcanzando un mínimo alrededor de f = 2.5, después aumenta (se localiza) al seguir incrementando el valor del campo. Para $r_0 = 3 F_{\gamma}$ del primer y segundo estado excitado disminuye con el campo eléctrico; en el tercer estado excitado comienza a disminuir, alcanzando un mínimo y posteriormente aumenta lentamente con f; en el cuarto estado excitado excitado excitado estado excitado estado excitado estado excitado estado excitado estado excitado estado excitado disminuir, alcanzando un valor mínimo y después comienza a crecer con el aumento de f.

En la Figura 5.19 se aprecia el comportamiento de la información de Fisher en el espacio de configuración, en el espacio de momentos y el producto de estas informaciones, estas curvas se presentan en la misma gráfica para cada estado y cada radio de confinamiento. Se observa que para un radio de confinamiento de $r_0 = 1$, el comportamiento de $F_{\rho}F_{\gamma}$ es decreciente para todos los estados. Para $r_0 = 2$ y $r_0 = 3$ el comportamiento de $F_{\rho}F_{\gamma}$ es distinto, primero disminuye alcanzando un mínimo y aumenta al incrementar la magnitud de f. Este comportamiento es más visible en el segundo, tercero y cuarto estados excitados para $r_0 = 2$, mientras que para $r_0 = 3$ todos los estados presentan un mínimo. Para $r_0 = 2$ en el estado base y el primer estado excitado, la disminución y posteriormente el aumento del producto $F_{\rho}F_{\gamma}$ como función de f es mucho más lento.

Figura 5.18: Comportamiento de la Información de Fisher en el espacio de configuración F_{ρ} y en el espacio de momentos F_{γ} para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

Figura 5.19: Comportamiento de la información de Fisher en el espacio de configuración F_{ρ} , espacio de momentos F_{γ} y el producto $F_{\rho}F_{\gamma}$ para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

Continuación de la Figura 5.19. Comportamiento de la información de Fisher en el espacio de configuración F_{ρ} , espacio de momentos F_{γ} y el producto $F_{\rho}F_{\gamma}$ para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo.

5.7. Conclusiones

Al aplicar el método variacional lineal utilizando como base a las funciones propias de la partícula confinada en un círculo calculamos los eigenvalores de energía y las funciones de onda aproximada de algunos estados de la partícula en una región circular en presencia de un campo eléctrico constante.

De las gráficas de las densidades de probabilidad podemos apreciar que la densidad electrónica se polariza con el campo eléctrico, desplazándose en dirección opuesta al campo. Al aumentar la magnitud del campo eléctrico la densidad de probabilidad se va concentrando en regiones específicas, indicando mayor localización del electrón.

En las gráficas de las densidades de probabilidad radiales podemos observar que para un radio de confinamiento $r_0 = 1$ el efecto del campo eléctrico sobre la partícula es mínimo, en este caso predomina el efecto del confinamiento, mientras que para $r_0 = 2$ y $r_0 = 3$ ya se observa el efecto del campo en las distribuciones radiales de los estados estudiados.

La energías propias de los estados estudiados disminuyen con el aumento de la magnitud del campo eléctrico. Para valores del campo cercanos a cero se observa la degeneración de los estados excitados, este resultado era de esperarse puesto que en f = 0 tenemos los estados de la partícula en una región circular cuyos niveles de energía son doblemente degenerados para $m \neq 0$.

Al comparar los resultados proporcionados por la desviación estándar, como medida de (des)localización, con los resultados de la entropía de Shannon en el espacio de configuración, se

encuentra que para algunos estados los resultados de ambas medidas no son consistentes entre sí. La desviación estándar mide la dispersión alrededor de la media, mientras que la entropía de Shannon, al ser una medida global de la dispersión de la densidad de probabilidad, capta mejor las modificaciones que sufren las densidades de probabilidad debido al campo eléctrico.

La entropía de Shannon en el espacio de configuración, del estado fundamental, primer y tercer estado excitado para los tres radios de confinamiento estudiados nos dice que, conforme aumenta la magnitud del campo eléctrico, la densidad de probabilidad se encuentra más concentrada, disminuyendo la incertidumbre en la posición de la partícula y aumentando así su localización. En el segundo y cuarto estado excitado para los radios de confinamiento $r_0 = 2$ y $r_0 = 3$ los resultados de S_{ρ} indican que la densidad de probabilidad comienza a deslocalizarse pero conforme se sigue aumentando el campo eléctrico tiende a concentrarse. El comportamiento de la entropía de Shannon en el espacio de momentos como función de la magnitud del campo, para los mismos estados y radios de confinamiento estudiados, nos indica que el electrón se deslocaliza en este espacio. La entropía total de Shannon de los estados estudiados, satisface la relación de incertidumbre BBM de posición-momento para todos los valores del campo y radios de confinamientos analizados.

Para un valor fijo del campo eléctrico, de acuerdo con los resultados de la entropía de Shannon (Tabla A.2), correspondientes a los cinco estados estudiados, se encuentra que la entropía de Shannon en el espacio de configuración aumenta como función del radio de confinamiento $(r_0 = 1.0, 2.0 \text{ y } 3.0)$, mientras que la entropía en el espacio de momentos disminuye. Para los tres valores del radio de confinamiento, los comportamientos de S_{ρ} y S_{γ} como función de r_0 son análogos a las cantidades correspondientes de una partícula en un círculo sin campo eléctrico (Capítulo 4). La entropía total como función de r_0 en presencia del campo eléctrico ya no se mantiene constante como en el caso en el que hay ausencia de campo eléctrico (Cap. 4). Sin embargo, se sigue satisfaciendo la relación de incertidumbre entrópica (BBM) $S_{\rho}+S_{\gamma} \geq 4.289560$.

La interpretación de los resultados de la información de Fisher tanto en el espacio de configuración como en el espacio de momentos, concuerdan con los proporcionados por la entropía de Shannon sobre localización- deslocalización del electrón. La información de Fisher en el espacio de configuración y momentos satisfacen la relación de incertidumbre, ecuación (3.38).

Para un valor fijo de la magnitud del campo eléctrico, de acuerdo con los resultados de la información de Fisher (Tabla B.2), correspondientes a los cinco estados estudiados, encontramos que la información de Fisher F_{ρ} disminuye al aumentar el radio de confinamiento ($r_0 = 1.0, 2.0$ y 3.0) indicando una deslocalización del electrón, mientras que en el espacio de momentos F_{γ} aumenta al aumentar el radio de confinamiento, el electrón se localiza en este espacio. Para los

tres valores del radio de confinamiento, los comportamientos de F_{ρ} y F_{γ} como función de r_0 son similares a los resultados correspondientes de una partícula confinada en una región circular (Capítulo 4). En ausencia del campo eléctrico (Cap. 4) el producto $F_{\rho}F_{\gamma}$ se mantiene constante con el aumento del radio de confinamiento. En cambio, en presencia del campo eléctrico constante esta cantidad ya no sigue el mismo comportamiento.

Los resultados correspondientes al desequilibrio concuerdan con los obtenidos para las entropías de Shannon y la información de Fisher como función de la magnitud del campo eléctrico.

Los valores obtenidos para el principio de incertidumbre de Heisenberg generalizado son consistentes, se satisface que $\langle r^2 \rangle \langle p^2 \rangle \ge 1$.

Capítulo 6

Partícula sujeta a un potencial de oscilador armónico bidimensional confinada en una región circular en presencia de un campo eléctrico constante

En este capítulo se estudia el sistema que consta de un electrón sujeto a un potencial de oscilador armónico confinado en una región circular, bajo la influencia de un campo eléctrico constante en la dirección del eje x. El sistema oscilador armónico confinado ya ha sido estudiado y conocemos su solución analítica [49, 50]. Para analizar la acción del campo eléctrico sobre el electrón sujeto a un potencial de oscilador armónico confinado utilizamos el método variacional lineal. Mediante este método obtenemos las energías propias y construimos las funciones de onda aproximadas como una combinación lineal de las funciones de onda del oscilador armónico isotrópico bidimensional confinado en una región circular de radio r_0 . Al conocer las funciones de onda de los estados del sistema, calculamos algunos valores esperados y medidas de información.

Comencemos el capítulo retomando de manera breve el problema del oscilador armónico isotrópico bidimensional confinado en una región circular de radio r_0 , cuyo hamiltoniano en coordenadas polares está dado por,

$$H^{0'} = \frac{p'^2}{2m_e} + \frac{1}{2}m_e\omega^2 r'^2 + V(r'), \qquad (6.1)$$

donde ω es la frecuencia, m_e y e son la masa y carga del electrón, respectivamente, y V(r') es el potencial de confinamiento que modela la región circular de radio r_0 de paredes impenetrables, dado por,

$$V(r') = \begin{cases} 0 & \text{si } 0 \le r' \le r'_0 \\ \\ \infty & \text{si } r' > r'_0. \end{cases}$$
(6.2)

Es conveniente trabajar con el hamiltoniano adimensional, para lo cual se realiza el siguiente cambio de variable

$$r' = r\sqrt{\frac{\hbar}{m_e\omega}},\tag{6.3}$$

reescribiendo el hamiltoniano, obtenemos

$$H^{0} = \frac{p^{2}}{2} + \frac{1}{2}r^{2} + V(r), \qquad (6.4)$$

donde la unidad de longitud es $\sqrt{\frac{\hbar}{m_e\omega}}$ y la unidad de energía $\hbar\omega$.

Escribiendo la ecuación de Shcrödinger,

$$H^0\psi(r,\phi) = E^0\psi(r,\phi),\tag{6.5}$$

donde la función de onda $\psi(r, \phi)$ debe satisfacer la condición de frontera de Dirichlet impuesta por el potencial de confinamiento (Ec. (6.2)),

$$\psi(r = r_0, \phi) = 0. \tag{6.6}$$

Para la solución de la ecuación de Schrödinger se aplica el método de separación de variables,

$$\psi_{n,m}(r,\phi) = R_{n,m}(r)\varphi_m(\phi), \tag{6.7}$$

donde la solución a la parte angular está dada por,

$$\varphi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}, \qquad |m| = 0, 1, 2, 3...,$$
(6.8)

mientras que la solución a la parte radial es [49],

$$R_{n,m}(r) = r^{|m|} e^{-r^2/2} M\left[\frac{1}{2}\left(|m| + 1 - E_{n,m}^0\right); |m| + 1; r^2\right],\tag{6.9}$$

donde M es la función hipergeométrica confluente [51]. Así, la solución completa denotada por $\psi_{n,m}^0(r,\phi)$ es,

$$\psi_{n,m}^{0}(r,\phi) = r^{|m|} e^{-r^{2}/2} M\left[\frac{1}{2}\left(|m|+1-E_{n,m}^{0}\right); |m|+1; r^{2}\right] \frac{1}{\sqrt{2\pi}} e^{im\phi}.$$
(6.10)

Las energías propias $E_{n,m}^0$ se encuentran al aplicar la condición de frontera (Ec. (6.6)), es decir, $R_{n,m}(r = r_0) = 0$,

$$M\left[\frac{1}{2}\left(|m|+1-E_{n,m}^{0}\right);|m|+1;r_{0}^{2}\right]=0.$$
(6.11)

Para valores fijos de m las raíces sucesivas son enumeradas por n = 0, 1, 2, 3, ... donde, n es el número cuántico principal.

Regresando al sistema en estudio, el hamiltoniano de un electrón sujeto a un potencial de oscilador armónico confinado en una región circular y un campo eléctrico constante f', está dado por,

$$H' = \frac{p'^2}{2m_e} + \frac{1}{2}m_e\omega^2 r'^2 + ef'x' + V(r'), \qquad (6.12)$$

donde V(r') es el potencial de confinamiento dado por la ecuación (6.2). Para resolver el problema es conveniente trabajar con el hamiltoniano escrito en forma adimensional, haciendo el cambio de variable,

$$r' = r\sqrt{\frac{\hbar}{m_e\omega}},\tag{6.13}$$

se obtiene la expresión adimensional del hamiltoniano,

$$H = \frac{p^2}{2} + \frac{1}{2}r^2 + fr\cos\phi + V(r), \qquad (6.14)$$

$$f = \frac{e}{\sqrt{m_e \hbar \omega^3}} f', \tag{6.15}$$

donde la unidad de longitud es $\sqrt{\frac{\hbar}{m_e\omega}}$, la unidad de energía $\hbar\omega$ y la unidad de campo eléctrico $\sqrt{\frac{m_e\hbar\omega^3}{m_e\omega}}$.

Para conocer las funciones y energías propias de ${\cal H}$ necesitamos resolver la ecuación de Schrödinger,

$$H\Psi(r,\phi) = E\Psi(r,\phi). \tag{6.16}$$

Escribiendo el hamiltoniano de la ecuación (6.14) como:

$$H = H^0 + H^1.$$

donde H^0 está dado por la ecuación (6.4) y sea, $H^1 = fr \cos \phi$. La solución del sistema representado por H^0 es ya conocida [49], la cuál corresponde a las funciones de onda dadas por la ecuación (6.10) y los valores de energía $E^0_{n,m}$, como ya se mencionó anteriormente, se encuentran aplicando la condición de frontera del problema, expresada por la ecuación (6.11).

Al emplear el método variacional lineal las funciones propias de H (Ec. (6.14)) las construimos como una combinación lineal de las funciones base, correspondientes a las eigenfunciones de H^0 (Ec.(6.10)). Como el campo eléctrico rompe la simetría angular del problema sumamos sobre el número cuántico de momento angular para un valor fijo del número cuántico n,

$$\Psi(r,\phi) = \sum_{k=-M}^{M} c_{n,k} \psi_{n,k}(r,\phi) = \sum_{k=-M}^{M} c_{n,k} R_{n,k}(r) \varphi_{k}(\phi),$$

$$= \sum_{k=-M}^{M} c_{n,k} r^{|k|} e^{-r^{2}/2} M\left[\frac{1}{2}\left(|k|+1-E_{n,k}\right); |k|+1; r^{2}\right] \frac{1}{\sqrt{2\pi}} e^{ik\phi}, \qquad (6.17)$$

donde $\{c_{n,k}\}$ son los coeficientes por determinar, $\{\psi_{n,k}\}$ es el conjunto base cuyo tamaño es N = 2M + 1 y M es el momento angular máximo a considerar.

Las soluciones a la ecuación de Schrödinger (Ec. (6.16)) utilizando el método variacional lineal se encuentran al resolver el problema de valores propios,

$$H\vec{c} = E\vec{c} \tag{6.18}$$

donde *E* denota a los valores propios de energía, \vec{c} es el vector de coeficientes $\vec{c} = (c_{n,-M}, c_{n,-M+1}, c_{n,-M+2}, \dots, c_{n,M})$ y *H* es la matriz hamiltoniana cuyos elementos son los siguientes,

$$H_{ij} = \left\langle \psi_{n,i}^{0} | H | \psi_{n,j}^{0} \right\rangle = \left\langle \psi_{n,i} | H^{0} | \psi_{n,j} \right\rangle + \left\langle \psi_{n,i} | H^{1} | \psi_{n,j} \right\rangle$$
$$= E_{nj}^{0} \delta_{ij} + \frac{f}{2} \left\langle R_{n,i} | r | R_{n,j} \right\rangle (\delta_{i,j-1} + \delta_{i,j+1}).$$
(6.19)

La matriz hamiltoniana es una matriz tridiagonal donde el término $\langle \psi_{n,i} | H^0 | \psi_{n,j} \rangle$ representa a los elementos de la diagonal principal y $\langle \psi_{n,i} | H^1 | \psi_{n,j} \rangle$ representa a los elementos de las diagonales adyacentes. $E_{n,j}^0$ son las energías propias de la partícula en un círculo de radio r_0 bajo la acción de un potencial de oscilador armónico y $R_{n,j}$ es la solución radial de H^0 dada por la ecuación (6.9).

Para la construcción de la matriz hamiltoniana y solucionar el problema de valores propios se elaboró un programa en el software Mathematica 11 en el cual se le asignaron valores al radio de confinamiento r_0 , el número cuántico n = 0, la magnitud del campo eléctrico f y el momento angular máximo M = 8. Por lo tanto los valores del número cuántico de momento angular empleados en este sistema son, $m = -8, -7, \ldots, 0, 1, \ldots, 7, 8$. Al diagonalizar la matriz hamiltoniana obtuvimos los eigenvalores y vectores propios, los cuales corresponden a las energías propias del sistema y a los vectores de coeficientes necesarios para la construcción de la funciones de onda aproximadas. El criterio que utilizamos para considerar una base de 17 funciones es la convergencia en los eigenvalores de energía observando como se comportan estos valores con respecto al incremento del número de funciones base.

Al obtener el vector de coeficientes observamos que para el estado fundamental, segundo y cuarto estado excitado, los coeficientes correspondientes a -m y m, son iguales $c_{-m} = c_m$, mientras que para el primer y tercer estado excitado los signos de estos coeficientes son diferentes, $-c_{-m} = c_m$. Esto simplifica la construcción de la función de onda aproximada puesto que al hacer la combinación lineal en la parte angular nos permite aplicar la identidad de Euler. Por lo tanto las expresiones para las funciones de onda $\Psi(r, \phi)$ las podemos escribir como:

$$\Psi(r,\phi)_{2j} = \frac{c_{0,0}}{\sqrt{2\pi}} R_{0,0}(r) + \sum_{k=1}^{M} \frac{2c_{0,k}}{\sqrt{2\pi}} R_{0,k}(r) \cos(k\phi), \qquad j = 0, 1, 2$$
(6.20)

$$\Psi(r,\phi)_{2j+1} = \sum_{k=1}^{M} \frac{2c_{0,k}}{\sqrt{2\pi}} R_{0,k}(r) \sin(k\phi), \qquad j = 0, 1.$$
(6.21)

En la Figura 6.1 se muestran las densidades de probabilidad en ausencia del campo eléctrico para $r_0 = 1.0$ y $r_0 = 2.0$, del estado base, primero y segundo estados excitados. Para el estado base se observa que la distribución de probabilidad es simétrica radialmente. En el primer estado excitado la distribución de probabilidad es simétrica con respecto al eje x, mientras que en el segundo estado excitado ésta es simétrica con respecto al eje y. En presencia de un campo eléctrico constante las densidades de probabilidad dejan de ser simétricas, como se muestran en las Figuras 6.2, 6.3 y 6.4. A mayor intensidad del campo eléctrico la asimetría de la densidad de probabilidad es mayor.

Figura 6.1: Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del estado base (primera columna), primer y segundo estado excitado (segunda y tercera columna, respectivamente) para $r_0 = 1.0$ (primera fila) y $r_0 = 2.0$ (segunda fila), en ausencia de campo.

Figura 6.2: Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del estado base, para valores selectos de la intensidad del campo y radio de confinamiento.

6.1.

Figura 6.3: Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del primer estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento.

Figura 6.4: Gráficas de la densidad de probabilidad $\rho(r, \phi) = \Psi^*(r, \phi)\Psi(r, \phi)$ del segundo estado excitado, para valores selectos de la intensidad del campo y radio de confinamiento.

6.1. Energías propias

A continuación se reportan los eigenvalores de energía del estado base y de los primeros cuatro estados excitados del sistema como función de la magnitud del campo eléctrico para tres radios de confinamiento, $r_0 = 1.0, 2.0$ y 3.0.

Tabla 6.1: Eigenvalores de energía de un electrón sujeto a un potencial de oscilador armónico y un campo eléctrico constante f, confinado en una región circular plana de radio r_0 . La energía está en unidades de $\hbar\omega$, la unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

n = 0					
f	Estado base	1 Excitado	2 Excitado	3 Excitado	4 Excitado
$r_{0} = 1.0$					
0.05	2.99994	7.50713	7.50719	13.39153	13.39153
0.5	2.99406	7.50367	7.50960	13.39151	13.39151
1.0	2.97631	7.49318	7.51684	13.39142	13.39144
1.5	2.94694	7.47573	7.52867	13.39124	13.39136
2.0	2.90623	7.45139	7.54477	13.39092	13.39130
2.5	2.85457	7.42022	7.56470	13.39038	13.39132
3.0	2.79242	7.38232	7.58794	13.38954	13.39148
3.5	2.72031	7.33779	7.61390	13.38829	13.39186
4.0	2.63878	7.28677	7.64193	13.38652	13.39256
4.5	2.54840	7.22940	7.67139	13.38411	13.39367
5.0	2.44974	7.16582	7.70159	13.38091	13.39530
5.5	2.34336	7.09620	7.73188	13.37677	13.39758
6.0	2.22979	7.02070	7.76160	13.37156	13.40061
$r_0 = 2.0$					
0.05	1.12153	2.47130	2.47198	4.09256	4.09256
0.5	1.05666	2.42567	2.49035	4.08827	4.08913
1.0	0.87872	2.29320	2.52396	4.07016	4.08271
1.5	0.62308	2.08807	2.53027	4.02700	4.08208
2.0	0.31645	1.82525	2.47838	3.94867	4.09226
2.5	-0.02510	1.51729	2.35810	3.82998	4.10716
3.0	-0.39219	1.17360	2.17469	3.67049	4.11133
3.5	-0.77910	0.80105	1.93923	3.47274	4.08805
4.0	-1.18212	0.40468	1.66246	3.24053	4.02583
4.5	-1.59873	-0.01175	1.35285	2.97788	3.92019
5.0	-2.02713	-0.44540	1.01672	2.68851	3.77220
5.5	-2.46599	-0.89404	0.65872	2.37567	3.58590
6.0	-2.91429	-1.35588	0.28235	2.04215	3.36627
$r_0 = 3.0$					
0.05	1.00072	2.01382	2.01503	3.05764	3.05764
0.5	0.88685	1.90385	2.01281	3.01482	3.02081
1.0	0.59405	1.60278	1.93135	2.86499	2.93759
1.5	0.19567	1.16796	1.68518	2.59134	2.82685
2.0	-0.27090	0.64019	1.29002	2.20728	2.63812
2.5	-0.78916	0.04416	0.79537	1.73696	2.33535
3.0	-1.35150	-0.60486	0.23649	1.20154	1.93417
3.5	-1.95419	-1.29670	-0.36505	0.61743	1.46605
4.0	-2.59507	-2.02408	-0.99528	-0.00261	0.95710
4.5	-3.27235	-2.78142	-1.64457	-0.64870	0.42534
5.0	-3.98391	-3.56423	-2.30625	-1.31324	-0.11760
5.5	-4.72700	-4.36876	-2.97590	-1.99063	-0.66467
6.0	-5.49836	-5.19183	-3.65078	-2.67688	-1.21177

En la siguiente figura se muestran las gráficas del comportamiento de la energía del estado base y de algunos estados excitados como función del campo eléctrico para radios de confinamiento fijos.

Figura 6.5: Comportamiento de la energía del estado base y de algunos estados excitados como función de la magnitud del campo eléctrico f. La energía está en unidades de $\hbar\omega$, la unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Para valores del campo cercanos a cero observamos la degeneración del primer y segundo estado excitado, al igual que el tercer y cuarto estado excitado, aunque al incrementar la magnitud del campo eléctrico f la degeneración de estos estados excitados se rompe.

En las gráficas podemos observar que para un radio de confinamiento $r_0 = 1.0$ y un campo eléctrico $0 \le f \le 6$, el comportamiento de la energía del estado base y del primer estado excitado es decreciente con el campo eléctrico, mientras que para el segundo estado excitado la energía aumenta conforme aumentamos la magnitud del campo eléctrico. Las energías del tercer y cuarto estado excitado mantienen un comportamiento aproximadamente constante con el campo. Para radios de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ el comportamiento de la energía para los estados estudiados es decreciente cuando la magnitud del campo eléctrico aumenta.

La diferencia en el comportamiento de la energía del primer y segundo estado excitado para el radio de confinamiento $r_0 = 1.0$ lo podemos explicar analizando las figuras 6.3 (a) y 6.4 (a). En la gráfica de la densidad de probabilidad del primer estado excitado (Fig.6.3 (a)), la distribución se concentra principalmente a lo largo de la dirección transversal al campo mientras que para el segundo estado excitado (Fig. 6.4 (a)) esto ocurre en la dirección del campo. El efecto del campo sobre la nube electrónica es mayor para el segundo estado excitado y por ello la energía aumenta.

6.2. Valores esperados de $r \mathbf{y} r^2$

Una vez construidas las funciones de onda, ecuación (6.20) y (6.21), calculamos los valores esperados de la posición $\langle r \rangle$ y de $\langle r^2 \rangle$ como función de la magnitud del campo eléctrico para radios de confinamiento fijos.

$$\langle r \rangle = \int_0^{r_0} \int_0^{2\pi} \Psi^*(r,\phi) r \Psi(r,\phi) r dr d\phi$$
(6.22)

$$\langle r^2 \rangle = \int_0^{r_0} \int_0^{2\pi} \Psi^*(r,\phi) r^2 \Psi(r,\phi) r dr d\phi$$
 (6.23)

Para poder visualizar el comportamiento de estos valores esperados como función del campo eléctrico f, presentamos las siguientes gráficas.

Figura 6.6: Comportamiento del valor esperado de r para cinco estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Figura 6.7: Comportamiento del valor esperado de r^2 para cinco estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Para la interpretación de los resultados de los valores esperados de la posición, presentamos las gráficas de la distribución radial de probabilidad de los estados estudiados para tres valores del radio de confinamiento y magnitud del campo eléctrico.

Figura 6.8: Gráficas de la densidad de probabilidad radial $\rho(r)$ para los cinco estados mas bajos del sistema con un radio de confinamiento $r_0 = 1.0$ y tres valores del campo eléctrico f.

6.2.

Figura 6.9: Gráficas de la densidad de probabilidad radial $\rho(r)$ para los cinco estados mas bajos del sistema con un radio de confinamiento $r_0 = 2.0$ y tres valores del campo eléctrico f.

6.2.

Figura 6.10: Gráficas de la densidad de probabilidad radial $\rho(r)$ para los cinco estados mas bajos del sistema con un radio de confinamiento $r_0 = 3.0$ y tres valores del campo eléctrico f.

En la Figura 6.6 podemos observar que para los tres radios de confinamiento el valor esperado de r del estado base y del primer estado excitado aumenta como función de la magnitud del campo eléctrico. Para $r_0 = 1.0$ el valor esperado de la posición del estado base y del primer estado excitado crece lentamente con el aumento del campo, mientras que para los radios de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ el crecimiento de $\langle r \rangle$ es mucho más rápido. Para $r_0 = 1.0$, en la Figura 6.8 (a) correpondiente al estado base, observamos un ligero desplazamiento del valor máximo de la densidad de probabilidad radial con el campo. En la Figura 6.8 (b) se muestra la densidad radial del primer estado excitado, podemos observar que no hay un desplazamiento evidente del valor máximo de la densidad radial de probabilidad. En cambio, para $r_0 = 2.0$ y $r_0 = 3.0$, en las Figuras 6.9 (a), (b) y 6.10 (a), (b), correspondientes al estado base y el primer estado excitado, observamos que el desplazamiento del valor máximo de la densidad de probabilidad con el aumento del campo es mayor, en estos casos el valor esperado de la posición aumenta rápidamente con el campo.

Las densidades radiales de probabilidad del tercer y cuarto estado excitado para $r_0 = 1.0$ se muestran en las Figuras 6.8 (d) y (e), como se puede observar, no hay un desplazamiento considerable de la distribución de probabilidad, en estos estados el valor esperado de la posición permanece aproximadamente constante con el campo.

El comportamiento de $\langle r \rangle$ para el segundo y cuarto estado excitado es distinto; veamos cuando $r_0 = 2.0$, al aumentar el campo eléctrico los valores esperados disminuyen alcanzando un valor mínimo y posteriormente comienzan a aumentar. De acuerdo con las gráficas de las densidades radiales de probabilidad Figuras 6.9 (c) y 6.9 (e) al aumentar la magnitud del campo, el valor máximo en la distribución de probabilidad se mueve hacia la derecha, además hay una redistribución de la densidad de probabilidad abarcando regiones a la izquierda del máximo, provocando una disminución en el valor esperado de la posición. Al continuar aumentando el campo eléctrico la densidad de probabilidad se vuelve a redistribuir disminuyendo la densidad a la izquierda del valor máximo y por lo tanto aumenta el valor esperado de r.

En el caso del tercer estado excitado cuando $r_0 = 2.0$ el valor esperado de la posición primero se mantiene constante hasta f = 2 pero a medida que el campo eléctrico aumenta, el valor esperado de la posición también aumenta. En la gráfica de la densidad radial de este estado Figura 6.9 (d), se observa que al aumentar la magnitud del campo eléctrico, el valor máximo de la densidad se va desplazando hacia la derecha y como consecuencia el valor esperado de la posición aumenta.

Para $r_0 = 3.0$, en los cinco estados estudiados, la explicación del comportamiento del valor esperado de r como función del campo eléctrico es similar a la que se dio para un radio de confinamiento $r_0 = 2.0$.

En la Figura 6.7 observamos que $\langle r^2 \rangle$ sigue un comportamiento análogo al de $\langle r \rangle$ como función del campo eléctrico.

6.3. Desviación estándar

De la sección anterior conocemos los resultados de los valores esperados de la posición r y de r^2 . Por lo tanto, podemos obtener directamente los valores de la desviación estándar (Ec.(6.11))

como función de la magnitud del campo eléctrico para radios de confinamientos fijos. Como hemos mencionado en capítulos anteriores, la desviación estándar se ha empleado en mecánica cuántica como una medida cuantitativa de localización o deslocalización [17,52]. En este apartado se muestran los resultados gráficos de la desviación estándar como función de la magnitud del campo eléctrico.

Figura 6.11: Comportamiento de la desviación estándar como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

De las gráficas anteriores, para el radio de confinamiento $r_0 = 1.0$, se observa que en el estado base, segundo, tercer y cuarto estado excitado del sistema, la desviación estándar aumenta ligeramente a medida que aumentamos la magnitud del campo eléctrico, indicando una deslocalización del electrón. En el primer estado excitado el comportamiento de σ es lineal con el campo. Para este radio de confinamiento, la polarización del electrón debido al campo es muy pequeña, por lo tanto, las variaciones de σ en los estados estudiados es mínima comparados con los otros radios de confinamiento.

Para el radio de confinamiento $r_0 = 2.0$ la desviación estándar del estado base, segundo, tercer y cuarto estado excitado del sistema aumenta (deslocalización) conforme aumentamos la magnitud del campo eléctrico hasta alcanzar un punto máximo, para después comenzar a disminuir (localización) lentamente con el campo. En el primer estado excitado los valores de σ disminuyen (localización) con el incremento del campo eléctrico.

Finalmente, para el radio de confinamiento $r_0 = 3.0$, el comportamiento de σ del segundo estado excitado aumenta (deslocalización) con el incremento de la magnitud del campo eléctrico, mientras que para los otros estados estudiados la desviación estándar aumenta (deslocalización) hasta alcanzar un valor máximo y luego comienza a disminuir (localización) con el campo.

Observamos que para los tres radios de confinamiento estudiados el tercero y cuarto estado excitado tienen la misma desviación estándar.

6.4. Entropía de Shannon

En esta sección calculamos la entropía de Shannon como función de la magnitud del campo eléctrico, la cuál nos proporciona información sobre la localización-deslocalización de la partícula en la región en la que se encuentra confinada. Como el sistema que estamos estudiando es un sistema bidimensional las expresiones para calcular la entropía de Shannon en el espacio de configuración S_{ρ} y en el espacio de momentos S_{γ} ya se han escrito en capítulos anteriores, por conveniencia las repetimos en esta sección,

$$S_{\rho} = -\int_{0}^{2\pi} \int_{0}^{r_{0}} \rho(r,\phi) \ln[\rho(r,\phi)] r dr d\phi, \qquad (6.24)$$

$$S_{\gamma} = -\int_{0}^{2\pi} \int_{0}^{p_{max}} \gamma(p,\theta) \ln[\gamma(p,\theta)] p dp d\theta, \qquad (6.25)$$

donde $\rho(r, \phi)$ es la densidad de probabilidad en el espacio de configuración y $\gamma(p, \theta)$ es la densidad de probabilidad en el espacio de los momentos.

La función de onda $\Psi(r, \phi)$ de manera general está dada por la ecuación (6.17) y de forma particular dependiendo del estado que se quiere estudiar, la expresión está dada por la ecuación (6.20) o bien (6.21), según sea el caso.

Así como se construyó la función de onda aproximada en el espacio de configuración $\Psi(r, \phi)$, de manera análoga construimos la función de onda en el espacio de momentos $\Phi(p, \theta)$. Por lo tanto, primero necesitamos conocer la función de onda en el espacio de momentos correspondiente a $\psi_{n,m}(r, \phi)$,

$$\psi_{n,m}(r,\phi) = \underbrace{r^{|m|}e^{-r^2/2}M\left[\frac{1}{2}\left(|m|+1-E^0_{n,m}\right);|m|+1;r^2\right]}_{R_{n,m}(r)}\underbrace{\frac{1}{\sqrt{2\pi}}e^{im\phi}}_{\varphi(\phi)}.$$
(6.26)

Aplicando la trasformada de Fourier

$$\phi_{n,m}(p,\theta) = \frac{1}{2\pi} \int_{r=0}^{\infty} \int_{\phi=0}^{2\pi} \psi_{n,m}(r,\phi) e^{-i\vec{p}.\vec{r}} r dr d\phi,$$

sustituyendo la expresión de $\psi_{n,m}(r,\phi)$ dada por la ecuación (6.26), se tiene

$$\phi_{n,m}(p,\theta) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int_0^{r_0} R_{n,m}(r) r dr \left(\int_0^{2\pi} e^{im\phi} e^{-i\vec{p}.\vec{r}} d\phi \right), \tag{6.27}$$

haciendo uso de la fórmula de Euler y aplicando que

$$\vec{p}.\vec{r} = pr\cos(\theta - \phi),\tag{6.28}$$

donde, θ y ϕ son los ángulos polares en el espacio de momentos y en el espacio de posiciones, respectivamente,

$$\phi_{n,m}(p,\theta) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int_0^{r_0} R_{n,m}(r) r dr \int_0^{2\pi} e^{-ipr\cos(\theta-\phi)} \left(\cos(m\phi) + i\sin(m\phi)\right) d\phi.$$
(6.29)

Utilizando la siguiente identidad [46],

$$\int_{0}^{2\pi} e^{-ikr\cos(\varphi-t)} \left(\cos(mt) + \sin(mt)\right) dt = 2\pi i^m \left(\cos(m\varphi) + \sin(m\varphi)\right) J_m(kr), \tag{6.30}$$

donde J_m es la función de Bessel de primera clase de orden m, se obtiene,

$$\phi_{n,m}(p,\theta) = \frac{i^m e^{im\theta}}{\sqrt{2\pi}} \int_0^{r_0} R_{n,m}(r) J_m(pr) r dr.$$
(6.31)

Finalmente, la función de onda aproximada en el espacio de momentos del sistema en análisis está dada por,

$$\Phi(p,\theta) = \sum_{k=-M}^{M} c_{n,k} \frac{i^k e^{ik\theta}}{\sqrt{2\pi}} \int_0^{r_0} R_{n,k}(r) J_k(pr) r dr.$$
(6.32)

Esta función se construyó en Mathematica 11, donde la integral que involucra esta expresión se calcula de manera numérica, dividiendo el intervalo de integración en cien subintervalos y aplicamos el método de Gauss de dos puntos en cada subintervalo [53].

Conociendo a $\Phi(p,\theta)$, la densidad de probabilidad $\gamma(p,\theta)$ también es conocida. Por lo tanto, se retoman las expresiones para obtener las entropías de Shannon, ecuaciones (6.24) y (6.25). La integral de la ecuación (6.25) sobre la variable p se evalúa de 0 a p_{max} donde el valor de p_{max} es tal que la función de onda $\Phi(p,\theta)$ se encuentra casi normalizada a la unidad, es decir,

$$\int_{0}^{2\pi} \int_{0}^{p_{max}} \Phi^*(p,\theta) \Phi(p,\theta) p dp d\theta = 0.9999999.$$
(6.33)

Los valores de la entropía de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total, para el estado base y los primeros cuatro estados excitados del sistema como función de la magnitud del campo eléctrico, para un radio de confinamiento fijo se reportan en el Apéndice A Tabla A.3.

En la Figura 6.12 se muestran las gráficas del comportamiento de la entropía de Shannon en el espacio de configuración del estado base y de los primeros cuatro estados excitados. Para un radio de confinamiento $r_0 = 1.0$, la entropía de Shannon S_{ρ} del estado base y del primer estado excitado disminuyen con el aumento del campo eléctrico, interpretándose que conforme el campo eléctrico aumenta, la localización del electrón en este espacio también aumenta. Observamos que en el segundo estado excitado S_{ρ} aumenta con el campo, indicando la deslocalización del electrón. El comportamiento de S_{ρ} del tercer y cuarto estado excitado es el mismo hasta un valor de f = 3 y se mantiene aproximadamente constante con el aumento del campo, mientras que para $3 < f \leq 6$ los valores de las entropías de estos estados comienzan a separarse y S_{ρ} del tercer estado excitado comienza a disminuir ligeramente con el campo.

Para los radios de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ la entropía S_{ρ} del estado base, primer y tercer estado excitado disminuye cuando aumentamos la magnitud del campo eléctrico, indicando que el electrón en estos estados está más localizado con el aumento del campo eléctrico. Mientras que las entropías del segundo y cuarto estado excitado aumentan hasta alcanzar un valor máximo y después comienzan a disminuir a medida que aumentamos el campo eléctrico. El comportamiento de S_{ρ} para el segundo estado excitado lo podemos explicar analizando las distribuciones de probabilidad de la Figura 6.4. En esta figura observamos que para campos pequeños (Figura 6.4 (d)) la densidad de probabilidad se encuentra distribuida alrededor de dos máximos ocupando la mayor parte de la región circular. A medida que aumentamos el campo eléctrico (Figura 6.4 (e)) la densidad se va concentrando en una determinada región del círculo. En la Figura 6.4 (f) se observa como la densidad de probabilidad ya se encuentra concentrada en la mitad izquierda de la región circular. Este reacomodo de la densidad de probabilidad es captada por la entropía de Shannon detectando primero una deslocalización y posteriormente localización.

Figura 6.12: Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Por otra parte en la Figura 6.13, observamos que la entropía de Shannon en el espacio de momentos aumenta conforme aumentamos la magnitud del campo eléctrico. Para los cinco estados graficados y los tres valores del radio de confinamiento el electrón se deslocaliza en este espacio. Observamos que para valores del campo cercano a cero los valores de la entropía del primer y segundo estado excitado son muy similares; lo mismo sucede con las entropías del tercer y cuarto estado excitado aunque a medida que aumenta la magnitud de f los valores de las entropías se separan; esta separación es mas lenta para un radio de confinamiento $r_0 = 1.0$.

Figura 6.13: Comportamiento de la entropía de Shannon en el espacio de momentos S_{γ} para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Hasta esta sección hemos empleado la entropía de Shannon y la desviación estándar como medidas de localización, sin embargo, los resultados de estas dos medidas no son consistentes entre sí para algunos estados del sistema. Para un radio de confinamiento $r_0 = 1.0$ y $r_0 = 2.0$ los resultados de estas dos medidas difieren para el estado base y el tercer estado excitado. En la gráfica de la densidad de probabilidad Figura 6.2 observamos que la densidad se va concentrando conforme el campo eléctrico aumenta, la magnitud del pico de la densidad se va haciendo mayor. Este cambio en la distribución de probabilidad está siendo detectado por la entropía de Shannon en el espacio de configuración como una localización (Figura 6.12) y no como deslocalizacion como en el caso de la desviación estándar (Figura 6.11).

En las Figuras 6.14 y 6.15 se muestran las gráficas de las entropías de Shannon en el espacio de configuración S_{ρ} , en el espacio de momentos S_{γ} y la entropía total $S_{\rho} + S_{\gamma}$, para el estado base y los primeros cuatro estados excitados como función de la magnitud del campo eléctrico para un radio de confinamiento $r_0 = 1.0$, $r_0 = 2.0$ y $r_0 = 3.0$.

Figura 6.14: Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} , espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$ del estado base, primer y segundo estado excitado del sistema, como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Figura 6.15: Comportamiento de la entropía de Shannon en el espacio de configuración S_{ρ} , espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$ del tercer y cuarto estado excitado del sistema, como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

En la Figura 6.14 se aprecia como las entropías del estado base para un radio de confinamiento $r_0 = 1.0$ las curvas de S_{ρ} y S_{γ} son simétricas entre sí mientras que la entropía total se mantiene constante con el aumento del campo eléctrico. Este comportamiento simétrico en las curvas de entropía se va perdiendo con el aumento del radio de confinamiento, mientras que la entropía total aumenta con el campo. Las curvas de las entropías S_{ρ} y S_{γ} del primer estado excitado matienen cierta simetría entre ellas y el comportamiento de la entropía total es aproximadamente constante con el aumento de f para los tres radios de confinamiento. En el caso del segundo estado excitado para $r_0 = 1.0$ las curvas de S_{ρ} y S_{γ} se observan ligeramente simétricas como función del campo; esta simetría entre S_{ρ} y S_{γ} se pierde conforme aumentamos el radio de confinamiento, como es el caso de $r_0 = 2.0$ y $r_0 = 3.0$. En la Figura 6.15 se observa que el comportamiento de las entropías como función del campo eléctrico del tercer y cuarto estado excitado es similar al del segundo estado excitado.

6.4.1. Potencia de entropía de Shannon

Dado que ya hemos obtenido los valores de la entropía de Shannon calculamos directamente las potencias entrópicas. Las expresiones que nos permiten obtener estas cantidades en el sistema bidimensional D = 2 en el espacio de posiciones y en el espacio de momentos están dadas por la ecuaciones (3.31) y (3.32), respectivamente. Como se ha mencionado en el capítulo anterior esta cantidad se utiliza para calcular la complejidad Fisher-Shannon incluido como una de las perspectivas de este trabajo.

En la Figura 6.16 se muestran las gráficas del comportamiento de las potencias entrópicas J_{ρ} como función del campo eléctrico para el estado base y los primeros cuatro estados excitados con tres valores del radio de confinamiento $r_0 = 1.0$, $r_0 = 2.0$ y $r_0 = 3.0$. Como se puede apreciar el comportamiento de J_{ρ} con el campo es similar al comportamiento de la entropía de Shannon S_{ρ} . Para un radio de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ esta cantidad disminuye con el incremento del campo eléctrico.

En la Figura 6.17 se encuentran las gráficas de las potencias entrópicas en el espacio de momentos J_{γ} . Se observa que esta cantidad aumenta con la magnitud del campo eléctrico tal como sucede con la entropía de Shannon S_{γ} .

Figura 6.16: Comportamiento de la potencia de entropía de Shannon en el espacio de configuración J_{ρ} como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

82

Figura 6.17: Comportamiento de la potencia de entropía de Shannon en el espacio de momentos J_{γ} como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

6.5. Desequilibrio

De las secciones anteriores conocemos las densidades de probabilidad tanto en el espacio de configuración como en el espacio de momentos, $\rho(r, \phi) \ge \gamma(p, \theta)$, respectivamente. Empleando las ecuaciones (5.15) y (5.16) en el programa de Mathematica 11 calculamos el desequilibrio como función de la magnitud del campo eléctrico para el estado base y los primeros cuatro estados excitados del sistema.

En la Figura 6.18 se muestran las gráficas con el comportamiento de D_{ρ} y D_{γ} como función de la magnitud del campo eléctrico f. Para un radio de confinamiento $r_0 = 1.0$ el desequilibrio D_{ρ} del segundo estado excitado disminuye con el aumento del campo indicando una deslocalización del electrón. Para los demás estados D_{ρ} aumenta conforme se incrementa la magnitud del campo, en estos estados el electrón se encuentra más localizado y la densidad de probailidad está más concentrada. El tercer y cuarto estado excitado tienen los mismos valores de D_{ρ} hasta un valor de f = 4, mientras que en $4 < f \leq 6$ los valores de D_{ρ} comienzan a diferir para ambos estados y las curvas se separan ligeramente aumentando lentamente con el campo aunque en forma más acentuada para el tercer estado excitado. En la gráfica del desequilibrio en momentos para este mismo radio de confinamiento observamos que las curvas de D_{γ} son decrecientes con el aumento de f indicando que el electrón se deslocaliza en este espacio.

Para los radios de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$ el desequilibrio en el espacio de configuración de los estados estudiados aumenta como función del campo, en el cuál el elctrón se encuentra más localizado mientras que se deslocaliza en el espacio de momentos ya que el desequilibrio D_{γ} disminuye con el incremento del campo eléctrico.

Figura 6.18: Comportamiento del desequilibrio en el espacio de configuración y en el espacio de momentos para el estado base y los primeros cuatro estados excitados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

En la Figura 6.19, para un radio de confinamiento $r_0 = 1$ se observa que el comportamiento de $D_{\rho}D_{\gamma}$ del estado fundamental y los cuatro estados excitados es aproximadamente constante con el aumento del campo. Para los radios de confinamiento $r_0 = 2$ y $r_0 = 3$, el comportamiento constante de $D_{\rho}D_{\gamma}$ con el campo se observa únicamente para el estado base y el primer estado excitado mientras que para los demás estados $D_{\rho}D_{\gamma}$ disminuye con el incremento del campo eléctrico.

Figura 6.19: Comportamiento del desequilibrio para el estado base y los primeros cuatro estados excitados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Continúa en la siguiente página.

Continuación de la Figura 6.19: Comportamiento del desequilibrio para el estado base y los primeros cuatro estados excitados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

6.6. Principio de incertidumbre de Heisenberg generalizado

Para obtener el Principio de Incertidumbre de Heisenberg Generalizado (PIHG) (Ec. (3.22)) se calcularon los valores de $\langle r^2 \rangle$ y $\langle p^2 \rangle$, los valores de $\langle r^2 \rangle$ se obtuvieron anteriormente en la sección 6.2, mientras que $\langle p^2 \rangle$ se calcula de la siguiente forma:

$$\left\langle p^2 \right\rangle = \int_0^{2\pi} \int_0^{p_{max}} \Phi^*(p,\theta) p^2 \Phi(p,\theta) p dp d\theta, \qquad (6.34)$$

donde $\Phi(p, \theta)$ es la función de onda en el espacio de momentos dada por la ecuación (6.32).

Como el sistema que estamos estudiando es bidimensional, D = 2 [ver ecuación (3.22)], de acuerdo con este principio de incertidumbre se debe de satisfacer que:

$$\langle r^2 \rangle \langle p^2 \rangle \ge 1.$$
 (6.35)

En la Figura 6.20 se muestran las gráficas de los valores esperados de p^2 del estado base y de los primeros cuatro estados excitados como función de la magnitud del campo eléctrico y observamos que para los tres radios de confinamiento $r_0 = 1.0, 2.0$ y 3.0 el valor esperado de p^2 aumenta con el incremento del campo.

En la Figura 6.21 se encuentran las gráficas correspondientes a los datos numéricos del principio de incertidumbre de Heisenberg generalizado para algunos valores selectos de r_0 . Se observa que en todos los estados estudiados el principio de incertidumbre se satisface, es decir, cumple la desigualdad (6.35). Para $r_0 = 2.0$, observamos que el PIHG presenta un valor mínimo para el segundo y cuarto estado excitado, el mínimo del PIHG para el segundo estado excitado se encuentra alrededor de f = 1.0, mientras que para el cuarto estado excitado el valor mínimo del PIHG se encuentra alrededor de f = 2.5. Para $r_0 = 3.0$ en el segundo estado excitado el PIHG presenta un mínimo alrededor de f = 1.0. En estos valores del campo eléctrico donde $\langle r^2 \rangle \langle p^2 \rangle$ presenta valores mínimos, tanto la incertidumbre de la posición del electrón como la incertidumbre del momento, ambas son mínimas.

Figura 6.20: Comportamiento de $\langle p^2 \rangle$ para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Figura 6.21: Comportamiento de $\langle p^2 \rangle \langle r^2 \rangle$ para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

6.7. Información de Fisher

Como se ha mencionado anteriormente, la información de Fisher es una medida que cuantifica lo concentrada o dispersa que se encuentra la densidad de probabilidad y la cuál es muy sensible a las oscilaciones que presenta la densidad del sistema. Las expresiones que nos permiten obtener los resultados numéricos para esta cantidad en el espacio de configuración y en el espacio de momentos están dadas por las ecuaciones (4.27) y (4.28), respectivamente. La densidad de probabilidad $\rho(r, \phi)$ se construyó con la función de onda $\Psi(r, \phi)$ dada por la ecuación (6.20) o (6.21), según el caso, mientras que para la densidad de probabilidad en el espacio de momentos $\gamma(p, \theta)$ utilizamos a la función de onda $\Phi(p, \theta)$ dada por (6.32). Las integrales involucradas en este cálculo se resolvieron numéricamente en el programa elaborado en Mathematica 11.

En la Tabla B.3 del Apéndice B se reportan los resultados numéricos de la información de Fisher en el espacio de configuración y espacio de momentos para los primeros cinco estados del sistema y tres valores del radio de confinamiento, como función de la magnitud del campo eléctrico. En la misma tabla también se reportan los resultados correspondientes a $F_{\rho}F_{\gamma}$ los cuales satisfacen la relación de incertidumbre dada por la ecuación (3.38) para D = 2,

$$F_{\rho}F_{\gamma} \ge 16. \tag{6.36}$$

En la Figura 6.22 se muestra el comportamiento de la información de Fisher en el espacio de configuración como función del campo eléctrico. Para un radio de confinamiento $r_0 = 1.0$, la información de Fisher del estado base y del primer estado aumenta (localización) como función de f mientras que en el segundo estado F_{ρ} disminuye (deslocalización) ligeramente con el campo.
El tercer y cuarto estado excitado tienen aproximadamente los mismos valores de F_{ρ} , se mantienen constantes hasta un determinado valor de f, después de este valor, en el cuarto estado excitado F_{ρ} comienza a disminuir (deslocalización) lentamente con el campo mientras que en el tercer estado excitado aumenta (localización) ligeramente con el incremento de f. Para $r_0 = 2.0$ y $r_0 = 3.0 F_{\rho}$ aumenta (localización) cuando incrementamos la magnitud del campo en los cinco estados estudiados y observamos que la curvatura de F_{ρ} del segundo y cuarto estado excitado es diferente a la de los otros estados graficados.

Figura 6.22: Comportamiento de la Información de Fisher en el espacio de configuración F_{ρ} para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

En la Figura 6.23 se muestran las curvas de la información de Fisher en el espacio de momentos como función de la magnitud del campo eléctrico. En los cinco estados estudiados, F_{γ} disminuye (deslocalización) con el aumento del campo f, donde tal comportamiento se observa en los tres radios de confinamiento $r_0 = 1.0, 2.0$ y 3.0. En $r_0 = 1.0$ se observa que el comportamiento de F_{γ} es aproximadamente lineal con el aumento del campo, mientras que en los otros radios de confinamiento F_{γ} decrece más rápidamente con el aumento del campo.

Figura 6.23: Comportamiento de la Información de Fisher en el espacio de momentos F_{γ} para algunos estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

En la Figura 6.24, se muestran las gráficas de F_{ρ} , F_{γ} y $F_{\rho}F_{\gamma}$ para cada estado y cada uno de los radios de confinamiento $r_0 = 1.0, 2.0$ y 3.0. Para un radio de confinamiento de $r_0 = 1.0$ se observa que el comportamiento de $F_{\rho}F_{\gamma}$ es decreciente como función del campo para todos los estados graficados. Para los otros radios de confinamiento, $r_0 = 2.0$ y $r_0 = 3.0$, el comportamiento de $F_{\rho}F_{\gamma}$ es distinto, primero comienza a disminuir con el aumento de f pero conforme se sigue aumentando la magnitud del campo $F_{\rho}F_{\gamma}$ también aumenta.

Figura 6.24: Comportamiento de la información de Fisher en el espacio de configuración F_{ρ} , espacio de momentos F_{γ} y el producto $F_{\rho}F_{\gamma}$ para cinco estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Continuación de la Figura 6.24: Comportamiento de la información de Fisher en el espacio de configuración F_{ρ} , espacio de momentos F_{γ} y el producto $F_{\rho}F_{\gamma}$ para cinco estados del sistema como función de la magnitud del campo eléctrico f y radio de confinamiento fijo. La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

6.8. Conclusiones

Al aplicar el método variacional lineal, utilizando como funciones base a las funciones propias de una partícula sujeta a un potencial de oscilador armónico en una región circular plana, obtuvimos los valores propios de energía y las funciones de onda, para un electrón sujeto a un potencial de oscilador armónico en una región circular plana de radio r_0 , en presencia de un campo eléctrico constante.

En ausencia del campo eléctrico los estados del sistema con momento angular $m \neq 0$ son doblemente degenerados. Esta degeneración se rompe al introducir el campo eléctrico, lo cuál se observa en los niveles de energía donde el rompimiento de esta degeneración se hace más pronunciado a medida que aumenta la magnitud del campo eléctrico.

En ausencia del campo eléctrico las densidades de probabilidad tienen cierta simetría, ya sea radial o con respecto a uno de los ejes x o y, dependiendo de cada estado del sistema. Al aplicar un campo eléctrico constante la distribución de las densidades de probabilidad dejan de ser simétricas, la densidad electrónica se polariza desplazándose en dirección opuesta al campo.

Comparando los resultados sobre la localización-deslocalización del electrón en el espacio de configuración proporcionados por la desviación estándar, la entropía de Shannon y la información de Fisher como función de la magnitud del campo eléctrico. Los resultados obtenidos por estas dos últimas medidas de localización coinciden entre ellas, en cambio, los proporcionados por la desviación estándar difieren para algunos estados del sistema. Podemos concluir que la entropía de Shannon y la información de Fisher captan mejor los cambios en la densidad de probabilidad debido al aumento del campo eléctrico.

Los resultados proporcionados por la entropía de Shannon en el espacio de configuración para el estado base, primer y tercer estado excitado nos indica que conforme aumenta la magnitud del campo eléctrico la densidad de probabilidad se encuentra más concentrada, disminuyendo la incertidumbre sobre la posición del electrón, aumentando así su localización. Para el segundo y cuarto estado excitado, conforme aumenta el campo eléctrico, S_{ρ} aumenta ligeramente, indicando una ligera deslocalización. Sin embrago, al continuar aumentando el valor de f, S_{ρ} disminuye lo cual indica que el electrón se encuentra más localizado. La entropía de Shannon en el espacio de momentos aumenta como función de la magnitud del campo eléctrico, provocando una deslocalización del electrón en tal espacio. En los estados estudiados se satisface el principio de incertidumbre de posición-momento BBM.

La información de Fisher en el espacio de configuración aumenta como función de la magnitud del campo eléctrico, indicando que el electrón se encuentra más localizado en este espacio. En el espacio de momentos la información de Fisher disminuye al aumentar la magnitud del campo, el electrón se deslocaliza en este espacio. Los resultados de la información de Fisher satisfacen la relación de incertidumbre expresada en la ecuación (6.36).

Los resultados del desequilibrio sobre localización - deslocalización del electrón concuerdan con los proporcionados por las entropías de Shannon y la información de Fisher como función de la magnitud del campo eléctrico.

En los cinco estados estudiados de este sistema se satisface el principio de incertidumbre de Heisenberg generalizado $\langle r^2 \rangle \langle p^2 \rangle \ge 1$.

Haciendo un análisis de los resultados de la entropía de Shannon obtenidos en este capítulo con los del Capítulo 5 (una partícula confinada en una región circular en presencia de un campo eléctrico). Podemos decir que para un radio de confinamiento $r_0 = 1.0$, los resultados de la entropía de Shannon S_{ρ} , S_{γ} y la entropía total como función del campo eléctrico son muy similares en ambos sistemas. Sin embargo, para los radios de confinamiento $r_0 = 2.0$ y $r_0 = 3.0$, estos resultados son diferentes para cada sistema. Para el estado base, los valores de las entropías S_{ρ} son más pequeños en el sistema del electrón sujeto a un potencial de oscilador armónico en una región circular en presencia de un campo eléctrico, comparada con los valores de las entropías del electrón en una región circular en presencia de un campo eléctrico. Por lo tanto, podemos concluir que en el estado base para $r_0 = 2.0$ y $r_0 = 3.0$, el electrón está más localizado cuando hay un potencial de oscilador armónico, mientras que para $r_0 = 1.0$ la localización del electrón

en ambos sistemas se da de igual manera.

Analizando los resultados correspondientes a la información de Fisher y haciendo una comparación con los resultados del capítulo anterior donde el efecto del potencial de oscilador armónico es nulo. Para un radio de confinamiento $r_0 = 1.0$ los resultados de la informacion de Fisher F_{ρ} , F_{γ} y $F_{\rho}F_{\gamma}$ de los estados estudiados son muy similares en ambos sistemas. En cambio, al aumentar el radio de confinamiento, es decir para $r_0 = 2.0$ y $r_0 = 3.0$ hay una variación en estas cantidades. En el espacio de configuración la información de Fisher es mayor al incluir el potencial de oscilador armónico comparado con los resultados en ausencia de este potencial. Por lo tanto para $r_0 = 2.0$ y $r_0 = 3.0$, el electrón se encuentra más localizado al incluir el potencial de oscilador armónico.

Capítulo 7

Partícula confinada en una region circular plana en presencia de un campo magnético constante

Un problema interesante es el movimiento de un electrón confinado en una región circular de radio r_0 con paredes impenetrables, en presencia de un campo magnético constante, perpendicular al plano de movimiento, sin considerar el espín. Este problema ya ha sido analizado mediante el método de teoría de perturbaciones independientes del tiempo [54] y además se conoce la solución exacta del problema [55]. Para analizar este sistema utilizamos el método variacional lineal empleando como base a las funciones de onda de la partícula confinada en una región circular de paredes impenetrables. Al diagonalizar la matriz hamiltoniana obtenemos las energías propias para diferentes estados , así como la función de onda aproximada correspondiente. A partir de esto, obtenemos los valores esperados de la posición, la desviación estándar así como las entropías de Shannon e información de Fisher en el espacio de configuración y en el espacio de momentos, donde algunas de estas cantidades se obtienen como función de la magnitud del campo magnético y del radio de confinamiento r_0 . Parte de los resultados de este capítulo ya han sido publicados en la referencia [18] incluida al final de este trabajo.

Consideremos a un electrón de masa m_e y carga -e que se mueve en el plano x - y en una región circular impenetrable de radio r_0 centrada en el orígen del sistema de coordenadas. El electrón está sujeto a la acción de un campo magnético uniforme perpendicular al plano de movimiento, es decir, $\vec{B} = B_0 \hat{k}$, donde \hat{k} es el vector unitario en dirección z y B_0 es la magnitud del campo magnético.

Haciendo uso del acoplamiento mínimo que consiste en reemplazar el momento lineal $\vec{p'}$ por el momento generalizado,

$$\vec{p'} \to \vec{p'} + \frac{e}{c}\vec{A},\tag{7.1}$$

donde c es la magnitud de la velocidad de la luz en el vacío y \vec{A} es el vector potencial magnético. El hamiltoniano del sistema se puede escribir como:

$$H' = \frac{1}{2m_e} \left[\vec{p'} + \frac{e}{c} \vec{A} \right]^2 + V_c(r')$$

$$H' = \frac{1}{2m_e} \left\{ p'^2 + \frac{e}{c} \vec{p'} \cdot \vec{A} + \frac{e}{c} \vec{A} \cdot \vec{p'} + \frac{e^2}{c^2} A^2 \right\} + V_c(r').$$
(7.2)

donde $V_c(r')$ es el potencial de confinamiento, el cual impone condiciones de frontera de Dirichlet a las funciones de onda sobre la circunferencia de radio r_0 ,

$$V_{c}(r') = \begin{cases} 0 & \text{si } 0 \le r' \le r'_{0} \\ & & \\ \infty & \text{si } r' > r'_{0} \end{cases}$$
(7.3)

Consideremos una función arbitraria f, entonces

$$\vec{p}.(\vec{A}f) = -i\hbar\nabla_{\alpha}A_{\alpha}f = -i\hbar\left(A_{\alpha}\nabla_{\alpha}f + f\nabla_{\alpha}A_{\alpha}\right) = \vec{A}\cdot\vec{p}f - i\hbar f\nabla\cdot\vec{A},$$
$$\vec{p}\cdot\vec{A}f - \vec{A}\cdot\vec{p}f = i\hbar f\nabla\cdot\vec{A}.$$

Utilizando la norma de Coulomb tenemos que $\nabla\cdot\vec{A}=0$

$$\vec{p} \cdot \vec{A} - \vec{A} \cdot \vec{p} = 0, \tag{7.4}$$

por lo tanto, como estos operadores conmutan, el hamiltoniano lo podemos reescribir como:

$$H' = \frac{{p'}^2}{2m_e} + \frac{e}{m_e c} \vec{A} \cdot \vec{p'} + \frac{e^2}{2m_e c^2} A^2 + V_c(r').$$
(7.5)

considerando que $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r'}$ y haciendo uso de algunas identidades vectoriales, el segundo y tercer término de H' se escriben como,

$$\frac{e}{m_e c}\vec{A}\cdot\vec{p'} = \frac{e}{2m_e c}\vec{B}\cdot\vec{r'}\times\vec{p'} = \frac{e}{2m_e c}\vec{B}\cdot\vec{L'}$$
(7.6)

у

$$\frac{e^2}{2m_e c^2} A^2 = \frac{e^2}{2m_e c^2} \left(\frac{1}{2}\vec{B} \times \vec{r'}\right)^2 = \frac{e^2}{8m_e c^2} \left(r'^2 B^2 - (\vec{r'} \cdot \vec{B})^2\right).$$
(7.7)

Recordando que nuestro problema es bidimensional y que el campo magnético aplicado está en dirección z, el hamiltoniano se puede escribir como:

$$H' = \frac{p'^2}{2m_e} + \frac{e}{2m_e c} B_0 L'_z + \frac{e^2}{8m_e c^2} r'^2 B_0^2 + V_c(r'),$$
(7.8)

en términos de la frecuencia de Larmor ω_L ,

$$\omega_{\scriptscriptstyle L} = \frac{eB_0}{2m_ec},\tag{7.9}$$

se obtiene la siguiente expresión,

$$H' = \frac{p'^2}{2m_e} + \frac{m_e \omega_L^2 r'^2}{2} + \omega_L L'_z + V_c(r').$$
(7.10)

Para resolver el problema es conveniente adimensionalizar el hamiltoniano realizando el cambio de variable $r' = a_0 r$, donde a_0 es el radio de Bohr y r es la variable radial adimensional. Escribiendo el hamiltoniano de la Ec. (7.10) en unidades atómicas ($\hbar = m_e = e = 1$) y siguiendo la notación de la referencia [56],

$$H = \frac{p^2}{2} + \frac{1}{2}b^4r^2 + b^2L_z + V_c(r), \qquad (7.11)$$

donde

$$b^2 = \frac{\hbar^3 B_0}{2m_e^2 c e^3},\tag{7.12}$$

así, la unidad de longitud es el radio de Bohr $\frac{\hbar^2}{m_e e^2}$, la unidad de energía es el Hartree $\frac{m_e e^4}{\hbar^2}$ y la unidad de campo magnético es $\frac{m_e^2 c e^3}{\hbar^3} = 2.3505 \times 10^9 G (1G = 1 \times 10^{-4}T)$.

Reescribiendo el hamiltoniano (Ec. (7.11)), como:

$$H = H_0 + H_1,$$

donde,

$$H_0 = \frac{p^2}{2} + V_c(r), \tag{7.13}$$

у

$$H_1 = \frac{1}{2}b^4r^2 + b^2L_z. \tag{7.14}$$

El sistema representado por H_0 corresponde al hamiltoniano de una partícula confinada a moverse en una región circular de radio r_0 , el cual ya fue abordado en el Capítulo 4. Las funciones de onda solución de H_0 , se considerarán como conjunto base al aplicar el método variacional al sistema representado por H. Como L_z es una constante de movimiento, el problema tiene momento angular definido. Así, la función de onda aproximada de H la proponemos como una combinación lineal del conjunto de funciones base con momento angular m fijo, dadas por la ecuación (4.4).

$$\Psi(r,\phi) = \sum_{k=1}^{N} c_{k,m} \psi_{k,m}(r,\phi),$$

$$= \left(\sum_{k=1}^{N} c_{k,m} \frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{k,|m|})} J_{|m|}(X_{k,|m|} \frac{r}{r_0}) \right) \frac{1}{\sqrt{2\pi}} e^{im\phi}.$$
(7.15)

Para obtener las energías y los coeficientes del desarrollo de la ecuación anterior debemos de hallar la solución al siguiente problema de valores propios [19],

$$H\vec{c} = E\vec{c},\tag{7.16}$$

donde H es la matriz hamiltoniana, \vec{c} es el vector de coeficientes y E denota los eigenvalores de energía. Los elementos de la matriz hamiltoniana están dados por la siguiente expresión:

$$H_{ij} = \left(E_{i,m}^{(0)} + mb^2\right)\delta_{ij} + \frac{1}{2}b^4\left\langle R_{i,m}|r^2|R_{j,m}\right\rangle,$$
(7.17)

donde $E_{im}^{(0)}$ está dado por la ecuación (4.7) y $R_{i,m}$ por la ecuación (4.5).

La construcción y diagonalización de la matriz hamiltoniana se realizó en Mathematica 11, utilizando una base de N = 40 funciones. El criterio que se utilizó para considerar este tamaño de base es la convergencia en los eigenvalores de energía observando como se comportan estos valores con respecto al incremento del número de funciones base.

7.1. Eigenvalores de energía

Para obtener las energías propias de algunos estados (n, m) del sistema como función de la magnitud del campo magnético, donde n es el número cuántico radial y m el número cuántico de momento angular, fijamos el valor de m, el radio de confinamiento r_0 y variamos el valor del parámetro b^2 que es proporcional a la magnitud del campo magnético aplicado. Los valores propios de energía para un radio de confinamiento $r_0 = 1.5$ y |m| = 0, 1, 2 se reportan en la Tabla 7.1. El comportamiento de la energía como función del campo b^2 los podemos visualizar en la Figura 7.1.

Para un radio de confinamiento fijo $r_0 = 1.5$, observamos que para valores de $0 \le b^2 \le 2.5$ la energía aumenta para los estados con número cuántico $m \ge 0$. Para los estados (0, -2) y (1, -2) la energía disminuye conforme la magnitud del campo magnético aumenta, mientras que la energía de los estados (0, -1) y (1, -1), disminuye hasta alcanzar un mínimo y posteriormente comienza a aumentar. Sin embargo, cabe mencionar que para cualquier estado independientemente si mes positivo o negativo, la energía incrementará para valores de b^2 suficientemente grandes para cada estado.

Cuando $b^2 = 0$ tenemos el problema de una partícula confinada en una región circular cuyos niveles de energía son doblemente degenerados para $m \neq 0$. Podemos observar que la aplicación del campo magnético rompe esta degeneración, sin embargo, en las gráficas se observan intersecciones en los niveles de energía indicando degeneración en los estados conocida como degeneración accidental.

$r_{_0}=1.5$ u.a.					
b^2 u.a.	m = 0	m = -1	m = 1	m = -2	m = 2
n = 0					
0.05	1.28576567600895	3.21359760850145	3.31359760850141	5.76217662088672	5.96217662088702
0.1	1.28760486217284	3.16640959563014	3.36640959563021	5.66562856471513	6.06562856471528
0.3	1.30717319142983	2.99636584881035	3.59636584881035	5.30242122895190	6.50242122895191
0.5	1.34603913737998	2.85606865596847	3.85606865596840	4.97585253868711	6.97585253868685
1.0	1.52353226025943	2.63221918840244	4.63221918840257	4.31732238446609	8.31732238446597
1.5	1.80313375410881	2.57908116712454	5.57908116712451	3.87639791642868	9.87639791642881
2.0	2.16394604998746	2.67738346320637	6.67738346320635	3.63805504230405	11.6380550423040
2.5	2.58299092616486	2.90216339818811	7.90216339818788	3.58155619175941	13.5815561917596
n = 1					
0.05	6.77226761152104	10.8883722463887	10.9883722463885	15.6454611012017	15.8454611012021
0.1	6.77489570598630	10.8411848698809	11.0411848698810	15.5485118385576	15.9485118385577
0.3	6.80294313694649	10.6711953893933	11.2711953893934	15.1810573755044	16.3810573755042
0.5	6.85911551205706	10.5312666320624	11.5312666320623	14.8461722523534	16.8461722523531
1.0	7.12368664341032	10.3137219648564	12.3137219648566	14.1518210509638	18.1518210509640
1.5	7.56835521519513	10.2874852700405	13.2874852700404	13.6627738442431	19.6627738442432
2.0	8.19548986956935	10.4562633981131	14.4562633981134	13.3812436417306	21.3812436417305
2.5	9.00271791440926	10.8233031842697	15.8233031842696	13.3099390037348	23.3099390037344

Tabla 7.1: Valores propios de energía de un electrón confinado en una región circular plana en presencia de un campo magnético constante b^2 , para un radio de confinamiento fijo $r_0 = 1.5$ u.a..

Figura 7.1: Eigenvalores de energía para los estados (n,m) como función del campo magnético b^2 , para un radio de confinamiento fijo $r_0 = 1.5$ u.a. .

7.2. Valores esperados de la posición

Con la función de onda aproximada ecuación (7.15) podemos calcular los valores esperados de la posición de la partícula en un círculo en presencia de un campo magnético constante. Debido a la forma explícita de la ecuación (7.15), la densidad de probabilidad únicamente depende de la variable radial,

$$\rho(r) = \left(\sum_{k=1}^{N} c_{k,m} R_{n,m}(r)\right)^2 \frac{1}{2\pi}.$$
(7.18)

Por lo tanto, la expresión para calcular los valores esperados de la posición es

$$\langle r \rangle = \int_0^{r_0} r \rho(r) r dr \tag{7.19}$$

Estos valores esperados se calculan como función de la magnitud del campo magnético para un radio de confinamiento fijo.

A continuación se muestran las gráficas del valor esperado de la posición como función de la magnitud del campo magnético para seis estados (n,m) del sistema, para un valor fijo de $r_0 = 1.5$. El comportamiento de $\langle r \rangle$ como función de la magnitud del campo magnético del estado fundamental y del estado (0,1) es decreciente al aumentar la magnitud del campo, mientras que para los estados (1,0), (2,0), (1,1) y (2,1), al incrementar b^2 el valor eperado de la posición aumenta lentamente hasta alcanzar un valor máximo y posteriormente disminuye con el campo. Cabe mencionar que el valor de b^2 donde $\langle r \rangle$ alcanza el valor máximo es diferente para cada uno de estos estados. Un valor pequeño de $\langle r \rangle$ indica la partícula se encuentra cerca del orígen, mientras que un valor mayor de $\langle r \rangle$ indica que la partícula está más alejada del orígen.

Figura 7.2: Valores esperados de la posición $\langle r \rangle$ para seis estados (n,m) como función de la magnitud del campo magnético b^2 con radio de confinamiento fijo $r_0 = 1.5$ u.a.

7.3. Desviación estándar

En la sección anterior ya tenemos calculados los valores esperados de r como función de la magnitud del campo magnético. De la misma manera calculamos los valores esperados de r^2 y así obtener de manera inmediata los valores de la desviación estándar ecuación (6.11) como función de la magnitud del campo magnético. Esta cantidad la empleamos como una medida cuantitativa para analizar la localización o deslocalización de la partícula. Cuando el valor de σ es pequeño indica que la densidad de probabilidad se concentra, tiende a localizarse, mientras que a valores grandes de σ se dice que la densidad se extiende en todo el espacio, indicando deslocalización.

En la Figura 7.3 se muestra el comportamiento que sigue la desviación estándar como función de la magnitud del campo magnético para un radio de confinamiento fijo $r_0 = 1.5$.

Figura 7.3: Desviación estándar para los estados (n, m) como función de la magnitud del campo magnético b^2 y radio de confinamiento fijo $r_0 = 1.5$ u.a.

La desviación estándar como función de la magnitud del campo magnético en los estados (0,0), (1,0) y (2,0) tiene un comportamiento casi constante para valores de $b^2 < 1$, mientras que para $b^2 > 1$ la desviación estándar disminuye al aumentar la magnitud del campo magnético. En los estados (0,1) y (1,1) el comportamiento de σ aproximadamante constante se observa en los valores de $b^2 < 2$, mientras que para valores de $b^2 > 2$ la desviación estándar es decreciente con el campo. En el estado (2,1) podemos observar algo distinto: el comportamiento aproximadamente constante de σ se observa en valores de $b^2 < 1$. Posteriormente, al aumentar el valor de b^2 se observa que σ incrementa ligeramente alcanzado un valor máximo en $1 < b^2 < 4$, mientras que para $b^2 > 4$ el comportamiento de la desviación estándar es completamente decreciente. En general, la desviación estándar comienza a disminuir en un determinado valor de la magnitud del campo magnético b^2 distinto para cada estado, lo cual indica que la partícula se encuentra más localizada, al aumentar el campo magnético estamos aumentando el confinamiento de la partícula.

7.4. Entropía de Shannon

Como hemos mencionado en capítulos anteriores la entropía de Shannon o entropía de la información de Shannon constituye una medida de la incertidumbre de una distribución de probabilidad [57], es decir, un indicador de la localización-deslocalización de la partícula. Cuando la densidad de probabilidad está más concentrada la incertidumbre en la posición de la partícula es menor, lo que corresponde a un valor pequeño de la entropía de Shannon y por tanto indicando la localización de la partícula. En cambio, cuando la densidad de probabilidad se encuentra dispersa en todo el espacio, la entropía de Shannon es mayor, es decir, la incertidumbre en la posición de la partícula aumenta, interpretándose como una deslocalización de la partícula.

Las expresiones para calcular la entropía de Shannon en el espacio de configuración S_{ρ} y en el espacio de momentos S_p ya han sido definidas en capítulos anteriores, ecuaciones (6.24) y (6.25), respectivamente. La densidad de probabilidad en el espacio de configuración ya la conocemos, está dada por la ecuación (7.18). Para conocer la densidad en el espacio de momentos $\gamma(p, \theta)$ necesitamos conocer la función $\Phi(p, \theta)$ correspondiente a la función de onda en el espacio de momentos.

Al igual que se construyó la función de onda en el espacio de configuración (Ec. (7.15)), de manera análoga construimos la función de onda $\Phi(p,\theta)$, como una combinación lineal de las funciones base en el espacio de momentos (Ec.(4.19)), entonces,

$$\Phi(p,\theta) = \frac{i^m e^{im\theta} r_0^2}{\sqrt{2\pi}} \sum_{k=1}^N c_{k,m} \left(\frac{\sqrt{2}}{r_0 J_{|m|+1}(X_{k,|m|})} \left\{ \frac{X_{k,|m|} J_{m-1}(X_{k,|m|}) J_m(r_0 p)}{(r_0 p)^2 - X_{k,|m|}^2} \right\} \right).$$
(7.20)

Debemos señalar la ventaja de utilizar el método variacional lineal, con la base de las funciones de onda de la partícula confinada en una región circular de paredes impenetrables, ya que resulta más sencillo obtener la transformada de Fourier de las funciones de Bessel, que realizar la integración numérica de la solución exacta que incluye a las funciones hypergeométricas confluentes.

Esta función $\Phi(p, \theta)$ está definida en todo el espacio de momentos y satisface la condición de normalización de acuerdo con el teorema de Parseval [23] ya que la función de onda en el espacio de configuración $\Psi(r, \phi)$ está normalizada,

$$\int_0^{2\pi} \int_0^\infty \Phi^*(p,\theta) \Phi(p,\theta) p dp d\theta = 1.$$
(7.21)

Para poder evaluar las integrales que nos permitirán conocer los valores de la entropía de Shannon en el espacio de momentos necesitamos determinar el valor del límite superior en la variable p y para ello seguimos el mismo procedimiento presentado en capítulos anteriores utilizando la condición de normalización donde el límite superior de p los sustituimos por p_{max} , elegido de tal manera que el resultado de la normalización sea cercano a la unidad.

$$\int_{0}^{2\pi} \int_{0}^{70} \Phi^{*}(p,\theta)(p,\theta) p dp d\theta = 0.999999.$$
(7.22)

Por ahora se tiene la herramienta necesaria para calcular las entropías de Shannon tanto en el espacio de configuración como en el espacio de momentos. De acuerdo con la relación de incer-

tidumbre entrópica dada por la ecuación (3.30), la suma de las entropías debe satisfacer que $S_{\rho} + S_{\gamma} \ge 4.289560.$

Los resultados numéricos de la entropía de Shannon en el espacio de configuración y en el espacio de momentos así como la entropía total se encuentran en la Tabla A.4 en el Apéndice A.

En la Figura 7.4 se muestran las gráficas en las que se visualiza el comportamiento de las entropías de Shannon en el espacio de configuración como función del radio de confinamiento para los estados con momento angular m = 0 y m = 1. Observamos que la entropía S_{ρ} aumenta conforme aumentamos el radio de confinamiento indicando una deslocalización de la partícula, es decir, la incertidumbre de la posición de la partícula aumenta lo cual es de esperarse ya que al aumentar r_0 el confinamiento disminuye y la partícula tiene un mayor espacio para moverse. Para un radio de confinamiento $0 < r_0 < 1$ las curvas de S_{ρ} se sobreponen entre sí, los valores de las entropías de Shannon de estos estados son muy similares para este intervalo del radio de confinamiento.

Figura 7.4: Entropía de Shannon en el espacio de configuración como función del radio de confinamiento r_0 y un valor fijo del campo magnético de $b^2 = 1.5$ u.a. para seis estados diferentes (n, m).

En la Figura 7.5 se muestran las gráficas de las entropías de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total, como función del radio de confinamiento para estados con momento angular m = 0 y m = 1 para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$. Para los estados estudiados se puede observar como la entropía en el espacio de configuración aumenta como función del radio de confinamiento hasta un determinado valor de r_0 para posteriormente mantenerse aproximadamente constante con el incremento de r_0 . La entropía en el espacio de momentos como función del radio de confinamiento disminuye hasta un determinado valor de r_0 y posteriormente S_{γ} se mantiene aproximadamente constante con el incremento de r_0 . Las entropías totales S_{ρ} y S_{γ} satisfacen la relación de incertidumbre entrópica $S_{\rho} + S_{\gamma} \geq 4.289560$. En presencia de un campo magnético constante, la entropía total de los estados estudiados como función del radio de confinamiento deja de ser constante, en contraste con los resultados obtenidos en ausencia del campo magnético (Capítulo 4).

Figura 7.5: Entropía de Shannon en el espacio de configuración, espacio de momentos y la entropía total, para los estados (n, m), como función del radio de confinamiento r_0 para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$ u.a.

Una vez que conocemos el comportamiento de la entropía de Shannon como función del radio de confinamiento, lo que sigue es analizar su comportamiento en función del campo magnético para un radio de confinamiento fijo. Por lo tanto, en el programa desarrollado fijamos el valor del radio de confinamiento y mantenemos variable la magnitud del campo magnético b^2 .

Los resultados obtenidos para la entropía de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total como función de la magnitud del campo magnético b^2 para un radio de confinamiento fijo $r_0 = 1.5$ se reportan en la Tabla A.5 en el Apéndice A.

En la Figura 7.6 se muestra el comportamiento de la entropía de Shannon en el espacio de configuración para los estados (n, m) como función de la magnitud del campo magnético y radio de confinamiento fijo $r_0 = 1.5$. Se observa que la entropía de Shannon en el espacio de configuración del estado base y del estado (0, 1) disminuyen (localización) rápidamente como función de la magnitud del campo magnético, mientras que para los estados (1, 0) y (2, 0) S_{ρ} aumenta (deslocalización) ligeramente con el incremento del campo hasta alcanzar un valor máximo y posteriormente comienza a disminuir como función de b^2 . En los estados (1, 1) y (2, 1) la entropía S_{ρ} se mantiene aproximadamente constante hasta un determinado valor de b^2 , después comienza a aumentar (deslocalización) ligeramente hasta alcanzar un valor máximo y posteriormente disminuye (localización) como función del campo magnético. En general, para valores del campo $b^2 \geq 8$, la partícula en todos los estados se encuentra más localizada. Otra de las cosas que podemos observar en las gráficas es que para valores de b^2 cercanos a cero, el comportamiento de la entropía S_{ρ} de los estados (n, m) disminuye con el aumento del número cuántico radial, estos resultados concuerdan con los de la partícula en una región circular (Capítulo 4).

Figura 7.6: Entropía de Shannon para los estados (n, m) en el espacio de configuración, como función de la magnitud del campo magnético b^2 para un radio de confinamiento fijo $r_0 = 1.5$ u.a.

En la Figura 7.7 mostramos las gráficas del comportamiento de la entropía de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total, como función de la magnitud del campo magnético para los estados con momento angular m = 0 y m = 1, para un radio de confinamiento fijo $r_0 = 1.5$. Se observa que la entropía de Shannon S_{ρ} disminuye con el incremento del campo magnético, mientras que en el espacio de momentos aumenta como función de b^2 . Este comportamiento nos indica que la densidad de probabilidad en el espacio de configuración se encuentra concentrada y dispersa en el espacio de momentos. En el espacio de configuración la partícula se encuentra más localizada con el incremento del campo magnético y deslocalizada en el espacio de momentos. La entropía total del estado (0,0) disminuye ligeramente con el aumento del campo. Para el estado (0,1) la entropía total permanece aproximadamente constante, mientras que para los otros estados, $S_{\rho} + S_{\gamma}$ aumenta ligeramente con el aumento del campo magnético.

7.4.

Figura 7.7: Entropía de Shannon en el espacio de configuración, de momentos y la entropía total para los estados (n, m), como función de la magnitud del campo magnético b^2 para un radio de confinamiento fijo $r_0 = 1.5$ u.a.

7.5. Información de Fisher

Al igual que en los sistemas anteriores, en este sistema calculamos la información de Fisher como otra de las medidas utilizadas para cuantificar que tan concentrada o dispersa se encuentra la densidad de probabilidad en cada uno de los estados estudiados. La expresiones matemáticas que nos permiten calcular los valores de la información de Fisher en el espacio de configuración y en el espacio de momentos están dadas por las ecuaciones (4.27) y (4.28), respectivamente. La función de onda $\Psi(r, \phi)$ está dada por la ecuación (7.15) y $\Phi(p, \theta)$ en (7.20).

El cálculo de las derivadas y de las integrales se efectuó en Mathematica; de esta manera obtuvimos los valores numéricos de la información de Fisher como función del radio de confinamiento para un valor fijo de la magnitud del campo magnético b^2 y además como función de la magnitud del campo magnético para un radio de confinamiento fijo. Estos resultados se reportan en el Apéndice B en la Tabla B.4 y Tabla B.5, respectivamente.

A continuación en la Figura 7.8, se presentan las gráficas de la información de Fisher como función del radio de confinamiento, para un valor fijo del campo magnético $b^2 = 1.5$. Como se puede observar, en los seis estados (n, m), F_{ρ} disminuye (deslocalización) y F_{γ} aumenta (localización) como función del radio de confinamiento, hasta un determinado valor de r_0 . Para $r_0 > 4$ el comportamiento de F_{ρ} y F_{γ} como función del radio de confinamiento es aproximadamente constante.

Figura 7.8: Información de Fisher para los estados (n, m) en el espacio de configuración y en el espacio de momentos, como función de la magnitud del radio de confinamiento r_0 para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$ u.a.

El comportamiento de F_{ρ} y F_{γ} como función del radio de confinamiento, en presencia de un campo magnético es diferente al presentado en ausencia del campo (Cap. 4). En ausencia del campo magnético, no se da el comportamiento constante después de un determinado valor de r_{ρ} .

Para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$, radio de confinamiento y número cuántico de momento angular, las informaciones de Fisher F_{ρ} y F_{γ} aumentan (localización) como función del número cuántico radial, estos resultados concuerdan con los obtenidos en ausencia del campo.

En la Figura 7.9, se presentan las gráficas de la información de Fisher como función del campo magnético b^2 , para un radio de confianamiento fijo $r_0 = 1.5$. La información de Fisher F_{ρ} para el estado (0,0) aumenta (localización) como función del campo magnético. En los demás estados estudiados, F_{ρ} se mantiene constante hasta un determinado valor de b^2 posteriormente disminuye (deslocalización) ligeramente. Sin embargo, al seguir incrementando el campo F_{ρ} aumenta (localización). En el espacio de momentos, la información de Fisher F_{γ} para el estado (0,0) y (0,1) disminuyen (deslocalización) con el aumento del campo. En el resto de los estados (n,m), F_{γ} aumenta (localización) ligeramente con el campo hasta un valor máximo y posteriormente disminuye (deslocalización) al aumentar la magnitud del campo magnético.

Figura 7.9: Información de Fisher para los estados (n, m) en el espacio de configuración y en el espacio de momentos, como función de la magnitud del campo magnético b^2 para un radio de confinamiento fijo $r_0 = 1.5$.

En las gráficas de la Figura 7.10, se muestra el comportamiento de la información de Fisher en el espacio de configuración, en el espacio de momentos y el producto de las informaciones como función del radio de confinamiento para seis estados (n, m), para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$. Se observa de la Figura 7.10 que la información de Fisher F_{ρ} disminuye como función del radio de confinamiento, indicando una deslocalización de la partícula en este espacio, en cambio, F_{γ} aumenta (localización) como función de r_0 . En presencia del campo magnético, el producto de las informaciones de Fisher $F_{\rho}F_{\gamma}$, como función de radio de confinamiento deja de ser constante, opuesto al comportamiento de $F_{\rho}F_{\gamma}$ en ausencia del campo (Capítulo 4).

En la Figura 7.11, se muestran las gráficas del comportamiento de la información de Fisher como función de la magnitud del campo magnético b^2 para seis estados (n, m), para un radio de confinamiento fijo $r_0 = 1.5$. Para el estado base F_{ρ} aumenta (localización) como función de b^2 . Para los estados excitados, F_{ρ} se mantiene aproximadamente constante para valores de b^2 cercanos a cero, mientras que al incrementar el campo F_{ρ} disminuye (deslocalización) hasta un valor mínimo para después aumentar (localización) como función de b^2 .

Figura 7.10: Información de Fisher en el espacio de configuración, espacio de momentos y el producto de la información en ambos espacios, para los estados (n, m), como función del radio de confinamiento r_0 para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$ u.a.

Figura 7.11: Información de Fisher en el espacio de configuración, espacio de momentos y el producto de la información en ambos espacios, para los estados (n, m), como función de la magnitud del campo magnético b^2 para un radio de confinamiento fijo $r_0 = 1.5$ u.a.

7.6. Conclusiones

Al emplear el método variacional lineal en la solución del problema correspondiente a una partícula confinada en una región circular en presencia de campo magnético nos permitió conocer los valores propios de energía y la función de onda aproximada del sistema. Para los estados con momento angular positivo los eigenvalores de energía aumentan ya que el movimiento angular se manifiesta en la misma dirección que el potencial vectorial magnético. En cambio, en los estados con momento angular negativo, el movimiento angular ocurre en sentido opuesto al potencial vectorial, y como consecuencia, la energía de estos estados disminuye.

Los resultados obtenidos para las entropías de Shannon en el espacio de configuración como función del radio de confinamiento para un valor fijo del campo magnético, nos indican que la partícula se encuentra más localizada para radios de confinamiento pequeños ya que al aumentar este radio la entropía también aumenta para posteriormente mantenerse constante. Tal comportamiento era de esperarse ya que el espacio en el que la partícula puede moverse es mayor, por tanto se encuentra más deslocalizada. Al observar el comportamiento de las entropías de Shannon en el espacio de configuración y en el espacio de momentos para los estados (n, m), se aprecia que a medida que aumentamos el radio de confinamiento los valores de estas entropías tienden a un comportamiento constante a partir de un determinado radio de confinamiento, el cual es distinto para cada estado.

Al analizar los resultados de las entropías de Shannon como función de la magnitud del campo magnético para un radio de confinamiento fijo. En las gráficas se observa que el campo incrementa el confinamiento del electrón ya que a medida que aumentamos la magnitud del campo magnético b^2 la entropía en el espacio de configuración tiende a disminuir, lo cual indica que la partícula se encuentra más localizada mientras que la entropía en el espacio de momentos aumenta.

Comparando los resultados correspondientes a la entropía de Shannon como función del radio de confinamiento, en presencia y en ausencia (Capítulo 4) del campo magnético. Observamos que la presencia del campo modifica ligeramente el comportamiento de la entropía total (Figura 7.5), dejando de ser constante con el aumento del radio de confinamiento. Las entropías en el espacio de configuración y en el espacio de momentos en presencia del campo magnético, tienden a un valor constante a medida que aumenta el radio de confinamiento, lo cual no sucede en ausencia del campo magnético, en este caso la entropía S_{ρ} aumenta, mientras que S_{γ} disminuye con el aumento de r_0 (Figura 4.3).

Para valores del campo b^2 cercanos a cero, la entropía de Shannon S_{ρ} disminuye con el aumento del número cuántico radial para los seis estados (n, m), estos resultados concuerdan con

7.6.

los de la partícula en una región circular en ausencia de campo (Capítulo 4).

Los valores esperados de la posición y la entropía de Shannon S_{ρ} , tienen un comportamiento análogo como función del campo magnético: cuando $\langle r \rangle$ disminuye la entropía de Shannon S_{ρ} también disminuye (localización) y cuando $\langle r \rangle$ aumenta S_{ρ} también aumenta (deslocalización) como función de b^2 .

El comportamiento de la desviación estándar concuerda con los obtenidos para las entropías de Shannon en el espacio de configuración: a medida que aumentamos la magnitud del campo magnético aplicado al sistema el electrón se encuentra más localizado puesto que el confinamiento es mayor.

Los resultados proporcionados por la información de Fisher concuerdan con los obtenidos por la entropía de Shannon como función del radio de confinamiento, para un valor fijo del campo magnético $b^2 = 1.5$, hay una deslocalización del electrón al aumentar r_0 . Para un valor fijo del radio de confinamiento $r_0 = 1.5$ los resultados de la información de Fisher son consistentes con las entropías de Shannon y la desviación estándar como función del campo magnético: estos resultados indican que el electrón se localiza al incrementar la magnitud del campo.

Comparando los resultados de la información de Fisher como función del radio de confinamiento en presencia y en ausencia (Capítulo 4) de campo magnético. Encontramos que para un valor fijo del campo magnético $b^2 = 1.5$, las informaciones de Fisher F_{ρ} y F_{γ} como función del radio de confinamiento, tienden a un comportamiento constante después de un determinado valor de r_0 , esto no sucede en ausencia del campo magnético. Otra de las diferencias se observa en el producto de las informaciones $F_{\rho}F_{\gamma}$ como función del radio de confinamiento, en presencia de un campo magnético $F_{\rho}F_{\gamma}$ deja de ser constante como función de r_0 , contrario a los resultados de $F_{\rho}F_{\gamma}$ en ausencia de campo (Cap. 4), donde esta cantidad es constante con el aumento de r_0 .

En presencia de un campo magnético $b^2 = 1.5$, las informaciones de Fisher F_{ρ} y F_{γ} aumentan (localización) como función del número cuántico radial (n = 0, 1, 2), para un valor fijo de m y r_0 , este resultado concuerda con los obtenidos en ausencia del campo (Cap. 4).

Capítulo 8

Conclusiones generales y perspectivas

Mediante la aplicación del método variacional lineal se obtuvieron los resultados correspondientes a los siguientes sistemas cuánticos confinados: un electrón confinado en una región circular en presencia de un campo eléctrico constante, un electrón sujeto a un potencial de oscilador armónico confinado en una región circular en presencia de un campo eléctrico constante y una partícula confinada en una región circular en presencia de un campo magnético constante.

Se obtuvo el espectro de energías, la entropía de Shannon y la información de Fisher de una partícula confinada en una región circular plana. Las energías propias de los estados con momento angular $m \neq 0$ están doblemente degenerados. En base a los resultados proporcionados por la entropía de Shannon e información de Fisher como función del radio de confinamiento, la partícula se deslocaliza en el espacio de configuración con el aumento del radio de confinamiento y se localiza en el espacio de momentos.

Para valores fijos del radio de confinamiento y del momento angular, la entropía de Shannon en el espacio de configuración disminuye (la densidad se localiza) como función del número cuántico radial, mientras que en el espacio de momentos la entropía de Shannon aumenta (la densidad se deslocaliza). La información de Fisher en el espacio de configuración y en el espacio de momentos aumentan (la densidad se localiza) con el incremento del número cuántico radial para valores fijos del radio de confinamiento y número cuántico de momento angular.

Se obtuvieron las energías propias de un electrón confinado en una región circular en presencia de un campo eléctrico constante. La presencia del campo eléctrico rompe la degeneración de los estados con momento angular $m \neq 0$. La separación de los estados degenerados se hace más evidente al aumentar el campo. Para un radio de confinamiento fijo, el comportamiento de la energía como función de la magnitud del campo eléctrico es decreciente para todos los estados estudiados. En las gráficas de las densidades de probabilidad se observa como la densidad electrónica se polariza con el campo, desplazándose en dirección opuesta a éste. Los resultados proporcionados por las medidas de información, como la entropía de Shannon, información de Fisher y el desequilibrio, nos indican que para un radio de confinamiento fijo en el espacio de configuración, el electrón se localiza con el aumento de la magnitud del campo eléctrico y se deslocaliza en el espacio de momentos. Al comparar los resultados de la desviación estándar, como medidas de localización-deslocalización del electrón, con los resultados de la entropía de Shannon en el espacio de configuración, se encuentra que para algunos estados, los resultados de ambas medidas no son consistentes entre sí. La entropía de Shannon capta mejor las modificaciones que experimentan las densidades de probabilidad debido al campo.

En el sistema cuántico formado de un electrón sujeto a un potencial de oscilador armónico confinado en una región circular en presencia de un campo eléctrico constante se obtuvieron las energías y funciones de onda para el estado base y los primeros cuatro estados excitados del sistema. La aplicación del campo eléctrico rompe la degeneración de los estados con momento angular distinto de cero puesto que en ausencia del campo eléctrico los estados con $m \neq 0$ son doblemente degenerados. La densidad electrónica se polariza con el campo eléctrico, desplazándose en dirección opuesta al campo. De acuerdo con las entropías de Shannon e información de Fisher como función del campo eléctrico, en el espacio de posiciones, la localización del electrón es mayor al aumentar la magnitud del campo eléctrico, mientras que en el espacio de momentos el electrón se deslocaliza como función del campo. La entropía de Shannon y la información de Fisher satisfacen la relación de incertidumbre correspondiente a cada una de ellas. De igual forma, en los estados estudiados se satisface el principio de incertidumbre de Heisenberg generalizado. Comparando los resultados de la (des) localización del electrón en el espacio de configuración, proporcionados por la desviación estándar, la entropía de Shannon y la información de Fisher como función de la magnitud del campo eléctrico, observamos que estas dos últimas medidas son consistentes entre sí, en cambio, para algunos estados del sistema los resultados de la desviación estándar no son consistentes con las medidas anteriores de información. Podemos concluir que la entropía de Shannon y la información de Fisher captan mejor los cambios en la densidad de probabilidad debido al aumento del campo eléctrico.

• Al contrastar los resultados de la entropía de Shannon, obtenidos para el sistema de un electrón sujeto a un potencial de oscilador armónico confinado en una región circular en presencia de un campo eléctrico constante, con los resultados obtenidos para el sistema en ausencia del potencial de oscilador armónico (Cap. 5). Encontramos que para un radio de confinamiento $r_0 = 1.0$, los valores de las entropías de Shannon S_{ρ} , S_{γ} y la entropía total como función del campo eléctrico son muy similares en ambos sistemas. Sin embargo, para $r_0 = 2.0$ y 3.0, estos resultados son diferentes para cada sistema. En el estado base, para estos radios, el electrón está más localizado en presencia de un potencial de oscilador armónico, mientras que para $r_0 = 1.0$ la localización del electrón en ambos sistemas se da de igual manera. Algo similar ocurre con la información de Fisher. Para un radio de confinamiento

 $r_0 = 1$, los resultados de la información de Fisher F_{ρ} , F_{γ} y $F_{\rho}F_{\gamma}$ de los estados estudiados son muy similares en ambos sistemas. En cambio, al aumentar el radio de confinamiento, es decir para $r_0 = 2.0$ y 3.0 hay una variación en estas cantidades. Para estos radios de confinamiento, el electrón se encuentra más localizado al incluir el potencial de oscilador armónico.

Al estudiar el sistema formado por una partícula confinada en una región circular en presencia de un campo magnético constante, aplicando el método variacional lineal, desarrollando la función de onda aproximada en la base de una partícula confinada en una región circular. Encontramos que en los estados con momento angular positivo, las energías propias aumentan como función de la magnitud del campo magnético b^2 , mientras que en los estados con momento angular negativo la energía disminuye.

Para un valor fijo de la magnitud del campo magnético en los estados estudiados, las entropías de Shannon en el espacio de configuración aumentan (deslocalización) como función del radio de confinamiento hasta un determinado valor de r_0 , para después mantenerse constante (Figura 7.4). La información de Fisher F_{ρ} como función de r_0 disminuye (deslocalización) hasta un determinado valor de r_0 , posteriormente se mantiene constante con el aumento de r_0 Figura (7.8). Estos resultados indican que en el espacio de posiciones, para radios de confinamiento pequeños, la partícula se encuentra más localizada, este resultado era de esperarse ya que el espacio en el que la partícula puede moverse es menor.

Para un radio de confinamiento fijo, de los resultados obtenidos para las entropías de Shannon e información de Fisher como función de la magnitud del campo magnético, concluimos que el campo magnético incrementa el confinamiento de la partícula. La entropía de Shannon S_{ρ} disminuye como función de b^2 indicando una concentración de la densidad de probabilidad, aumentando la localización del electrón. En el espacio de momentos S_{γ} , aumenta como función del campo, en este espacio el electrón se deslocaliza. Para valores de b^2 cercanos a cero la entropía de Shannon se comporta como la de una partícula confinada en una región circular, como era de esperarse. Las entropías de Shannon satisfacen la relación de incertidumbre BBM, $S_{\rho} + S_{\gamma} \geq 4.289560$. En este sistema, los resultados sobre la (des) localización del electrón proporcionados por la desviación estándar concuerdan con los obtenidos por la entropía de Shannon y la información de Fisher en el espacio de configuración, el electrón se localiza con el aumento del campo magnético.

• Al hacer una comparación de los resultados obtenidos para las entropías de Shannon y la información de Fisher en los sistemas; en presencia y en ausencia (Cap. 4) de un campo magnético encontramos lo siguiente: En los seis estados (n,m), para valores del campo b^2 cercanos a cero, la entropía de Shannon S_{ρ} disminuye con el aumento del número cuántico radial, estos resultados concuerdan con los de la partícula en una región circular en ausencia de campo. Las entropías en el espacio de configuración y en el espacio de momentos

en presencia del campo magnético, tienden a un valor constante a medida que aumenta el radio de confinamiento, lo cual no sucede en ausencia del campo, en este caso la entropía S_{ρ} aumenta, mientras que S_{γ} disminuye con el aumento de r_0 . La presencia del campo modifica ligeramente el comportamiento de la entropía total, dejando de ser constante con el aumento del radio de confinamiento.

De los resultados de la información de Fisher encontramos que para un valor fijo del campo magnético $b^2 = 1.5$, F_{ρ} y F_{γ} como función del radio de confinamiento, tienden a un comportamiento constante después de un determinado valor de r_0 , esto no sucede en ausencia del campo magnético. En presencia de un campo magnético $F_{\rho}F_{\gamma}$ ya no es constante como función de r_0 , a diferencia de los resultados de $F_{\rho}F_{\gamma}$ obtenidos en ausencia de campo (Cap. 4), donde esta cantidad es constante con el aumento de r_0 .

En presencia de un campo magnético $b^2 = 1.5$, para un valor fijo de m y r_0 las informaciones de Fisher F_{ρ} y F_{γ} aumentan (localización) como función del número cuántico radial (n = 0, 1, 2), este resultado concuerda con los obtenidos en ausencia del campo (Cap. 4).

8.1. Perspectivas

Como trabajo a futuro podemos calcular las complejidades Fisher-Shannon de los sistemas que se estudiaron en este trabajo: Un electrón confinado en una región circular en presencia de un campo eléctrico constante y un electrón sujeto a un potencial de oscilador armónico confinado en una región circular en presencia de un campo eléctrico constante.

Estudiar los siguientes sistemas cuánticos confinados:

- Puntos cuánticos bajo la acción de campos eléctricos y magnéticos con diferentes potenciales de confinamiento mediante el espectro de energía, entropías de Shannon e información de Fisher, potencia entrópica de Shannon, la complejidad Fisher-Shannon y el desequilibrio.
- El átomo de hidrógeno confinado en dos y tres dimensiones con un enfoque informacional en presencia de campos eléctricos y magnéticos constantes y variables en el tiempo.
- El sistema formado por una partícula sujeta a un potencial de oscilador armónico confinada en una región circular plana en presencia de un campo magnético constante, mediante el espectro de energía, valores esperados de la posición y las entropías informáticas de Shannon y Fisher.

- Sistemas de dos electrones dentro de una esfera impenetrable, el átomo de helio en dos dimensiones, en presencia de campos magnéticos, calculando el espectro de energía, medidas entrópicas y la complejidad Fisher Shannon.
- Una partícula sujeta al potencial de oscilador armónico confinada en una región circular plana en presencia de un campo eléctrico variable, mediante el espectro de energía, la polarizabilidad, las entropías de Shannon y la información de Fisher en función del radio de confinamiento.

Referencias

- Per Olaf Fröman, Staffan Yngve, and Nanny Fröman. The energy levels and the corresponding normalized wave functions for a model of a compressed atom. J. Math. Phys., 28:1813–1826, Agosto 1987.
- [2] Michels, J. de Boer, and A. Bijl. *Physica*, 4:981, 1937.
- [3] E. Ley-Koo and Sergio Rubinstein. The hydrogen atom within spherical boxes with penetrable walls. J. Chem. Phys, **71**:351, 1979.
- [4] Chaos-Cador and E. Ley Koo. Two-dimensional hydrogen atom confined in circles, angles, and circular sectors. *International Journal of Quantum Chemistry*, 103:369–387, 2005.
- [5] N. Aquino, G. Campoy, and A. Flores-Riveros. Accurate energy eigenvalues and eigenfunctions for the two-dimensional confined hidrogen atom. *International Journal of Quantum Chemistry*, 103:267–277, Febrero 2005.
- [6] Paul Harrison. Quantum wells, wires and dots: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley Interscience, Second Edition, (2005).
- [7] N F Jhonson. Quantum dots: Few body, low-dimensional systems. Journal of Physics: Condensed Matter, 7(6):965–989, February 1995.
- [8] Carlos R. Estañón, Norberto Aquino, David Puertas-Centeno, and Jesus S. Dehesa. Twodimensional confined hydrogen: An entropy and complexity approach. *International Journal* of Quantum Chemistry, :1–12, Febrero 2020.
- [9] Shu-Shen Li and Jian-Bai Xia. Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. *Physics Letters A*, 366 :120–123, 2007.
- [10] Eloisa Cuestas, Mariano Garagiola, Federico M. Pont, Omar Osenda, and Pablo Serra. Longand short-range interaction footprints in entanglement entropies of two-particle wigner molecules in 2d quantum traps. *Physics Letters A*, **381**:2153–2160, 2017.
- [11] Sameer M. Ikhdair and Ramazan Sever. Relativistic two-dimensional harmonic oscillator plus cornell potentials in external magnetic and ab fields. Advances in High Energy Physics, , 2013.

- [12] Samy H. Aly. Specific heat, energy fluctuation and entropy of isotropic harmonic and anharmonic oscillators. *Egypt J. Sol.*, 23(2):217, 2000.
- [13] Shalini Lumb, Sonia Lumb, and Vinod Prasad. Dynamics of particle in confined-harmonic potential in external static electric field and strong laser field. *Journal of Modern Physics*, 4 (8):1139–1148, 2013.
- [14] N. Aquino, A. Flores-Riveros, and J. F. Rivas-Silva. Shannon and fisher entropies for a hydrogen atom under soft spherical confinement. *Physics Letters A*, 377:2062–2068, 2013.
- [15] Wallas S. Nascimento and Frederico V. Prudente. Shannon entropy: A study of confined hydrogenic-like atoms. *Chemical Physics Letters*, 691 :401–407, 2018.
- [16] Neetik Mukherjee, Sangita Majumdar, and Amlan K. Roy. Fisher information in confined hydrogen-like ions. *Chemical Physics Letters*, 691 :449–455, 2018.
- [17] H. H. Corzo, E. Castaño, H. G. Laguna, and R. P. Sagar. Measuring localizationdelocalization phenomena in a quantum corral. J Math Chem, 51:179–193, Agosto 2012.
- [18] Elizabeth Cruz, N. Aquino, and V. Prasad. Localization-delocalization of a particle in a quantum corral in presence of a constant magnetic field. *The European Physical Journal D*, 75:106, Marzo 2021.
- [19] Ira N. Levine. Quantum Chemistry. Capítulo 8, Pearson, New York, Seventh Edition, (2014).
- [20] Walllas Santos Nascimento. Sobre algumas características da entropía de shannon para sistemas atómicos confinados. Master's thesis, Universidade Federal da Bahia Instituto de Física, (2013).
- [21] Iwo Bialynicki-Birula and Lukasz Rudnicki. in Chapter 1 ed. by K.D.Sen Statistical Complexity Applications in Electronic Structure. Springer Dordrecht Heidelberg London New York, (2011).
- [22] H.P. Robertson. The uncertainty principle. Phys. Rev., 34, Junio 1929.
- [23] Nouredine Zettili. Quantum Mechanics Concepts and Applications. Capítulo 2, Wiley, Second Edition, (2009).
- [24] G. E. Giribet. Sobre el principio de incertidumbre de heisenberg entre tiempo y energía: una nota didactica. *Revista Mexicana de Física*, **51** (1):23–30, Junio 2005.
- [25] Steeve Zozor, Mariela Portesi, Pablo Sanchez-Moreno, and Jesus S. Dehesa. Positionmomentum uncertainty relations based on moments of arbitrary order. *Physical Review* A, 83:052107, Mayo 2011.
- [26] P. Sánchez-Moreno, R. González-Férez, and J. S. Dehesa. Improvement of the heisenberg and fisher-information-based uncertainty relations for d-dimensional central potentials. *New Journal of Physics*, 8:330, Diciembre 2006.
- [27] J.S. Dehesa, S. López-Rosa, and D. Manzano. Entropy and Complexity Analyses of Ddimensional Quantum Systems. In K D Sen Editor, Statistical Complexity Applications in Electronic Structure. (2011).
- [28] C.E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423, 623–656, October 1948.
- [29] S. López-Rosa, J.C. Angulo, and J. Antolín. Rigorous properties and uncertainty-like relationships on product-complexity measures: Application to atomic systems. *Physica A*, 388 :2081–2091, Febrero 2009.
- [30] R. González-Férez and J. Dehesa. Shannon entropy as an indicator of atomic avoided crossings in strong parallel magnetic and electric fields. *Physical Review Letters*, **91**(11), Septiembre 2003.
- [31] Iwo Bialynicki-Birula and Jerzy Mycielski. Uncertainty relations for information entropy in wave mechanics. *Commun Math Phys*, 44:129–132, 1975.
- [32] R. J. Yañez, W. Van Assche, and J. S. Dehesa. Position and momentum information entropies of the d-dimensional harmonic oscillator and hydrogen atom. *Physical Review A*, 50 (4):3065–3079, Octubre 1994.
- [33] Anaelle Hertz and Nicolas J. Cerf. Continuous-variable entropic uncertainty relatios. J. Phys. A: Math Theor., 52, Abril 2019.
- [34] O. Onicescu. C.R. Acad. Sci. Paris A, **263**(25), 1966.
- [35] L. Pardo. Extensión del concepto de energía informacional de onicescu basado en el análisis no estándar. Trabajos de Estadística y de Investigación Operativa, 36(1):78–92, Febrero 1985.
- [36] J.C. Angulo, J. Antolín, and K.D. Sen. Fisher-shannon plane and statistical complexity of atoms. *Physics Letters A*, **372**:670–674, 2008.
- [37] Ibraheem Nasser and Afaf Abdel-Hady. Fisher information and shannon entropy calculations for two-electron systems. *Canadian Journal of Physics*, **98**(8):784–789, Agosto 2020.
- [38] E. Romera and J. S. Dehesa. The fisher-shannon information plane, an electron correlation tool. *Journal of Chemical Physics*, **120** (19):8906–8912, Febrero 2004.

- [39] R. González-Férez and J. S. Dehesa. Characterization of atomic avoided crossings by means of fisher's information. *The European Physical Journal D*, **32** :39–43, 2005.
- [40] J. S. Dehesa, S. López-Rosa, and A. Martínez-Finkelshtein R. J. Yáñez. Information theory of d-dimensional hydrogenic systems: Application to circular and rydberg states. *International Journal of Quantum Chemistry*, **110**:1529–1548, Marzo 2009.
- [41] P. Sánchez-Moreno, A. R Plastino, and J. S. Dehesa. A quantum uncertainty relation based on fisher's information. *Journal of Physics A: Mathematical and Theoretical.*, 44:1–9, Enero 2011.
- [42] N. Aquino and E. Castaño. La partícula dentro de una caja circular. ContactoS, 26:11–15, Diciembre 1998.
- [43] N. Aquino y E. Castaño. Efectos de confinamiento en átomos hidrogenoides bidimensionales. *Revista Mexicana de Física*, 44:628–636, Diciembre 1998.
- [44] Elizabeth Cruz Osorio. El oscilador armónico confinado. Master's thesis, Universidad Autónoma Metropolitana-Iztapalapa, (2017).
- [45] Richard W. Robinett. Quantum Mechanics Classical Results, modern Systems and Visualized Examples. Oxford University Press, Second Edition, (2006).
- [46] J. Rey Pastor and A. de Castro Brzezicki. Funciones de Bessel, teoría Matemática y aplicaciones a la ciencia y a la técnica. DOSSAT S. A., (1958).
- [47] I. S. Gradshteyn and I.M.Ryzhick. Table of Integrals, Series and Products. Capítulo 6-7Academic Press, Seventh Edition, (2007).
- [48] Wolfram Research Inc. Mathematica. Wolfram Research, Inc., Versión 11.0, Champaign, Illinois (2016).
- [49] H E Montgomery Jr, G Campoy, and N Aquino. The confined n-dimensional harmonic oscillator revisited. *Phys. Scr.*, 81, Marzo 2010.
- [50] Sami M. Al-Jaber. A confined n-dimensional harmonic oscillator. Int. J. Theor. Phys., 47:1853–1864, 2008.
- [51] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions. New York: Dover, , (1965).
- [52] K.D.Sen. Statistical Complexity Applications in Electronic Structure. Springer Dordrecht Heidelberg London New York, (2011).

- [53] Sadri Hassani. Mathematical Methods Using Mathematica: For Students of Physics and Related Fields. Springer.
- [54] N. Aquino y E. Castaño. Una partícula cuántica dentro de una caja circular en presencia de un campo magnético uniforme. *Revista ContactoS*, 57:28–38, Julio 2005.
- [55] R. Rosas, R. Riera, J. L. Marín, and H.León. Anomalous diamagnetic behavior of a confined two-dimensional electron within an external magnetic field. *Revista Mexicana de Física*, 47(5):408–410, Octubre 2001.
- [56] M. Moshinsky, N. Méndez, and E. Murow. Pseudoatoms and atoms in strong magnetic fields. Annals of Physics, 163:1–27, 1985.
- [57] Wallas S. Nascimento e Frederico V. Prudente. Sobre um estudo da entropía de shannon no contexto da mecánica quántica: uma aplicacao ao oscilador harmónico livre e confinado. *Quim Nova*, **39**(6):757–764, Marzo 2016.

Apéndices

Apéndice A

Resultados numéricos correspondientes a las entropías de Shannon

	S_{ρ}	S_{γ}	S_t	S_{ρ}	S_{γ}	S_t	S_{ρ}	S_{γ}	S_t		
r_0		n = 0			n = 1			n = 2			
				n	n = 0						
0.3	-1.81377	6.23110	4.41732	-1.84901	7.53323	5.68422	-1.85907	8.12718	6.26811		
0.5	-0.79212	5.20948	4.41735	-0.82735	6.51174	5.68438	-0.83742	7.10594	6.26851		
1.0	0.59417	3.82319	4.41736	0.55893	5.12550	5.68443	0.54886	5.71975	6.26862		
1.5	1.40510	3.01226	4.41736	1.36986	4.31457	5.68443	1.35979	4.90883	6.26863		
2.0	1.98046	2.43690	4.41736	1.94522	3.73921	5.68444	1.93516	4.33347	6.26864		
2.5	2.42675	1.99061	4.41737	2.39151	3.29292	5.68443	2.38145	3.88718	6.26863		
3.0	2.79139	1.62597	4.41736	2.75615	2.92828	5.68444	2.74609	3.52254	6.26863		
3.5	3.09969	1.31767	4.41736	3.06446	2.61997	5.68444	3.05439	3.21424	6.26863		
4.0	3.36676	1.05060	4.41736	3.33152	2.35291	5.68444	3.32145	2.94718	6.26864		
4.5	3.60232	0.81504	4.41736	3.56708	2.11735	5.68443	3.55702	2.71161	6.26863		
5.0	3.81304	0.60432	4.41737	3.77781	1.90662	5.68444	3.76774	2.50089	6.26864		
5.5	4.00366	0.41370	4.41736	3.96843	1.71600	5.68443	3.95836	2.31027	6.26863		
6.0	4.17769	0.23967	4.41736	4.14245	1.54198	5.68443	4.13238	2.13625	6.26863		
			•	n	n = 1						
0.3	-1.59766	7.03361	5.43595	-1.71084	7.87312	6.16228	-1.75856	8.33643	6.57786		
0.5	-0.57600	6.01205	5.43604	-0.68919	6.85175	6.16256	-0.73691	7.31535	6.57843		
1.0	0.81028	4.62578	5.43606	0.69710	5.46553	6.16263	0.64937	5.92920	6.57858		
1.5	1.62121	3.81485	5.43606	1.50803	4.65460	6.16263	1.46030	5.11828	6.57859		
2.0	2.19657	3.23948	5.43606	2.08339	4.07924	6.16264	2.03567	4.54292	6.57860		
2.5	2.64286	2.79320	5.43606	2.52968	3.63295	6.16264	2.48196	4.09664	6.57860		
3.0	3.00750	2.42855	5.43606	2.89432	3.26831	6.16264	2.84660	3.73200	6.57860		
3.5	3.31581	2.12025	5.43606	3.20262	2.96001	6.16264	3.15490	3.42369	6.57860		
4.0	3.58287	1.85319	5.43606	3.46968	2.69295	6.16264	3.42196	3.15663	6.57860		
4.5	3.81843	1.61762	5.43606	3.70525	2.45738	6.16264	3.65753	2.92106	6.57860		
5.0	4.02916	1.40690	5.43606	3.91597	2.24666	6.16263	3.86825	2.71035	6.57860		
5.5	4.21978	1.21628	5.43606	4.10659	2.05604	6.16264	4.05887	2.51972	6.57860		
6.0	4.39380	1.04226	5.43606	4.28061	1.88202	6.16264	4.23289	2.34570	6.57860		

Tabla A.1: Entropías de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total, de los estados (n, m) de una partícula confinada en una región circular de radio r_0 .

Tabla A.2: Entropías de Shannon en el espacio de configuración S_{ρ} , en el espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$ de una partícula confinada en una región circular plana de radio r_{0} en presencia de un campo eléctrico constante.

número cuántico radial $n = 0$									
	r_0	= 1.0 (u.s)	a.)	r ₀	= 2.0 (u.a)	a.)	$r_0 = 3.0 \text{ (u.a.)}$		
f (u.a.)	$S_{ ho}$	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$
				Estad	o base				
0.05	0.59415	3.82283	4.41698	1.97912	2.43835	4.41747	2.77635	1.64309	4.41945
0.5	0.59206	3.82542	4.41749	1.86799	2.55421	4.42219	2.27820	2.11352	4.39172
1.0	0.58582	3.83260	4.41843	1.67398	2.73475	4.40873	1.99833	2.39878	4.39711
1.5	0.57569	3.84393	4.41962	1.51544	2.87925	4.39469	1.83681	2.58264	4.41945
2.0	0.56202	3.85879	4.42082	1.39784	2.99128	4.38912	1.72688	2.72062	4.44751
2.5	0.54527	3.87648	4.42175	1.30753	3.08213	4.38966	1.65132	2.82879	4.48011
3.0	0.52595	3.89637	4.42232	1.23445	3.15884	4.39329	1.60041	2.91439	4.51481
3.5	0.50458	3.91788	4.42247	1.17288	3.22562	4.39850	1.56678	2.98229	4.54907
4.0	0.48169	3.94049	4.42219	1.11956	3.28504	4.40459	1.54496	3.03623	4.58119
4.5	0.45774	3.96372	4.42146	1.07259	3.33871	4.41129	1.53109	3.07934	4.61043
5.0	0.43314	3.98719	4.42033	1.03078	3.38772	4.41850	1.52256	3.11408	4.63664
5.5	0.40825	4.01058	4.41884	0.99338	3.43281	4.42619	1.51762	3.14235	4.65997
6.0	0.38337	4.03371	4.41708	0.95985	3.47452	4.43438	1.51509	3.16567	4.68075
			Р	rimer esta	do excitad	lo			
0.05	0.50342	4.31864	4.82206	1.88936	2.93291	4.82228	2.69657	2.12778	4.82435
0.5	0.50286	4.31949	4.82237	1.85581	2.98014	4.83595	2.45621	2.41519	4.87139
1.0	0.50118	4.32205	4.82324	1.77456	3.08144	4.85600	2.20566	2.67198	4.87764
1.5	0.49839	4.32619	4.82459	1.67991	3.18852	4.86842	2.03898	2.83254	4.87152
2.0	0.49454	4.33180	4.82635	1.59040	3.28398	4.87439	1.92465	2.93994	4.86459
2.5	0.48966	4.33879	4.82846	1.51102	3.36591	4.87693	1.84975	3.01451	4.86425
3.0	0.48382	4.34697	4.83079	1.44142	3.43633	4.87775	1.80201	3.06788	4.86989
3.5	0.47708	4.35622	4.83330	1.38009	3.49724	4.87733	1.77147	3.10719	4.87866
4.0	0.46951	4.36641	4.83593	1.32562	3.55040	4.87602	1.75157	3.13699	4.88856
4.5	0.46119	4.37742	4.83862	1.27690	3.59717	4.87407	1.73834	3.16019	4.89854
5.0	0.45219	4.38912	4.84132	1.23319	3.63853	4.87172	1.72938	3.17860	4.90798
5.5	0.44259	4.40146	4.84405	1.19399	3.67525	4.86924	1.72319	3.19353	4.91673
6.0	0.43247	4.41421	4.84669	1.15898	3.70801	4.86699	1.71889	3.20584	4.92473
			Se	gundo esta	ado excita	do			
0.05	0.50343	4.31861	4.82204	1.89003	2.93379	4.82382	2.70408	2.13533	4.83941
0.5	0.50390	4.32070	4.82460	1.91868	3.01675	4.93542	2.81314	2.56854	5.38168
1.0	0.50531	4.32648	4.83179	1.98135	3.15532	5.13667	2.54687	2.96409	5.51096
1.5	0.50765	4.33519	4.84284	2.00997	3.31680	5.32678	2.34102	3.14185	5.48287
2.0	0.51091	4.34612	4.85703	1.96912	3.47819	5.44730	2.22042	3.23352	5.45393
2.5	0.51506	4.35875	4.87382	1.88666	3.61144	5.49809	2.15647	3.28179	5.43826
3.0	0.52007	4.37269	4.89277	1.79761	3.71379	5.51139	2.12361	3.30628	5.42989
3.5	0.52587	4.38751	4.91338	1.71674	3.79299	5.50974	2.10636	3.31753	5.42389
4.0	0.53238	4.40299	4.93538	1.64693	3.85573	5.50266	2.09719	3.32141	5.41860
4.5	0.53950	4.41899	4.95849	1.58722	3.90652	5.49373	2.09243	3.32127	5.41370
5.0	0.54712	4.43541	4.98254	1.53597	3.94809	5.48406	2.09019	3.31903	5.40923
5.5	0.55511	4.45219	5.00730	1.49197	3.98241	5.47438	2.08945	3.31577	5.40523
6.0	0.56331	4.46932	5.03263	1.45451	4.01077	5.46528	2.08962	3.31207	5.40169
			Contin	núa en la s	siguiente p	ágina			

Continuación de la Tabla A.2												
			núm	ero cuánti	co radial r	n = 0						
	r ₀	= 1.0 (u.s)	a.)	r_0	= 2.0 (u.s)	a.)	$r_0 = 3.0$ (u.a.)					
f (u.a.)	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$			
			Г	ercer esta	ercer estado excitado							
0.05	0.51465	4.75503	5.26968	1.90094	3.36944	5.27038	2.71181	2.56526	5.27707			
0.5	0.51464	4.75608	5.27072	1.90010	3.42005	5.32016	2.67979	2.85519	5.53499			
1.0	0.51461	4.75907	5.27369	1.89461	3.52054	5.41515	2.52378	3.13699	5.66077			
1.5	0.51456	4.76378	5.27835	1.87849	3.62732	5.50581	2.34857	3.27925	5.62782			
2.0	0.51449	4.76999	5.28448	1.84839	3.72810	5.57649	2.22523	3.33970	5.56493			
2.5	0.51439	4.77751	5.29190	1.80557	3.81943	5.62500	2.15163	3.36468	5.51632			
3.0	0.51424	4.78619	5.30044	1.75416	3.89801	5.65217	2.10719	3.37447	5.48167			
3.5	0.51405	4.79584	5.30989	1.69893	3.96273	5.66165	2.07861	3.37758	5.45619			
4.0	0.51381	4.80632	5.32013	1.64384	4.01446	5.65829	2.05919	3.37769	5.43689			
4.5	0.51349	4.81760	5.33109	1.59149	4.05512	5.64661	2.04542	3.37649	5.42191			
5.0	0.51309	4.82936	5.34246	1.54333	4.08671	5.63003	2.03531	3.37483	5.41013			
5.5	0.51261	4.84166	5.35427	1.50006	4.11117	5.61123	2.02768	3.37293	5.40061			
6.0	0.51201	4.85426	5.36627	1.46193	4.13006	5.59199	2.02179	3.37104	5.39284			
			С	uarto esta	do excitad	do						
0.05	0.51465	4.75496	5.26961	1.90094	3.36945	5.27039	2.71182	2.56546	5.27728			
0.5	0.51464	4.75601	5.27066	1.90069	3.42437	5.32507	2.73183	2.87247	5.60429			
1.0	0.51461	4.75908	5.27369	1.90289	3.54298	5.44586	2.81101	2.99351	5.80452			
1.5	0.51458	4.76396	5.27854	1.91343	3.65441	5.56784	2.64949	3.12986	5.77935			
2.0	0.51453	4.77050	5.28503	1.93841	3.71558	5.65399	2.47701	3.19419	5.67119			
2.5	0.51448	4.77856	5.29304	1.97441	3.74534	5.71975	2.37262	3.20995	5.58257			
3.0	0.51443	4.78799	5.30243	2.00019	3.77538	5.77557	2.31247	3.20946	5.52192			
3.5	0.51440	4.79868	5.31309	1.99576	3.81486	5.81062	2.27596	3.20405	5.48001			
4.0	0.51440	4.81049	5.32489	1.96038	3.85859	5.81898	2.25257	3.19747	5.45004			
4.5	0.51443	4.82328	5.33771	1.90629	3.90039	5.80669	2.23689	3.19102	5.42791			
5.0	0.51450	4.83693	5.35144	1.84607	3.93673	5.78280	2.22599	3.18506	5.41105			
5.5	0.51464	4.85131	5.36595	1.78750	3.96503	5.75253	2.21821	3.17970	5.39791			
6.0	0.51484	4.86627	5.38112	1.73410	3.98556	5.71966	2.21251	3.17496	5.38748			

Tabla A.2: Entropías de Shannon en el espacio de configuración S_{ρ} , en el espacio de momentos S_{γ} y entropía total $S_{\rho} + S_{\gamma}$ de una partícula confinada en una región circular plana de radio r_0 en presencia de un campo eléctrico constante.

Tabla A.3: Entropías de Shannon en el espacio de configuración, en el espacio de momentos y entropía total de un electrón sujeto a un potencial de oscilador armónico y un campo eléctrico constante confinado en una región circular plana de radio r_0 . La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

n = 0										
		$r_{0} = 1.0$			$r_{0} = 2.0$			$r_0 = 3.0$		
f	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	
				Esta	ido base					
0.05	0.58416	3.82741	4.41157	1.81969	2.52698	4.34668	2.12979	2.16164	4.29143	
0.5	0.58216	3.82976	4.41193	1.75812	2.59349	4.35161	2.02775	2.26477	4.29252	
1.0	0.57619	3.83663	4.41283	1.62653	2.72569	4.35222	1.86147	2.43813	4.29960	
1.5	0.56648	3.84750	4.41398	1.49587	2.85379	4.34966	1.73393	2.58488	4.31881	
2.0	0.55335	3.86177	4.41513	1.38797	2.96207	4.35005	1.64005	2.70439	4.34445	
2.5	0.53725	3.87884	4.41609	1.30148	3.05285	4.35433	1.56743	2.80647	4.37390	
3.0	0.51863	3.89810	4.41673	1.23050	3.13061	4.36112	1.50980	2.89765	4.40746	
3.5	0.49800	3.91896	4.41697	1.17044	3.19879	4.36923	1.46422	2.98155	4.44578	
4.0	0.47584	3.94093	4.41678	1.11825	3.25976	4.37801	1.42900	3.05917	4.48817	
4.5	0.45259	3.96357	4.41617	1.07197	3.31515	4.38713	1.40257	3.13050	4.53307	
5.0	0.42866	3.98651	4.41518	1.03029	3.36610	4.39640	1.38309	3.19491	4.57800	
5.5	0.40439	4.00947	4.41387	0.99232	3.41344	4.40577	1.36861	3.25175	4.62036	
6.0	0.38007	4.03223	4.41230	0.95741	3.45776	4.41518	1.35740	3.30092	4.65833	
				Primer es	tado excit	ado				
0.05	0.50034	4.32066	4.82099	1.83374	2.96438	4.79813	2.35669	2.44453	4.80123	
0.5	0.49979	4.32149	4.82128	1.81029	2.99707	4.80736	2.29711	2.51205	4.80917	
1.0	0.49814	4.32346	4.82161	1.74987	3.07394	4.82382	2.17499	2.64393	4.81892	
1.5	0.49542	4.32775	4.82317	1.67335	3.16417	4.83752	2.05522	2.76801	4.82323	
2.0	0.49165	4.33301	4.82467	1.59568	3.25161	4.84729	1.95274	2.87091	4.82366	
2.5	0.48689	4.34042	4.82731	1.52348	3.33021	4.85369	1.86541	2.95801	4.82342	
3.0	0.48117	4.34819	4.82937	1.45841	3.39984	4.85825	1.78932	3.03333	4.82265	
3.5	0.47457	4.35700	4.83158	1.40018	3.46148	4.86166	1.72179	3.09915	4.82094	
4.0	0.46716	4.36713	4.83429	1.34792	3.51641	4.86433	1.66148	3.15695	4.81843	
4.5	0.45900	4.37754	4.83654	1.30069	3.57003	4.87072	1.60797	3.20869	4.81667	
5.0	0.45018	4.38943	4.83962	1.25767	3.60985	4.86752	1.56122	3.25635	4.81757	
5.5	0.44076	4.40147	4.84223	1.21818	3.65049	4.86868	1.52108	3.29699	4.81807	
6.0	0.43082	4.41391	4.84473	1.18168	3.68787	4.86955	1.48719	3.33219	4.81938	
			S	Segundo es	stado exci	tado				
0.05	0.50035	4.32009	4.82044	1.83417	2.96455	4.79873	2.35790	2.44554	4.80344	
0.5	0.50080	4.32211	4.82292	1.85203	3.02257	4.87461	2.40342	2.57604	4.97947	
1.0	0.50217	4.32772	4.82990	1.89592	3.13647	5.03240	2.46008	2.83386	5.29395	
1.5	0.50444	4.33616	4.84060	1.93384	3.27348	5.20733	2.40554	3.07360	5.47914	
2.0	0.50761	4.34681	4.85442	1.93367	3.41984	5.35351	2.29847	3.23596	5.53443	
2.5	0.51164	4.35915	4.87080	1.89143	3.55462	5.44606	2.20486	3.34932	5.55418	
3.0	0.51649	4.37277	4.88927	1.82588	3.66660	5.49249	2.13205	3.43703	5.56909	
3.5	0.52212	4.38732	4.90945	1.75545	3.75677	5.51222	2.07360	3.50869	5.58230	
4.0	0.52845	4.40258	4.93103	1.68942	3.83033	5.51975	2.02510	3.56845	5.59356	
4.5	0.53537	4.41836	4.95374	1.63069	3.89202	5.52271	1.98560	3.61852	5.60412	
5.0	0.54279	4.43459	4.97738	1.57923	3.94510	5.52433	1.95516	3.66031	5.61547	
5.5	0.55058	4.45119	5.00177	1.53400	3.99173	5.52574	1.93313	3.69503	5.62817	
6.0	0.55859	4.46814	5.02674	1.49389	4.03336	5.52726	1.91809	3.72383	5.64192	
			Con	tinúa en la	a siguiente	e página				

Tabla A.3: Entropías de Shannon en el espacio de configuración, en el espacio de momentos y entropía total de un electrón sujeto a un potencial de oscilador armónico y un campo eléctrico constante confinado en una región circular plana de radio r_0 . La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

	Continuación de la Tabla A.3												
				r	n = 0								
		$r_{0} = 1.0$			$r_{0} = 2.0$			$r_{0} = 3.0$					
f	$S_{ ho}$	S_{γ}	$S_{\rho} + S_{\gamma}$	$S_{ ho}$	$_{ ho}$ S_{γ} $S_{ ho} + S_{\gamma}$ $S_{ ho}$ S_{γ}				$S_{\rho} + S_{\gamma}$				
				Tercer est	tado excita	ado							
0.05	0.51369	4.75561	5.26931	1.88188	3.38003	5.26192	2.54631	2.74432	5.29063				
0.5	0.51369	4.75664	5.27033	1.88090	3.41904	5.29994	2.53599	2.85426	5.39026				
1.0	0.51366	4.75938	5.27304	1.87613	3.50331	5.37944	2.49208	3.05286	5.54494				
1.5	0.51361	4.76457	5.27819	1.86347	3.60112	5.46459	2.41337	3.23508	5.64845				
2.0	0.51354	4.77063	5.28417	1.83987	3.69760	5.53748	2.32334	3.38095	5.70429				
2.5	0.51343	4.77774	5.29118	1.80573	3.78954	5.59528	2.23893	3.49460	5.73353				
3.0	0.51329	4.78644	5.29973	1.76420	3.87319	5.63739	2.16351	3.58409	5.74759				
3.5	0.51311	4.79638	5.30949	1.71906	3.94787	5.66694	2.09467	3.65776	5.75243				
4.0	0.51287	4.80599	5.31886	1.67333	4.01382	5.68715	2.03132	3.71501	5.74633				
4.5	0.51256	4.81713	5.32969	1.62886	4.07240	5.70126	1.97519	3.76108	5.73627				
5.0	0.51218	4.82869	5.34088	1.58660	4.12463	5.71123	1.92780	3.79805	5.72585				
5.5	0.51170	4.84094	5.35265	1.54693	4.17136	5.71829	1.88897	3.82705	5.71602				
6.0	0.51113	4.85342	5.36455	1.50984	4.21385	5.72369	1.85753	3.84967	5.70721				
				Cuarto es	tado excit	ado							
0.05	0.51369	4.75566	5.26936	1.88188	3.38007	5.26195	2.54631	2.74428	5.29059				
0.5	0.51369	4.75670	5.27039	1.88122	3.42136	5.30259	2.54010	2.86294	5.40304				
1.0	0.51366	4.75971	5.27338	1.88100	3.51732	5.39832	2.53983	3.06603	5.60586				
1.5	0.51362	4.76451	5.27813	1.88525	3.62566	5.51092	2.56179	3.19490	5.75669				
2.0	0.51357	4.77093	5.28451	1.89788	3.71098	5.60887	2.55674	3.31319	5.86993				
2.5	0.51351	4.77885	5.29237	1.91906	3.76418	5.68324	2.49306	3.45915	5.95222				
3.0	0.51346	4.78813	5.30159	1.94144	3.80184	5.74329	2.41037	3.59660	6.00698				
3.5	0.51342	4.79863	5.31206	1.95285	3.84342	5.79627	2.33360	3.69927	6.03288				
4.0	0.51340	4.81025	5.32365	1.94464	3.89759	5.84223	2.26540	3.76961	6.03501				
4.5	0.51341	4.82284	5.33625	1.91678	3.96302	5.87981	2.20690	3.81602	6.02292				
5.0	0.51346	4.83629	5.34975	1.87550	4.03454	5.91004	2.16058	3.84517	6.00576				
5.5	0.51357	4.85045	5.36403	1.82811	4.10711	5.93523	2.12608	3.86201	5.98810				
6.0	0.51375	4.86521	5.37897	1.77998	4.17593	5.95592	2.10132	3.87025	5.97157				

Tabla A.4: Entropías de Shannon en el espacio de configuración, en el espacio de momentos y la entropía
total como función del radio de confinamiento $r_{\scriptscriptstyle 0},$ para un valor de $b^2=1.5$ u.a

		n = 0			n = 1		n = 2		
r_0	$S_{ ho}$	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	$S_{ ho}$	S_{γ}	$S_{\rho} + S_{\gamma}$
				r	n = 0				
0.3	-1.81395	6.22867	4.41472	-1.84896	7.52043	5.67147	-1.85905	8.09349	6.23444
0.5	-0.79352	5.20945	4.41592	-0.82701	6.50883	5.68181	-0.83724	7.09867	6.26142
1.0	0.57166	3.83294	4.40460	0.56420	5.12696	5.69116	0.55167	5.72114	6.27281
1.5	1.29075	3.07181	4.36256	1.39267	4.32369	5.71636	1.37361	4.92108	6.29469
2.0	1.63525	2.67243	4.30769	1.98529	3.77243	5.75772	1.975250	4.37792	6.35317
2.5	1.72890	2.56200	4.29091	2.36718	3.44167	5.80885	2.45547	4.01397	6.46945
3.0	1.73887	2.55062	4.28950	2.50865	3.35032	5.85898	2.79532	3.83396	6.62928
3.5	1.73925	2.55020	4.28946	2.52722	3.34034	5.86756	2.92861	3.77412	6.70274
4.0	1.73926	2.55019	4.28945	2.52795	3.33903	5.86699	2.94512	3.75849	6.70362
4.5	1.73926	2.55019	4.28945	2.52796	3.33890	5.86686	2.94566	3.75665	6.70232
5.0	1.73926	2.55019	4.28945	2.52797	3.33889	5.86686	2.94572	3.75659	6.70232
6.0	1.73926	2.55019	4.28945	2.52849	3.33888	5.86737	2.95181	3.75599	6.70781
			·	r	n = 1	·		·	
0.3	-1.59771	7.02707	5.42935	-1.71083	7.85053	6.13970	-1.75855	8.28279	6.52423
0.5	-0.57644	6.01079	5.43435	-0.68908	6.84731	6.15822	-0.73683	7.30568	6.56885
1.0	0.80325	4.62836	5.43162	0.69875	5.46759	6.16634	0.65073	5.93002	6.58076
1.5	1.58283	3.83430	5.41713	1.51593	4.66882	6.18476	1.46710	5.12939	6.59649
2.0	2.05683	3.34192	5.39875	2.10218	4.12992	6.23210	2.05638	4.58486	6.64124
2.5	2.27000	3.14803	5.41803	2.53325	3.78545	6.31870	2.52594	4.22291	6.74886
3.0	2.31344	3.12619	5.43964	2.76878	3.66090	6.42969	2.89587	4.05061	6.94649
3.5	2.31640	3.12718	5.44359	2.82429	3.64258	6.46687	3.10245	3.99132	7.09378
4.0	2.31647	3.12739	5.44387	2.82808	3.63946	6.46754	3.14693	3.96476	7.11169
4.5	2.31648	3.12741	5.44389	2.82816	3.63910	6.46726	3.14935	3.96042	7.10978
5.0	2.31648	3.12741	5.44389	2.82816	3.63909	6.46725	3.14937	3.96031	7.10968
6.0	2.31646	3.12740	5.44387	2.82875	3.63912	6.46787	3.15536	3.95927	7.11463

Tabla A.5: Entropías de Shannon en el espacio de configuración, en el espacio de momentos y la entropía total como función de la magnitud del campo magnético b^2 , para un radio de confinamiento fijo $r_0 = 1.5$ u.a.

	n = 0			n = 1			n=2		
b^2	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	S_{ρ}	S_{γ}	$S_{\rho} + S_{\gamma}$	$S_{ ho}$	S_{γ}	$S_{\rho} + S_{\gamma}$
				m	n = 0				
0.05	1.40497	3.01229	4.41726	1.36989	4.31446	5.68435	1.35981	4.90855	6.26836
0.1	1.40459	3.01245	4.41704	1.36998	4.31449	5.68447	1.35986	4.90859	6.26845
0.3	1.40055	3.01414	4.41469	1.37096	4.31482	5.68578	1.36036	4.90900	6.26937
0.5	1.39245	3.01763	4.41009	1.37287	4.31549	5.68837	1.36137	4.90984	6.27122
1.0	1.35431	3.03580	4.39012	1.38119	4.31859	5.69979	1.36605	4.91389	6.27995
1.5	1.29075	3.07181	4.36256	1.39267	4.32369	5.71636	1.37361	4.92108	6.29469
2.0	1.20365	3.13093	4.33459	1.40372	4.33111	5.73484	1.38367	4.93194	6.31562
2.5	1.09797	3.21489	4.31287	1.40980	4.34250	5.75230	1.39563	4.94706	6.34269
3.0	0.98126	3.31906	4.30032	1.40640	4.36155	5.76795	1.40852	4.96698	6.37551
3.5	0.86145	3.43276	4.29422	1.39006	4.39363	5.78369	1.42100	4.99220	6.41321
4.0	0.74477	3.54666	4.29143	1.35909	4.44318	5.80228	1.43126	5.02350	6.45477
4.5	0.63477	3.65546	4.29024	1.31392	4.50758	5.82151	1.43718	5.06224	6.49942
5.0	0.53284	3.75691	4.28975	1.25694	4.58120	5.83814	1.43657	5.10990	6.54647
6.0	0.35257	3.93692	4.28950	1.12236	4.73661	5.85897	1.40902	5.22019	6.62922
7.0	0.19876	4.09070	4.28946	0.98287	4.88336	5.86624	1.34365	5.33678	6.68043
8.0	0.06528	4.22418	4.28946	0.85301	5.01454	5.86755	1.25089	5.45037	6.70126
9.0	-0.05249	4.34195	4.28945	0.73601	5.13135	5.86737	1.14799	5.55746	6.70545
10.0	-0.15785	4.44731	4.28945	0.63081	5.23629	5.86710	1.04708	5.65742	6.70451
				m	n = 1				
0.05	1.62117	3.81480	5.43597	1.50804	4.65442	6.16246	1.46957	5.11788	6.58746
0.1	1.62105	3.81484	5.43590	1.50806	4.65446	6.16253	1.46034	5.11792	6.57826
0.3	1.61981	3.81530	5.43512	1.50836	4.65494	6.16331	1.46058	5.11830	6.57888
0.5	1.61729	3.81628	5.43358	1.50896	4.65591	6.16488	1.46107	5.11906	6.58013
1.0	1.60500	3.82180	5.42681	1.51170	4.66057	6.17228	1.46335	5.12276	6.58611
1.5	1.58283	3.83430	5.41713	1.51593	4.66882	6.18476	1.46710	5.12939	6.59649
2.0	1.54869	3.85838	5.40707	1.52100	4.68119	6.20219	1.47225	5.13957	6.61182
2.5	1.50070	3.89920	5.39990	1.52566	4.69830	6.22396	1.47865	5.15407	6.63272
3.0	1.43825	3.96055	5.39880	1.52806	4.72103	6.24910	1.48604	5.17376	6.65980
3.5	1.36281	4.04221	5.40503	1.52586	4.75101	6.27687	1.49399	5.19945	6.69344
4.0	1.27794	4.13681	5.41475	1.51662	4.79093	6.30756	1.50185	5.23190	6.73375
4.5	1.18825	4.23583	5.42409	1.49827	4.84360	6.34187	1.50867	5.27183	6.78050
5.0	1.09805	4.33334	5.43140	1.46957	4.90642	6.37600	1.51321	5.32012	6.83334
6.0	0.92714	4.51249	5.43964	1.38248	5.04718	6.42967	1.50958	5.43677	6.94636
7.0	0.77547	4.66714	5.44261	1.26910	5.18807	6.45718	1.47997	5.55693	7.03691
8.0	0.64240	4.80112	5.44352	1.14928	5.31702	6.46630	1.42034	5.66831	7.08866
9.0	0.52470	4.91908	5.44379	1.03527	5.43265	6.46793	1.33804	5.77036	7.10841
10.0	0.41935	5.02450	5.44386	0.93080	5.53694	6.46775	1.24636	5.86575	7.11211

Apéndice B

Resultados numéricos correspondientes a la información de Fisher

Tabla B.1: Información de Fisher en el espacio de configuración, en el espacio de momentos y el producto de la información en ambos espacios, de los estados (n, m) de una partícula confinada en una región circular de radio r_0 .

	$F_{ ho}$	F_{γ}	$F_{ ho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{ ho}F_{\gamma}$
r_{0}		n = 0			n = 1			n=2	
					m = 0				
0.3	257.03048	0.07849	20.17676	1354.27832	0.11212	151.84234	3328.31141	0.11678	388.70402
0.5	92.53097	0.21805	20.17695	487.54019	0.31145	151.84579	1198.19210	0.32442	388.72503
1.0	23.13274	0.87222	20.17698	121.88504	1.24581	151.84661	299.54802	1.29772	388.72999
1.5	10.28121	1.96250	20.17699	54.17113	2.80309	151.84669	133.13245	2.91987	388.73049
2.0	5.78318	3.48890	20.17699	30.47126	4.98327	151.84671	74.88700	5.19089	388.73061
2.5	3.70123	5.45141	20.17699	19.50160	7.78636	151.84672	47.92768	8.11077	388.73065
3.0	2.57030	7.85003	20.17699	13.54278	11.21237	151.84672	33.28311	11.67951	388.73067
3.5	1.88838	10.68477	20.17699	9.94979	15.26128	151.84672	24.45290	15.89711	388.73068
4.0	1.44579	13.95562	20.17699	7.61781	19.93310	151.84673	18.72175	20.76358	388.73069
4.5	1.14235	17.66258	20.17699	6.01901	25.22783	151.84673	14.79249	26.27891	388.73069
5.0	0.92530	21.80566	20.17699	4.87540	31.145479	151.84673	11.98192	32.44310	388.73069
5.5	0.76471	26.38485	20.17699	4.02925	37.68603	151.84673	9.90241	39.25615	388.73069
6.0	0.64257	31.40015	20.17699	3.38569	44.84949	151.84673	8.32077	46.71806	388.73069
					m = 1				
0.3	422.99189	0.07095	30.01524	1738.48508	0.10536	183.17755	3931.62716	0.11303	444.40175
0.5	152.27708	0.19711	30.01547	625.85463	0.29269	183.18456	1415.38577	0.31400	444.43540
1.0	38.06927	0.78844	30.01559	156.46365	1.17079	183.18626	353.84644	1.25603	444.44351
1.5	16.91967	1.77400	30.01561	69.53940	2.63428	183.18643	157.26508	2.82608	444.44432
2.0	9.51731	3.15378	30.01561	39.11591	4.68316	183.18647	88.46161	5.02415	444.44452
2.5	6.09108	4.92779	30.01561	25.03418	7.31745	183.18649	56.61543	7.85023	444.44459
3.0	4.22991	7.09602	30.01561	17.38485	10.53713	183.18649	39.31627	11.30434	444.44462
3.5	3.10769	9.65847	30.01561	12.77254	14.34220	183.18650	28.88542	15.38646	444.44463
4.0	2.37932	12.61515	30.01561	9.77897	18.73268	183.18650	22.11540	20.09661	444.44464
4.5	1.87996	15.96605	30.01561	7.72660	23.70855	183.18650	17.47389	25.43477	444.44465
5.0	1.52277	19.71118	30.01561	6.25854	29.26981	183.18650	14.15385	31.40095	444.44465
5.5	1.25848	23.85053	30.01561	5.17235	35.41647	183.18650	11.69740	37.99515	444.44465
6.0	1.05747	28.38410	30.01561	4.34621	42.14853	183.18650	9.82906	45.21737	444.44466

Tabla B.2: Información de Fisher en el espacio de configuración, espacio de momentos y el producto de ambas informaciones de una partícula en presencia de un campo eléctrico constante, confinada en una región circular plana de radio r_0 .

n = 0										
	r_{c}	$_{0} = 1.0 $ (u.a)	.)	r_0	= 2.0 (u.a)	a.)	$r_0 = 3.0 \text{ (u.a.)}$			
f (u.a.)	F_{ρ}	F_{γ}	$F_{\rho}F_{\gamma}$	F_{ρ}	F_{γ}	$F_{\rho}F_{\gamma}$	F_{ρ}	F_{γ}	$F_{\rho}F_{\gamma}$	
				Estad	o base					
0.05	23.13323	0.870839	20.14531	5.79096	3.46083	20.04152	2.60897	7.42328	19.36714	
0.5	23.18130	0.85650	19.85492	6.44969	2.85251	18.39781	4.13491	4.31147	17.82754	
1.0	23.32539	0.83843	19.55671	7.71110	2.32575	17.93409	5.44981	3.26682	17.80357	
1.5	23.56045	0.81865	19.28775	8.90058	2.00452	17.84140	6.53661	2.76138	18.05009	
2.0	23.87933	0.79788	19.05298	9.92990	1.79361	17.81033	7.54389	2.46525	18.59755	
2.5	24.27299	0.77646	18.84720	10.84065	1.64112	17.79076	8.49077	2.28616	19.41128	
3.0	24.73121	0.75497	18.67132	11.67295	1.52398	17.78938	9.36660	2.18178	20.43588	
3.5	25.24331	0.73377	18.52297	12.45335	1.43024	17.81131	10.16031	2.12582	21.59896	
4.0	25.79877	0.71312	18.39781	13.19848	1.35316	17.85961	10.86806	2.10130	22.83706	
4.5	26.38773	0.69328	18.29411	13.91879	1.28851	17.93455	11.49276	2.09661	24.09582	
5.0	27.00129	0.67431	18.20743	14.62070	1.23359	18.03605	12.04134	2.10411	25.33632	
5.5	27.63170	0.65634	18.13592	15.30807	1.18659	18.16445	12.52245	2.11889	26.53378	
6.0	28.27237	0.63941	18.07772	15.98299	1.14613	18.31853	12.94487	2.13768	27.67200	
]	Primer esta	do excitad	lo				
0.05	58.72816	1.33245	78.25205	14.68650	5.30343	77.88881	6.54815	11.73126	76.81801	
0.5	58.75620	1.32378	77.78032	15.11345	4.92235	74.39374	8.05139	8.83969	71.17178	
1.0	58.84090	1.31185	77.19024	16.20040	4.45772	72.21680	10.07934	7.05380	71.09766	
1.5	58.98116	1.29972	76.65928	17.57744	4.05730	71.31706	11.75765	6.07230	71.39602	
2.0	59.17564	1.28689	76.15237	19.01059	3.73705	71.04347	13.11238	5.48970	71.98309	
2.5	59.42254	1.27339	75.66844	20.40472	3.48017	71.01187	14.18892	5.13314	72.83374	
3.0	59.71963	1.25944	75.21322	21.73131	3.26964	71.05353	15.04069	4.90828	73.82395	
3.5	60.06435	1.24518	74.79091	22.98520	3.09388	71.11349	15.71866	4.76207	74.85339	
4.0	60.45383	1.23059	74.39430	24.16772	2.94539	71.18354	16.26450	4.66399	75.85746	
4.5	60.88501	1.21586	74.02754	25.28132	2.81906	71.26958	16.70993	4.59634	76.80448	
5.0	61.35471	1.20103	73.68855	26.32839	2.71112	71.37950	17.07844	4.54852	77.68159	
5.5	61.85966	1.18626	73.38173	27.31120	2.61857	71.51617	17.38727	4.51418	78.48924	
6.0	62.39659	1.17151	73.09824	28.23207	2.53912	71.68454	17.64920	4.48867	79.22151	
			S	egundo esta	ado excita	do				
0.05	58.72767	1.32813	77.99780	14.67873	5.16515	75.81781	6.50970	10.74403	69.94049	
0.5	58.70768	1.28113	75.21239	14.48376	3.86306	55.95164	7.62324	6.05709	46.17465	
1.0	58.64886	1.22911	72.08567	14.76286	3.09642	45.71198	11.33276	5.48584	62.16967	
1.5	58.55652	1.17882	69.02787	16.29705	2.77067	45.15382	13.71751	5.16941	70.91142	
2.0	58.43869	1.13068	66.07540	18.75902	2.60274	48.82487	15.07281	4.93453	74.37730	
2.5	58.30562	1.08506	63.26500	21.42345	2.52231	54.03667	15.78628	4.77810	75.42848	
3.0	58.16903	1.04232	60.63064	23.87159	2.47160	59.00107	16.11820	4.66745	75.23099	
3.5	58.04136	1.00249	58.18561	26.00141	2.42719	63.11051	16.23374	4.58257	74.39227	
4.0	57.93506	0.96574	55.95069	27.82782	2.38371	66.33349	16.23178	4.51325	73.25808	
4.5	57.86207	0.93210	53.93372	29.38715	2.34155	68.81156	16.16942	4.45474	72.03058	
5.0	57.83343	0.90144	52.13338	30.71349	2.30212	70.70617	16.07877	4.40442	70.81774	
5.5	57.85901	0.87377	50.55554	31.83618	2.26633	72.15120	15.97751	4.36017	69.66472	
6.0	57.94737	0.84885	49.18866	32.78091	2.23432	73.24293	15.87508	4.32108	68.59755	
			Cont	inúa en la s	siguiente p	ágina				

Continuación de la Tabla B.2											
				n	= 0						
	r_0	= 1.0 (u.a)	a.)	r	$_{0} = 2.0 (u.$	a.)	$r_0 = 3.0$ (u.a.)				
f (u.a.)	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$		
				Tercer est	Fercer estado excitado						
0.05	105.49846	1.63430	172.41648	26.37462	6.45469	170.24028	11.72222	14.02611	164.41729		
0.5	105.49854	1.60788	169.62923	26.39624	5.64835	149.09526	12.36406	9.96120	123.161013		
1.0	105.49905	1.57877	166.55906	26.64628	4.95799	132.11224	14.79772	8.67744	128.40636		
1.5	105.50076	1.54969	163.49444	27.39496	4.53115	124.13066	16.70537	8.40162	140.35222		
2.0	105.50491	1.52144	160.51952	28.67386	4.27668	122.62890	17.67957	8.44641	149.32894		
2.5	105.51320	1.49277	157.50650	30.30070	4.07151	123.36970	18.13562	8.54905	155.04240		
3.0	105.52769	1.46514	154.61247	32.03666	3.93004	125.90529	18.34662	8.64559	158.61754		
3.5	105.55075	1.43822	151.80567	33.69520	3.83714	129.29330	18.44279	8.72488	160.91119		
4.0	105.58498	1.41213	149.09943	35.17203	3.78026	132.95936	18.48390	8.78799	162.43639		
4.5	105.63310	1.38686	146.49817	36.42967	3.74894	136.57247	18.49801	8.83804	163.48627		
5.0	105.69793	1.36262	144.02616	37.47111	3.73478	139.94638	18.49872	8.87853	164.24150		
5.5	105.78226	1.33944	141.68849	38.31880	3.73241	143.02148	18.49285	8.91136	164.79640		
6.0	105.88879	1.31728	139.48524	39.00168	3.73786	145.78274	18.48391	8.93862	165.22069		
				Cuarto est	ado excita	ido					
0.05	105.49846	1.63348	172.32963	26.37462	6.43191	169.63909	11.72200	13.81608	161.95219		
0.5	105.49851	1.59929	168.72263	26.35966	5.33338	140.58600	11.33785	6.88716	78.08559		
1.0	105.49844	1.56159	164.74519	26.16968	4.17721	109.31636	12.84092	6.56768	84.33511		
1.5	105.49769	1.52369	160.74677	25.69058	3.28715	84.44869	15.55976	7.66723	119.30029		
2.0	105.49528	1.48566	156.73043	25.36662	2.81995	71.53258	16.72818	8.06217	134.86547		
2.5	105.48992	1.44753	152.69998	25.87050	2.69991	69.84790	17.15409	8.45362	145.01413		
3.0	105.47999	1.40939	148.66195	27.36041	2.78554	76.21354	17.30948	8.77428	151.87823		
3.5	105.46360	1.37131	144.62289	29.43391	2.96820	87.36575	17.36017	9.02242	156.63078		
4.0	105.43867	1.33332	140.58352	31.55624	3.16101	99.74949	17.36739	9.21422	160.02706		
4.5	105.40297	1.29553	136.55306	33.39515	3.31936	110.85055	17.35590	9.36503	162.53854		
5.0	105.35423	1.25801	132.53705	34.85318	3.39968	118.48976	17.33651	9.48488	164.43471		
5.5	105.29019	1.22086	128.54443	35.96010	3.45741	124.32889	17.31420	9.58216	165.90750		
6.0	105.20879	1.18418	124.58575	36.78482	3.50523	128.93916	17.29133	9.66271	167.08118		

Tabla B.2: Información de Fisher en el espacio de configuración, espacio de momentos y el producto de ambas informaciones de una partícula en presencia de un campo eléctrico constante, confinada en una región circular plana de radio r_0 .

Tabla B.3: Información de Fisher en el espacio de configuración, espacio de momentos y el producto de ambas informaciones de un electrón sujeto a un potencial de oscilador armónico y un campo eléctrico constante confinado en una región circular plana de radio r_0 . La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

_

n = 0										
		$r_0 = 1.0$			$r_0 = 2.0$			$r_0 = 3.0$		
f	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	
				Esta	ido base					
0.05	23.13815	0.86176	19.93972	6.05709	2.91711	17.66924	4.07379	3.94171	16.05771	
0.5	23.18448	0.84773	19.65421	6.45939	2.64114	17.06023	4.51859	3.55615	16.06876	
1.0	23.32342	0.83062	19.37299	7.37764	2.28934	16.88993	5.39049	3.01376	16.24567	
1.5	23.55026	0.81188	19.12006	8.39734	2.01450	16.91645	6.30289	2.65861	16.75690	
2.0	23.85837	0.79208	18.89796	9.36152	1.81300	16.97245	7.23969	2.44047	17.66823	
2.5	24.23934	0.77165	18.70440	10.25107	1.66217	17.03907	8.25423	2.30285	19.00821	
3.0	24.68359	0.75103	18.53817	11.08133	1.54497	17.12035	9.39582	2.21373	20.79982	
3.5	25.18106	0.73052	18.39535	11.87019	1.45075	17.22072	10.69833	2.15876	23.09510	
4.0	25.72179	0.71060	18.27803	12.63194	1.37326	17.34691	12.17312	2.12748	25.89804	
4.5	26.29638	0.69133	18.17953	13.37707	1.30830	17.50122	13.80283	2.11283	29.16302	
5.0	26.89624	0.67286	18.09745	14.11323	1.25253	17.67721	15.54154	2.10968	32.78765	
5.5	27.51386	0.65543	18.03346	14.84602	1.20449	17.88196	17.32487	2.11404	36.62545	
6.0	28.14280	0.63877	17.97678	15.57960	1.16259	18.11281	19.08607	2.12414	40.54146	
				Primer es	tado excit	ado				
0.05	58.73199	1.32538	77.84236	14.92083	4.84151	72.23933	8.46758	7.65153	64.789969	
0.5	58.75951	1.31733	77.40585	15.24105	4.61699	70.36780	8.97559	7.21012	64.71508	
1.0	58.84266	1.30629	76.86606	16.09815	4.29300	69.10940	10.15590	6.38719	64.86780	
1.5	58.98036	1.29383	76.31051	17.25989	3.97285	68.57094	11.55375	5.63613	65.11845	
2.0	59.17134	1.28079	75.78595	18.54132	3.69234	68.46080	13.00173	5.03269	65.43376	
2.5	59.41386	1.26815	75.34550	19.84200	3.45478	68.54967	14.45893	4.55318	65.83418	
3.0	59.70579	1.25625	75.00562	21.11894	3.24889	68.61328	15.91481	4.16683	66.31435	
3.5	60.04465	1.24084	74.50587	22.35753	3.07194	68.68105	17.36241	3.85315	66.89993	
4.0	60.42769	1.22713	74.15261	23.55524	2.91768	68.72666	18.79198	3.59627	67.58106	
4.5	60.85197	1.21175	73.73712	24.71411	2.78211	68.75735	20.19042	3.38632	68.37118	
5.0	61.31438	1.19781	73.44287	25.83766	2.66186	68.77622	21.54299	3.21545	69.27045	
5.5	61.81179	1.18336	73.14553	26.92958	2.55446	68.79058	22.83570	3.07716	70.26900	
6.0	62.34101	1.16882	72.86571	27.99330	2.45762	68.79694	24.05727	2.96602	71.35430	
				Segundo es	stado exci	tado				
0.05	58.73152	1.32119	77.59542	14.91640	4.74569	70.78875	8.46232	7.40710	62.68128	
0.5	58.71275	1.27491	74.85363	14.85227	3.80609	56.52921	8.60990	5.44488	46.879897	
1.0	58.65751	1.22406	71.80032	15.02550	3.09806	46.54991	9.78217	4.27045	41.77427	
1.5	58.57072	1.17495	68.81772	15.95061	2.69252	42.94734	12.05002	3.78330	45.58890	
2.0	58.45986	1.12792	65.93823	17.69579	2.46051	43.54073	14.41623	3.53280	50.92971	
2.5	58.33449	1.08317	63.18590	19.92978	2.33438	46.52374	16.47486	3.30919	54.51860	
3.0	58.20561	1.04109	60.59764	22.26486	2.26445	50.41770	18.21859	3.08192	56.14821	
3.5	58.08495	1.00188	58.19419	24.48260	2.21587	54.25029	19.67776	2.86089	56.29595	
4.0	57.98432	0.96560	55.99001	26.51750	2.17554	57.68995	20.86691	2.65642	55.43125	
4.5	57.91513	0.93227	53.99306	28.37428	2.12518	60.30049	21.80025	2.47585	53.97408	
5.0	57.88796	0.90181	52.20417	30.07759	2.07362	62.36956	22.50666	2.32446	52.315957	
5.5	57.91240	0.87422	50.62832	31.65302	2.02070	63.96134	23.03124	2.20195	50.71370	
6.0	57.99679	0.84938	49.261627	33.12188	1.96904	65.21840	23.42584	2.11056	49.44155	
			Cor	ntinúa en la	a siguiente	página				

Tabla B.3: Información de Fisher en el espacio de configuración, espacio de momentos y el producto de ambas informaciones de un electrón sujeto a un potencial de oscilador armónico y un campo eléctrico constante confinado en una región circular plana de radio r_0 . La unidad de longitud es $(\hbar/m_e\omega)^{1/2}$ y la unidad del campo eléctrico es $(m_e\hbar\omega^3)^{1/2}/e$.

Continuación de la Tabla B.3									
n = 0									
	$r_0 = 1.0$			$r_0 = 2.0$			$r_0 = 3.0$		
f	F_{ρ}	F_{γ}	$F_{\rho}F_{\gamma}$	F_{ρ}	F_{γ}	$F_{\rho}F_{\gamma}$	F_{ρ}	F_{γ}	$F_{\rho}F_{\gamma}$
Tercer estado excitado									
0.05	105.50128	1.63027	171.99548	26.55535	6.11697	162.43844	13.56257	10.71940	145.38273
0.5	105.50157	1.60771	169.61556	26.60827	5.48845	146.03824	13.89456	8.99786	125.02136
1.0	105.50269	1.57681	166.35787	26.86522	4.88130	131.13725	15.06335	7.56015	113.88119
1.5	105.50539	1.54677	163.19276	27.49275	4.46843	122.84954	16.93068	6.64935	112.57815
2.0	105.51085	1.51775	160.13925	28.55468	4.17146	119.11470	19.06531	6.02117	114.79545
2.5	105.52069	1.48949	157.17237	29.98709	3.94187	118.20538	21.18884	5.53472	117.27436
3.0	105.53690	1.46600	154.717203	31.66734	3.76219	119.13864	23.17374	5.13816	119.07037
3.5	105.56174	1.43552	151.53643	33.47827	3.61411	120.99423	24.94707	4.81830	120.20253
4.0	105.59772	1.40879	148.76511	35.33517	3.49052	123.338090	26.46296	4.56685	120.85230
4.5	105.64745	1.38426	146.24394	37.18610	3.38090	125.72250	27.70578	4.37027	121.08173
5.0	105.71366	1.36026	143.79813	39.00270	3.28593	128.16025	28.68899	4.22199	121.12492
5.5	105.79904	1.33719	141.47324	40.77103	3.19799	130.38567	29.44545	4.10938	121.00259
6.0	105.90622	1.31495	139.26174	42.48495	3.11375	132.28763	30.01597	4.02453	120.80005
		•	•	Cuarto es	stado exci	tado			
0.05	105.49195	1.62968	171.93294	26.55535	6.10498	162.11983	13.56256	10.64539	144.37880
0.5	105.50153	1.59837	168.63016	26.59043	5.24773	139.53927	13.81359	8.08772	111.72054
1.0	105.50211	1.56088	164.67597	26.61922	4.30234	114.52505	14.27316	5.64101	80.51501
1.5	105.50246	1.52028	160.39351	26.52019	3.50066	92.83826	15.29641	4.59817	70.33553
2.0	105.50165	1.48281	156.43912	26.38464	2.93085	77.32931	17.71219	4.41662	78.22797
2.5	105.49846	1.44604	152.55533	26.58961	2.62676	69.84450	20.84766	4.22459	88.07284
3.0	105.49134	1.40910	148.64832	27.51550	2.53379	69.718527	23.70412	3.86958	91.72504
3.5	105.47847	1.37188	144.70364	29.27846	2.56727	75.16579	25.90608	3.62039	93.79001
4.0	105.45788	1.33401	140.68228	31.71810	2.64187	83.79504	27.43298	3.44945	94.62880
4.5	105.42742	1.29921	136.97206	34.53992	2.70148	93.30899	28.38366	3.32449	94.36113
5.0	105.38491	1.25804	132.57852	37.46922	2.71998	101.91537	28.88880	3.21893	92.99097
5.5	105.32819	1.22134	128.64124	40.32686	2.68085	108.11040	29.07345	3.13161	91.04671
6.0	105.25522	1.18524	124.75250	43.02532	2.59988	111.86087	29.04144	3.05516	88.72621

Tabla B.4: Información de Fisher en el espacio de configuración, en el espacio de momentos y el producto de las informaciones, como función del radio de confinamiento para un valor fijo de la magnitud del campo magnético $b^2 = 1.5$ u.a.

	n = 0			n = 1			n = 2		
r_{0}	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$
m = 0									
0.3	257.03050	0.07843	20.15997	1354.27832	0.11184	151.47112	3328.31140	0.11600	386.088364
0.5	92.53136	0.21767	20.14202	487.54008	0.31140	151.82253	1198.19203	0.32410	388.34097
1.0	23.15746	0.85011	19.68641	121.87819	1.25195	152.58597	299.54335	1.30169	389.91451
1.5	10.53682	1.72810	18.20870	54.11764	2.85737	154.63445	133.08082	2.96610	394.73149
2.0	6.86659	2.41198	16.56210	30.49099	5.06895	154.55761	74.63051	5.42980	405.22889
2.5	6.07721	2.63978	16.04256	20.88649	7.09345	148.15738	47.37782	8.75471	414.77956
3.0	6.00273	2.66563	16.00108	18.27908	7.89865	144.38018	34.15408	11.94035	407.81188
3.5	6.00003	2.66665	16.00001	18.00909	7.99645	144.00902	30.36024	13.19742	400.67719
4.0	6.00000	2.66666	16.00000	18.00010	7.99995	144.00008	30.00923	13.32965	400.01273
4.5	6.00000	2.66666	16.00000	18.00000	7.99999	144.00000	30.00007	13.33330	400.00008
5.0	5.99999	2.66666	16.00000	17.99999	8.00000	144.00000	29.99998	13.33334	400.00009
5.5	5.99999	2.66666	16.00000	17.99999	8.00000	144.00004	29.99938	13.33380	400.00585
6.0	5.99999	2.66666	16.00000	17.99986	8.00013	144.00125	29.98845	13.34211	400.10926
	1				m = 1				
0.3	422.95512	0.07082	29.95596	1738.47412	0.10490	182.38106	3931.62192	0.11187	439.86621
0.5	152.17516	0.19682	29.95185	625.82412	0.29246	183.02938	1415.37119	0.31345	443.66174
1.0	37.67697	0.77496	29.19830	156.33870	1.17224	183.26735	353.78560	1.25802	445.07131
1.5	16.18401	1.62549	26.30697	69.23274	2.64800	183.32894	157.10371	2.85095	447.89514
2.0	8.84525	2.40032	21.23145	38.51579	4.69053	180.65979	88.06164	5.15429	453.89536
2.5	6.43505	2.69678	17.35391	24.53621	6.83421	167.68570	55.71504	8.22585	458.30406
3.0	6.02551	2.68590	16.18397	19.04079	7.92433	150.88560	38.35180	11.51746	441.71575
3.5	6.00054	2.66899	16.01544	18.05506	8.02486	144.88955	31.17845	13.19915	411.52943
4.0	6.00000	2.66681	16.00088	18.00096	8.00326	144.06646	30.04741	13.35481	401.27769
4.5	6.00000	2.66667	16.00003	18.00001	8.00017	144.00332	30.00064	13.33577	400.08184
5.0	6.00000	2.66666	16.00001	18.00013	7.99999	144.00109	30.00205	13.33355	400.03415
5.5	6.00006	2.66667	16.00020	18.00175	7.99992	144.01262	30.02036	13.33486	400.31755
6.0	6.00053	2.66669	16.00158	18.01139	7.99972	144.08612	30.09734	13.34989	401.79631

Tabla B.5: Información de Fisher en el espacio de configuración, en el espacio de momentos y el producto de las informaciones, como función de la magnitud del campo magnético b^2 , para un radio de confinamiento fijo $r_0 = 1.5$ u.a. .

	n = 0		n = 1			n=2			
b^2	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	$F_{ ho}$	F_{γ}	$F_{\rho}F_{\gamma}$	F_{ρ}	F_{γ}	$F_{\rho}F_{\gamma}$
m = 0									
0.05	10.28121	1.96221	20.17396	54.17113	2.80312	151.84846	133.13245	2.91980	388.72094
0.1	10.28122	1.96136	20.16520	54.17113	2.80337	151.86194	133.13245	2.91996	388.74207
0.3	10.28167	1.95229	20.07285	54.17100	2.80600	152.00390	133.13237	2.92165	388.96701
0.5	10.28473	1.93431	19.89395	54.17013	2.81110	152.27767	133.13179	2.92503	389.41456
1.0	10.33526	1.85298	19.15111	54.15722	2.83222	153.38533	133.12203	2.94068	391.46975
1.5	10.53682	1.72810	18.20870	54.11764	2.85737	154.63445	133.08082	2.96610	394.73149
2.0	11.01240	1.57478	17.34219	54.07320	2.87263	155.33279	132.97515	3.00002	398.92852
2.5	11.84610	1.41084	16.71306	54.13070	2.86253	154.95092	132.77060	3.04010	403.63620
3.0	13.04609	1.25225	16.33700	54.49927	2.81517	153.42491	132.45024	3.08236	408.26061
3.5	14.55205	1.10947	16.14508	55.44797	2.72657	151.18282	132.04629	3.12074	412.08267
4.0	16.27408	0.98674	16.05833	57.21843	2.60156	148.85743	131.68043	3.14710	414.41162
4.5	18.12936	0.88378	16.02238	59.94148	2.45134	146.93741	131.59374	3.15240	414.83673
5.0	20.05859	0.79807	16.00831	63.60114	2.28939	145.60786	132.13670	3.12892	413.44639
6.0	24.01093	0.66640	16.00108	73.11632	1.97466	144.38010	136.61634	2.98506	407.80822
7.0	28.00185	0.57139	16.00013	84.28706	1.70931	144.07276	146.96724	2.742258	403.02216
8.0	32.00029	0.49999	16.00001	96.06425	1.49912	144.01226	162.38649	2.46852	400.85460
9.0	36.00004	0.44444	16.00000	108.01298	1.33319	144.00192	180.68917	2.21482	400.19531
10.0	40.00000	0.39999	16.00000	120.00243	1.19997	144.00028	200.17415	1.99845	400.03927
					m = 1				
0.05	16.91865	1.77381	30.01049	69.53909	2.63422	183.18155	157.26494	2.82594	444.42193
0.1	16.91559	1.77329	29.99637	69.53818	2.63428	183.18351	157.26450	2.82602	444.43418
0.3	16.88319	1.76782	29.84646	69.52838	2.63495	183.20383	157.25980	2.82694	444.56459
0.5	16.81981	1.75690	29.55088	69.50850	2.63624	183.24120	157.25016	2.82876	444.82396
1.0	16.54771	1.70651	28.23897	69.41071	2.64162	183.35739	157.20088	2.83721	446.01333
1.5	16.18401	1.62549	26.30697	69.23274	2.64800	183.32894	157.10371	2.85095	447.89514
2.0	15.85421	1.51882	24.07980	68.96136	2.65102	182.81817	156.93653	2.86934	450.30517
2.5	15.70790	1.39411	21.89867	68.60323	2.64419	181.40055	156.67031	2.89134	452.98740
3.0	15.88288	1.26103	20.02879	68.21692	2.61972	178.70958	156.27360	2.91522	455.57306
3.5	16.46412	1.12963	18.59853	67.94380	2.57046	174.64707	155.72294	2.93835	457.56977
4.0	17.45993	1.00818	17.60277	68.01117	2.49256	169.52218	155.02248	2.95690	458.38609
4.5	18.81129	0.90145	16.95744	68.68900	2.38725	163.97821	154.23387	2.96579	457.42565
5.0	20.42587	0.81072	16.55966	70.21227	2.26071	158.73003	153.51025	2.95918	454.26562
6.0	24.10207	0.67147	16.18396	76.16318	1.98107	150.88489	153.40722	2.87932	441.70867
7.0	28.02124	0.57309	16.05893	85.36909	1.71957	146.79860	157.50211	2.70311	425.74583
8.0	32.00398	0.50052	16.01870	96.37701	1.50504	145.05212	167.52738	2.46584	413.09590
9.0	36.00068	0.44460	16.00593	108.09071	1.33572	144.37940	182.67495	2.22152	405.81698
10.0	40.00010	0.40004	16.00188	120.01974	1.20091	144.13394	200.80732	2.00381	402.38153

Regular Article - Quantum Information

Localization–delocalization of a particle in a quantum corral in presence of a constant magnetic field

Elizabeth Cruz¹, N. Aquino^{1,a}, and V. Prasad²

¹ Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. C.P. 09340, Mexico

² Department of Physics, Swami Shraddhanand College, University of Delhi, New Delhi, India

Received 16 November 2020 / Accepted 17 February 2021

© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract. We obtained the energy and wave functions of a particle in a quantum corral subjected to a constant magnetic field, as a function of the radius of the quantum corral $R_{\rm c}$ and the intensity of the magnetic field b^2 . We also computed the standard deviation and the Shannon information entropies as a function of R_c and b^2 , which in turn are compared to determine their effectiveness in measuring particle (de)localization. For a fixed magnitude of the magnetic field b^2 , the Shannon entropy of all states diminishes as the confinement radius $R_{\rm c}$ decreases revealing an extensive localization. For a fixed value of R_c , the Shannon entropy of the states (0,0) and (0,1) decreases monotonically as the magnetic field b^2 grows, whereas for the states (1,0), (2,0), (1,1) and (2,1), the Shannon entropy grows slowly, reaching a maximum (delocalization), and then diminishes as b^2 increases. The expectation value of $\langle r \rangle$ for a fixed value R_c , for the states (0,0) and (0,1), decreases monotonically as b^2 increases, whereas for the states (1,0), (2,0), (1,1) and (2,1) increases and after reaching a maximum, it decreases as b^2 grows. This behavior is counter-intuitive because the particle is forecasted to be closer to the origin as the magnetic field grows.

1 Introduction

Eighty years ago, Michels et al. [1] used the confined hydrogen atom (CHA) as a model to study the change in the polarizability of a hydrogen atom subjected to high external pressure. Here, the nucleus of the hydrogen atom was assumed to be clamped at the center of an impenetrable sphere of radius $R_{\rm c}$, while the electron could move within the included volume. Ley-Koo and Rubinstein [2] considered a hydrogen atom confined in spherical box with penetrable walls to explain the ionization of a hydrogen atom trapped in alphaquartz [3,4].

Many applications have been developed from these models [5-12], and they have been generalized to cavities with different geometries. This model has subsequently been applied to a wide range of physical problems [13–23]. Observable properties of the systems such as the energy spectrum, transition frequencies and probabilities, the behavior of atoms trapped in fullerenes and some studies in the theoretical information [24–33] are changed by spatial confinement. Recent experimental studies show that the electroncapture nuclear decay rate is increased under compression [34,35]. A partial explanation of this effect was given using the model of many-electron atoms confined in an impenetrable spherical cavity [36]. With the advent of technology to construct atomic-scale confinements, the study of confined systems has become increasingly relevant.

As mentioned earlier, confinement changes many properties of the system, which makes the study of confined systems very alluring. In this work, we analyze the localization-delocalization properties of a particle in a quantum corral subjected to a constant magnetic field. The quantum corrals that we study here are the best results of fusion of science and technology. Moreover, this system has gained popularity because of many interdisciplinary applications. Experimentally, these corrals are formed by the confining electrons of the surface states on the metallic atoms to form a twodimensional (2D) nearly free electron gas. The confining potential at the walls of the system is provided by the closed packed atoms as suggested by some experimental methods [37,38]. Theoretically, these corrals form a platform to understand basic physics at lowdimensional level. It is interesting to note that, for understanding the behavior of quantum corrals at the basic level, it can be modeled as a particle in circular box [24, 25, 41]. Corzo et. al. [25] studied the localization-delocalization of a free particle in a quantum corral using the Shannon entropy and the radial variance.

^ae-mail: naa@xanum.uam.mx (corresponding author)

There exists an increasing interest in the study of diverse quantum confined systems by means of the theoretical information methods [26-32,39]. In information theory, entropy is a measure of the uncertainty associated with a random variable. In this field, the term usually refers to the Shannon entropy, which measures the expected value of the information contained in a message, usually in units such as bits, i.e., it is a measure of the average information content that is missing when the value of the random variable is unknown. The Shannon entropy has expanded into a number of applications in areas, such as statistical inference, cryptography, thermal physics, quantum computing, atomic and molecular structure and chemical reactivity [26-33,39]. A localized particle is one that is concentrated at specific site, while a delocalized one is spread in the system. In atomic and molecular physics, the Shannon entropy has been interpreted as the uncertainty of the particle position, which is related to the corresponding degree of the electron localization-delocalization in free and confined systems [25, 26, 32, 39].

The Shannon entropies in the position and momentum space are defined as:

$$S_{\rm r} = -\int \rho(r) ln(\rho(r)) \mathrm{d}^3 r, \qquad (1)$$

$$S_{\rm p} = -\int \gamma(p) ln(\gamma(p)) \mathrm{d}^3 p.$$
 (2)

where $\rho(r) = |\psi(r)|^2$ and $\gamma(p) = |\phi(p)|^2$ are the one-particle probability density in configuration and momentum spaces, respectively. They measure the concentration (sharpness) of the electron density in their respective spaces. The functions $\psi(r)$ and $\phi(p)$ are the one-particle wave function in configuration and momentum spaces, respectively.

The total Shannon entropy S_t is defined as:

$$S_{\rm t} = S_{\rm r} + S_{\rm p}.\tag{3}$$

Another way to quantify the particle localization– delocalization is based on the standard deviation that has been used for many years in quantum mechanics. In one dimension, the standard deviation of the position x of a particle is defined as:

$$\Delta x = \left(\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2 \right)^{1/2},\tag{4}$$

where $\langle x \rangle$ and $\langle x^2 \rangle$ are the expectation values of x and x^2 , respectively. A estimator of the spread or the uncertainty in the particle position is given by Δx , smaller values of Δx are associated with a more localized distribution, and greater values of Δx are associated with a more delocalized distribution.

The purpose of this paper is to study the localization– delocalization of a particle in a quantum corral subjected to an external magnetic field by using the Shannon entropy and the variance.

The remaining paper is organized in the following form: In Sect. 2.1, we make a summary of the results

of the problem of a free particle in a circular well with impenetrable walls. In Sect. 2.2, we describe and solve the problem of a particle in a circular impenetrable box with a constant magnetic field by diagonalizing its Hamiltonian in the basis set of a particle in a circle. In Sects. 2.3 and 2.4, we compute the entropic measures, the Shannon information entropies and the radial standard deviation of few states as a function of the confinement radius R_c and the magnetic field b^2 , in configuration and momentum spaces. Section 3 contains analysis of numerical results. Finally, in Sect. 4 we give our conclusions.

2 The motion of a particle in a circle in an external constant magnetic field

2.1 A particle in a circular well

The problem of a free particle in a circle was widely discussed in the literature [25,40,41]. In this section, we will make a brief summary of this problem and will use the notation of references Corzo et. al. [25] and Agcali et. al. [41] to classify the eigenstates and eigenenergies. Consider a particle confined in a circle of radius R_c centered at the origin of the coordinate system. Using polar coordinates, r is the radial coordinate and ϕ is the azimuthal angle. It is well known that the eigenfunctions are of the system which are given by [25,41],

$$\psi_{n,m}(r,\phi) = R_{nm}(r)\Phi_m(\phi), \qquad (5)$$

where

$$R_{n,m}(r) = \sqrt{\frac{2}{R_{\rm c}^2 J_{|m+1|}^2(x_{nm})}} J_m\left(x_{nm}\frac{r}{R_{\rm c}}\right), \quad (6)$$

and

$$\Phi_m\left(\phi\right) = \frac{1}{\sqrt{2\pi}} e^{im\phi},\tag{7}$$

where $|m| = 0, 1, 2, ..., n = 1, 2, 3, ..., J_m$ is the Bessel function of the first kind and order m, and x_{nm} corresponds to nth zero of J_m . The energy eigenvalues are given by

$$E_{n,m} = \frac{\hbar^2 x_{n|m|}^2}{2m_e R_c^2}.$$
(8)

Because $J_m = (-1)^m J_{-m}$, the states $\psi_{n,m}$ and $\psi_{n,-m}$, with $m \neq 0$, are doubly degenerated. In the next section, we will use these results to find the approximate solutions of a particle in a circle in the presence of a constant magnetic field by means of the linear variational method.

2.2 A particle in a circle in the presence of a constant magnetic field

The problem of the movement of an electron in threedimensional space subjected to the action of a uniform magnetic field in the z-direction, the Landau problem, is found in the textbooks [42–45]. As we mentioned above, a quantum corral can be modeled as a free particle in a circular well with impenetrable walls. In this section, we consider an electron of mass m_e and charge -e moving in the $\mathbf{x} - \mathbf{y}$ plane in an impenetrable circular well of radius R_c centered at the origin. The electron is subjected to the action of a uniform magnetic field which is perpendicular to the xy plane, i.e., $\mathbf{B} = B_0 \hat{k}$, where \hat{k} is the unit vector in the z-direction and B_0 is the magnitude of the magnetic field. It is usual to use minimal coupling replacement in such cases defined as follows

$$\mathbf{p'} \to \mathbf{p'}^+ \frac{e}{c} \mathbf{A},$$
 (9)

where c is the velocity of light and **A** is the magnetic potential vector. The Hamiltonian can be written as:

$$H' = \frac{1}{2m_e} \left\{ {p'}^2 + \frac{e}{c} \mathbf{p'} \cdot \mathbf{A} + \frac{e}{c} \mathbf{A} \cdot \mathbf{p'} + \frac{e^2}{c^2} A^2 \right\}$$
$$+ V_c(r'), \tag{10}$$

where $V_{\rm c}(r')$ is the confinement potential, which imposes Dirichlet's boundary conditions over the system.

$$V_{\rm c}(r') = \begin{cases} 0 & \text{if } 0 \le r' \le R_{\rm c} \\ \\ \infty & \text{if } r' > R_{\rm c} \end{cases}$$
(11)

The term $\mathbf{A} \cdot \mathbf{p}$ is computed as follows: Let $f(\mathbf{r})$ be an arbitrary function, then

$$\mathbf{p'} \cdot \mathbf{A}f = \frac{\hbar}{i} \nabla \cdot (\mathbf{A}f) = \frac{\hbar}{i} (\nabla \cdot \mathbf{A})f + \mathbf{A} \cdot \mathbf{p'}.$$
 (12)

We select the Coulomb gauge $\nabla \cdot \mathbf{A} = 0$; therefore,

$$\mathbf{A} \cdot \mathbf{p'} = \mathbf{p'} \cdot \mathbf{A}; \tag{13}$$

the Hamiltonian (Eq. 10) can be written as:

$$H' = \frac{{p'}^2}{2m_e} + \frac{e}{m_e c} \mathbf{A} \cdot \mathbf{p'} + \frac{e^2}{2m_e c^2} A^2 + V_c(r'), \quad (14)$$

As mentioned above, the magnetic field *B* is uniform, and the vector potential for such field is given by $\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{r'}$.

The second and third terms of Eq. (14) can be written as,

$$\frac{e}{m_e c} \mathbf{A} \cdot \mathbf{p'} = \frac{e}{2m_e c} \mathbf{B} \cdot \mathbf{r'} \times \mathbf{p'} = \frac{e}{2m_e c} \mathbf{B} \cdot \mathbf{L'}, \quad (15)$$

and

$$\frac{e^2}{2m_e c^2} A^2 = \frac{e^2}{2m_e c^2} \left(\frac{1}{2} \mathbf{B} \times \mathbf{r'}\right)^2$$
$$= \frac{e^2}{8m_e c^2} \left(r'^2 B^2 - (\mathbf{r'} \cdot \mathbf{B})^2\right). \quad (16)$$

As the motion of the electron is on the x - y plane and the magnetic field is in the z direction, the Hamiltonian (Eq. 14) is the following:

$$H' = \frac{p'^2}{2m_e} + \frac{e}{2m_e c} B_0 L'_z + \frac{e^2}{8m_e c^2} r'^2 B_0^2 + V_c(r').$$
(17)

The Larmor frequency $\omega_{\rm L}$ is defined as:

$$\omega_{\rm\scriptscriptstyle L} = \frac{eB_0}{2m_ec};\tag{18}$$

the Hamiltonian H' in terms of the Larmor frequency is given by:

$$H' = \frac{p'^2}{2m_e} + \frac{m_e \omega_{\rm L}^2 r'^2}{2} + \omega_{\rm L} L'_z + V_{\rm c}(r').$$
(19)

In order to solve the problem, it is convenient to write the Hamiltonian H' in dimensionless variables, and we make the following change of variable $r' = a_0 r$, where $a_0 = \frac{\hbar^2}{m_e e^2}$ is the Bohr radius. Then, the Hamiltonian in atomic units ($m_e = e = \hbar = 1$) is given by

$$H = \frac{p^2}{2} + \frac{1}{2}b^4r^2 + b^2L_z + V_c(r), \qquad (20)$$

where b^2 is the magnitude of the magnetic field in atomic units.

$$b^2 = \frac{B_0 \hbar^3}{2m_e^2 c e^3};$$
 (21)

the unit of magnetic field (in atomic units) is given by $\frac{m_e^2 e^3 c}{\hbar^3} = 2.3505 \times 10^9 G (1G = 1 \times 10^{-4} T).$

Then, the Hamiltonian of Eq. (20) can be written as:

$$H = H_0 + H_1, (22)$$

where

$$H_0 = \frac{p^2}{2} + V_{\rm c}(r), \qquad (23)$$

and

$$H_1 = \frac{1}{2}b^4r^2 + b^2L_z.$$
 (24)

The Hamiltonian H_0 corresponds to the particle in a circular well as discussed in the previous section. We must note that L_z is a constant of motion; therefore, this problem has a definite angular momentum. Then, we construct the wave functions of H as a linear combination of the eigenfunctions of H_0 with a fixed angular momentum m, i. e.,

$$\Psi_{n,m}(r,\phi) = \sum_{k=1}^{N} c_{k,m} \psi_{k,m}(r,\phi) \\ = \left(\sum_{k=1}^{N} c_{k,m} R_{k,m}(r)\right) \frac{e^{im\phi}}{\sqrt{2\pi}}, \quad (25)$$

where $\psi_{k,m}$ are given by Eq. (5) and the $c_{k,m}$ are linear coefficients. To obtain the energies and coefficients $c_{k,m}$, it is necessary to solve the eigenvalue problem

$$H\mathbf{c} = E\mathbf{c},\tag{26}$$

where E denotes the eigenvalue, **c** is the vector of coefficients, and H is the Hamiltonian matrix, whose matrix elements are:

$$H_{ij} = \left(E_{i,m}^{(0)} + mb^2\right)\delta_{ij} + \frac{1}{2}b^4 \left\langle R_{i,m} \left| r^2 \right| R_{j,m} \right\rangle, \quad (27)$$

where $E_{i,m}^{(0)}$ is given by Eq. (8), whereas $R_{i,m}(r)$ are the radial functions given by Eq. (6). We must note that the matrix elements

$$\langle R_{i,m} | r^2 | R_{j,m} \rangle = \int_0^{R_c} R_{i,m}(r) r^3 R_{j,m}(r) dr$$

can be evaluated analytically. The eigenvalue problem Eq. (26) is solved numerically with the program Mathematica.

2.3 The Shannon entropy and the variance in two-dimensional configuration space

The Shannon entropy in the configuration space is a measure of the uncertainty in distribution probability [26–31,39]. The Shannon entropy is also interpreted as the uncertainty in the position of a particle in space, i. e., it gives a degree of a localization or delocalization of the particle[25].

The Shannon entropy $S_{\rm r}$ in configuration space is defined as:

$$S_{\rm r} = -\int_0^{2\pi} \int_0^\infty \rho(r,\phi) \ln\rho(r,\phi) \, r \mathrm{d}r \mathrm{d}\phi, \qquad (28)$$

where $\rho(r, \phi)$ is the density of probability in configuration space,

$$\rho(r,\phi) = \Psi_{n,k}(r,\phi)\Psi_{n,k}^{*}(r,\phi),$$
(29)

Due to the explicit form of Eq. (25), the probability density depends only on the radial variable $\rho(r)$, and then, the Shannon entropy configuration space and polar coordinates can be written as

$$S_{\rm r} = -2\pi \int_0^{r_0} \rho(r) \ln\rho(r) \, r \mathrm{d}r.$$
(30)

As we mentioned in Sect. 1, other way of quantifying the localization–delocalization of the particle is by means of the standard deviation. The radial density $\rho_{\rm r}(r)$ is defined as follows:

$$\rho_{\mathbf{r}}(r) = \int_{\phi=0}^{\phi=2\pi} |\psi_{n,m}|^2 \mathrm{d}\phi = |R_{n,m}(r)|^2.$$
(31)

The radial standard deviation σ is given by:

$$\sigma = \left(\left\langle r^2 \right\rangle - \left\langle r \right\rangle^2 \right)^{1/2},\tag{32}$$

where

$$\langle r \rangle = \int_0^{R_c} r \rho_{\rm r}(r) r {\rm d}r,$$
 (33)

and

1

$$\langle r^2 \rangle = \int_0^{R_c} r^2 \rho_{\rm r}(r) r \mathrm{d}r.$$
 (34)

2.4 The Shannon entropy in two-dimensional momentum space

The Shannon entropy in the momentum space is defined as:

$$S_{\rm p} = -\int_0^{2\pi} \int_0^\infty \gamma\left(p,\phi_{\rm p}\right) ln\gamma\left(p,\phi_{\rm p}\right) p \mathrm{d}p \mathrm{d}\phi_{\rm p}, \quad (35)$$

where the density of the probability in momentum space $\gamma(p)$ is given by

$$\gamma (p, \phi_{\rm p}) = |\Phi_{n,m}(p, \phi_{\rm p})|^2 = \Phi_{n,m}^* (p, \phi_{\rm p}) \Phi_{n,m} (p, \phi_{\rm p}) , \qquad (36)$$

where $\Phi(p, \phi_{\rm p})$ is the wave function in the momentum space which is given by the Fourier transform of the wave function in the configuration space:

$$\Phi_{n,m}\left(p,\phi_{\mathbf{p}}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{R_{c}} \Psi_{n,m}(r,\phi) e^{-i\mathbf{p}\cdot\mathbf{r}} r \mathrm{d}r \mathrm{d}\phi,$$
(37)

where $\Psi_{n,m}$ is given by Eq. (25). Then,

$$\Phi_{n,m}(p,\phi_{\rm p}) = \frac{i^{m}e^{im\phi_{\rm p}}R_{\rm c}}{\sqrt{2\pi}} \sum_{k=1}^{N} \left\{ \frac{c_{k,m}\sqrt{2}}{J_{|m+1|}(X_{k,|m|})} \times \left(\frac{X_{k,|m|}J_{m-1}(X_{k,|m|})J_{m}(R_{\rm c}p)}{(R_{\rm c}p)^{2} - (X_{k,|m|})^{2}}\right) \right\}.$$
(38)

The entropies $S_{\rm r}$ and $S_{\rm p}$ are components of the wellknown entropic uncertainty relation established by Bialinicki-Birula and Mycielsky [46]

$$S_{\rm t} = S_{\rm r} + S_{\rm p} \ge 2(1 + \ln\pi) \ge 4.289560.$$
 (39)

🖄 Springer

Table 1 Energy eigenvalues for n = 0, 1 and |m| = 0, 1, 2, as a function of the magnetic field b^2 for $R_c = 1.5$

b^2	m = 0	m = -1	m = 1	m = -2	m = 2
n = 0					
0.05	1.28576567600895	3.21359760850145	3.31359760850141	5.76217662088672	5.96217662088702
0.1	1.28760486217284	3.16640959563014	3.36640959563021	5.66562856471513	6.06562856471528
0.3	1.30717319142983	2.99636584881035	3.59636584881035	5.30242122895190	6.50242122895191
0.5	1.34603913737998	2.85606865596847	3.85606865596840	4.97585253868711	6.97585253868685
1.0	1.52353226025943	2.63221918840244	4.63221918840257	4.31732238446609	8.31732238446597
1.5	1.80313375410881	2.57908116712454	5.57908116712451	3.87639791642868	9.87639791642881
2.0	2.16394604998746	2.67738346320637	6.67738346320635	3.63805504230405	11.6380550423040
2.5	2.58299092616486	2.90216339818811	7.90216339818788	3.58155619175941	13.5815561917596
n = 1					
0.05	6.77226761152104	10.8883722463887	10.9883722463885	15.6454611012017	15.8454611012021
0.1	6.77489570598630	10.8411848698809	11.0411848698810	15.5485118385576	15.9485118385577
0.3	6.80294313694649	10.6711953893933	11.2711953893934	15.1810573755044	16.3810573755042
0.5	6.85911551205706	10.5312666320624	11.5312666320623	14.8461722523534	16.8461722523531
1.0	7.12368664341032	10.3137219648564	12.3137219648566	14.1518210509638	18.1518210509640
1.5	7.56835521519513	10.2874852700405	13.2874852700404	13.6627738442431	19.6627738442432
2.0	8.19548986956935	10.4562633981131	14.4562633981134	13.3812436417306	21.3812436417305
2.5	9.00271791440926	10.8233031842697	15.8233031842696	13.3099390037348	23.3099390037344

Fig. 1 Energy eigenvalues for different states (n, m) as a function of the magnetic field b^2 for $R_c = 1.5$ a.u

3 Results

For the calculation of energy eigenvalues and eigenvectors of Eq. (27), we select a confinement radius R_c , a magnetic field intensity b^2 and a number of basis set functions N. Then, to solve the eigenvalue problem of Eq. (26) we used **Eigensystem** command of Mathematica 11. We repeated this procedure while increasing N until the desired accuracy in the energy eigenvalues is attained.

In present section, we show the energy eigenvalues, Shannon entropy and the standard deviation of the particle position as a function of the confinement radius R_c and the magnetic field b^2 , for the states $\psi_{n,m}$, that will be denoted as (n, m), where n and m are the radial and angular quantum numbers, respectively.

In Table 1, we show the energy eigenvalues for $R_c = 1.5$ a.u. for few values of the magnetic field b^2 . The results are presented for |m| = 0, 1, 2, and the number of basis set functions used in the calculations was N = 40.

In Fig. 1, we show the energy eigenvalues given in Table 1 for $R_c = 1.5$ a.u. as a function of the magnetic field b^2 . For the range $0 \le b^2 \le 2.5$, the energy values for the states with m < 0 diminish as the magnetic field b^2 increases, whereas for the states with $m \ge 0$, the energy values increase as b^2 grows. The energy values for the state (n = 1, m = -1) decrease as a function of b^2 until it reaches a minimum value and then increases. We must point out that this behavior is general; that is, for any state, regardless of its m value, its energy will increase for b^2 large enough.

When $b^2 = 0$, we have the problem of a free particle in a circle, see Sec. 2.1, whose energy spectrum is doubly degenerated according to Eq. (8), $E_{n,m} = E_{n,-m}$ for $m \neq 0$. This degeneracy is broken when $b^2 \neq 0$, as it can be seen from Fig. 1. There are still certain crossings in the energy levels that indicate degeneration of states as a function of b^2 , but this degeneration is accidental.

In Fig. 2, we show the expectation values $\langle r \rangle$ for six different states as a function of the magnetic field b^2 , for a fixed value of radius $R_c = 1.5$ a.u. For the states (0,0) and (0,1), the curves of the expectation values $\langle r \rangle$ diminish as the magnetic field b^2 increases, while for the states (1,0), (2,0), (1,1) and (2,1), the values of $\langle r \rangle$ increase up to a maximum and decrease afterward. A smaller value of $\langle r \rangle$ indicates a particle position closer to the origin, and a higher value of $\langle r \rangle$ indicates that the particle is further from the origin. The behavior of $\langle r \rangle$ for the states (1,0), (2,0), (1,1) and (2,1) as a

Fig. 2 Expectation values $\langle r \rangle$ for six different states as a function of the magnetic field b^2 for $R_c = 1.5$ a.u. The states (0,0) and (0,1) show a decreasing monotonic behavior

Fig. 3 Shannon entropy S_r for a magnetic field $b^2 = 1.5$ a.u. as a function of R_c for six different states (n, m), where n and m are the radial and angular quantum numbers, respectively

function of b^2 is counter-intuitive because the presence of a magnetic field does not always bring the particle closer to the origin.

In Fig. 3, we show the Shannon entropy in configuration space S_r for six different states as a function of the box radius R_c , for a fixed magnetic field $b^2 = 1.5$ a.u. . As we mentioned in Sect. 1, a smaller value of the Shannon entropy corresponds to a smaller value of the uncertainty and therefore a mayor degree of *localization*. The Shannon entropy S_r of these states diminishes (localization) and becomes negative as $R_c \rightarrow 0$. For boxes radius in the interval $0 < R_c < 1$, the curves of S_r superpose on each other, i.e., values of the Shannon entropies of these states are very similar. As R_c grows, the Shannon entropy of the states also increases (delocalization). For values of R_c greater than 5 a.u., the Shannon entropies S_r for each state tend asymptotically to their respective values of the free (unconfined) system. The behavior of

Fig. 4 Shannon entropy S_r for $R_c = 1.5$ a.u. as a function of magnetic field b^2 for six different states (n, m), where n and m are the radial and angular quantum numbers, respectively. The Shannon entropy of states (0, 0) and (0, 1) shows a decreasing monotonic behavior

Fig. 5 The radial standard deviation σ for $R_c = 1.5$ a.u. for six different states as a function of the magnetic field b^2 . All curves show a decreasing monotonic behavior for $b^2 > 4$

the Shannon entropy of the present system is similar to that of the one and many-electron atoms confined in a impenetrable cavity [22,26–32].

In Fig. 4, we show the Shannon entropy in configuration space S_r as a function of the magnetic field b^2 for six different states (n, m), for a fixed value of the box radius $R_c = 1.5$ a.u. For low values of b^2 , the Shannon entropy behaves like the one for particle in a circular well problem [25], i.e., $S_{\rm r}^{(2,0)} < S_{\rm r}^{(1,0)} < S_{\rm r}^{(0,0)}$ and $S_{\rm r}^{(2,1)} < S_{\rm r}^{(1,1)} < S_{\rm r}^{(0,1)}$, where the superscripts indicate the states (n,m). As b^2 increases, we find a crossing in the curves of $S_{\rm r}$, and the values of b^2 at which the crossing of two states occurs depend on each pair of states. The Shannon entropy $S_{\rm r}$ for the states (2,0), (1,0), (2,1) and (1,1) increases (delocalization) lightly as b^2 grows until it attains a maximum value and then dimin-

Fig. 6 The Shannon entropy in configuration and momentum spaces and the total Shannon entropy for $b^2 = 1.5$ a.u. as a function of R_c

is hes (localization). The Shannon entropy for the states (0,0) and (0,1) are decreasing (localization) functions of b^2 . The behavior of the Shannon entropy reminds us the behavior of the expectation value of $\langle r\rangle$ as a function of the magnetic field b^2 (Fig. 2). The particle in all states is more localized for values of the magnetic $b^2 > 8$ a.u. .

A complementary point of view is obtained by means of the radial standard deviation Eq. (32). As we can see from Fig. 5, the radial standard deviation σ for the states (0,0), (1,0) and (2,0) remains almost constant for magnetic fields $b^2 < 1$, and for $b^2 > 1$, it diminishes monotonically, whereas for the states (0,1)and (1, 1), the radial standard deviation is almost constant for magnetic fields $b^2 < 2$ and for $b^2 > 2$, it decreases monotonically. The standard deviation for the state (2,1) behaves a little bit differently. The value of σ for the state (2, 1) is almost constant for fields $b^2 < 1$, it has a slight increase, reaching a maximum value in the range $1 < b^2 < 4$, and for fields $b^2 > 4$, it decreases monotonically. It is interesting to compare the behavior of the radial standard deviation σ (Fig. 5) with that of the Shannon entropy $S_{\rm r}$ (Fig. 4), we can see that the Shannon entropy $S_{\rm r}$ is more sensitive to the change of the magnetic field b^2 .

The values of the Shannon entropy in momentum space (S_p) could not be obtained analytically, so we used a numerical integration to find the values of S_p . Therefore, the upper limit ' ∞ ' in the radial part of the integral of Eq. (35) must be replaced by p_{max} . To get the value of p_{max} , we use the following procedure: We compute an integral from which we know its exact value; in present case, we choose the normalization integral of the wave function in momentum space $\Phi(p, \phi_p)$, Eq. (38), whose value is equal to 1. Then, we calculate the following integral numerically with Mathematica 11.

$$\int_{0}^{2\pi} \mathrm{d}\phi \int_{0}^{p_{s}} \Phi_{n,m}^{*}(p,\phi_{\mathrm{p}}) \Phi_{n,m}(p,\phi_{\mathrm{p}}) \, p \mathrm{d}p, \qquad (40)$$

We choose a value for p_s and compute the integral (Eq. 40); if the integral has a value 1 ± 0.00001 , we take $p_{\max} = p_s$; otherwise, we increase the value of p_s and recalculate the normalization integral (Eq. 40), etc. As for example, we found that for $R_c < 1.0, p_{\max} \in (70-100)$, and for $R_c > 1$, the values of p_{\max} diminish quickly.

Once we have determined the value of practical infinity p_{max} , the Shannon entropy is calculated in numerical form by using the program Mathematica 11. In

Fig. 7 The Shannon entropy in configuration and momentum spaces and the total Shannon entropy for fixed value $R_c = 1.5$ a.u. as a function of the magnetic field b^2

Fig. 6, we show the Shannon entropy in configuration and momentum spaces $S_{\rm r}$, $S_{\rm p}$ and the total Shannon entropy $S_{\rm t}$ for a fixed value of the magnetic field $b^2 = 1.5$ a.u. as a function of the confinement radius $R_{\rm c}$. The curves of the Shannon entropies $S_{\rm r}$ and $S_{\rm p}$ are symmetrical, and the total Shannon entropy of the state (0,0) is almost constant, whereas the total Shannon entropies for other states increase slightly and then remain constant. When $S_{\rm r}$ decreases (localization), $S_{\rm p}$ increases (delocalization) and vice versa, so that the inequality of Bialinicki-Birula and Mycielsky Eq. (39) is always satisfied.

In Fig. 7, we show the Shannon entropy in configuration and momentum spaces S_r , S_p and the total Shannon entropy S_t for a fixed value of the confinement radius $R_c = 1.5$, as a function of the magnetic field b^2 . Again, we see that the curves for S_r and S_p are almost symmetrical, and the total Shannon entropy for the state (0,0) diminishes lightly as the magnetic field b^2 increases. For the state (0,1), the total entropy is almost constant, whereas for the other states, S_t increases lightly as b^2 grows. The Shannon entropy in configuration space S_r diminishes (localization) as b^2 increases, while the Shannon entropy in momentum space S_p (delocalization) changes in such a way that the inequality of Bialinicki-Birula and Mycielsky [46] is always satisfied.

4 Conclusions

We computed the wave functions and energy eigenvalues of a particle in a quantum corral subjected to an external constant magnetic field. We used the linear variational method with the eigenfunctions of a free particle in a circle as the basis set to diagonalize the Hamiltonian of particle with the magnetic field. We computed also the expectation value of $\langle r \rangle$ for six different states as a function of the magnetic field b^2 for a fixed value of the radius of the confinement $R_c = 1.5$. We found that for the states (0, 0) and (0, 1), the values of $\langle r \rangle$ as a function of b^2 are decreasing, i.e., the particle comes near the origin (localization). On the other hand, for the states (1, 0), (2, 0), (1, 1) and (2, 1) the expectation value of $\langle r \rangle$ increases lightly reaching a maximum and then diminishes as b^2 grows.

We evaluate the Shannon entropy in configuration space and the standard deviation as a measure of the (de)localization inherent in the underlying probability densities. We made a comparison between two measures as a function of the magnetic field b^2 for a fixed radius of the confinement $R_c = 1.5$. The expectation value $\langle r \rangle$ and the Shannon entropy have an analogous behavior, when $\langle r \rangle$ decreases, the Shannon entropy S_r also diminishes (localization), and when $\langle r \rangle$ increases, the Shannon entropy S_r also increases (delocalization), as can be seen from Figs. 2 and 4. On the other hand, the standard deviation is less sensitive to the variations of $\langle r \rangle$ as a function of the magnetic field as shown in Fig. 5. In all states studied, the Shannon entropy S_r and the standard deviation diminish (localization) for b^2 greater than few units of length.

For a fixed value of b^2 , the Shannon entropy S_r and the standard deviation diminish (localization) for small values of R_c , as it is expected.

Acknowledgements We are grateful for the helpful comments of two anonymous referees. One of us (EC) is grateful to Universidad Autónoma Metropolitana for provision of funds through a PhD studies scholarship.

Author contributions

All the authors have contributed equally in the preparation of the manuscript.

Data Availability Statement This manuscript has no associated data, or the data will not be deposited. [Authors' comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

- 1. A. Michels, J. de Boer, A. Bijl, Physica 4, 981 (1937)
- E. Ley-Koo, S. Rubinstein, J. Chem. Phys. 71, 351 (1979)
- D. Suryanarayana, J.A. Weil, J. Chem. Phys. 64, 510 (1976)
- 4. J.A. Weil, J. Chem. Phys. 71, 2803 (1979)
- 5. F.M. Fernández, E.A. Castro, Kinam 4, 193 (1982)
- P.O. Fröman, S. Yngve, N.J. Fröman, J. Math. Phys. 28, 1813 (1987)
- 7. S. Yngve, J. Math. Phys. **29**, 931 (1988)
- 8. W. Jaskólski, Phys. Rep. 271, 1 (1996)
- 9. A.L. Buchachenko, J. Phys. Chem. 105, 5839 (2001)
- J.P. Connerade, V.H. Dolmatov, P.A. Lakshmi, J. Phys. B 33, 251 (2000)
- 11. E. Ley-Koo, Rev. Mex. Fis. 64, 326 (2018)
- J.R. Sabin, E. Brändas, S.A. Cruz, The Theory of Confined Quantum Systems, Parts I and II Advances in Quantum Chemistry, vol. 57 (Academic, Amsterdam, 2009).
- K.D. Sen, Electronic Structure of Quantum Confined Atoms and Molecules (Springer, Heidelberg, 2014). (and references therein)
- 14. S. Goldman, C. Joslin, J. Phys. Chem. 96, 6021 (1992)
- 15. N. Aquino, Adv. Quantum Chem. **57**(123), 148 (2009)
- N. Aquino, G. Campoy, H.E. Montgomery, Int. J. Quantum Chem. 107, 1548 (2007)

- H.E. Montgomery, K.D. Sen, Phys. Lett. A 376, 1992 (2012)
- J. Hunt, J. Martin, V. Rosing, J. Winner, H.E. Montgomery, Chem. Educator 19, 384 (2014)
- R. Cabrera-Trujillo, S.A. Cruz, Phys. Rev. A 87, 012502 (2013)
- M. Rodríguez-Bautista, C. Díaz-García, A.M. Navarrete-López, R. Vargas, J. Garza, J. Chem. Phys. 143, 34103 (2015)
- M.A. Martínez-Sánchez, M. Rodríguez-Bautista, R. Vargas, J. Garza, Theor. Chem. Acc. 135, 207 (2016)
- 22. K.D. Sen, J. Chem. Phys. **123**, 074110 (2005). (and references therein)
- A. Nagy, K.D. Sen, H.E. Montgomery, Phys. Lett. A 373, 2552 (2009)
- H.H. Corzo, H.G. Laguna, R.P. Sagar, J. Math. Chem. 50, 233–248 (2012)
- H.H. Corzo, E. Castaño, H.G. Laguna, R.P. Sagar, J. Math. Chem. 51, 179–193 (2013)
- N. Aquino, A. Flores-Riveros, F.J. Rivas-Silva, Phys. Lett. A 377, 2062–2068 (2013). (and references therein)
- W. Nascimento, F.V. Prudente, Chem. Phys. Lett. 691, 401 (2018)
- L.G. Jiao, L.R. Zan, Y.Z. Zhang, Y.K. Ho, Int. J. Quantum Chem. **117**(13), e25375 (2017)
- 29. N. Mukherjee, A.K. Roy, Eur. Phys. J. D 72(6), 118 (2018)
- N. Mukherjee, A.K. Roy, Int. J. Quantum Chem. 118, e25596 (2018)
- N. Mukherjee, S. Majumdar, A.K. Roy, Chem. Phys. Lett. 691, 449 (2018)
- M. Rodríguez-Bautisa, R. Vargas, N. Aquino, J. Garza, Int. J. Quantum Chem. **118**(13), e25571 (2017)
- 33. A. Ray, P. Das, S.K. Saha, A. Goswami, A. De, Phys. Lett. B 679, 106 (2009)
- 34. W.K. Hensley, W.A. Basset, R.J. Huizenga, Sci. Lett. 181, 1164 (1973)
- 35. L. Liu, C. Huh, Earth Planet. Sci. Lett. 180, 163 (2000)
- 36. A. Ray , P. Das , N. Aquino, M. Lozano, Unpublished data
- 37. J.L. Miller, Phys. Today **72** (2019) 1, 14 and references therein
- T. Ngo, E.H. Kim, S.E. Ulloa, Phys. Rev. B 95, 161407(R) (2017)
- C.R. Estañón, N. Aquino, D. Puertas-Centeno, J.S. Dehesa, Int. J. Quantum Chem. **120**, e26192 (2020)
- R.W. Robinet, *Quantum Mechanics* (Oxford University Press, New York, 1997), p. 345
- R.Y. Agcali, B. Atik, E. Bilgen, B. Karli, M.F. Danisman, J. Chem. Educ. 96, 82–88 (2019)
- L. D. Landu and M. Lifshitz, *Quantum Mechanics; Non-Relativistc Theory*, (Pergamon Press, New York 1991), Chap. XV
- S. Gasiorowitz, *Quantum Physics*, 3rd edn. (Wiley, New York, 2003). (Chap. 16)
- 44. S. Erkoc, Fundamentals of Quantum Mechanics (Taylor & Francis Group, New York, 2007)
- 45. A. Kumar, Fundamentals of Quantum Mechanics (Cambridge University Press, New York, 2018). (Chap. 7)
- Bialinicki-Birula. Iwo, Mycielsky Jerzy, Commun. Math. Phys. 44, 129–132 (1975)

