

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

UNIDAD IZTAPALAPA

División de Ciencias Básicas e Ingeniería (CBI). División de Ciencias Biológicas y de la Salud (CBS).

Posgrado en Energía y Medio Ambiente

Hidrogenación catalítica del CO₂ a CH₄ a partir de catalizadores de Fe, Co y Ni soportados en CeO₂-ZrO₂.

Presenta: I.Q. Israel Marquez Quiñones Matrícula: 220380275.

Que para obtener el título de: Maestro en Energía y Medio Ambiente Remediación Ambiental Química: Catálisis Ambiental.

Director de académico: Dr. José Antonio De los Reyes Heredia.

Jurado de examen: Presidente: Dr. José Escobar Aguilar Secretaria: Dra. Nancy Coromoto Martín Guaregua Vocal: Dra. Julia Aguilar Pliego.

México, Cd. Mx., a 20 de octubre del 2023 marquez.quinones.israel@gmail.com.

Dedicatoria.

Este trabajo de tesis se lo dedico a mi madre, Ma. Teresa Quiñones Bastida (1959-2018), quién ya no tuvo la oportunidad de ver este progreso en mi vida, sin embargo, gracias a ella, su apoyo y sus enseñanzas es que se logra concluir satisfactoriamente este trabajo de investigación.

También se lo dedico a mi papá, Hilario Marquez Rodríguez, quién ha sido testigo de mis logros profesionales y mis avances académicos gracias a su apoyo es que seguimos en el camino del progreso personal y familiar. Gracias por estar aquí al pendiente.

Agradecimientos.

Este trabajo de tesis fue posible gracias al apoyo en la elaboración de análisis experimentales en diferentes técnicas de caracterización de materiales, agradecemos su apoyo profesional a su gran contribución a este trabajo a los siguientes profesionales e Instituciones involucradas:

Dr. José Antonio De los Reyes Heredia.

Rector General de la UAM. Universidad Autónoma Metropolitana. Tutor en el Posgrado de Energía y Medio Ambiente (PEMA) y director en este trabajo de tesis.

Dr. Ignacio René Galindo Esquivel

Investigador del Departamento de Ingeniería Química. División de Ciencias Naturales y Exactas. Universidad de Guanajuato, Campus Guanajuato. Agradecemos el apoyo en la elaboración del análisis de XPS.

M. en C. Viridiana Maturano Rojas.

Instituto de Ciencias Aplicadas y Tecnología de la UNAM. Universidad Nacional Autónoma de México. C.U. Agradecemos el apoyo en la elaboración del análisis TPR.

Laboratorio Central UAM-I de Microscopía Electrónica.

Universidad Autónoma Metropolitana, Unidad Iztapalapa. Agradecemos el apoyo en la elaboración del análisis de SEM y HRTEM.

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

Contenido

I.	Generalidades del gas natural, consumo mundial y tendencias futuras	1
Capí	tulo I:	2
Gen	eralidades del gas natural, consumo mundial y tendencias futuras.	2
I.1.	Características fisicoquímicas del gas natural	2
I.2.	Consumo mundial del gas natural.	3
I.3.	Consumo del gas natural en México	5
I.4.	Gases de efecto invernadero	5
I.5.	El CH₄ y el CO₂ como gases de efecto invernadero	6
I.6.	El cambio climático	8
I.7.	Perspectivas para el CO ₂ y su efecto en el Cambio Climático.	8
II.	Antecedentes bibliográficos de la hidrogenación catalítica de CO2.	12
Capí	tulo II:	13
Ante	ecedentes teóricos de la hidrogenación catalítica de CO2	13
II.1.	Generalidades de la hidrogenación del CO2.	13
II.2.	Las reacciones involucradas en la hidrogenación del CO2.	13
II.3.	Reacciones de hidrogenación de CO2 sobre catalizadores metálicos	15
II.4.	La hidrogenación catalítica del CO ₂ \rightarrow CO	15
II.5.	La hidrogenación catalítica del CO₂→CH₄	17
ll.6. hidro	Selección del soporte y los metales con mayor actividad catalítica para la reacción ogenación catalítica del CO_2	de 17
II.6.1	L. Los catalizadores idóneos para la hidrogenación catalítica del CO2	17
III.	Objetivos e hipótesis.	20
Capí	tulo III:	21
Obje	etivos e hipótesis	21
III.1.	Objetivos generales.	21
III.2.	Objetivos particulares	21
III.3.	Hipótesis	21
IV.	Metodología experimental.	22
Capí	tulo IV:	23
Met	odología experimental	23
IV.1.	Preparación del soporte: método de coprecipitación.	23
IV.2.	Preparación de los catalizadores Fe, Co y Ni: método de impregnación húmeda	23

IV.3. Caracterización del soporte de óxido mixto de CeO ₂ -ZrO ₂ 2	24
IV.4. Caracterización de los catalizadores Fe, Co y Ni soportados en CeO2-ZrO2 2	24
IV.5. Evaluación catalítica de los catalizadores Fe, Co y Ni soportados en CeO ₂ -ZrO ₂ 2	25
V. Resultados y discusión de los datos2	29
Capítulo V:	80
Resultados y discusión de los datos 3	0
V.1. Caracterización del óxido mixto como soporte catalítico: CeO ₂ – ZrO ₂ 3	80
V.1.1. Fisisorción de N ₂ : resultados y discusión	80
V.1.2. Difracción de rayos X (XRD): resultados y discusión	31
V.2. Caracterización de los catalizadores Fe, Co y Ni soportados en el óxido mixto de CeO ₂ – ZrO_2 .3	8
V.3. Espectroscopía UV-vis líquidos y de reflectancia difusa (DRS): resultados y discusión	9
V.4. Microscopía electrónica: resultados y discusión5	52
V.4.1. Microscopía electrónica de barrido (SEM): resultados5	52
V.4.2. Microscopía de transmisión electrónica de alta resolución (HRTEM): resultados5	53
V.5. Espectroscopía fotoelectrónica de rayos X (XPS): resultados y análisis	54
V.6. Temperatura programada de reducción (TPR): resultados y discusión6	;9
V.7. Evaluación de la estabilidad térmica de la actividad catalítica: resultados y discusión7	'4
V.8. Evaluación de la actividad catalítica a diferentes temperaturas para los catalizadores de Fe, Co Ni soportados en el óxido mixto de CeO ₂ – ZrO ₂ 8	у 36
VI. Conclusiones y recomendaciones)2

CAPÍTULO I: I. Generalidades del gas natural, consumo mundial y tendencias futuras.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente REMEDIACION AMBIENTAL QUÍMICA.

División de Ciencias Basícas e Ingenierías (CBI) Laboratorio de catálisis ambiental.

1

Capítulo I: Generalidades del gas natural, consumo mundial y tendencias futuras.

Para explicar las generalidades del gas natural, consumo mundial y tendencias futuras se dividirá en los siguientes campos:

- ☑ Características fisicoquímicas del gas natural.
- ☑ Consumo mundial del gas natural.
- ☑ Consumo del gas natural en México.

I.1. Características fisicoquímicas del gas natural.

Para entender las características del gas natural, se subdividieron en los siguientes rubros: definición del gas natural; extracción del gas natural y composición del gas natural.

I.1.1. Definición del gas natural.

De acuerdo con la Secretaría de Energía (SENER, 2015), el gas natural es una mezcla de hidrocarburos simples (o de cadena corta) compuesta principalmente de metano (CH₄) y otros hidrocarburos más pesados; además también puede contener trazas de nitrógeno, bióxido de carbono, ácido sulfhídrico y agua.

I.1.2. Extracción del gas natural.

Dependiendo de su origen se clasifica en:

- GAS ASOCIADO: Es el que se extrae junto con el petróleo crudo y contiene grandes cantidades de hidrocarburos como etano, propano, butano y naftas.
- GAS NO ASOCIADO: Es el que se encuentra en depósitos que no contienen petróleo crudo. Es común encontrarlo en la naturaleza, en reservas subterráneas dentro de las rocas porosas.

I.1.3. Composición del gas natural.

En la **Tabla 1**, se presenta la composición específica del gas natural de acuerdo con su clasificación derivada de su proceso de extracción y utilizando las definiciones de la **sección I.1.2**.

			asociado	Gas Asociado			
Compuesto	Fórmula	Mín.	Máx.	Mín.	Máx.		
Metano	CH4	95%	98%	60%	80%		
Etano	C ₂ H ₆	1%	3%	10%	20%		
Propano	C ₃ H ₈	0.5%	1%	5%	12%		
Butano	C ₄ H ₁₀	0.2%	0.5%	2%	5%		

Tabla 1. Composición del gas natural de acuerdo a su origen. Fuente: UNAM, 2015.

HIDROGENACIÓN CATALÍTICA DEL CO₂ A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂- ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO.

Tesis de Grado: Nivel Maestría Consejo Nacional de Ciencia y Tecnología (conacyt)

		Gas NO asociado		Gas Asociado		
Compuesto	Fórmula	Mín.	Máx.	Mín.	Máx.	
Pentano	C5H12	0.2%	0.5%	1%	3%	
Dióxido de carbono	CO ₂	0%	8%	0%	8%	
Nitrógeno	N ₂	0%	5%	0%	5%	
Ácido sulfhídrico	H ₂ S	0%	5%	0%	5%	
Otros	Ar, He, Ne, Xe, Hidrocarburos de cadena corta (C ₅ H ₁₂ a C ₁₀ H ₂₂)	Trazas	Trazas	Trazas	Trazas	

Así mismo como se expresó en la **Tabla 1**, la composición del gas natural de acuerdo con su origen de extracción, el gas natural se también se clasifica por su composición en **gas amargo, gas dulce, gas húmedo y gas seco**, de acuerdo con las siguientes definiciones:

- Gas amargo: Contiene derivados del azufre (ácido sulfhídrico, mercaptanos, sulfuros y disulfuros).
- Gas dulce: Libre de derivados del azufre, se obtiene generalmente al endulzar el gas amargo utilizando solventes químicos o físicos, o adsorbentes.
- Gas húmedo: Contiene cantidades importantes de hidrocarburos más pesados que el metano, es el gas asociado.
- Gas seco: Contiene cantidades menores de otros hidrocarburos, es el gas no asociado.

En la **Tabla 2,** se expresa la composición del etano (C_2H_6), ácido sulfhídrico (H_2S) y dióxido de carbono (CO_2), de acuerdo con las definiciones anteriores.

Clasificación por	Clasificación por	Composición				
		Etano	Ácido sulfhídrico	Dióxido de		
ongen	composición	(C ₂ H ₆)	(H ₂ S)	carbono (CO ₂)		
Gas NO asociado	Gas dulce seco	<10%	<1%	<2%		
	Gas amargo seco	<10%	>1%	>2%		
Gas Asociado	Gas dulce húmedo	>10%	<1%	<2%		
	Gas amargo	>10%	>1%	>2%		
	húmedo					

Tabla 2. Clasificación por composición del gas natural. Fuente: UNAM, 2015.

I.2. Consumo mundial del gas natural.

De acuerdo con Cui et al.(2019), la Administración de Información Energética (EIA, por sus siglas en inglés) de Estados Unidos de América (E.U.A.), se prevé que el gas natural, las energías renovables y el carbón sean los componentes de más rápido crecimiento del consumo de energía primaria mundial hasta 2040 (véase **Figura 1**). Por lo tanto, debido a la abundancia de estas materias primas, la química de los C₁^a, se ha convertido en los últimos años en un área importante de interés para la

^a En la química C₁ se refiere a la utilización de moléculas que contienen un solo átomo de carbono, como monóxido de carbono (CO), dióxido de carbono (CO₂), metano (CH₄), metanol (CH₃OH), ácido fórmico (HCOOH), etc., para producir petroquímicos intermedios de nivel premium, productos químicos de valor agregado y combustibles limpios.

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, CO Y NI SOPORTADOS EN CeO2 - ZrO2. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría Consejo Nacional de Ciencia y Tecnología (conacyt)

investigación para la producción de productos químicos de alta pureza y combustibles para el transporte. En particular, desde un punto de vista industrial y académico, el CH₄, el CO y el CO₂ están atrayendo el mayor interés, y los extensos esfuerzos de investigación en las últimas dos décadas se han centrado en la conversión catalítica de estas tres importantes materias primas dentro de los C₁.

Figura 1. Consumo total de energía en el mundo por su tipo de energía desde 1990 hasta 2040. Fuente: EIA, Panorama Internacional de la Energía 2017, citado en Cui et al., 2019.

World energy consumption by energy source (quadrillion Btu)

Aunque en la COP 26 (ONU, 2021), celebrada en Glasgow, Reino Unido en el año 2021; dentro de sus compromisos establecidos, en el que 200 países firmaron compromisos en pro de reducir emisiones a la atmósfera de gases de efecto invernadero, uno de los compromisos a resaltar es el siguiente:

• Abandono de los combustibles fósiles. En la que quizás sea la decisión más controvertida de Glasgow. Los países acabaron por acordar una disposición por la que se pide la reducción del carbón como fuente de energía y la eliminación gradual de los subsidios "ineficientes" a los combustibles fósiles, dos aspectos cruciales que nunca antes se habían mencionado explícitamente en las decisiones adoptadas en las conversaciones de las Naciones Unidas en materia de cambio climático, pese a que el carbón, el petróleo y el gas son los principales causantes del calentamiento global. Diversos países y ONG expresaron su descontento por que los términos relativos al carbón se hubieran suavizado significativamente (de eliminar a reducir gradualmente) y, por tanto, no fueran tan ambiciosos como deberían.

Las proyecciones del consumo de energía para el año 2040 (véase **Figura 1**) y el compromiso del *"Abandono de los combustibles fósiles"* en la COP 26, se contraponen debido a que la tendencia por el incremento de consumo de petrolíferos así como el gas natural tienden a incrementar con respecto a las llamadas *"energías limpias"*, las cuales son las energías renovables y la energía nuclear. Sin embargo, tal parece que el mundo aún no estará listo para el año 2040 para depender más de las energías limpias y dejar el uso de las energías dependientes de petrolíferos y gas natural.

I.3. Consumo del gas natural en México.

En el informe de la Comisión Económica para América Latina y el Caribe (CEPAL) perteneciente a la Organización de las Naciones Unidas (ONU-CEPAL, 2022), la reforma energética de 2013 sometió a Petróleos Mexicanos (PEMEX) a limitaciones legales y regulatorias para que su participación no inhibiera la entrada y crecimiento de empresas privadas. Ocho años después, la industria del gas natural sigue siendo mayoritariamente pública.

El gas natural ha sido la energía más consumida desde 2014. La producción alcanzó un máximo histórico de 7,031 millones de pies cúbicos diarios (mmpcd) en 2009 y a partir de esta fecha ha disminuido esta producción.

El 62.2% del consumo de gas seco se destina a la generación de electricidad. El 60.6% de la electricidad que se consume en el país es generada con gas natural. A su vez, la producción de gas natural en México sólo permite producir el 30.3% de la demanda interna, el resto es cubierto con importaciones (cerca de un 69.7%). Restando lo que PEMEX consume, resulta que las compras externas cubrieron más del 93% de la demanda en 2020. Estados Unidos se ha posicionado prácticamente como proveedor único de gas natural a partir de abril del 2020, debido a que el suministro por gasoducto es más económico y las importaciones de gas natural licuado proveniente de otras latitudes han perdido competitividad.

Por consiguiente, México requiere aumentar su producción en gas natural, con el propósito de disminuir las exportaciones de este producto para que los costos sean más baratos y competitivos con el mercado internacional; y a su vez, esto se traduzca en un beneficio económico para la sociedad mexicana.

I.4. Gases de efecto invernadero.

Los gases de efecto invernadero son aquellos gases que atrapan el calor en la atmósfera, de acuerdo con la Agencia de Protección al Ambiental (EPA^b, por sus siglás en inglés; 2021) de los Estados Unidos (EE. UU.). Los principales gases de efecto invernadero se clasifican de la siguiente manera:

- ✓ Dióxido de carbono (CO₂): El dióxido de carbono ingresa a la atmósfera a través de la quema de combustibles fósiles (carbón, gas natural y petróleo), residuos sólidos, árboles y otros materiales biológicos; y también como resultado de ciertas reacciones químicas (p. ej.: fabricación de cemento). El dióxido de carbono se elimina de la atmósfera (o "secuestra") cuando lo absorben las plantas como parte del ciclo biológico del carbono.
- ✓ Metano (CH₄): El metano se emite durante la producción y el transporte de carbón, gas natural y petróleo. También se generan emisiones de metano en prácticas ganaderas y otras prácticas agrícolas a raíz de la descomposición de residuos orgánicos en rellenos sanitarios municipales para residuos sólidos.

^b EPA: Environmental Protection Agency.

- ✓ Óxido nitroso (N₂O): El óxido nitroso se emite durante actividades agrícolas e industriales, en la combustión de combustibles fósiles y residuos sólidos y también durante el tratamiento de aguas residuales.
- ✓ Gases fluorados: Los hidrofluorocarbonos, los perfluorocarbonos, el hexafluoruro de azufre y el trifluoruro de nitrógeno son gases de efecto invernadero sintéticos y potentes que se emiten en diversos procesos industriales. En ocasiones, los gases fluorados se utilizan como sustitutos de sustancias que destruyen el ozono de la estratósfera (p. ej.: clorofluorocarbonos, hidrofluorocarbonos y halones). Estos gases habitualmente se emiten en pequeñas cantidades pero, como son gases de efecto invernadero potentes, en ocasiones se les conoce como gases de Alto Potencial de Calentamiento Global (o "Gases de GWP alto").

El efecto de cada gas sobre el cambio climático depende de tres factores: La **concentración o abundancia** de estos gases en la atmósfera; el **tiempo de permanencia en la atmósfera**; así como las **fuerzas que pueden afectar a la atmósfera**, como por ejemplo el nivel de radiación o la temperatura de esta.

I.5. El CH₄ y el CO₂ como gases de efecto invernadero.

De acuerdo con la EPA (2022), los gases de efecto invernadero (GEI, por sus siglas en inglés) calientan la Tierra al absorber energía y reducir la velocidad a la que la energía se escapa al espacio; actúan como una manta que aísla la Tierra. Diferentes GEI pueden tener diferentes efectos sobre el calentamiento de la Tierra. Dos formas clave en las que estos gases difieren entre sí son su capacidad para absorber energía (su "eficiencia radiactiva") y el tiempo que permanecen en la atmósfera (también conocido como su "vida útil").

El Potencial de Calentamiento Global (GWP^c, por sus siglas en inglés) fue desarrollado para permitir comparaciones de los impactos del calentamiento global de diferentes gases. Específicamente, es una medida de cuánta energía absorberán las emisiones de 1 tonelada de un gas durante un período de tiempo determinado, en relación con las emisiones de 1 tonelada de dióxido de carbono (CO₂). Cuanto mayor sea el GWP, más calentará la Tierra un gas dado en comparación con el CO₂ durante ese período de tiempo. El período de tiempo que se suele utilizar para los GWP es de 100 años.

Los GWP brindan una unidad de medida común, que permite a los analistas sumar estimaciones de emisiones de diferentes gases (p. ej., para compilar un inventario nacional de GEI) y permite a los formuladores de políticas comparar las oportunidades de reducción de emisiones entre sectores y gases.

✓ El **CO**₂, por definición, **tiene un GWP de 1** independientemente del período de tiempo utilizado, porque es el gas que se utiliza como referencia. El CO₂ permanece en el sistema climático durante mucho tiempo: las emisiones de CO₂ provocan aumentos en las concentraciones atmosféricas de CO₂ que durarán miles de años.

^c GWP: Global-Warming Potential.

- ✓ El metano (CH₄) tiene un GWP de 27-30 durante 100 años. El CH₄ emitido hoy dura una década en promedio, que es mucho menos tiempo que el CO₂. Pero el CH₄ también absorbe mucha más energía que el CO₂. El efecto neto de una vida útil más corta y una mayor absorción de energía se refleja en el GWP. El CH₄ GWP también explica algunos efectos indirectos, como el hecho de que el CH₄ es un precursor del ozono, y el ozono en sí mismo es un GEI.
- ✓ El óxido nitroso (N₂O) tiene un GWP 273 veces mayor que el del CO₂ para una escala de tiempo de 100 años. El N₂O emitido hoy permanece en la atmósfera durante más de 100 años, en promedio.
- ✓ Los clorofluorocarbonos (CFC), los hidrofluorocarbonos (HFC), los hidroclorofluorocarbonos (HCFC), los perfluorocarbonos (PFC) y el hexafluoruro de azufre (SF₆) a veces se denominan gases con alto GWP porque, para una cantidad determinada de masa, atrapan mucho más calor que el CO₂. (Los GWP para estos gases pueden ser de miles o decenas de miles).

En la **Tabla 3**, se describe el GWP de los gases de efecto invernadero y su tiempo de vida en la atmósfera a través de los años.

Gas de efecto	Fuentes de emisión	Concentraciones preindustriales	Concentraciones hasta 1999	Potencial de calentamiento Atmosférico ^(a) [GWP],			Variación de la concentración en el tiempo.	Vida atmosférica	
Invernadero				-	Años		Desde 1980 y	Años	
				50	100	500	1989	7	
CO ₂	 Combustión. Producción de Cemento. Cambios de uso de suelo tropical 	280 ppm _v ⁽¹⁾	367 ppm _v	1	1	1	3.3 ± 0.1 PgC/año ⁽³⁾	50 a 200	
CH₄	 Cultivos: arroz. Rellenos sanitarios. Ganadería. Combustión de biomasa. Producción de combustibles fósiles. 	700 ppb _v ⁽²⁾	1745 ppb $_{ m v}$	62	23	7	600 Tg/año ⁽⁴⁾	12	
N ₂ O	 Agricultura. Quema de biomasa. Procesos industriales. 	275 ppb _v	314 ppb _v	275	296	156	16.4 TgN/año	114	

Tabla 3. Gases de efecto invernadero y sus potenciales de calentamiento atmosférico (GWP).
Fuente: Adaptado de SEMARNAT, 2008.

(1) Partes por millón en volumen.

⁽²⁾ Partes por mil millones en volumen.

⁽³⁾ Petagramos de carbono por año.

⁽⁴⁾ Teragramos por año.

^(a) El potencial de calentamiento atmosférico expresa la importancia relativa de los gases de invernadero con relación al CO₂ en un horizonte de tiempo determinado. Esto es así, pues los gases permanecen en la atmósfera tiempos diferentes, por lo que el potencial de calentamiento es función de cuán eficiente es el gas para absorber radiación infrarroja y cuánto

tiempo permanece en la atmósfera. Por ejemplo, en un horizonte de tiempo de 20 años, el metano puede retener 62 veces más radiación infrarroja que el CO₂.

I.6. El cambio climático.

De acuerdo con la ONU (2022), el cambio climático se refiere a los cambios a largo plazo de las temperaturas y los patrones climáticos. Estos cambios pueden ser naturales, por ejemplo, a través de las variaciones del ciclo solar. No obstante, desde el siglo XIX, las actividades humanas han sido el principal motor del cambio climático, debido principalmente a la quema de combustibles fósiles como el carbón, el petróleo y el gas.

La quema de combustibles fósiles genera emisiones de gases de efecto invernadero que actúan como una manta que envuelve a la Tierra, atrae el calor del sol y eleva la temperatura de la troposfera.

Algunos ejemplos de emisiones de gases de efecto invernadero que provocan el cambio climático son el dióxido de carbono y el metano. Estos proceden del uso de combustibles fósiles como la gasolina, por ejemplo, al conducir un coche o de la quema de carbón para calentar una caldera con la finalidad de mantener una temperatura cálida en una casa o un edificio. El desmonte de tierras y bosques también puede liberar dióxido de carbono. Los vertederos de basura son una fuente importante de emisiones de metano. La energía, la industria, el transporte, los edificios, la agricultura y el uso del suelo se encuentran entre los principales emisores.

En términos científicos de acuerdo con la ONU (2021), el cambio climático quedó definido en el reconocimiento de la emergencia de la COP 26 celebrada en Glasgow, Reino Unido. Justo en el punto donde se específica el **"Reconocimiento de la emergencia"**, que establece:

✓ Los países reafirmaron el objetivo del Pacto de París de limitar el incremento de la temperatura media mundial a 2 °C por encima del nivel preindustrial y esforzarse por no superar 1.5 °C. Además, expresaron la "alarma y máxima preocupación en relación con las actividades humanas que han provocado un incremento de 1.1 °C en las temperaturas hasta la fecha, los efectos del cual ya se aprecian en todas las regiones, y con que los presupuestos de carbono actuales destinados a alcanzar el objetivo de temperatura del Pacto de París son poco ambiciosos y se exceden rápidamente". Reconocieron que la repercusión del cambio climático será mucho menor con un incremento de la temperatura de 1.5 °C que de 2 °C.

I.7. Perspectivas para el CO₂ y su efecto en el Cambio Climático.

Si bien se ha mencionado en las secciones anteriores acerca de que el CO_2 y el CH_4 se consideran gases de efecto invernadero y que el GWP del CH_4 es de 27-30 veces mayor al del CO_2 , es importante mencionar que este efecto sólo se da cuando el CH_4 es emitido a la atmósfera directamente y permanece ahí de acuerdo al tiempo de su vida media que es aproximadamente una década. Sin embargo, en la industria energética, el CH_4 no es precisamente emitido a la atmósfera, sino consumido en el proceso de obtención de energía calorífica a través de su combustión, obteniendo como resultado de su transformación CO_2 , entre otros compuestos producidos por el efecto de la combustión.

De acuerdo con Nedgia (2022), la combustión del CH₄ es relativamente más limpia, a diferencia de otros hidrocarburos de cadena más larga, debido a que su combustión no produce partículas sólidas, ni azufre (siempre y cuando no esté contenido dentro de su composición, sin embargo, esto estaría determinado por la fuente de origen de extracción del gas natural). Así pues podemos concluir que el gas natural es una de las fuentes de energía fósiles más limpia, debido a que es la que emite menos gases contaminantes durante su proceso de combustión (tales SO₂, CO₂, NO_x, y CH₄) por unidad de energía producida.

En la **Figura 2,** se ilustran las emisiones de CO_2 (en g CO_2/kWh) de acuerdo a diferentes fuentes generadoras de energía; podemos observar que la fuente con mayor emisión de CO_2 son las calderas de carbón; así como la de menor emisión son las caldera que utilizan como combustible la biomasa. Cabe destacar que las calderas de gas natural se encuentran aproximadamente por la media promedio de la emisión de CO_2 y si descartamos la emisión de la biomasa, el gas natural sería el menor emisor de g CO_2/kWh dentro de este grupo de calderas que se están comparando.

Figura 2. Emisiones de CO₂. En el eje de las ordenadas se muestran los [g CO₂/kWh] útil generado. Fuente: Fundación de Gas Natural, 2009.

En la **Figura 3**, se describe el factor de emisión por contaminante criterio^d en [g/kWh] útil generado. Cabe destacar que la electricidad generada por efecto joule es la mayor emisora de SO₂, que provoca Iluvia ácida en la atmósfera, así como de NO_x que son precursores de ozono troposférico.

A pesar de que las calderas de biomasa son las menores emisoras de CO₂ (véase **Figura 2**), tienen un alto factor de emisión de compuestos orgánicos volátiles, que son precursores de ozono troposférico, así como una alta emisión de partículas, que son nocivas para la salud humana.

Por otro lado, observamos que las calderas que usan CH₄ como combustible para la generación energía, tiene factores de emisión muy bajos para los 5 contaminantes criterios que se muestran en la **Figura 3.**

Figura 3. Factor de emisión de contaminantes criterio en [g/kWh] útil generado Fuente: Fundación de Gas Natural, 2009

De acuerdo con lo expuesto en párrafos anteriores, podemos observar que la tendencia del uso del gas natural se proyecta hasta el 2040 (véase **Figura 1**); superando el consumo de energías como la quema del carbón, las energías renovables y la energía nuclear, se considera una de las energías más limpias en su producción. Por tanto, la tendencia ambiental actual es disminuir el uso de hidrocarburos como fuentes de energía, de acuerdo con la **Figura 3**, se puede concluir que la combustión del gas natural es una de la más limpias (descartando la energía nuclear), debido a sus

^d Los contaminantes criterio son aquellos contaminantes normados a los que se les han establecido un límite máximo permisible de concentración en el aire ambiente, con la finalidad de proteger la salud humana y asegurar el bienestar de la población. Se miden de manera continua los contaminantes criterio: ozono (O₃), dióxido de azufre (SO₂), monóxido de carbono (CO), dióxido de nitrógeno (NO₂), las partículas en suspensión (PM10, PM2.5) y el plomo (Pb) (México, 2021).

bajas emisiones de contaminantes criterio a la atmósfera; y comparado con sus homólogos de mayor cadena o hidrocarburos de uso común, como las gasolinas o el diésel u otros derivados del petróleo, que sean utilizados para la generación de energía.

Por tanto, México debe utilizar energías más limpias y que estas a su vez le permitan incrementar su desarrollo económico, sin comprometer los acuerdos internacionales de protección al medio ambiente que el país ha venido firmando durante su historia. Tenemos el ejemplo de los Acuerdos de París ratificados el 21 de septiembre del 2016 por el Gobierno Federal (Gobierno de México, 2016), donde en su numeral no. 5 establece desacoplar el crecimiento económico de la emisión de contaminantes de efecto invernadero.

CAPÍTULO II: II. Antecedentes bibliográficos de la hidrogenación catalítica de CO₂.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

División de Ciencias Básicas e Ingenierías (CBI) Laboratorio de catálisis ambiental.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Capítulo II:

Antecedentes teóricos de la hidrogenación catalítica de CO₂.

En este capítulo se analizarán los antecedentes bibliográficos relativos a la hidrogenación catalítica del CO₂ a CH₄ utilizando catalizadores Fe, Co, y Ni soportados en un óxido mixto de CeO₂-ZrO₂ como propuesta para la obtención de metano (CH₄, gas natural) a partir del CO₂ (aire atmosférico).

Para su estudio se dividirá en los siguientes rubros:

- Generalidades de la hidrogenación del CO₂.
- Las reacciones involucradas en la hidrogenación del CO₂.
- Tendencias actuales sobre la hidrogenación catalítica del CO₂.(especificar si es a nivel industrial)
- ♦ La hidrogenación catalítica del $CO_2 \rightarrow CO$.
- ♦ La hidrogenación catalítica del $CO_2 \rightarrow CH_4$.
- Selección del soporte y los metales con mayor actividad catalítica para la reacción de hidrogenación catalítica del CO2

II.1. Generalidades de la hidrogenación del CO₂.

La conversión de CO₂ (por hidrógeno) en combustibles no sólo mitiga su emisión a la atmósfera terrestre, sino que también produce productos químicos básicos que pueden usarse como combustibles o como precursores en muchos procesos químicos industriales (Kattel et al., 2017).

La transformación química del CO_2 a productos químicos útiles se puede realizar mediante dos métodos diferentes:

- (i) reducción electroquímica de CO₂
- (ii) reducción termo catalítica de CO₂.

Además de la actividad catalítica, la selectividad para la conversión de CO₂ es igualmente o incluso más importante en la práctica. Hasta donde sabemos, el papel esencial de la interfase metal/óxido para controlar la selectividad de la conversión de CO₂ no ha sido revisado de manera crítica. La Perspectiva actual tiene como objetivo identificar las tendencias generales, así como los desafíos y oportunidades, en el diseño de interfaces metal/óxido para lograr la hidrogenación selectiva de CO₂. Debido a la complejidad de la red de reacción para la hidrogenación de CO₂ (véase **Figura 4**), se pueden formar múltiples productos y la separación de productos puede ser muy costosa en aplicaciones prácticas.

II.2. Las reacciones involucradas en la hidrogenación del CO₂.

La metanación de CO₂ implica varias reacciones secundarias, como se muestra en la **Tabla 4**; cada una con su propio conjunto de parámetros termodinámicos. En la **Tabla 4**, se puede ver que todas estas reacciones dependen de la temperatura y tienen una mayor influencia en la formación del CH₄, a su vez existen reacciones competitivas como es la formación de CO (Reverse Water Gas Shift,

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA HIDROGENACIÓN CATALÍTICA DEL CO₂A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂- ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. TESIS DE GRADO: NIVEL MAESTRÍA

Consejo Nacional de Ciencia y Tecnología (conacyt)

reacción no. 4, véase **Tabla 4**); o en su defecto la reacciones de formación de C elemental en fase gas (reacciones no. 2 y 11, véase **Tabla 4**); la reacción de descomposición del CH₄ (reacción no. 8, véase **Tabla 4**); y en caso de que el etano C_2H_6 , sea considerado como un producto no deseado, entonces también tendrá que ser considerada una reacción competitiva (reacciones no. 5 y 12, véase **Tabla 4**).

			Parámetros termodinámicos				
No.	Nombre de la	Ecuación		a T=25°C y	P= 0.1 MPa		
	reaccion		ln(K)	ΔG [kJ/mol]	ΔS [kJ/K]	ΔH [kJ/mol]	Observaciones
1	Metanación de CO ₂	$CO_2(g) + 4H_2(g) \subseteq CH_4(g) + 2H_2O(g)$	24.868	-141.932	-214.497	-164.747	Termodinámicamente factible y espontánea para una T < 600°C, exotérmica
2	Reducción de CO ₂	$CO_2(g) + 2H_2(g) \subseteq C(g) + 2H_2O(g)$	11.003	-62.800	-91.722	-90.147	Termodinámicamente factible y espontánea para una T < 600°C, exotérmica
3	Hidrogenación de CO₂ a CH₃OH	$2CO_2(g) + 3H_2(g) \leftrightarrows CH_3OH(g) + 2H_2O(g)$	-0.61	3.484	-177.109	-49.321	Termodinámicamente factible y espontánea para una T < 25°C, exotérmica
4	Reverse Water Gas Shift (RWGS)	$CO_2(g) + 2H_2(g) \leftrightarrows CO(g) + 2H_2O(g)$	-5.011	28.602	42.045	41.138	Termodinámicamente factible y espontánea para una T > 800 °C, endotérmica
5	Hidrogenación de CO ₂ a C ₂ H ₆	$2CO_2(g) + 7H_2(g) \leftrightarrows C_2H_6(g) + 4H_2O(g)$	27.759	-158.43	-357.361	-264.978	Termodinámicamente factible y espontánea para una T < 425°C, exotérmica
6	Reformación seca de CH₄	$CO_2(g) + CH_4(g) \leftrightarrows 2CO(g) + 2H_2(g)$	-29.879	170.535	256.452	247.023	Termodinámicamente factible y espontánea para una T > 625 °C, endotérmica
7	Boudouard reaction	$2CO(g) \leftrightarrows C(g) + CO_2(g)$	21.026	-120.004	-175.812	-172.423	Termodinámicamente factible y espontánea para una T < 700°C, exotérmica
8	CH₄ cracking	$CH_4(g) \leftrightarrows C(g) + 2H_2(g)$	-8.853	50.53	80.73	74.6	Termodinámicamente factible y espontánea para una T > 525 °C, exotérmica
9	Metanación de CO	$CO(g) + 3H_2(g) \subseteq CH_4(g) + H_2O(g)$	19.857	-113.330	-172.452	206	Termodinámicamente factible y espontánea para una T < 625°C, exotérmica
10	Hidrogenación de CO a CH₃OH	$CO(g) + 2H_2(g) \leftrightarrows CH_3OH(g)$	4.401	-25.118	-219.153	-90.459	Termodinámicamente factible y espontánea para una T < 150°C, exotérmica
11	Reducción de CO	$CO(g) + H_2(g) \leftrightarrows C(g) + H_2O(g)$	16.015	-91.402	-133.767	-131.285	Termodinámicamente factible y espontánea para una T < 675°C, exotérmica
12	Hidrogenación de CO a C ₂ H ₆	$2CO(g) + 5H_2(g) \leftrightarrows C_2H_6(g) + 2H_2O(g)$	37.782	-215.635	-441.45	-347.254	Termodinámicamente factible y espontánea para una T < 675°C, exotérmica

Tabla 4 . Sistema	de reacciones en la metar	nación de CO₂ y su	interpretación termodinámic	ca.
	Fuente: Adaptado	de Hussain et al.,	2021.	

De acuerdo con la bibliografía consultada para este trabajo, las reacciones termodinámicamente esperadas para este trabajo experimental son las reacciones no. 1: metanación del CO_2 (T < 600°C, exotérmica), reacción no. 4: Reverse Water Gas Shift (RWGS, T > 800 °C, endotérmica). y la reacción no. 9: metanación del CO (T < 625 °C, exotérmica). Aunque la reacción no. 4, es espontánea a una temperatura mayor a los 800 °C, cuando esta reacción se realiza sobre catalizadores que promueven la hidrogenación catalítica del CO₂, la temperatura en la que esta reacción es espontánea disminuye promoviendo que esta reacción sea competitiva con la reacción no. 1, qué es la reacción principal en la hidrogenación catalítica del CO₂.

II.3. Reacciones de hidrogenación de CO₂ sobre catalizadores metálicos.

La fuerza del enlace entre el hidrógeno y las superficies metálicas se incrementa al aumentar el número de orbitales *d* vacíos. La actividad catalítica máxima no se alcanza cuando el enlace es demasiado fuerte y los productos no se desorben fácilmente de la superficie. En consecuencia, este máximo de actividad catalítica ocurre cuando hay aproximadamente un orbital vacío por átomo (Fogler, 2008).

Estudios recientes han proporcionado cómo las interacciones sinérgicas en la interfase metal/óxido pueden ajustar los mecanismos de reacción y, a su vez, la selectividad en la reacción de hidrogenación de CO₂. Por lo general, la actividad del catalizador metálico está asociada con múltiples sitios catalíticos disponibles en la interfase metal/óxido, según estudios recientes que utilizan técnicas experimentales operando *in situ* y cálculos teóricos, donde los efectos bifuncionales y/o electrónicos contribuyen a modificar la fuerza de unión de acuerdo con Kattel et al., (2017). La interfase metal/óxido proporciona múltiples sitios para la adsorción de los intermediarios de la reacción. En algunos casos, se ha observado que la participación simultánea de los sitios metálicos en las nanopartículas metálicas y los sitios M⁺ o O²⁻ de los óxidos que logran estabilizar los intermediarios de la reacción clave, por ejemplo, *CO₂, *C_xH_y y las especies*C_xH_yO_z (por ejemplo, un grupo aldehído quimisorbido: *HCOO). En este sentido, la interfase metal/óxido es funcional para ambos casos (Kattel et al., 2017). En la **Figura 4**, se ilustra el mecanismo de sorción de los principales reactivos en la reacción de hidrogenación catalítica del CO₂.

II.4. La hidrogenación catalítica del $CO_2 \rightarrow CO$.

En estudios recientes se ha informado que varios metales, incluidos los metales preciosos Pt, Pd, Rh, y Au y los metales de transición considerados como "no preciosos" son Cu, Fe, y Ni soportados en óxidos, son activos en la producción de monóxido de carbono (CO) (Kattel et al., 2017).

El Cu fue uno de los catalizadores metálicos ampliamente estudiados para la reacción RWGS, cuya actividad catalítica para la hidrogenación de CO_2 resultó ser sensible a su dispersión, morfología superficial y tamaño de partícula. La hidrogenación de CO_2 a CO a través de la reacción RWGS puede proceder a través del intermedio aldehído (*HOCO, véase **Figura 4**). Alternativamente, el *CO₂ se puede disociar en *CO + *O a través de la ruta directa de escisión del enlace C–O, y el *CO formado se puede desorber como un producto CO(g)(Kattel et al., 2017).

Kattel et al., (2017), realizó los cálculos de la teoría funcional de la densidad (DFT, por sus siglas en inglés), que se muestran en la **Figura 4**. Sus cálculos mostraron que el CO₂ se activó y se unió en la interfase metal/óxido a través de una configuración con el átomo de C de *CO₂ unido al sitio del metal y uno de los átomos de O de CO₂ unido al catión metálico (M⁺) del soporte de óxido para varios soportes de óxido, por ejemplo, SiO₂, Al₂O₃, TiO₂, CeO₂, ZrO₂, In₂O₃ y ZnO. La disociación del H₂ molecular ocurrió con relativa facilidad en los sitios metálicos , y también se observó que el enlace de los átomos de hidrógeno en los sitios metálicos de los soportes de óxido, por ejemplo, SiO₂, TiO₂, ZrO₂, formaron superficies de óxido hidroxilado. En algunos casos, por ejemplo, Pt/SiO₂ y Cu/TiO₂, *CO₂ sufrió hidrogenación y formó *HOCO, que se disocia para producir *CO que puede ocurrir en los sitios interfaciales de metal o de metal/óxido. La unión relativamente fuerte de *HOCO fue necesaria para su disociación con una energía de activación baja (Kattel et al., 2017).

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

Figura 4. Posibles rutas de reacción de la hidrogenación de CO₂ a CO, CH₃OH y CH₄; *(X) indica la especie adsorbida en el catalizador. Fuente: Kattel et al., 2017.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

División de Ciencias Básicas e Ingenierías (CBI) Laboratorio de catálisis ambiental.

16

Consejo Nacional de Ciencia y Tecnología (conacyt)

II.5. La hidrogenación catalítica del $CO_2 \rightarrow CH_4$.

Se puede convertir CO₂ en CH₄ mediante H₂, o metanación de CO₂, CO_{2(g)} + 4H_{2(g)} \rightarrow CH_{4(g)} + 2H₂O_(g), es una forma prometedora de producir gas natural sintético. Como se resume en la **Tabla 5**, se ha demostrado que los catalizadores de Ni soportados en varios óxidos, SiO₂, Al₂O₃, TiO₂, CeO₂, y ZrO₂ promueven la reacción de metanación del CO₂. Se descubrió que la actividad de los catalizadores basados en Ni para la metanación de CO₂ se promueve mediante la adición de segundos metales u otros óxidos. Por ejemplo, se ha observado la sinergia entre los metales preciosos Rh o Ru y Ni tanto en la actividad como en la selectividad del Ni- catalizadores basados en Ce_xZr_{1-x}O₂. Además, la carga de Ni también ha desempeñado un papel importante tanto en la actividad como en la selectividad para la metanación de CO₂. Un estudio experimental reciente mostró que tanto la conversión de CO₂ como la selectividad de CH₄ del catalizador de Ni/γ-Al₂O₃ se vieron afectadas por el contenido de Ni, y el 20 % en peso de la impregnación de Ni mostró la mayor actividad y selectividad. Ru y Rh soportados en óxidos también fueron ampliamente estudiados (Hussain et al., 2021).

II.6. Selección del soporte y los metales con mayor actividad catalítica para la reacción de hidrogenación catalítica del CO₂

Para determinar el mejor soporte en conjunto con los metales con mayor actividad catalítica para la metanación de CO₂, se estudiarán los siguientes rubros:

- Los catalizadores para la hidrogenación catalítica del CO₂.
- Análisis de catalizadores soportados en el soporte de óxido mixto de CeO₂-ZrO₂ y su uso en la obtención de CH₄.

II.6.1. Los catalizadores idóneos para la hidrogenación catalítica del CO₂.

Los metales más activos para reacciones que incluyen hidrógeno son, por lo general, el Co, Ni, Rh, Ru, Os, Pd, Ir y Pt. Por otra parte, V, Cr, Nb, Mo, Ta y W, cada uno de los cuales tiene gran número de orbitales *d* vacíos, relativamente inactivos como resultado de la fuerte adsorción de los reactivos, o los productos de ambos. Sin embargo, los óxidos de Mo (MoO₂) y Cr (Cr₂O₃) son bastante activos, lo que sucede también con la mayoría de las reacciones que incluyen al hidrógeno (Fogler, 2008).

Previamente, varios estudios han demostrado que diferentes metales de transición exhiben una amplia gama de selectividad de metano para la hidrogenación de CO₂, durante el desempeño de la actividad catalítica de catalizadores monometálicos. Por ejemplo, Mutschler et al. (2018), analizó una serie de metales de transición que mantienen sus propiedades catalíticas estables durante la hidrogenación de CO₂ y descubrió que el Co y el Ni exhiben una alta actividad y selectividad hacia la formación de metano con menos producción de CO.

El Fe, por otro lado, ha estado principalmente involucrado en la formación de CO debido a la reacción RWGS. El Cu no mostró ninguna actividad catalítica como un metal prístino para la hidrogenación de CO₂. Se ha observado que las energías de activación observadas en Co y Ni son 77 kJ/mol 74 kJ/mol, respectivamente.

Consejo Nacional de Ciencia y Tecnología (conacyt)

En general, la formación de metano y CO depende en gran medida de la elección del metal y la presión (véase **Tabla 5**). El uso de catalizadores basados en Pd, Fe, Pt y Cu produce CO como producto principal a través de la reacción RWGS. Mientras que los catalizadores basados en Rh, Ru, Co y Ni producen metano como producto principal durante la hidrogenación de CO_2 a presión atmosférica.

Kattel et al. (2017), presenta una tabla comparativa sobre catalizadores estudiados para la metanación del CO_2 en términos de la conversión, la selectividad y las condiciones de reacción para catalizadores con la estructura metal/óxido (tabla 1 en Kattel et al., 2017); esta tabla se puede consultar en el Anexo I de este trabajo. En la **Tabla 42**, se presenta el comparativo entre los diferentes catalizadores que han sido estudiados para la reacción de hidrogenación catalítica del CO_2 .

Algunos metales, como Rh, Ni y Co, también tienen una gran actividad catalítica en las reacciones de metanación. Los metales activos juegan un papel decisivo en la formación de metano al ajustar la selectividad hacia los productos de CH₄ y CO durante la metanación o hidrogenación de CO₂. Para ello se han llevado a cabo varios estudios para mejorar la formación de metano mediante la selección de metales activos adecuados.

En la **Tabla 5,** es un extracto de los datos reportados en Kattel et al., (2017), en la cual se enlistan los catalizadores de Ni que enfatizan las propiedades de la actividad catalítica que promueven la conversión de $CO_2 \rightarrow CH_4$ El Ni es el metal que ha presentado mayor actividad catalítica y selectividad para la reacción de hidrogenación catalítica del CO_2 . Diferentes autores han utilizado óxidos como soportes para él Ni como el Al₂O₃, SiO₂, CeO₂, MgO, ZrO₂ y Nb₂O₅. Algunos otros autores han utilizado óxidos mixtos como soportes para el Ni, por ejemplo: Al₂O₃- CeO₂, CeO₂-Al₂O₃, Zr_{0.75}- Ce_{0.25}O₂ y Al₂O₃- ZrO₂. Otros autores han optado por utilizar catalizadores bimetálicos utilizando el Ni y el Co (Ni-Co) como metales activos para la reacción de hidrogenación catalítica del CO₂.

NA-t-1	Catalian da n	Condiciones de reacción			Conversión	Selectividad [%]		
Metal	Catalizador	Proporción H ₂ :CO ₂	Temperatura [°C]	Presión [MPa]	[%]	со	СН₃ОН	CH₄
	Ni/γ- Al ₂ O ₃	3.5	350	0.1	~75			100
	Ni/Al ₂ O ₃	04:01	250	0.1	39	11.6		97
:=	Ni/SiO ₂	04:01	300	0.1	42.4	~40		96.6
2	10% Ni/SiO ₂	N/A	350	0.1	~10			~90
	Ni/CeO ₂	05:01	450	0.1	~80			~100
	Ni/CeO ₂	04:06	340	0.1	91.1			100
	Rh/γ - Al_2O_3	04:01	200	5	~98	88.1	6.8	~100
ч	Rh/ZrO₂	03:01	240	2	N/A			99.9
R	Rh/MgO	03:01	240	1	N/A			99
	Rh/Nb₂O₅	03:01	260	1	N/A			100
n	Ru/TiO ₂	04:01	160	0.1	N/A			100
R	Ru _{0.01} Ce _{0.99} O ₂	04:01	500	N/A	16			90

Tabla 5. Extracto de lo reportado en Kattel et al., (2017), enfocando los catalizadores de mayor selectividad y conversión. Fuente: Adaptado Kattel et al., 2017.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

División de Ciencias Básicas e Ingenierías (cbi) **laboratorio de catálisis ambiental.** HIDROGENACIÓN CATALÍTICA DEL CO₂ A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂- ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO.

Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Matal	Catalizadar	Condiciones de reacción		Condiciones de reacción Conversión		:	Selectividac [%]	ł
wetai	Catalizador	Proporción H ₂ :CO ₂	Temperatura [°C]	Presión [MPa]	[%]	со	СН₃ОН	CH₄
	$Ru/CeO_2/Al_2O_3$	04:01	250	0.1	~20		97	~100
Pd-Mg	Pd-Mg/SiO ₂	04:01	450	0.1	59.2	11.5		95.3
	15Ni-5Co/Al ₂ O ₃ - CeO ₂	~19	300	2	N/A			100
N-CC	15Ni-5Co/Zr _{0.75} - Ce _{0.25} O ₂	~19	300	2	N/A			99
	15Ni-5Co/Al ₂ O ₃ - ZrO ₂	~19	300	2	N/A	~100		98

En la **Tabla 5**, se observó que los catalizadores más activos (con respecto a la selectividad >90% hacia CH₄), destacan los catalizadores de rodio (Rh, conversión promedio 98%), rutenio (Ru, conversión promedio 17%), níquel (Ni, conversión promedio 56.25%), Bimetálicos como paladio-magnesio (Pd, conversión promedio 59.2%), níquel-cobalto (Ni-Co, conversión promedio sin reportar), siendo los catalizadores de Rh, Pd-Mg y Ni, los que presentan mayor conversión hacía CH₄.

Con respecto a la selectividad se observaron que los catalizadores de Rodio (Rh, selectividad promedio 99.72%), Rutenio (Ru, selectividad promedio 96.67%), Níquel (Ni, selectividad promedio 97.26%), Bimetálicos Paladio-Magnesio (Pd-Mg, selectividad promedio 95.35%), Níquel-Cobalto (Ni-Co, selectividad promedio 99%), muestran selectividades altas para la conversión de $CO_2 \rightarrow CH_4$.

Dado que los catalizadores de Ru y Rh son caros para fabricarlos en una escala industrial y los catalizadores bimetálicos de Ni-Co no existe una conversión reportada para la hidrogenación de CO_2 . Para este trabajo se seleccionó los catalizadores de Ni soportados en CeO_2 , debido a la alta selectividad que tiene hacia CH_4 y una alta actividad catalítica durante la reacción de hidrogenación del CO_2 .

CAPÍTULO **III:** III. Objetivos e hipótesis.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

División de Ciencias Básicas e Ingenierías (CBI) Laboratorio de catálisis ambiental.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Capítulo III: Objetivos e hipótesis.

III.1. Objetivos generales.

III.2. Objetivos particulares.

- Preparar un soporte de óxido mixto de CeO₂-ZrO₂, utilizando el método de coprecipitación y caracterizar por medio de la técnica de difracción de rayos X (XRD) para conocer sus propiedades cristalinas y la técnica fisisorción de N₂ para caracterizar el área superficial disponible por gramo de catalizador obtenida en la preparación de este soporte y comparar con lo reportado en la literatura.
- Preparar tres catalizadores de: Fe/CeO₂-ZrO₂, Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂ a través del método de impregnación húmeda y caracterizar a través de las técnicas de espectroscopia UV-vis para determinar los complejos depositados sobre el soporte de CeO₂-ZrO₂.
- Observar a través de microscopía electrónica, SEM y HRTEM, para conocer la morfología de la superficie catalítica.
- Aplicar la técnica de espectroscopia fotoelectrónica de rayos X (XPS), para determinar las especies reducidas y oxidadas en el soporte; y la temperatura de reducción programada (TPR) para comparar las especies reducidas y oxidadas con el análisis XPS.
- Aplicar a la técnica de temperatura de reducción elegida para estos catalizadores es adecuada en el proceso experimental así como para confirmar las especies reducidas en el catalizador.
- Evaluar la actividad catalítica de los para los catalizadores de Fe, Co y Ni soportados en el óxido mixto CeO₂-ZrO₂ en términos de la rapidez, la conversión, el rendimiento y la selectividad en la reacción de hidrogenación catalítica del CO₂ hacia CH₄ y su reacción competitiva de RWGS que representa la reacción de hidrogenación catalítica del CO₂ hacia CO.

III.3. Hipótesis.

CAPÍTULO IV: IV. Metodología experimental.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

POSGRADO EN ENERGÍA Y MEDIO AMBIENTE REMEDIACIÓN AMBIENTAL QUÍMICA.

DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍAS (CBI) LABORATORIO DE CATÁLISIS AMBIENTAL.

Capítulo IV: Metodología experimental.

IV.1. Preparación del soporte: método de coprecipitación.

Se preparó un óxido mixto en relación 60% (CeO₂) y 30% (ZrO₂) en mol a partir de las siguiente sales precursoras:

- ✓ $(NH_4)_2Ce(NO_3)_6$ •6H₂O; Marca: Aldrich[®], Lote: BCCD0762.
- ✓ ZrO(NO₃)₂•xH₂O; Marca: Aldrich[®]; Lote: 04812CH.

Se utilizó el método de coprecipitación para la preparación del catalizador de acuerdo lo siguiente:

- I. Pesar cantidad suficiente para mantener la relación estequiométrica 60% de Ce y 40% Zr. Para este trabajo se prepararon 10 g aproximadamente.
- II. Disolver la cantidad pesada en un vaso de precipitado, mantener agitación constante, y ajustar el pH a 9 con una solución de NH₄OH @ 1 M.
- III. Dejar precipitar con agitación constante durante 2 h.
- IV. Filtrar el precipitado obtenido hasta mantenerlo seco.
- V. Dejar madurar el precipitado obtenido durante 24 h.
- VI. Posteriormente, secar el precipitado a una temperatura de 125 °C, durante 24 h.
- VII. Calcinar el soporte a 500 °C durante 4 h.

IV.2. Preparación de los catalizadores Fe, Co y Ni: método de impregnación húmeda.

Se utilizaron las siguientes sales para la impregnación de 1.5 g de soporte para cada catalizador preparado.

- ✓ Fe(NO₃)₃•9H₂O; Marca: Sigma-Aldrich[®], Lote: MKCH8889.
- ✓ Co(NO₃)₂•6H₂O; Marca: Sigma-Aldrich[®], Lote: MKBP2728V.
- ✓ Ni(NO₃)₂•6H₂O; Marca: Aldrich[®], Lote: 07113PW.

Se utilizó el método de impregnación húmeda para depositar los metales de Fe, Co y Ni, sobre 1.5 g de soporte de óxido mixto de CeO₂-ZrO₂

- I. Pesar la cantidad suficiente de las sales precursoras mencionadas anteriormente para completar una distribución del metal de interés de 5 átomos/nm².
- II. Disolver cada una de las sales en aproximadamente 1 mL de agua destilada o desionizada.
- III. Utilizar las soluciones anteriores para humedecer el soporte, previamente calentado en una parrilla eléctrica.
- IV. Mientras está en la parrilla eléctrica, agitar con la espátula hasta que el exceso de agua se evapore.
- V. Secar a 125 °C durante 24 h.

IV.3. Caracterización del soporte de óxido mixto de CeO₂-ZrO₂.

Se utilizaron las siguientes técnicas para caracterizar el soporte, preparado en el numeral IV.1:

- Fisisorción de N₂, con la finalidad de conocer el área superficial del soporte y su porosidad. El análisis se llevará a cabo en un analizador automático de sorción de gas de la marca Autosorb IQ[®] (Quantachrome Instruments[®]), Modelo: ASIQCOVGO00-2, para la determinación del área superficial a través del método de la isoterma de BET.
- ✓ Difracción de rayos X (XRD, por sus siglas en inglés), con la finalidad de conocer la fase del soporte la técnica se llevará a cabo en un equipo de XRD de la marca Bruker[®], modelo: D8 Advance.

IV.4. Caracterización de los catalizadores Fe, Co y Ni soportados en CeO₂-ZrO₂.

Se utilizaron las siguientes técnicas analíticas para la caracterización de los catalizadores Fe, Co y Ni soportados en CeO₂-ZrO₂.

- ✓ Espectroscopía UV-vis Líquidos: se utilizó para identificar las bandas de absorción de las sales precursoras de los metales de interés, en disolución acuosa. Este análisis se llevó a cabo en el Espectroscopio de UV-Vis de la marca Agilent® modelo Cary 60 UV-Vis.
- Espectroscopia UV-vis de reflectancia difusa (DRS, por sus siglas en inglés): se utilizó para identificar las bandas de absorción de los complejos depositados durante la impregnación sobre el soporte. Este análisis se llevará a cabo en el Espectroscopio UV-vis con esfera de integración para sólidos de la marca *Perkin Elmer®*, modelo *Lambda 35*.
- Microscopía electrónica de barrido (SEM, por sus siglas en inglés): se utilizó para conocer la morfología de la superficie de los catalizadores de interés. Esta técnica se llevó a cabo en el Laboratorio de Microscopía Electrónica de la UAM-Iztapalapa, en el equipo de la marca: *Jeol,* modelo: *JSM7600-F.*
- Microscopía de transmisión electrónica de alta resolución (HRTEM, por sus siglas en inglés), se utilizó para conocer el tamaño de partícula y comprobar la estructura cristalina que se determina en el análisis XRD. Esta técnica se llevará a cabo en el Laboratorio de Microscopía Electrónica de la UAM-Iztapalapa, en el equipo de la marca: Jeol, modelo: JEM-2100F.
- ✓ Espectroscopia fotoelectrónica de rayos X (XPS, por sus siglas en inglés), se utilizó para conocer el estado de oxidación de las especies reducidas en los catalizadores de Fe, Co y Ni sobre el soporte de óxido mixto CeO₂-ZrO₂. El análisis se llevó a cabo en las Instalaciones de la Universidad de Guanajuato (UGTO), Campus Guanajuato, en un equipo de la marca: Thermo Scientific[®] K-Alpha X-ray Photoelectron Spectrometer (XPS) System, equipado con un MgKα como fuente de rayos X (1253.6 eV). La señal del pico C1s se utilizó con energía de enlace de 285 eV se usó para la corrección en las muestras.
- ✓ Temperatura programada de reducción (TPR, por sus siglas en inglés), se utilizó para conocer el número de especies reducibles en las muestras. Se llevó a cabo en el Instituto de

Ciencias Aplicadas y Tecnología (ICAT) de la Universidad Nacional Autónoma de México (UNAM); en el equipo de la **marca**: *Micromeritics*[®], **modelo**: *AutoChem II*.

IV.5. Evaluación catalítica de los catalizadores Fe, Co y Ni soportados en CeO₂-ZrO₂.

La evaluación catalítica de los catalizadores se llevará a cabo en un reactor de cuarzo de diámetro interno (DI) 7.05 mm; diámetro externo (DE) 1.37 mm; y una longitud de 37 cm, montado en un sistema para reacción de gases como se muestra en la **Figura 5**:

Figura 5. Diagrama de instrumentación y tubería (DTI) del sistema de reacción para la hidrogenación catalítica de

Los resultados de la actividad catalítica fueron capturados por un cromatógrafo de gases (GC) HP 5890 con un detector de ionización de llama (FID, por sus siglas en inglés) y un detector de conductividad térmica (TCD, por sus siglas en inglés); para la detección de los compuestos de interés. El cromatógrafo fue equipado por una columna *Carboxen® 1010 PLOT*, que es una columna capilar fundida en sílice 30 m x 0.53 mm.

IV.5.1. Activación de los catalizadores Fe, Co y Ni soportados en CeO₂-ZrO₂ (reducción).

El proceso de reducción para la activación de los catalizadores se lleva a cabo de la siguiente manera:

- I. Pesar entre 50 mg o 60 mg del catalizador de interés.
- II. Montar la cantidad pesada en el reactor y a su vez montar este sobre el sistema de reacción para gases.
- III. Abrir la válvula de H₂ y ajustar el flujo de H₂ a 100 mL/min.
- IV. Calentar la muestra a 500 °C.

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

- V. A partir de los 500 °C mantener el sistema de reacción durante 3 h., evitar fugas y asegurarse que el sistema está completamente aislado del aire ambiente.
- VI. Después de las 3 h., dejar enfriar el sistema hasta 70 °C y aislarlo del aire ambiente.
- VII. Reservar el catalizador en atmósfera inerte hasta que se dé comienzo a la reacción de estudio.

IV.5.2. Condiciones de la reacción de hidrogenación de CO₂ hacia metano para la evaluación de la desactivación térmica de la actividad catalítica en los catalizadores Fe, Co y Ni soportados en CeO₂-ZrO₂ a 400 °C (estabilidad térmica de la actividad catalítica).

En la reacción de hidrogenación de CO₂ hacia metano se desarrolló la evaluación de desactivación térmica de la actividad catalítica para los catalizadores Fe, Co y Ni soportados en CeO₂-ZrO₂ (estabilidad térmica de la actividad catalítica); para evaluar esta propiedad utilizaron las siguientes condiciones:

- I. Flujo de H_2 en 60 mL/min.
- II. Flujo de CO₂/N₂ (20%:80%) en 60 mL/min.
- III. Elevar la temperatura de la muestra hasta 400 °C.
- IV. Analizar en el cromatógrafo de gases cada 20 a 30 min, según las condiciones establecidas en el método de análisis cromatográfico.

IV.5.3. Condiciones de la reacción de hidrogenación de CO₂ hacia metano para la evaluación de la actividad catalítica en los catalizadores Fe, Co y Ni soportados en CeO2-ZrO2 a diferentes temperaturas.

Para la reacción de hidrogenación de CO_2 hacia metano se desarrolló la evaluación de la actividad catalítica para los catalizadores Fe, Co y Ni soportados en CeO_2 -Zr O_2 utilizando las condiciones de la sección anterior (véase **Sección IV.5.2**), exceptuando el numeral III donde en vez de mantener una temperatura constante de reacción a 400 °C, se estableció un perfil de temperaturas desde 200 °C hasta 400 °C; elevando por intervalos de 50 °C cada 2 h.

IV.5.4. Identificación de los picos en los cromatogramas de la evaluación de la actividad catalítica.

En la **Figura 6**, se presenta un cromatograma donde se puede observar la identificación de los picos y los tiempos de retención en la reacción a 300 °C de la hidrogenación catalítica del $CO_2 \rightarrow CH_4$. Se observó que en temperaturas menores a 300 °C, NO hay formación de CO. Por tanto no existe la $CO_2 \rightarrow CO$ durante la hidrogenación catalítica de CO_2 .

En la **Figura 7,** se puede observar la identificación de los picos y los tiempos de retención en la reacción a 400 °C de la hidrogenación catalítica del $CO_2 \rightarrow CH_4$. Se observó que en temperaturas mayores a 300 °C, hay formación de CO, es decir, se forma la reacción competitiva de $CO_2 \rightarrow CO$ durante la hidrogenación catalítica de CO_2 .

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2 - COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 7. Identificación de los compuestos en la reacción de hidrogenación del CO₂ a 400 °C. Elaborado en el software GC ChemStation VA.10.02[1757], 2003.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

PΔ

Posgrado en Energía y Medio Ambiente REMEDIACIÓN AMBIENTAL QUÍMICA.

DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍAS (CBI) LABORATORIO DE CATÁLISIS AMBIENTAL.

IV.5.5. Algoritmo de cálculo de la conversión, la selectividad y la velocidad de reacción.

Para calcular la conversión de $CO_2 \rightarrow CH_4$ se utilizó la ecuación propuesta por Ashok et al., (2017):

$$X_{CO_2}(\%) = \frac{mol_{convertido}}{mol_{total}} = \frac{[CO_2]_{Entrada} - [CO_2]_{Salida}}{[CO_2]_{Entrada}} * 100$$
 Ecuación 1.

Para calcular la selectividad de $CO_2 \rightarrow CH_4$ se utilizó la ecuación propuesta por Ashok et al., (2017):

2.

$$S_{CH_4}(\%) = \frac{mol_{producido}}{mol_{convertido}} = \frac{[CH_4]_{Salida}}{[CO_2]_{Entrada} - [CO_2]_{Salida}} * 100$$
 Ecuación

Para calcular la Rendimiento de $CO_2 \rightarrow CO$ se utilizó la ecuación propuesta por Ashok et al., (2017):

$$S_{CO}(\%) = \frac{mol_{producido}}{mol_{convertido}} = \frac{[CO]_{Salida}}{[CO_2]_{Entrada} - [CO_2]_{Salida}} * 100$$
 Ecuación 3.

Para calcular la Rendimiento de los otros productos generados por la reacción de metanación del CO₂, se utilizó la siguiente ecuación:

 $R_{i}(\%) = \frac{mol_{producido}}{mol_{total}} = \frac{[Compuesto de interés]_{salida}}{[CO_{2}]_{Entrada}} * 100$

La rapidez de reacción $(-r_A)$ se calculará de la siguiente manera:

$$-r_{A} = \frac{mol_{convertidos}}{W_{cat} * t} = F_{A0} \frac{dX}{dW_{cat}} \approx F_{A0} \frac{X}{W_{cat}} \qquad \text{Ecuación 5.}$$

Donde: F_{A0} : Flujo de entrada en mol/h. X: Conversión del CO₂. W_{cat} : masa del catalizador en g. t: tiempo en h.

CAPÍTULO V: V. Resultados y discusión de los datos.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente **remediacion ambiental química.**

División de Ciencias Basícas e Ingenierías (CBI) Laboratorio de catálisis ambiental.

Capítulo V: Resultados y discusión de los datos.

V.1. Caracterización del óxido mixto como soporte catalítico: CeO₂ – ZrO₂.

Se aplicaron las siguientes técnicas analíticas para el análisis de la caracterización del soporte de óxido mixto de $CeO_2 - ZrO_2$, se dividirá en los siguientes rubros:

- Fisisorción de N₂.
- Difracción de rayos X (XRD).

V.1.1. Fisisorción de N₂: resultados y discusión.

En la **Figura 8**, se pueden apreciar los resultados obtenidos para el soporte de óxido mixto de CeO_{2} -ZrO₂ a través de la fisisorción de nitrógeno. En esta figura, se muestra la comparación entre la isoterma del análisis de fisisorción aplicado al soporte de óxido mixto de $CeO_2 - ZrO_2(a)$ y la isoterma teórica **Tipo V** (*b*). Los resultados experimentales (*a*) son coincidentes con la isoterma de adsorción Tipo V (*b*), la cual representa los datos obtenidos a partir de la aplicación de la técnica de análisis de fisisorción de N₂ para la determinación del área superficial del soporte de óxido mixto de $CeO_2 - ZrO_2(a) = ZrO_2 - ZrO_2(a)$

Figura 8. Isoterma obtenida en el análisis de fisisorción. En el inciso a) se muestra la isoterma obtenida experimentalmente en el equipo Autosorb IQ[®]; en el inciso b) se muestra la isoterma teórica de sorción física. La isoterma experimental fue elaborada en el software ASiQwin, 2015.

Como se puede observar en la **Figura 8**, la isoterma resultante es de **tipo V**, la cual se obtiene para **materiales mesoporosos**, presenta un ciclo de histéresis cuando existe poca afinidad entre adsorbato y el adsorbente. Esta isoterma es poco frecuente en los casos de análisis de sorción física. A diferencia de la isoterma de tipo III, el último tramo **NO es asintótico**.

Con respecto al párrafo anterior, se deduce que los poros que están en el soporte de óxido mixto de $CeO_2 - ZrO_2$ es de carácter mesoporoso con un radio de poro de **1.8** Å; y un área superficial (A_s) de **80.4** m²/g y un volumen de poro (V_p) de **0.07** cm³/g; a su vez, podemos deducir que la interacción entre la adsorción de la molécula de CO_2 y H₂, que son los reactivos de la reacción, tendrán interacciones débiles con el soporte de óxido mixto de $CeO_2 - ZrO_2$.

V.1.2. Difracción de rayos X (XRD): resultados y discusión.

De acuerdo al Comité Conjunto sobre Estándares de Difracción de Polvo (JCPDS⁵, por sus siglas en inglés), las fichas que se encontraron para el difractograma expresado en la **Figura 9**, se resumen en la **Tabla 6**.

Tabla 6. Resumen de las fichas cristalográficas encontradas para el análisis de XRD para el soporte de óxido mixto CeO₂-ZrO₂, Fuente: X'Pert High Score V2.1 (2.1.1), 2005.

2102.140110.1710111191130010 V2.1 (2.1.1), 2003.						
JCPDS-Code	Compuesto	Fase				
00-002-1311	CeO ₂ -ZrO ₂	Cúbica				
00-002-0536	ZrO ₂	Monoclínica				
00-008-0221	$Ce_2O_2-2ZrO_2$	Cúbica				

La **Figura 9**, representa el resumen del análisis realizado en las **Figuras 10** y **11**, para facilitar la identificación de la fase cúbica y monoclínica identificadas en la **Tabla 8**.

Figura 9. Análisis del resultado de la difracción de rayos X en el equipo Bruker® Modelo D8 Advance para el soporte de óxido mixto CeO₂-ZrO₂. Elaborado en X'Pert High Score V2.1 (2.1.1), 2005.

En las **Figuras 10** y **11**, se muestran los análisis realizados en el software X'Pert High Score V2.1 (2.1.1), 2005.

⁵ JCPDS: Joint Committee on Powder Diffraction Standards.

En la **Figura 10**, se identificó la coincidencia con la ficha **JCPDS-Code 00-002-1311** para la fase cúbica del soporte de óxido mixto CeO_2 -Zr O_2 (60:40); identificado por primera vez por Passerini⁶ (1930), para el óxido mixto CeO_2 -Zr O_2 (95:5); y la **JCPDS-Code 00-008-0221** para la fase cúbica identificada por primera vez por Cassey et al.⁷, (1955) para el óxido mixto CeO_2 -2Zr O_2 (S/E). Se observó un tamaño de partícula 14.4 nm, de acuerdo con la ecuación de Scherrer.

Figura 10. Comparativo de las fichas cristalográficas de acuerdo con la JCPDS para el soporte del óxido mixto de CeO₂-ZrO₂. Elaborado en X'Pert High Score V2.1 (2.1.1), 2005.

En la **Figura 11**, se puede identificar la coincidencia con la ficha **JCPDS-Code 00-002-1311** para la fase cúbica del soporte de óxido mixto CeO_2 -Zr O_2 (60:40%); para el óxido mixto CeO_2 -Zr O_2 (95:5) como referencia de la comparación que se realizó en esta **Figura 10**.

Para esta fase del CeO₂-ZrO₂ (60:40); se presentan en las **Tablas 7** y **8**, los siguientes parámetros cristalinos:

Compuesto	Parámetros de Red [Å]		Ángulos		Parámetros físicos		Código de referencia
CeO ₂ -ZrO ₂ (60:40)	а	5.3970	α	90°	Densidad	-	00-002-1311
	b	5.3970	β	90°	Volumen de celda [10 ⁶ pm ³]	157.2	
	C	5 3970	v	90°	Z	-	

Table 7 Daugenstras suistalinas	and the force with	in del Coo 700 (CO. 10)	Eventer VIDert Llink Coor	- 1/2 1 /2 1 1) 2005
Tubiu 7. Purumetros cristulinos	puru iu juse cub	1CU UEI CEO2-2102 (00.40)	. гиенце. х рен піўн зсон	2 VZ.I (Z.I.I), ZUUS

⁷ JCPDS-Code 00-008-0221: Casey et al., J. Am. Chem. Soc., 77, 2187, (1955).

⁶ JCPDS-Code 00-002-1311: Passerini, L., Gazz. Chim. Ital., 60, 766, (1930).
HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Compuesto	Planos identificados en los picos del difractograma						
CeO_2 - ZrO_2	20	h	k	l	<i>d</i> [Å]	<i>I</i> [%]	
(60:40)	28.587	1	1	1	3.12	70	
	33.153	2	0	0	2.7	40	
	47.569	2	2	0	1.91	100	
	59.179	2	2	2	1.56	50	
	69.583	4	0	0	1.35	40	
	79.809	4	2	0	1.21	80	

Tabla 8. Planos identificados para la fase cúbica del CeO₂-ZrO₂ (60:40). Fuente: X'Pert High Score V2.1 (2.1.1), 2005.

Obtenemos que los se identificó la **JCPDS-Code 00-002-0536** para la fase monoclínica del óxido ZrO₂ (S/E); identificada por primera vez por Ruff⁸, (1929).

Por otro lado se identificó la ficha **JCPDS-Code 00-043-1002** para la fase cúbica del óxido CeO₂ (S/E), identificado por Grier⁹ (1991).

De acuerdo con el análisis elaborado en las **Figuras 10** y **11**, se concluye que la fase del soporte de óxido mixto CeO_2 -ZrO₂, tiene una fase cúbica y una fase monoclínica aportada por el ZrO₂. Los parámetros cristalinos se presentan en la **Tabla 9** y los planos identificados para la fase monoclínica del ZrO₂ se presentan en la **Tabla 10**.

⁸ JCPDS-Code 00-002-0536: Ruff, Ebert., Z. Anorg. Chem., 180, 24, (1929).

⁹ JCPDS-Code 00-043-1002: Grier, D., McCarthy, G., North Dakota State University, Fargo, North Dakota, USA., ICDD Grant-in-Aid, (1991).

Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Tabla 9. Parámetros cristalinos para la fase monoclínica del ZrO₂. Fuente: X'Pert High Score V2.1 (2.1.1), 2005.

	Compuesto		Pará de	metros Red [Å]		Ángulos	Parámetro	s físicos	Código de Referencia
ZrO ₂	Sistema Cristalino	Monoclínica	а	5.17	α	90°	Densidad [g/cm ³]	5.71	
	Grupo espacial	P21/c	b	5.26	β	80.13°	Volumen de celda [10 ⁶ pm ³]	142	00-002-0536
	Número de grupo espacial	14	С	5.3	γ	90°	Z	4	

Tabla 10. Planos identificados para la fase monoclínica del ZrO₂. Fuente: X'Pert High Score V2.1 (2.1.1), 2005.

Compuesto	Planos	iden c	Código de Referencia				
	20	h	k	l	d [Å]	<i>I</i> [%]	
	24.099	0	1	1	3.69	50	
	28.037	1	1	1	3.18	100	
	31.362	-1	1	1	2.85	100	
	34.362	0	2	0	2.63	70	
	35.165	2	0	0	2.55	50	
	40.416	2	1	1	2.23	50	
	40.991	1	2	1	2.20	50	
	49.212	0	2	2	1.85	100	
ZrO ₂	50.375	1	2	2	1.81	100	
	55.296	0	3	1	1.66	70	
	57.955	2	2	2	1.59	50	00-002-0536
	59.599	3	0	2	1.55	70	
	61.345	2	1	3	1.51	50	
	62.260	3	1	2	1.49	60	
	64.179	0	2	3	1.45	20	
	65.186	3	2	1	1.43	60	
	70.785	-3	2	1	1.33	70	
	72.033	0	0	4	1.31	50	
	74.679	0	1	4	1.27	60	
	76.809	4	1	0	1.24	20	
	78.306	-3	3	0	1.22	20	

En la **Figura 12**, podemos observar el modelo de la celda para el soporte de óxido mixto CeO₂-ZrO₂. Observamos que el modelo describe una fase cúbica con los átomos de Ce⁺⁴ centrados en las caras. Debido a que el modelo se realizó en el software X'Pert HighScore Plus V3.0 (3.0.0), 2009. Se requiere realizar el método Rietveld, el cual consiste en:

- ✤ Ajustar teóricamente los parámetros estructurales.
- Deslizamientos atómicos.
- Parámetros de red.
- Parámetros experimentales.
- Suponiendo que el difractograma es la suma de un número de reflexiones Bragg.

De acuerdo con la siguiente ecuación, se describe el modelo de Rietveld:

Consejo Nacional de Ciencia y Tecnología (conacyt)

$$R = \sum_{j} w_{j} [I_{j(0)} - I_{j(c)}]^{2}$$
 Ecuación 6.

 $I_{j(0)} \vee I_{j(c)}$: son respectivamente las intensidades observadas y calculadas en el paso *j-ésimo* en 20. $(w_j)^{-1} = \sigma_j^2 + \sigma_{jp}^2 + \sigma_{jb}^2$: es el paso del valor de ponderación para cada intensidad tanto observada como calculada como:

- σ_{ip} la desviación estándar asociada con el pico (basado en estadística de conteo) y
- ↔ σ_{ib} la intensidad de la señal de fondo.

La interpretación física para la **Figura 12**, se observó que el resultado con el modelo de Rietveld que no logró modelar a los átomos de Zr^{+2} pertenecientes al ZrO_2 , esto es atribuible a que las bandas del CeO_2 en la ficha cristalográfica se superponen con las bandas del ZrO_2 y que a su vez, estas bandas se confunden con la línea base del difractograma original del soporte de óxido mixto CeO_2 - ZrO_2 y que cuando estas se refinan con el método de Rietveld, estas desaparecen completamente del difractograma original, por lo que el programa no logró modelar los átomos de Zr^{+2} , por no presentar bandas pertenecientes al ZrO_2 en el difractograma refinado.

De acuerdo con lo mencionado en el párrafo anterior, podemos deducir que la fase cúbica del CeO₂ están sobrepuestos sobre la fase monoclínica del ZrO₂. Esto es a raíz de que las bandas del ZrO₂ son mínimamente detectables en el difractograma experimental.

La **ley de Vegard** (Urusov, 1992), existe una dependencia lineal de los parámetros de la celda unitaria en una solución sólida; $(A_{x_1}B_{x_2})C$, donde la composición de la solución es:

$$a = x_1 a_1 + x_2 a_2$$

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

Donde:

a, a_1 y a_2 : son parámetros de celda unitaria de la solución sólida y los miembros finales. x_1 y x_2 : son las fracciones molares para los miembros finales

En la **Figura 13**, se observó la aplicación de la ley de Vegard para el óxido mixto de CeO₂-ZrO₂.

En la **Figura 13**, que denota la **ley de Vegard**, se observó que para el soporte de óxido mixto CeO_2 -Zr O_2 el parámetro de red del Zr O_2 (5.170 Å), así como el de CeO_2 (5.411 Å), sufren una modificación en las distancias entre sus átomos en donde la distancia de los átomos del CeO_2 disminuye para una composición 60% molar y las distancias de los átomos del Zr O_2 aumenta para una composición del 40% molar, dando como resultado una distancia promedio para la composición que tiene el soporte de óxido mixto de $Ce_{0.6}O_2 - Zr_{0.5}O_2$ aproximadamente 5.315 Å como parámetro de celda unitaria.

Se utilizó la ecuación de Scherrer para calcular el tamaño del cristal de acuerdo a la siguiente ecuación:

$$\overline{D}_{prom} = \frac{K\lambda}{\beta_{size} \cos\theta} \quad \text{Ecuación 7.}$$

Donde:

 \overline{D}_{prom} : Tamaño de partícula en Ángstrom [Å]. $\beta_{size} = \beta_{obs} - \beta_{std.};$ β_{size} : ensanchamiento de la muestra. $\beta_{std.}$: ensanchamiento debido al equipo (error instrumental).

$$\beta_{strain} = \sqrt{\beta_{obs}^2 - \beta_{std.}^2}$$

 β_{strain} : ensanchamiento por la tensión reticular en.

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

K: es la constante de la forma del cristal; es adimensional. Su valor típico es de 0.9.

 λ : longitud de onda de la fuente de rayos X.

 θ : medio ángulo de Bragg $\left[\frac{2\theta}{2}\right]$, en radianes.

y también la tensión reticular que se calcula con la siguiente ecuación

$$ar{L}_{ret} = rac{eta_{strain}}{4tan heta}$$
 Ecuación 8.

donde las variables se definen igual que en la ecuación de Scherrer.

Se utilizó el programa de X'Pert HighScore Plus V3.0, (2009), donde se obtuvieron los resultados de la **Tabla 11**.

Ánodo: Cobre (Cu)	K= 0.9	$\lambda_{K_{lpha}}$ =1.541874	Å
eta_{obs} [°2 $ heta$]	$eta_{std.}$ [°2 $ heta$]	Posición del pico $[^{\circ}2 heta]$	eta_{size} [°2 $ heta$]
0.672	0.007	29.834	0.665
Tamaño del cris \overline{D}_{prom} [Å]	tal	Tensión reticul $ar{L}_{ret} [\%]$	ar
124		1.101	

Tabla 11. Resultados de la ecuación de Scherrer y de la Tensión reticular para el soporte de óxido mixto CeO₂-ZrO₂.

En la **Tabla 11**, deducimos que el tamaño de partícula para el soporte de óxido mixto CeO₂-ZrO₂ es de **124 Å** y una tensión reticular del **1.101%**.

V.1.3. Discusión y análisis de los resultados de la caracterización del soporte CeO₂ – ZrO₂

En la **Tabla 12**, se presenta el comparativo del área superficial medida a través de la isoterma de BET por diferentes autores que utilizaron el CeO₂ – ZrO₂ para la hidrogenación catalítica del CO₂

Tabla 12. Comparación del área superficial del soporte de óxido mixto de CeO ₂ – ZrO ₂								
Soporte	Soporte BET [m ² /g] Referencia							
			preparación					
CeO ₂ – ZrO ₂	85.4	Ashok et al., 2017	Coprecipitación					
$CeO_2 - ZrO_2$	123.5	Dai et al., 2021	Coprecipitación					
CeO ₂ – ZrO ₂	80.440	Este trabajo	Coprecipitación					

En la **Tabla 12**, se puede concluir que el área superficial obtenida a través de la isoterma de BET, fue ligeramente más baja (aproximadamente 5 unidades con respecto a Ashok et al., 2017) que los autores comparados. Esto disminuye la cantidad de poros en los que pueden depositarse los átomos que serán activos en la reacción de la hidrogenación catalítica de CO₂.

También al identificarse la **isoterma tipo V**, podemos concluir que el soporte de óxido mixto de CeO₂ – ZrO₂ es mesoporoso y tiene condensación capilar. El ciclo de histéresis que presentan es de **tipo** H2, donde podemos decir que el soporte contiene cuellos de poro estrechos con cuerpos de poro anchos, denominados "cuello de botella". De acuerdo con estos datos deducimos que las

interacciones entre las moléculas de los reactivos (CO_2 y H_2) con el soporte tendrán interacciones débiles durante la reacción de hidrogenación catalítica del CO_2 , de acuerdo con Fogler (2008), la actividad catalítica máxima no se alcanza cuando el enlace es demasiado fuerte y cuando los productos no se desorben fácilmente.

Con respecto al análisis de XRD podemos afirmar que el soporte de óxido mixto de $CeO_2 - ZrO_2$ es cristalino debido a la forma que adquirió el difractograma obtenido en el análisis de XRD para este soporte; a su vez, se puede concluir que la estructura de este soporte es cúbica debido al CeO_2 y monoclínica, en menor proporción, debido al ZrO_2 . En la **Tabla 13**, se resumen los datos obtenidos del análisis de XRD.

Variable	Valor	Método	Referencia	CeO ₂	ZrO ₂
Parámetro de celda	5.315 Å	Ley de Vegard.	Urusov, 1992.		
Tamaño del cristal	124 Å	Ecuación de Scherrer.	Ecuación 7. X'Pert HighScore Plus V3.0, (2009).		
Tensión reticular	1.101%	Tensión reticular.	Ecuación 8. X'Pert HighScore Plus V3.0, (2009).		

		Tabla 13. Resun	nen de los resultado	s obtenidos en e	l análisis XRD.	Imágenes	obtenidas en	Google,	2023
--	--	-----------------	----------------------	------------------	-----------------	----------	--------------	---------	------

De acuerdo con la tabla anterior, asumimos que el tamaño del cristal es de 124 Å (12.4 nm) y que a su vez, el parámetro de celda para la fase cúbica es de 5.314 Å (0.5314 nm). Con estos datos podemos concluir que el área que tendrá cada cristal para el depósito de un metal activo (Fe, Co y Ni) para la reacción de hidrogenación catalítica del CO₂ es de 153.76 nm² y si se toma en cuenta que para la impregnación de cada uno de los metales activos de Fe, Co y Ni se seleccionó una distribución de 5 $\frac{\acute{a}tomos}{nm^2}$. Se puede deducir que cada cristal expuesto en la superficie del catalizador tendrá una distribución de 768 átomos por cada superficie del cristal expuesta.

V.2. Caracterización de los catalizadores Fe, Co y Ni soportados en el óxido mixto de CeO₂ – ZrO₂.

Para la caracterización de los catalizadores Fe, Co y Ni soportados en el óxido mixto de CeO₂ – ZrO₂, se aplicaron las siguientes técnicas analíticas para la obtención de información sobre su morfología, estructuras, estados de oxidación y su temperatura óptima de reducción.

- Espectroscopía UV-vis líquidos y de reflectancia difusa (DRS).
- Microscopía electrónica de barrido (SEM).
- Microscopía de transmisión electrónica de alta resolución (HRTEM).
- Espectroscopía fotoelectrónica de rayos X (XPS).
- Temperatura programada de reducción (TPR).

A continuación, en las siguientes secciones se presentarán los resultados y el análisis para las técnicas de caracterización aplicadas en los catalizadores estudiados en este trabajo.

V.3. Espectroscopía UV-vis líquidos y de reflectancia difusa (DRS): resultados y discusión.

Para entender el estudio de los aqua complejos impregnados en el soporte mixto de CeO₂-ZrO₂, los resultados se subdividieron en los siguientes rubros:

- Resultados y análisis de la espectroscopía UV-vis líquidos y de Reflectancia Difusa (DRS) para la sal Fe(NO₃)₃•9H₂O.
- Resultados y análisis de la espectroscopía UV-vis líquidos y de Reflectancia Difusa (DRS) para la sal Co(NO₃)₃•9H₂O.
- Resultados y análisis de la espectroscopía UV-vis líquidos y de Reflectancia Difusa (DRS) para la sal Ni(NO₃)₃•9H₂O.

V.3.1. Resultados y análisis de la espectroscopía UV-vis líquidos y de reflectancia difusa (DRS) para la sal Fe(NO₃)₃•9H₂O.

En la **Figura 14**, se observó en el espectro UV-vis (líquidos), para la sal en disolución acuosa de $Fe(NO_3)_3 \cdot 9H_2O$, así como los espectros UV-vis de reflectancia difusa (DRS) para los sólidos $CeO_2 - ZrO_2$ (soporte) y para el catalizador $Fe/CeO_2 - ZrO_2$.

Para el análisis de la **Figura 14**, se define que el Fe³⁺ (d^5) posee una distribución simétrica de cargas. De acuerdo con la **Tabla 14**, se pueden observar algunos ejemplos de los complejos que el Fe forma en disolución acuosa.

Estado de oxidación	Número de coordinación	Geometría	Ejemplos
Fe ⁻²	4	Tetraédrica	Fe(CO) ₄ ²⁻ , Fe(CO) ₂ (NO) ₂ ,
F.o ⁰	5	Trigonal bipirámide	Fe(CO) ₅ , (Ph ₃ P) ₂ Fe(CO) ₃
re	6	Octaédrica	Fe(CO)₅H ⁺ , Fe(CO)₄PPh₃H ⁺ , Fe(PF₃)₅
Fe^{+1} , d^7	6	Octaédrica	[Fe(H ₂ O) ₅ NO] ²⁺
	4	Tetraédrica	FeCl4 ²⁻
Fe^{+2} , d^6	5	No determinada	Fe(dienMe)X ₂ ^(b)
	6 ^(a)	Octaédrica	[Fe(H ₂ O) ₆] ²⁺ , [Fe(CN) ₆] ⁴⁻
	4	Tetraédrica	FeCl ₄ ⁻ , Fe ³⁺ en Fe ₃ O ₄
Eo+3 d5	6 ^(a)	Octaédrica	Fe ₂ O ₃ , [Fe(C ₂ O ₄) ₃] ³⁻ , Fe(acac) ₃ ,
Fe ¹³ , <i>a</i> ³	7	Aprox. pentagonal	[FeEDTA(H ₂ O)] ⁻ ,
		bipiramidal.	
Fe^{+4} , d^4	6	Octaédrica	[Fe(diars) ₂ Cl ₂] ²⁺
$\operatorname{Fe}^{+5} d^3$	4	Tetraédrica	FeO ₄ ³⁻
Fe^{+6}, d^2	4	Tetraédrica	FeO4 ²⁻

Tabla 14. Estados de oxidación y estereoquímica del Fe. Fuente: Cotton y Wilkinson (1969).

^(a)Los estados de oxidación más comunes.

^(b) $dienME = Me_2N(CH_2)_2NMe(CH_2)NMe_2.$

El Fe³⁺ (d^5), de acuerdo con Cotton y Wilkinson (1969), en disolución acuosa tiene la característica de la hidrólisis y/o en formación de complejos. Se ha establecido que la hidrólisis (que en su primer etapa es equivalente a la disociación del ion aquo) es gobernada en sus fases iniciales por las siguientes constantes de equilibrio:

HIDROGENACIÓN CATALÍTICA DEL CO₂ A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂ - ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. TESIS DE GRADO: NIVEL MAESTRÍA CONSE IO NACIONAL DE CIENCIA Y TENOLOGÍA (CONACYT)

C	ONSEJO	Ν	ACIONAL	DE	CIENCIAY		ECNOLOG	ίAΙ	(CONACYT
---	--------	---	---------	----	----------	--	---------	-----	----------

$[Fe(H_2O)_6]^{3+} \rightarrow [Fe(H_2O)_5OH]^{2+} + H^+$	$K = 10^{-3.05}$
$[Fe(H_2O)_5(OH)]^{2+} \rightarrow [Fe(H_2O)_4(OH)_2]^+ + H^+$	$K = 10^{-3.26}$
$2[Fe(H_2O)_6]^{3+} \to [Fe(H_2O)_4(OH)_2Fe(H_2O)_4]^{4+} + 2H^+$	$K = 10^{-2.96}$

De los valores de las constantes de equilibrio correspondientes a estos equilibrios se puede ver que para medios ácidos (pH entre 2 y 3 unidades), el grado de hidrólisis es muy grande. Para tener soluciones que contengan fundamentalmente al Fe³⁺ (aprox. el 99% de la especie), por ejemplo, el ion hexaquo que a pH de 0 toma un color púrpura pálido. Si bien el pH aumenta a más de 2 ó 3 unidades, se forman especies aún más condensadas que la especie binuclear que se presenta en las ecuaciones de equilibrio para el ion Fe³⁺.

No hay pruebas de la existencia de ningún hidróxido definido de fórmula Fe(OH)₃. Existe el precipitado rojo pardo que comúnmente se denomina hidróxido férrico hidratado, Fe₂O₃-*n*H₂O. Por lo menos una parte de esos precipitados parecen ser FeO(OH), que existe por lo menos en dos formas cristalinas definidas.

Las diversas especies hidroxo, como por ejemplo $[Fe(OH)(H_2O)_5]^{2+}$, son de color amarillo, debido a las bandas de transferencia de carga que en el ultravioleta alcanzan hasta el espectro visible. Por eso las soluciones de sales férricas son amarillas aun cuando se trata de sales con aniones no complejantes, salvo que la solución sea fuertemente ácida.

El Fe³⁺ forma un gran número de complejos. La mayoría de los mismos son octaédricos; el octaedro puede considerarse como su poliedro de coordinación característico. Forma también unos pocos complejos tetraédricos (véase **Figura 14**).

HIDROGENACIÓN CATALÍTICA DEL CO₂ A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂ - ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría Consejo Nacional de Ciencia y Tecnología (conacyt)

Para la **figura 15**, observamos que las principales bandas de absorción ($\lambda_{máx}$) se dan en $\lambda_{máx}$ =484 y 390 nm. Para estas transiciones electrónicas podemos deducir que de acuerdo a la teoría del campo cristalino (TCC); en la serie espectroscópica de los ligando, el ligando aquo (-H₂O) es un ligando de carácter neutro que en la degeneración de orbitales *d* establece una energía de campo débil. En la **Figura 15** se establecen las configuraciones del ion Fe⁺³ (*d*⁵).

Son posibles dos configuraciones diferentes para complejos octaédricos de metales con configuraciones d^5 , la magnitud $de \Delta_0$ determina qué configuración se observa.

Para este trabajo, el valor del pH que se presentó para la solución acuosa de la sal Fe(NO₃)₃•9H₂O se específica en la **Tabla 15**, donde la primera columna presenta el pH medido en la solución acuosa de la sal Fe(NO₃)₃•9H₂O antes de la impregnación. En la segunda columna se muestra el valor del pH medido durante la impregnación de la sal Fe(NO₃)₃•9H₂O en solución acuosa y en contacto con el soporte de óxido mixto CeO₂-ZrO₂ durante el método de impregnación húmeda.

Tabla 15. Análisis del pH en solución acuosa.									
	pH sal en solución acuosa	pH de la sal en solución acuosa							
	antes de la impregnación	durante la impregnación.							
	Fe(NO₃)₃●9H₂O	Fe(NO ₃) ₃ •9H ₂ O							
lon	en solución acuosa	en CeO ₂ -ZrO ₂							
Fe ³⁺ (ac)	2.73	2.53							

De acuerdo con la **Tabla 15**, se observó que NO hay un cambio significativo de pH al combinar la sal en solución acuosa de Fe(NO₃)₃•9H₂O con el soporte de óxido mixto CeO₂-ZrO₂ durante el proceso de impregnación húmeda.

Se utilizó el software **HYDRA V2009 (2015)**, como base de datos para obtener los complejos formados en solución acuosa para la sal de Fe(NO₃)₃•9H₂O; y se utilizó el software MEDUSA, V2010 (2010), para elaborar el diagrama de predominio de especies como se aprecia en la **Figura 16**:

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 16. Diagrama de predominio de especies para la sal en solución acuosa Fe(NO₃)₃•9H₂O. Elaborado en el software MEDUSA, V2010 (2010).

Como se puede observar en la **Figura 16**, el cambio de pH ($\Delta pH = 0.02$) NO es significativo, y el diagrama de predominio de especies indica que la especie depositada en el soporte de óxido mixto de CeO₂-ZrO₂ es el óxido de Fe₂O₃, el cual forma complejos de tipo octaédrico los cuales quedan incrustados en la parte más profunda del soporte. Esto se demuestra en la Figura 14, donde las bandas de absorción se presentan en la zona del ultravioleta (λ <400 nm) donde se presenta el máximo de picos para la absorbancia de la luz para la sal en disolución acuosa de Fe(NO₃)₃•9H₂O impregnada en el soporte de óxido mixto de CeO₂-ZrO₂.

V.3.2. Resultados y análisis de la espectroscopía UV-vis líquidos y de reflectancia difusa (DRS) para la sal de Co(NO₃)₂• $6H_2O$.

Los resultados de la espectroscopía UV-vis líquidos y de reflectancia difusa (DRS) se encuentran en la Figura 17. Los estados de oxidación y la estereoquímica del Co se presentarán en la Tabla 16:

Estado de	Número de	Geometría	Ejemplos
oxidación	coordinación		
Co ⁻¹	4	Tetraédrica	Co(CO)₄⁻, Co(CO)₃NO,
Co ⁰	4	Tetraédrica	K4[Co(CN)4]
Co^{+1} , d^8	4	Tetraédrico	[Co(CN) ₃ CO] ²⁻ , Co[C ₂ H ₄ (PPh ₂) ₂] ₂
	5	Bipirámide	[Co(NCR) ₅] ⁺ , [Co(CO) ₃ (PR ₃) ₂] ⁺
		trigonal	(R ₂ CS ₂) ₂ CoNO
		Pirámide trigonal	
	6	Octaédrico	[Co(dipy)₃]⁺
Co^{+2} , d^7	4 ^(a)	Tetraédrica	[CoCl ₄] ²⁻ , CoBr ₂ (PR ₃) ₂ , Co ²⁺ en Co ₃ O ₄
	4	Cuadrado	$[Co(CH_3SCH_2CH_2SCH_3)_2](CIO_4)_2,$
			[Coen ₂](AgI ₂) ₂

HIDROGENACIÓN CATALÍTICA DEL CO₂ A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂- ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO.

Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Estado de oxidación	Número de coordinación	Geometría	Ejemplos
	5	Bipirámide trigonal	[Co(N-metilsalicilaldimina) ₂] ₂ ,
	6 ^(a)	Octaédrico	CoCl ₂ , [Co(NH ₃) ₆] ²⁺ , [Co(diars) ₄] ²⁺
Co ⁺³ , <i>d</i> ⁶	4	Tetraédrica	Co en un 12-heteropolitungstato
	6 ^(a)	Octaédrica	[Co(en) ₂ Cl ₂] ⁺ , [Cr(CN) ₆] ³⁻ , ZnCo ₂ O ₄ , [CoF ₆] ³⁻
Co^{+4}, d^5	6	Octaédrico	[CoF ₆] ²⁻

^(a)Los estados de oxidación más comunes.

En soluciones acuosas que no contienen agentes complejantes, la oxidación a Co³⁺ es favorable:

$$\begin{split} & [Co(H_2O)_6]^{3+} + e^- \rightarrow [Co(H_2O)_6]^{2+} & E^\circ = 1.84 \, V \\ & CoO(OH)_{(s)}^{3+} + H_2O + e^- \rightarrow Co(OH)_{2\,(s)} & + OH^- & E^\circ = 0.17 \, V \end{split}$$

El cobalto (II, Co⁺²) forma un gran número de sales simples e hidratadas. Se conocen las sales cobaltosas hidratadas de todos los aniones comunes. Se les obtiene fácilmente a partir de la reacción Co(OH)₂ con el ácido apropiado o mediante reacciones metatéticas. Hasta donde se les conoce, todas estas sales hidratadas son rojas o rosadas y contienen al ion Co⁺² octaédricamente coordinado. En muchas de estas sales se encuentran iones [Co(H₂O)₆]⁺².

El cobalto divalente forma numerosos complejos de diversos tipos estereoquímicos. Los más comunes son octaédricos y tetraédricos, sin embargo, existe un número de complejos cuadrados y también algunos pentacoordinados. El Co⁺² forma un mayor número de complejos tetraédricos que cualquier otro metal de transición. Solo existe una pequeña diferencia entre las estabilidades de complejos octaédricos y tetraédricos en el caso de los complejos de Co⁺², existen varios casos en los cuales se conocen los dos tipos, con el mismo ligante y ambos pueden llegar a estar en equilibrio.

La existencia del complejo tetraédrico $[Co(H_2O)_4]^{2+}$ puede estar en equilibrio con $[Co(H_2O)_6]^{2+}$ octaédricos. Los complejos octaédricos de spin bajo presentan banda absorción alrededor de los $\lambda \le 667$ nm. Los complejos tetraédricos se pueden observar en la zona del rojo del espectro visible ($\lambda \ge 670$ nm).

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 17. Análisis del espectro UV-vis para la sal de $Co(NO_3)_2 \bullet 9H_2O$ en solución acuosa representado por la línea negra. espectro de reflectancia difusa (DRS), para el soporte de óxido mixto CeO_2 -Zr O_2 , línea gris; y el catalizador Co/CeO_2 -Zr O_2 , línea verde.

En la **Figura 17**, se observó un desplazamiento batocrómico, lo cual significa que el punto de absorción que se da en una longitud de onda (λ) en **510 nm** en el espectro UV-vis (líquidos) hacía una longitud de onda de **660 nm**, que se puede observar en el espectro de reflectancia difusa (DRS) para el catalizador de Co/CeO₂-ZrO₂. Este desplazamiento batocrómico se debe al cambio drástico de *pH* qué ocurre cuando la sal en disolución acuosa de Co(NO₃)₂•6H₂O entra en contacto con el soporte de óxido mixto CeO₂-ZrO₂.

Para la **Figura 17**, observamos que las principales bandas de absorción ($\lambda_{máx}$), se observan en $\lambda_{máx}$ =766, 660, 510 y 412 nm. Para estas transiciones electrónicas podemos deducir que de acuerdo a la teoría del campo cristalino (TCC); en la serie espectroscópica de los ligando, el ligando aquo (-H₂O) es un ligando de carácter neutro que en la degeneración de orbitales *d* establece una energía de campo débil. En la **Figura 18** se establecen las configuraciones del ion Co⁺² (*d*⁷).

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2 - COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. TESIS DE GRADO: NIVEL MAESTRÍA Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 18. Las posibles configuraciones electrónicas para complejos de metales de transición octaédricos.. Fuente: Chesmistry, 2023.

Son posibles dos configuraciones diferentes para complejos octaédricos de metales con configuraciones d7, la magnitud de ∆o determina qué configuración se observa.

Para este trabajo, el pH que se presentó para la solución acuosa de la sal Co(NO₃)₂•6H₂O, se específica en la Tabla 17, donde la primera columna presenta el pH medido en la solución acuosa de la sal $Co(NO_3)_2 \bullet 6H_2O$ antes de la impregnación. En la segunda columna se muestra el valor del pH medido durante la impregnación de la sal Co(NO₃)₂•6H₂O en solución acuosa y en contacto con el soporte de óxido mixto CeO₂-ZrO₂ durante el método de impregnación húmeda.

Tabla 17. Analisis del pH en solución acuosa.								
	pH sal en solución acuosa	pH de la sal en solución acuosa						
antes de la impregnación		durante la impregnación.						
	Co(NO ₃)2•6H ₂ O	Co(NO ₃) ₂ •6H ₂ O						
lon	en solución acuosa	en CeO ₂ -ZrO ₂						
(0^{3+})	6.0	3.0						

Tabla 17 Análisis del nH en solución acuosa

De acuerdo con la **Figura 19**, se observó que hay un cambio significativo de pH al combinar la sal en solución acuosa de Co(NO₃)₂•6H₂O con el soporte de óxido mixto CeO₂-ZrO₂.

Se utilizó el software HYDRA V2009 (2015), como base de datos para obtener los complejos formados en solución acuosa para la sal de Co(NO₃)₃•6H₂O; y se utilizó el software MEDUSA, V2010 (2010), para elaborar el diagrama de predominio de especies, como se observa en la Figura 19:

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 19. Diagrama de predominio de especies para la sal en solución acuosa Co(NO₃)₂•6H₂O. Elaborado en el software MEDUSA, V2010 (2010).

Como se puede observar en la **Figura 19**, el cambio de pH ($\Delta pH = 3.0$), es significativo en 3 unidades; con base en el diagrama de predominio de especies, se indica que la especie depositada en el soporte de óxido mixto de CeO₂-ZrO₂ es el [Co(H₂O)₄]²⁺, como especie tetraédrica, donde la banda de absorción la observamos en **λ=510 nm**, y en el ultravioleta (**λ<400 nm**) se logran observar varias especies octaédricas como el aquacomplejo [Co(H₂O)₆]²⁺.

V.3.3. Resultados y análisis de la espectroscopía UV-vis líquidos y de reflectancia difusa (DRS) para la sal Ni(NO₃)₂•6H₂O.

Los resultados de la espectroscopía UV-vis líquidos y de reflectancia difusa (DRS) se encuentran en la **Figura 20.** Los estados de oxidación y la estereoquímica del níquel se presentan en la **Tabla 18**:

Estado de oxidación	Número de coordinación	Geometría Ejemplos	
Ni ⁻¹	4	No determinada	[Ni ₂ (CO) ₆] ²⁻
Ni ⁰	4	Tetraédrica	Ni(PF ₃) ₄ , [Ni ₂ (CN) ₄] ⁴⁻ , Ni(CO) ₄
Ni ⁺¹ , d^9	4	No determinada	K4[Ni2(CN)6]
Ni ⁺² , d^8	4 ^(a)	Cuadrada	NiBr ₂ (PEt ₃) ₂ , [Ni(CN) ₄] ²⁻
	4 ^(a)	Tetraédrica	NiCl4 ²⁻ , NiCl ₂ (PPh ₃) ₂
	5	Pirámide cuadrada	[Ni(CN) ₅] ³⁻
	5	Tetragonal	[NiX(QAS)]⁺,
		bipiramidal	[NiP(CH ₂ CH ₂ -CH ₂ AsMe ₂) ₃ CN] ⁺
	6 ^(a)	Octaédrica	NiO, [Ni(NCS)6] ⁴⁻ , KNiF3,
			Ni(DMGH) ^{2 (b)} , [Ni(dipy) ₃] ²⁺
	6	Prisma trigonal	NiAS
Ni ⁺³ , d^7	Desconocido	No determinado	Ni ₂ O ₃ •2H ₂ O
	5	Bipirámide trigonal	NiBr ₃ (PEt ₃) ₂ ,

Tabla 18. Estados de oxidación y estereoquímica del Co. Fuente: Cotton y Wilkinson (1969)

Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Estado de oxidación	Número de coordinación	Geometría	Ejemplos
	6	Octaédrica	[Ni(diars) ₂ Cl ₂] ⁺ ,
Ni ⁺⁴ , <i>d</i> ⁶	6	Octaédrico	K ₂ NiF ₆ , [Ni(diars) ₂ Cl ₂] ²⁺

^(a)Los estados de oxidación más comunes.

^(b)Un conjunto de átomos de nitrógeno alrededor del níquel con enlaces largos Ni – Ni largos.

Las soluciones acuosas del Ni²⁺, que no contienen agentes complejantes enérgicos contienen al ion hexaquoníquel (II), de color verde, $[Ni(H_2O)_6]^{2+}$. Este ion también se encuentra en cierto número de sales hidratadas de Ni²⁺, como por ejemplo en Ni(NO₃)₂•6H₂O, NiSO₄•6H₂O, NiSO₄•6H₂O, NiSO₄•6H₂O, NiSO₄•6H₂O, NiCl₂(H₂O)₄]. El aquo ion es bastante lábil, como los son los complejos de níquel (II) en general.

Los complejos octaédricos del Ni²⁺ tienen como máximo número de coordinación el no. 6. La **Tabla 19**, indica las longitudes de onda (λ) para el ion hexaquoníquel (II) en el espectro UV-vis.

Tabla 19. Espectros de complejos octaédricos del Ni² para el ion hexaquoníquel (II). Fuente: Cotton y Wilkinson (1969).

Transición	[Ni(H ₂ O) ₆] ²⁺	
$^{3}A_{2g} \rightarrow ^{3}T_{2g}$	1111 nm	
${}^3A_{2g} \rightarrow {}^3T_{1g}(F)$	714 nm	
${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$	400 nm	

Figura 20. Análisis del espectro UV-vis para la sal de Ni(NO₃)₂ •9H₂O en solución acuosa representado por la línea negra. espectro de reflectancia difusa (DRS), para el soporte de óxido mixto CeO₂-ZrO₂, línea gris; y el catalizador Ni/CeO2-ZrO2, línea verde.

En la **Figura 20**, en el espectro de reflectancia difusa (DRS), se observó un desplazamiento batocrómico en **366 nm**, lo cual significa que el punto de adsorción que se da en una longitud de

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA Ilungo Iztana ana onda (λ) en **400 nm** en el espectro UV-vis (líquidos), con una longitud de onda **766 nm** y **683.5 nm** que se puede observar en el espectro de reflectancia difusa (DRS) para el catalizador de Ni/CeO₂-ZrO₂. Este desplazamiento batocrómico se debe al cambio drástico de *pH* qué sucede cuando la disolución acuosa de la sal Ni(NO₃)₂•6H₂O cuando entra en contacto con el soporte de óxido mixto CeO₂-ZrO₂.

Para la **Figura 20**, observamos que las principales bandas de absorción ($\lambda_{máx}$), se observan en $\lambda_{máx}$ =766, 683.5, y 400 nm. Para estas transiciones electrónicas podemos deducir que de acuerdo a la teoría del campo cristalino (TCC); en la serie espectroscópica de los ligando, el ligando aquo (-H₂O) es un ligando de carácter neutro que en la degeneración de orbitales *d* establece una energía de campo débil. En la **Figura 21** se establecen las configuraciones del ion Ni⁺² (d^8).

Son posibles dos configuraciones diferentes para complejos octaédricos de metales con configuraciones d^7 , la magnitud de Δ_o determina qué configuración se observa.

Para este trabajo, el pH que se presentó para la solución acuosa de la sal Ni(NO₃)₂•6H₂O, se específica en la **Tabla 20**, donde la primera columna presenta el pH medido en la solución acuosa de la sal Ni(NO₃)₂•6H₂O antes de la impregnación. En la segunda columna se muestra el valor del pH medido durante la impregnación de la sal Ni(NO₃)₂•6H₂O en solución acuosa y en contacto con el soporte de óxido mixto CeO₂-ZrO₂ durante el método de impregnación húmeda.

	<i>pH</i> sal en solución acuosa antes de la impregnación	<i>pH</i> de la sal en solución acuosa durante la impregnación.				
Ni(NO ₃) ₂ •6H ₂ O		Ni(NO₃)₂●6H₂O				
lon	en solución acuosa	en CeO ₂ -ZrO ₂				
Ni ²⁺ (ac)	6.50	2.7				

Tabla 20	. Análisis	del pH	en solución	acuosa.

Se utilizó el software HYDRA V2009 (2015), como base de datos para obtener los complejos formados en solución acuosa para la sal de Ni(NO₃)₂•6H₂O; y se utilizó el software MEDUSA, V2010 (2010), para elaborar el diagrama de predominio de especies como se observa en la **Figura 22**.

De acuerdo con la **Figura 22**, se observó que hay un cambio significativo de pH al combinar la sal en solución acuosa de Ni(NO₃)₂•6H₂O con el soporte de óxido mixto CeO₂-ZrO₂.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 22. Diagrama de predominio de especies para la sal en solución acuosa Ni(NO₃)₂•6H₂O. Elaborado en el software MEDUSA, V2010 (2010).

Como se puede observar en la **Figura 22**, el cambio de pH ($\Delta pH = 3.80$), es significativo en 3.80 unidades; con base en el diagrama de predominio de especies, se aprecia que la especie depositada en el soporte de óxido mixto de CeO₂-ZrO₂ es el [Ni(H₂O)₄]²⁺ como especie tetraédrica donde la banda de adsorción la observamos en una longitud de onda de **400 nm** en el espectro UV-vis (líquidos), y otra banda de absorción en una longitud de onda **299 nm** para las especies tetraédricas.

En la **Figura 20**, se aprecian especies octaédricas como el $[Ni(H_2O)_6]^{2+}$ a partir de las longitudes de onda menores a **299 nm**.

V.3.4. Discusión de los resultados de espectroscopia UV-vis y de reflectancia difusa.

La fuerza del enlace entre el hidrógeno y las superficies metálicas se incrementa al aumentar el número de orbitales *d* vacíos. La actividad catalítica máxima no se alcanza cuando el enlace es demasiado fuerte y los productos no se desorben fácilmente de la superficie.

En consecuencia, este máximo de actividad catalítica ocurre cuando hay aproximadamente un orbital vacío por átomo (Fogler, 2008).

En los tres espectros de los catalizadores de Fe, Co y Ni soportados en el óxido mixto de CeO_2 -Zr O_2 se observa un máximo de la longitud de onda (λ) entre los 400 nm a los 484 nm la cual corresponde a la zona del azul (véase **Tabla 21**).

En la **Tabla 21,** describe la energía de campo cristalino calculada a partir de la $\lambda_{máx}$ identificada en el espectro de reflectancia difusa (DRS) para cada uno de los catalizadores estudiados en este trabajo.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Especie asignada	Δ [cm ⁻¹]	Estado de oxidación del catalizador	Orbitales	λ _{máx} [nm]	Zona de absorción	Δ [kJ/mol]	DRS	
CeO ₂ -ZrO ₂	20,661	Fe ⁺³	d⁵	484	Verde Agua	248	Figura 14	
CeO ₂ -ZrO ₂	24,272	Co ⁺²	d7	412	Azul	291	Figura 16	
CeO ₂ -ZrO ₂	25,000	Ni ⁺²	d ⁸	400	Azul- morado	299	Figura 18	

Tabla 21. Resumen de las longitudes de onda (λ) principales identificadas en los DRS de los catalizadores Fe, Co y Ni soportados en el óxido mixto de CeO₂-ZrO₂.

Las bandas máximas absorción ($\lambda_{máx}$) del soporte de óxido mixto de CeO₂ – ZrO₂, se superponen a las $\lambda_{máx}$ de los catalizadores de Fe, Co y Ni soportados en óxido mixto de CeO₂ – ZrO₂, por ello es que en la **Figuras 14, 17** y **20**, se analizaron los espectros de las soluciones con la técnica de espectroscopia UV-vis líquidos para las sales precursoras de los catalizadores Fe, Co y Ni soportados en óxido mixto de CeO₂ – ZrO₂. Por tanto, en la **Tabla 22**, se describen las $\lambda_{máx}$ secundarias identificados en los DRS de los catalizadores estudiados y contrastados con los espectros UV-vis de líquidos.

Tabla 22. Resumen de las longitudes de onda (λ) secundaria identificadas en los DRS de los catalizadores Fe, Co y Ni soportados en el óxido mixto de CeO₂-ZrO₂.

Complejo	∆ [cm⁻¹]	Estado de oxidación	Orbitales	λ _{máx} [nm]	Absorción	Δ _o / Δ _t [kJ/mol]	Asignado
$[Fe(H_2O)_6]^{+3}$	25,641	Fe ⁺³	d ⁵	390	Ultravioleta	307	Octaédrico
[Co(H ₂ O) ₄] ⁺²	13,055	Co ⁺²	d ⁷	766	Infrarrojo	156	Tetraédrico
[Co(H ₂ O) ₄] ⁺²	15,152	Co ⁺²	d ⁷	660	Rojo	182	Tetraédrico
[Co(H ₂ O) ₆] ⁺²	19,608	Co ⁺²	d ⁷	510	Verde-Agua	235	Octaédrico
[Ni(H ₂ O) ₆] ⁺²	13,055	Ni ⁺²	d ⁸	766	Infrarrojo	156	Octaédrico
[Ni(H ₂ O) ₄] ⁺²	14,631	Ni ⁺²	d ⁸	684	Rojo	175	Tetraédrico
[Ni(H ₂ O) ₄] ⁺²	25,000	Ni ⁺²	d ⁸	400	Ultravioleta	299	Tetraédrico

A partir de la Tabla 22, se puede deducir los siguiente:

Para el catalizador Fe/CeO₂ – ZrO₂, se observó, que de manera cualitativa, se puede asumir que la mayor cantidad de complejos depositados sobre el soporte de óxido mixto CeO₂ – ZrO₂ durante la técnica de impregnación húmeda fueron los aquocomplejos de hierro (III): Fe⁺³ ,principalmente especies octaédricas (λ_{máx}=307), que dan como resultado para la identificación del aquacomplejo el hexaquo de hierro (III): [Fe(H₂O)₆]⁺³, con un número de coordinación número 6.

Se puede concluir que las especies depositadas sobre el soporte de óxido mixto de $CeO_2 - ZrO_2$ son aqua complejos octaédricos, el cual se le puede atribuir la poca actividad catalítica que se presenta en la reacción de hidrogenación de CO_2 para este catalizador. No se detectaron bandas de absorción para complejos tetraédricos para esta especie.

 Para el catalizador Co/CeO₂ – ZrO₂, se observó, que de manera cualitativa, se puede asumir la mayor cantidad de complejos depositados sobre el soporte de óxido mixto CeO₂ – ZrO₂, durante la técnica de impregnación húmeda fueron los aquocomplejos de cobalto (II): Co⁺² principalmente especies tetraédricas (λ_{máx}=766 y 660 nm) que dan como resultado de la identificación del aquacomplejo el tetraquo de cobalto (II): [Co(H₂O)₄]⁺², con un número de coordinación de 4. También se observaron especies octaédricas en λ_{máx}=510 nm, por tanto, la especie depositada es el hexaquo de cobalto (II): [Co(H₂O)₆]⁺², con un número de coordinación número 6.

En conclusión, las especies depositadas sobre el soporte de óxido mixto de $CeO_2 - ZrO_2$ en su mayoría son complejos octaédricos, sin embargo, también se observaron complejos tetraédricos aunque en menor proporción. Las especies tetraédricas al ser las más expuestas como sitios activos para los reactivos en la reacción de hidrogenación del CO₂. En el análisis SEM (véase **Figura 23**), podemos observar que este catalizador tiene la mayor cantidad de superficie cristalina expuesta, en comparación con el catalizador de Ni/CeO₂- ZrO₂, lo cual podemos atribuir al alta selectividad que presenta este catalizador en la metanación del CO₂ en la reacción de hidrogenación catalítica del CO₂.

- ✤ Para el catalizador Ni/CeO₂ ZrO₂, se observó, que de manera cualitativa, la mayor cantidad de complejos depositados sobre el soporte de óxido mixto CeO₂ ZrO₂, durante la técnica de impregnación húmeda fueron los aquocomplejos de níquel (II): Ni⁺², principalmente especies tetraédricas (λ_{máx}=684 y 400 nm) que dan como resultado de la identificación del aquacomplejo el tetraquo de níquel (II): [Ni(H₂O)₄]⁺², con un número de coordinación de 4. También se observaron especies octaédricas en λ_{máx}=766 nm , por tanto, la especie depositada es el hexaquo de níquel (II): [Ni(H₂O)₆]⁺², con un número de coordinación número 6.
- En conclusión, las especies depositadas sobre el soporte de óxido mixto de CeO₂ ZrO₂ son complejos octaédricos y en menor proporción los complejos tetraédricos observados en el análisis de espectroscopia UV-vis. Estos sitios tetraédricos son los más activos en la reacción de hidrogenación del CO₂. En la Figura 24, muestra el análisis SEM aplicado a este catalizador, observamos una superficie más uniforme comparada con el catalizador del CO/CeO₂ ZrO₂, que tiene una superficie cristalina más expuesta. Esta característica del catalizador se le puede atribuir a que la selectividad en la actividad catalítica de la metanación del CO₂ es menor que la del catalizador del Co/CeO₂ ZrO₂.

Finalmente, los catalizadores donde se identificaron más especies tetraédricas (con número de coordinación 4, $[M(H_2O)_4]^{+2}$), depositadas en el soporte de óxido mixto de CeO₂ – ZrO₂, fueron los catalizadores de Co y Ni. Sin embargo, también se identificaron especies octaédricas para los tres catalizadores de Fe, Co y Ni en el soporte de óxido mixto CeO₂ – ZrO₂. Cabe destacar que en el

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA catalizador de Fe/CeO₂ – ZrO₂ no se identificaron especies tetraédricas, únicamente especies octaédricas en el ultravioleta cercano ($\lambda_{máx}$ =307 nm).

V.4. Microscopía electrónica: resultados y discusión.

Para el estudio de la morfología de la superficie de los catalizadores de Fe, Co y Ni soportados en el óxido mixto de $CeO_2 - ZrO_2$ se aplicaron las siguientes técnicas:

- Microscopía electrónica de barrido (SEM, por sus siglas en inglés).
- Microscopía de transmisión electrónica de alta resolución (HRTEM, por sus siglas en inglés).

En las siguientes secciones se mostrarán los resultados de cada técnica aplicada.

V.4.1. Microscopía electrónica de barrido (SEM): resultados.

En la **Figura 23**, se muestran la imágenes obtenidas a través de la técnica de microscopía electrónica de barrido (SEM¹⁰, por sus siglas en inglés); para el catalizador de Co/CeO₂ – ZrO₂. En lado a) se puede apreciar la morfología del catalizador de Co/CeO₂ – ZrO₂; en el lado b) se puede apreciar la forma de los cristales los cuales coinciden con el análisis XRD donde el catalizador presenta estructuras cúbicas y monoclínicas.

Figura 23. Microscopía electrónica de barrido (SEM) para el catalizador Co/CeO₂-ZrO₂, sin reducir. Elaborado en Microscopio Electrónico de Barrido Jeol JSM7600-F.

En la **Figura 24**, se muestran la imágenes obtenidas a través de la técnica de microscopía electrónica de barrido (SEM, por sus siglas en inglés), realizadas en el equipo Jeol JSM7600-F; para el catalizador de Ni/CeO₂ – ZrO₂; En lado se puede apreciar la morfología del catalizador de Ni/CeO₂ – ZrO₂.

¹⁰ SEM: Scanning Electron Microscope. Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Consejo Nacional de Ciencia y Tecnología (conacyt)

V.4.2. Microscopía de transmisión electrónica de alta resolución (HRTEM): resultados.

En la **Figura 25**, se muestran la imágenes obtenidas a través de la técnica de microscopía de transmisión electrónica de alta resolución (HRTEM¹¹, por sus siglas en inglés); para el catalizador de Co/CeO₂ – ZrO₂; En lado a) se puede apreciar la morfología del catalizador de Co/CeO₂ – ZrO₂; en el lado b) se aprecia la forma de los cristales los cuales coinciden con el análisis XRD donde el catalizador presenta estructuras cúbicas y monoclínicas de igual manera que se puede apreciar en los resultados obtenidos por la técnica SEM.

Figura 25. Microscopía de transmisión electrónica de alta resolución (HRTEM) para el catalizador Co/CeO₂-ZrO₂, sin reducir. Elaborado en microscopio electrónico de transmisión con emisión de campo Jeol JEM-2100F.

¹¹ HRTEM: High Resolution Transmission Electron Microscopy.

En la **Figura 26**, se muestran la imágenes obtenidas a través de la técnica de microscopía de transmisión electrónica de alta resolución (HRTEM, por sus siglas en inglés), realizadas en el equipo Jeol JSM7600-F; para el catalizador de Ni/CeO₂ – ZrO_2 . En ambas figuras se alcanza apreciar la presencia de algunas partículas esféricas las cuales pueden ser atribuidas al Ni.

V.4.3. Discusión y análisis de los resultados de las técnicas de microscopía electrónica de SEM y HRTEM.

Con respecto a los resultados de la microscopía electrónica de barrido (SEM), que se aplicó a los catalizadores de Co y Ni soportados en el óxido de mixto de CeO_2 -Zr O_2 , tanto en las **Figuras 25** y **26** se observan que las superficies de los catalizadores se logran apreciar estructuras cúbicas y monoclínicas, lo cual es coincidente con los resultados obtenidos en el análisis XRD aplicado para el soporte de óxido mixto de $CeO_2 - ZrO_2$. Esto se confirma con los resultados obtenidos en la microscopía de transmisión electrónica de alta resolución (HRTEM), aplicada para los mismos catalizadores, a una profundidad de 200 nm, se siguen observando estas estructuras cúbicas y monoclínicas para ambos catalizadores.

V.5. Espectroscopía fotoelectrónica de rayos X (XPS): resultados y análisis.

Se aplicó la técnica analítica de la espectroscopía fotoelectrónica de rayos X (XPS) para las siguientes muestras:

- Soporte de óxido mixto de CeO₂-ZrO₂.
- Catalizador de Fe/ CeO₂-ZrO₂.
- Catalizador de Co/ CeO₂-ZrO₂.

Catalizador de Ni/ CeO₂-ZrO₂.

A continuación, en las siguientes secciones se describen los resultados para el análisis de XPS para las muestras antes mencionadas.

V.5.1. Resultados y análisis de la espectroscopía fotoelectrónica de rayos X (XPS) para el soporte de óxido mixto CeO₂-ZrO₂.

En la **Figura 27**, se observó que los datos experimentales para el soporte de óxido mixto de CeO₂-ZrO₂, específicamente para las especies de Ce involucradas. En el cuadro a) se observan los resultados experimentales del análisis XPS; en el inciso b) y c) se observaron también los XPS de referencia para el compuesto de análisis.

Figura 27. Cuadro comparativo para los datos experimentales del análisis de XPS para el soporte de óxido mixto CeO₂-ZrO₂. Especies analizadas Ce⁺⁴ y Ce⁺³.

TESIS DE GRADO: NIVEL MAESTRÍA

Consejo Nacional de Ciencia y Tecnología (conacyt)

El inciso a) representa el espectro XPS general correspondiente el soporte de óxido mixto óxido mixto CeO2-ZrO2; el inciso b) muestra el espectro XPS de referencia para el Ce⁺⁴; el inciso c) se muestra el espectro XPS de referencia para el Ce⁺⁴ y Ce+3. Fuente: Gráfico elaborado en el software Thermo Avantage v5.9931, 2022, así como los XPS de referencia fueron obtenidos del mismo software.

En la Figura 27, se puede observar las especies encontradas en el análisis XPS para las especies del Ce, y de acuerdo con la Tabla 23, se puede apreciar que las especies que se encontraron fueron el Ce^{+4} , en forma de CeO_2 y Ce^{+3} , en forma de Ce_2O_3 . Para las especies identificadas se puede corroborar con el porcentaje atómico encontrado en la muestra del soporte de óxido mixto CeO2-ZrO₂ como se aprecia en la Tabla 23.

		Especies asignadas Energía de enlac				
Compuesto	% atómico	Estado de oxidación	observadas (B.E.) [eV]			
Cent	21.76	Ce ⁺⁴	CeO ₂	882		
$003a_{5/2}$	31.76	Ce ⁺³	Ce ₂ O ₃ .	897		

Tabla 23. Porcentajes atómicos para	a muestra de CeO2-ZrO2. Especies	; analizadas: Ce ⁺⁴ y Ce ⁺³
-------------------------------------	----------------------------------	---

En la Figura 28, se aprecian los espectros XPS de los datos experimentales para el soporte de óxido mixto de CeO₂-ZrO₂, específicamente para las especies de Zr involucradas. En el cuadro a) se observan los resultados experimentales del análisis XPS; en el inciso b) y c) se observaron también los XPS de referencia para el compuesto de análisis.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 28. Cuadro comparativo para los datos experimentales del análisis de XPS para el soporte de óxido mixto CeO₂-ZrO₂. Especies analizadas Zr⁺⁴ y Zr⁺².

El inciso a) representa el espectro XPS general correspondiente el soporte de óxido mixto óxido mixto CeO_2 -Zr O_2 ; el inciso b) muestra el espectro XPS de referencia para el Zr⁺⁴ para el compuesto Zr B_2 ; el inciso c) se muestra el espectro XPS de referencia para el Zr⁺⁴ para el compuesto Zr B_2 ; el inciso c) se muestra el espectro XPS de referencia para el Zr O_2 . Fuente: Gráfico elaborado en el software Thermo Avantage v5.9931, 2022, así como los XPS de referencia fueron obtenidos del mismo software.

194

176

192

(sub-oxide B)

190

188

186

184

Binding Energy (eV

182

180

178

176

En la **Figura 28**, se puede observar las especies encontradas para el Zr, y de acuerdo con la **Tabla 24**, se puede apreciar que las especies que se encontraron fueron el Zr^{+4} , en forma de ZrO_2 y Zr^{+2} , en forma de ZrO. Para las especies identificadas de Zr se puede corroborar con el porcentaje atómico encontrado en la muestra del soporte de óxido mixto de CeO₂-ZrO₂ en la **Tabla 24**:

192

188

184

Binding Energy (eV)

180

Consejo Nacional de Ciencia y Tecnología (conacyt)

Tabla 24. Porcentajes atomicos para la muestra de CeO ₂ -ZrO ₂ . Especie analizada: Zr^{44} y Zr^{42} .						
		Especies asigna	Energía de enlace			
Compuesto	% atómico	Estado de oxidación Especies		observadas (B.E.) [eV]		
Zrad	0.22	Zr^{+4}	ZrO ₂	183.2		
$2^{13a_{5/2}}$	9.22	Zr^{+3}	ZrO	181		

- 14 - 12

En la Figura 29, se observaron los datos experimentales para la muestra del soporte de óxido mixto de CeO₂-ZrO₂; específicamente para la especie: O⁻². En el cuadro b y c se observaron también los XPS de referencia para el compuesto de análisis.

Figura 29. Cuadro comparativo entre los datos experimentales del análisis de XPS para el soporte de óxido mixto CeO₂-ZrO₂.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente REMEDIACIÓN AMBIENTAL QUÍMICA.

DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍAS (CBI) LABORATORIO DE CATÁLISIS AMBIENTAL.

HIDROGENACIÓN CATALÍTICA DEL CO₂ A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂ - ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO.

Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

El inciso a) representa el espectro XPS general correspondiente el soporte de óxido mixto CeO_2 - ZrO_2 . El inciso b) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $Cu_2CO_3(OH)_2$, relación 4:1 (CO_3^{-2} : Cu^{+2}). El inciso c) se muestra el espectro XPS de referencia para el O^{-2} para el compuesto $Cu_2CO_3(OH)_2$, relación 2.5:1 (CO_3^{-2} : Cu^{+2}). El inciso d) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $La_{0.8}Sr_{0.2}COO_3$. El inciso e) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $La_{0.8}Sr_{0.2}COO_3$. El inciso e) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $La_{0.8}Sr_{0.2}COO_3$. El inciso e) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $La_{0.8}Sr_{0.2}COO_3$. El inciso e) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $La_{0.8}Sr_{0.2}COO_3$. El inciso e) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $La_{0.8}Sr_{0.2}COO_3$. El inciso e) muestra el espectro XPS de referencia para el O^{-2} para el compuesto $La_{0.8}Sr_{0.2}COO_3$. El inciso e) muestra el espectro XPS de referencia para el compuesto Al_2O_3 . Fuente: Gráfico elaborado en el software Thermo Avantage v5.9931, 2022, así como los XPS de referencia fueron obtenidos del mismo software.

En la **Figura 29**, se puede observar las especies encontradas para el O, y de acuerdo con la **Tabla 25**, se puede apreciar que las especies que se encontraron fueron el O^{-2} , en forma de MO_x (en óxidos) y en forma de CO_3^{-2} . Para las especies identificadas del O se puede corroborar con el porcentaje atómico encontrado en la muestra soporte de óxido mixto de CeO_2 -Zr O_2 en la siguiente tabla:

		Especies asigna	Energía de enlace	
Compuesto	% atómico	Estado de oxidación	Especies	observadas (B.E.) [eV]
		0^{-2}	CeO ₂	528.5
O_{1s}	53.2	0^{-2}	ZrO ₂	528.5
		0^{-2}	CO3 ⁻²	531.5

Tabla 25. Porcentajes atómicos para la muestra de CeO_2 - ZrO_2 . Especie analizada: O^{-2} .

En resumen en la **Tabla 26**, podemos observar todos los porcentajes atómicos observados para la muestra de CeO₂-ZrO₂:

rubia 20. nesumen de los porcentajes atomicos para la muestra ceo2-2102.						
Compuesto	% atómico	Especies asignadas	Energía de enlace observadas (B.E.) [eV]			
$Ce_{3d_{5/2}}$	31.76	CeO ₂ ; Ce ₂ O ₃ .	882, 897			
$Zr_{3d_{5/2}}$	9.22	ZrO ₂ ; ZrO.	183.2, 181			
<i>O</i> _{1s}	53.2	CeO ₂ ; ZrO ₂ ; CO ₃ - ²	528.5, 528.5 y 531.5			
<i>C</i> _{1<i>s</i>}	5.82	Estándar	-			
Total	100%	-	-			

Tabla 26. Resumen de los porcentajes atómicos para la muestra CeO₂-ZrO₂.

V.5.2. Resultados y análisis de la espectroscopía fotoelectrónica de rayos X (XPS) para el catalizador Fe/CeO₂-ZrO₂.

En la **Figura 30**, se aprecian los datos experimentales para el catalizador de Fe/CeO₂-ZrO₂; específicamente para la especie de Fe involucradas. En el cuadro a) se observan los resultados experimentales del análisis XPS; en el inciso b) y c) se observaron también los XPS de referencia para el compuesto de análisis.

El inciso a) representa el espectro XPS general correspondiente al catalizador de Fe/CeO_2 - ZrO_2 . El inciso b) muestra el espectro XPS de referencia para el Fe^0 . El inciso c) muestra el espectro XPS de referencia para el Fe^{+2} y Fe^{+3} para los compuestos FeO y el Fe_2O_3 . Fuente: Gráfico elaborado en el software Thermo Avantage v5.9931, 2022, así como los XPS de referencia fueron obtenidos del mismo software.

En la **Figura 30**, se puede observar las especies encontradas para el Fe en el análisis de XPS, y de acuerdo con la **Tabla 27**, se puede apreciar que las especies que se encontraron fueron el O⁻², en forma de FeO y Fe⁺³ en forma de Fe₂O₃ (con Fe⁺² y Fe⁺³ unidos en la misma molécula), y también se identifica el Fe⁰ metálico. Para las especies identificadas se puede corroborar con el porcentaje

atómico encontrado en la muestra del catalizador Fe/CeO₂-ZrO₂ como se aprecia en la siguiente tabla:

Tabla 27. Porcentajes atómicos para la muestra del catalizador Fe/CeO_2 - ZrO_2 . Especies analizadas para Fe^{+3} y Fe^{+2} .

	% atómico	Especies asigna	Energía de enlace	
Compuesto		Estado de oxidación	Especies	observadas
				(B.E.) [eV]
$Fe_{2p_{3/2}}$	15.03	Fe ⁰	Fe⁰	706
		Fe^{+2}	FeO	709.9
		Fe ⁺³	Fe ₂ O ₃	710.9

En resumen en la **Tabla 28**, podemos observar todos los porcentajes atómicos observados para la muestra de Fe/CeO₂-ZrO₂:

Compuesto	% atómico	Especies asignadas	Energía de enlace observadas (B.E.) [eV]
$Fe_{3p_{3/2}}$	15.03	Fe^0 , FeO; Fe ₂ O ₃	706, 709, 710.9
$Ce_{3d_{5/2}}$	10.85	CeO ₂ ; Ce ₂ O ₃ .	882, 897
$Zr_{3d_{5/2}}$	4.48	ZrO ₂ ; ZrO.	183.2, 181
015	47.69	CeO ₂ ; ZrO ₂ ; CO ₃ ⁻²	528.5, 528.5 y
			531.5
C_{1s}	21.92	Estándar	-
Total	100%	-	-

Tabla 28. F	Resumen de la	s porcentajes	atómicos p	bara la r	muestra Fe	/CeO2-ZrO2.

En la **Tabla 28,** se puede apreciar que el porcentaje de las especies de Fe corresponden al 15.03% del contenido total de la muestra para este catalizador.

V.5.3. Resultados y análisis de la espectroscopía fotoelectrónica de rayos X (XPS) para el catalizador Co/CeO₂-ZrO₂.

En la **Figura 31**, se puede observar los datos experimentales para el catalizador de Co/CeO₂-ZrO₂; específicamente para las especies de Co involucradas. En el cuadro a) se observan los resultados experimentales del análisis XPS; en el inciso b) y c) se observaron también los XPS de referencia para el compuesto de análisis.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 31. Cuadro comparativo entre los datos experimentales del análisis de XPS para el catalizador Co/CeO₂-ZrO₂. Especies analizadas Co⁺², Co⁰.

El inciso a) representa el espectro XPS general correspondiente al catalizador de Co/CeO₂-ZrO₂. El inciso b) muestra el espectro XPS de referencia para el Co⁺² y Co⁺³ para los compuestos CoO y el Co₃O₄. Fuente: Gráfico elaborado en el software Thermo Avantage v5.9931, 2022, así como los XPS de referencia fueron obtenidos del mismo software.

En la **Figura 31**, se puede observar las especies encontradas para el Co en el análisis de XPS. De acuerdo con la **Tabla 29**, se puede apreciar que las especies que se encontraron fueron el Co⁺², en forma de CoO y una mínima traza de Co⁰.

Para las especies identificadas se puede corroborar con el porcentaje atómico encontrado en la muestra del catalizador Co/CeO₂-ZrO₂ como se aprecia en la **Tabla 29.**

Consejo Nacional de Ciencia y Tecnología (conacyt)

		Especies asigna	Energía de enlace	
Compuesto	% atómico	Estado de oxidación	Especies	observadas (B.E.) [eV]
Co _{3p_{3/2}}	6.87	Co ⁰	Co ⁰	778
		Co ⁺²	CoO	780.1

Table 29 Porcentaies atómicos para la muestra de Co/CeO_2 -ZrO₂ Especies analizadas: $Co^0 v Ce^{+2}$

En resumen en la Tabla 30, podemos observar todos los porcentajes atómicos observados para las especies identificadas del Co en la muestra de Co/CeO₂-ZrO₂:

Tabla 30. Resumen de los porcentajes atómicos para la muestra Co/CeO ₂ -ZrO ₂ .						
Compuesto	% atómico	Especies asignadas	Energía de enlace observadas (B.E.) [eV]			
$Co_{3p_{5/2}}$	6.87	Co ⁰ , CoO;	778, 780.1			
$Ce_{3d_{5/2}}$	6.92	CeO ₂ ; Ce ₂ O ₃ .	882, 897			
$Zr_{3d_{5/2}}$	5.82	ZrO2; ZrO.	183.2, 181			
015	64.82	CeO ₂ ; ZrO ₂ ; CO ₃ ⁻²	528.5, 528.5 у 531.5			
<i>C</i> _{1s}	6.35	Estándar	-			
Total	100%	-	-			

En la Tabla 30, se puede apreciar que el porcentaje de las especies de Co corresponden al 6.87% del contenido total de la muestra para este catalizador.

V.5.4. Resultados y análisis de la espectroscopía fotoelectrónica de rayos X (XPS) para el catalizador Ni/CeO₂-ZrO₂.

En la Figura 32, se observaron los datos experimentales para la muestra del catalizador de Ni/CeO₂-ZrO₂; específicamente para las especies de Ni involucradas. En el cuadro a) se observan los resultados experimentales del análisis XPS; en el inciso b) y c) se observaron también los XPS de referencia para el compuesto de análisis.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 32. Cuadro comparativo entre los datos experimentales del análisis de XPS para el soporte de óxido mixto CeO₂-ZrO₂.

El inciso a) representa el espectro XPS general correspondiente al catalizador de Ni/CeO₂-ZrO₂. El inciso b) muestra el espectro XPS de referencia para el Ni⁰. El inciso c) muestra el espectro XPS de referencia para el Ni⁺² para los compuestos NiO y el Ni(OH)₂. Fuente: Gráfico elaborado en el software Thermo Avantage v5.9931, 2022, así como los XPS de referencia fueron obtenidos del mismo software.

En la **Figura 32**, se puede observar las especies encontradas en el análisis XPS para el Ni, y de acuerdo con la **Tabla 31**, se puede apreciar que las especies que se encontraron fueron el Ni⁺², en forma de NiO y Ni(OH)₂; a su vez, también se encontró el Ni⁰ (metálico). Para las especies identificadas se puede corroborar con el porcentaje atómico encontrado en la muestra del catalizador Ni/CeO₂-ZrO₂ como se aprecia en la **Tabla 31**.

Consejo Nacional de Ciencia y Tecnología (conacyt)

		Especies asigna	Energía de enlace	
Compuesto	% atómico	Estado de oxidación	Especies	observadas (B.E.) [eV]
Ni _{2p3/2}	16.7	Ni ⁰	Ni ⁰	852
		Ni^{+2}	NiO	853.7
		Ni ⁺²	Ni(OH)₂	855

Tabla 31. Porcentaies atómicos para la muestra de Ni/CeO₂-ZrO₂. Especies analizadas: Ni⁰ y Ni⁺².

En la Tabla 32, podemos observar los porcentajes atómicos para todas las especies observadas en la muestra de Ni/CeO₂-ZrO₂:

Tabla 32. Resumen de los porcentajes atomicos para la muestra Ni/CeO ₂ -2rO ₂ .						
Compuesto	% atómico	Especies asignadas	Energía de enlace observadas (B.E.) [eV]			
$Ni_{3p_{5/2}}$	16.7	Ni ⁰ ; NiO; Ni(OH) ₂ ;	852, 853.7, 855			
$Ce_{3d_{5/2}}$	5.48	CeO_2 ; Ce_2O_3 .	882, 897			
$Zr_{3d_{5/2}}$	6.42	ZrO ₂ ; ZrO.	183.2, 181			
<i>O</i> _{1s}	53.5	CeO ₂ ; ZrO ₂ ; CO ₃ ⁻²	528.5, 528.5 y 531.5			
C_{1s}	18.4	Estándar	-			
Total	100%	-	-			

Table 22 Bosumon de los porcontaios atómicos para la muestra Ni/CoO - 70

En la Tabla 32, se puede apreciar que el porcentaje de las especies de Ni corresponden al 16.7% del contenido total de la muestra para este catalizador.

V.5.5. Discusión y análisis de los resultados de la espectroscopía fotoelectrónica de rayos X (XPS) para los catalizadores de Fe, Co y Ni y el soporte de óxido mixto CeO₂ – ZrO₂.

En la Tabla 33, se describe el resumen de las especies analizadas para el análisis de espectroscopía de fotoelectrónica de rayos X (XPS) para las muestras que se enlistan a continuación:

- Soporte de óxido mixto de CeO₂-ZrO₂.
- Catalizador de Fe/ CeO₂-ZrO₂. •
- Catalizador de Co/ CeO₂-ZrO₂. •
- Catalizador de Ni/ CeO₂-ZrO₂.

Para el soporte de óxido mixto reducido de CeO₂-ZrO₂ se identificaron las especies para el cerio de Ce^{+4} y Ce^{+3} (882 y 897 eV) que corresponden a los óxidos de CeO_2 y Ce_2O_3 las cuales, en conjunto, corresponden al 31.76% del contenido de la muestra para este soporte. Aunque observamos que no todas las especies de Ce⁺⁴ lograron reducirse a Ce⁺³, no se pudo cuantificar la cantidad exacta de cada uno de los óxidos.

Para el zircón: Zr^{+4} , Zr^{+2} (181 y 183 eV); y para el oxígeno: O^{-2} , O^{-2} en CO_3^{-2} (528.5 y 531.5 eV) que corresponden a los óxidos de ZrO_2 y ZrO las cuales, en conjunto, corresponden al 9.22% del contenido de la muestra para este soporte. Aunque observamos que no todas las especies de Zr^{+4} lograron reducirse a Zr^{+2} , no se pudo cuantificar la cantidad exacta de cada uno de los óxidos. Estas mismas bandas también fueron identificadas para cada uno de los catalizadores de Fe, Co y Ni soportados en el óxido mixto de CeO₂-ZrO₂.

Para el catalizador reducido de Fe/ CeO₂-ZrO₂, se identificaron las especies para el hierro de Co⁺² (710.9 eV), Fe⁺² (709.9 eV) y Fe⁰ (706 eV) que corresponden a los óxidos de Fe₂O₃, FeO y Fe metálico las cuales, en conjunto, corresponden al 15.03% del contenido de la muestra para este catalizador. Aunque observamos que no todas las especies de Fe⁺³ lograron reducirse a Fe⁺² y Fe⁰, no se pudo cuantificar la cantidad exacta de cada uno de los óxidos de hierro.

Para el catalizador reducido de Co/CeO₂-ZrO₂, se identificaron las especies para el cobalto de Co⁺² (780.1 eV) y Co⁰ (778 eV) que corresponden al óxido de cobalto (II): CoO y cobalto metálico: Co⁰; las cuales, en conjunto, corresponden al 6.87% del contenido de la muestra para este catalizador. Aunque observamos que no todas las especies de Co⁺² lograron reducirse a Co⁰, no se pudo cuantificar la cantidad exacta de cada uno del óxido de cobalto (II) y el cobalto metálico.

Para el catalizador reducido de Ni/CeO₂-ZrO₂, se identificaron las especies para el níquel de Ni⁺² (855 y 853.7 eV) y Ni⁰ (852 eV) que corresponden al hidróxido de níquel (II): Ni(OH)₂, óxido de níquel (II): NiO y al níquel metálico Ni⁰; las cuales, en conjunto, corresponden al 16.7% del contenido de la muestra para este catalizador. Aunque observamos que no todas las especies de Ni⁺² lograron reducirse a Co⁰, no se pudo cuantificar la cantidad exacta de cada uno del hidróxido de níquel (II), óxido de níquel (II) y el níquel metálico.

Soporte /Catalizador	Spin	Estados de oxidación	Energía de enlace (B.E.) [e.V.]	Porcentaje atómico en la muestra	Energía de enlace
	$Ce_{3d_{5/2}}$	Ce ⁺⁴ , Ce ⁺³	882, 897.	31.73%	CeO_2 ; Ce_2O_3 .
CeO ₂ -ZrO ₂	$Zr_{3d_{5/2}}$	Zr ⁺⁴ , Zr ⁺³	183.2, 181	9.22%	ZrO ₂ ; ZrO.
	<i>0</i> _{1s}	O ⁻²	528.5, 531.5	53.2%	CeO ₂ ; ZrO ₂ ; CO ₃ ⁻²
Fe/ CeO ₂ -ZrO ₂	$F_{2p_{3/2}}$	Fe ⁺³ , Fe ⁺²	710.9, 709.9.	15.03%	FeO; Fe ₂ O ₃
Co/ CeO ₂ -ZrO ₂	$Co_{3p_{3/2}}$	Co ^{+2,} Co ⁰	780.1 <i>,</i> 778	6.87%	CoO, Co ⁰ .
Ni/ CeO2-ZrO2	$Ni_{2p_{3/2}}$	Ni ⁺² , Ni ⁰	855, 853.7, 852.	16.7%	Ni ⁰ , NiO y Ni(OH)₂;

Tabla 33. Resumen de las especies identificadas en el análisis XPS para cada uno de los catalizadores de Fe, Co y Ni soportados para en el óxido mixto de $CeO_2 - ZrO_2$.

En la **Tabla 34**, se describe las especies identificadas a detalle analizadas para el análisis de la espectroscopía de fotoelectrónica de rayos X (XPS); en esta tabla se comparan las energía de enlace teóricas obtenidas de los espectros XPS de referencia y se contrastan con las energías de enlace experimentales. Esta tabla se utilizó para asignar las especies contenidas en cada uno de los catalizadores estudiados en este trabajo.

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

	Bandas		CeO ₂ -	– ZrO ₂	$Fe/CeO_2 - ZrO_2$		Co/CeO ₂ – ZrO ₂		Ni/CeO ₂ – ZrO ₂	
	Teo. ⁽¹ B.E. ⁽³⁾ [e') V]	Obs. ⁽²⁾ B.E.[eV]	Especie Asignada	Obs. ⁽²⁾ B.E.[eV]	Especie Asignada	Obs. ⁽²⁾ B.E.[eV]	Especie Asignada	Obs. ⁽²⁾ B.E.[eV]	Especie Asignada
Ce ⁺⁴	C a (4)	882.2	882	Ce+4	882	Ce ⁺⁴	882	Ce ⁺⁴	882	Ce ⁺⁴
Ce ⁺³	Ce _{3d5/2}	897.5	897	Ce+3	897	Ce ⁺³	897	Ce ⁺³	897	Ce ⁺³
Zr ⁰ metal		178.9	-	-	-	-	-	-	-	-
Zr sub óxidos	$Zr_{3d_{5/}}^{(5,6)}$	179-180.5	-	-	-	-	-	-	-	-
Zr ²⁺ en ZrO ₂ ;	/2	182.7	181	Zr ⁺²	181	Zr ⁺²	181	Zr ⁺²	181	Zr ⁺²
Zr ⁴⁺ silicato		183.0	183.2	Zr ⁺⁴	183	Zr ⁺⁴	183.2	Zr ⁺⁴	183.2	Zr ⁺⁴
Fe ^o metal		706.7	-	-	706	Fe ⁰	-	-	-	-
Fe ²⁺ en marcasita (FeS ₂).	- (7.0)	707.3	-	-	-	-	-	-	-	-
Fe ²⁺ en FeO	$Fe_{3p_{3/2}}$ (7,8)	709.6	-	-	709.9	Fe ⁺²	-	-	-	-
Fe ³⁺ en Fe ₂ O ₃	/2	710.8	-	-	710.9	Fe ⁺³	-	-	-	-
Fe ²⁺ en FeCl ₂		710.4	-	-	-	-	-	-	-	-
Co ⁰ metal		778.2	-	-	-	-	778	Co ⁰	-	-
Co ²⁺ y 2Co ³⁺	$Co_{3n_{2}}$ (9)	779.7	-	-	-	-	-	-	-	-
Co ₃ O ₄	^{3p3} / ₂									
Co ²⁺ en CoO		779.7	-	-	-	-	780.1	Co ⁺²	-	-
Ni ^o en metal		852.6	-	-	-	-	-	-	852	Ni ^o
Ni ²⁺ en NiO	Ni	853.7	-	-	-	-	-	-	853.7	Ni ⁺² en NiO
Ni ²⁺ en Ni(OH) ₂	IV L2p3/2	855.6	-	-	-	-	-	-	855	Ni ⁺² en Ni(OH) ₂
O ²⁻ en óxidos metálicos		529-530	528.5	O ²⁻ , en CeO ₂ y ZrO ₂	528.5	O ²⁻ , en FeO	528.5	O ²⁻ , en CoO	528.5	O ²⁻ , en NiO
O ²⁻ en metal carbonatos		531.5-532	531.5	O ²⁻ , en CO ₃ -2	531.5	O ²⁻ , en CO ₃ - 2	531.5	O ²⁻ , en CO ₃ - ²	531.5	O ²⁻ , en CO ₃ - ²
O ²⁻ en Al ₂ O ₃ (alúmina)		531.1	-	-	-	-	-	-	-	-
O ²⁻ en SiO ₂	O (10,11, y 12)	532.9	-	-	-	-	-	-	-	-
O ²⁻ en orgánicos C-O.	015	531.5-532	-	-	-	-	-	-	-	-
O ²⁻ en orgánicos C=O.		533	-	-	-	-	-	-	-	-
O ^{2−} en O-F _x .		535	-	-	-	-	-	-	-	-

Tabla 34. Especies identificadas para el análisis XPS en los catalizadores de Fe, Co y Ni sobre el soporte de óxido mixto CeO₂-ZrO₂. Referencias obtenidas en el software Thermo Avantage v5.9931, 2022.

(1) Energías de enlace teóricas.

- (2) Energías de enlace observadas.
- (3) Energía de enlace (Bending energy)
- (4) Bache et al., Surf. Interface Anal. 2008; 40: 264-267
- (5) Zr es un metal reactivo y el Zr usualmente se encuentra como óxido de ZrO₂.
- (6) El zirconio se observó con frecuencia una contaminación con componentes del elemento Hafnio.
- (7) MC Biesinger et al., Applied Surface Science 257 (2011) 2717-2730.
- (8) Uhlig et al., Applied Surface Science 179 (2001) 222-229.
- (9) El carbono puede formar carburos cuando está en contacto con el cobalto metálico, ej. durante el perfil de profundidad de iones de argón.
- (10) El oxígeno siempre estará presente en las muestras expuestas a la atmósfera, ya sea por contaminación accidental, oxidación o agua.
- (11) Puede usar la posición del pico de O1s para plasmar y medir la energía de banda para ciertos materiales de referencia.
- (12) H. Nohira et al., Journal of Non-Crystaline Solids 303 (2002) 83-87.

V.6. Temperatura programada de reducción (TPR): resultados y discusión.

La técnica de temperatura programada de reducción (TPR), se llevó a cabo en el instrumento Micromeritis[®] AutoChem II. Las condiciones de la técnica TPR se describen en la **Tabla 35**.

35. C	onaiciones e	experimentales para la t	ecni
	Variable	Valor	
	Flujo	24.96 cm ³ STP/min	
Masa		50 mg	

Tabla 35. Condiciones experimentales para la técnica TPR.

V.6.1. Resultados y análisis de la temperatura programada de reducción (TPR) para el soporte de óxido mixto CeO₂ – ZrO₂.

En la **Figura 33**, se muestran los resultados de la técnica TPR aplicada al soporte de óxido mixto CeO₂-ZrO₂. La línea negra representa el soporte CeO₂-ZrO₂ (CeZr); se observa un pico de reducción a partir de los 400 °C hasta los 800 °C.

Figura 33. Análisis de TPR para el óxido de soporte mixto CeO₂ – ZrO₂. Gráfico elaborado en OriginPro 2017, Vb9.4.2.380.

En la **Figura 33**, se presenta el perfil de TPR para el soporte de óxido mixto $CeO_2 - ZrO_2$. De acuerdo con Mierczynski et al. (2018), establece que para el óxido individual de CeO_2 , donde el pico de reducción de las especies $Ce^{4+} \rightarrow Ce^{3+}$ está ubicado en el rango de temperatura de 300 – 550 °C, donde el pico máximo se presenta en 593 °C (T_{max}).

Ranga et al. (2019), estudió el óxido de ZrO_2 , a través de un análisis de TPR, donde encontró que en el intervalo de temperatura de 200 °C a 900 °C. Para este trabajo, no se observó la adsorción de hidrógeno durante el análisis de la técnica de TPR para el óxido mixto de $CeO_2 - ZrO_2$. Esto implica,

que en el intervalo de temperatura observado no hay especies reducibles de la especie Zr^{+4} ; por tanto, para este trabajo, asumimos que en los análisis de TPR no hay cambio en las especies de Zr^{+4} , es decir que en la **Figura 33**, únicamente se observa una sola especie reducible del Ce⁺⁴ a Ce⁺³, tal cual y lo describe Mierczynski et al. (2018), en su estudio.

V.6.2. Resultados y análisis de la temperatura programada de reducción (TPR) para el catalizador de Fe/CeO₂ – ZrO₂.

A continuación, a partir de la **Figura 34**, se presentarán la comparación de las especies reducibles identificadas en los TPR aplicados a los catalizadores $Fe/CeO_2 - ZrO_2$.

En la **Figura 34,** observamos el comparativo entre las curvas entre el soporte de óxido mixto $CeO_2 - ZrO_2$ (CeZr, negro) y el catalizador de Fe soportado en el óxido mixto $CeO_2 - ZrO_2$ (Fe/CeZr, rojo). En la curva negra, que corresponde al soporte (CeZr), observamos un solo pico de reducción cercano a los 600 °C.

En la curva roja, observamos al menos tres picos de reducción para el catalizador de Fe/CeO₂ – ZrO₂. De acuerdo con Jozwiak et al. (2007), específica que los picos característicos para el perfil de TPR del Fe, son dos picos, dónde el primer pico se presenta T_{max} =379.76 °C, donde ocurre la reducción de α -Fe₂O₃ (Fe⁺³) \rightarrow Fe₃O₄ (Fe⁺², Fe⁺³); y en el segundo pico es cercano a T_{max} =471.23 °C, donde ocurre la reducción de reducción de Fe⁺² a Fe metálico de acuerdo con la siguiente reacción: Fe₃O₄ (Fe⁺², Fe⁺³) $\rightarrow \alpha$ -Fe⁰.

Por tanto, podemos observar dos reducciones para el catalizador Fe/CeO₂-ZrO₂ en la **Figura 34**, así mismo podemos asumir que la temperatura de reducción (500 °C) seleccionada para la activación del catalizador es suficiente para alcanzar la reducción a Fe⁰ metálico.

V.6.3. Resultados y análisis de la temperatura programada de reducción (TPR) para el catalizador de Co/CeO₂ – ZrO₂.

A continuación, a partir de la **Figura 35**, se presentarán la comparación de las especies reducibles identificadas en los TPR aplicados a los catalizadores $Co/CeO_2 - ZrO_2$.

Figura 35. Análisis de TPR para el catalizador Co/CeO₂ – ZrO₂ y el soporte de óxido mixto CeO₂ – ZrO₂. Gráfico elaborado en OriginPro 2017, Vb9.4.2.380.

En la **Figura 35**, observamos el comparativo entre las curvas entre el soporte de óxido mixto $CeO_2 - ZrO_2$ (CeZr, negro) y el catalizador de Co soportado en $CeO_2 - ZrO_2$ (CoCeZr, rojo). En la curva negra, que corresponde al soporte óxido mixto $CeO_2 - ZrO_2$, observamos un pico de reducción en una temperatura máxima de 600 °C, observado un solo pico de reducción, el cual es coincidente con un ligero aplanamiento de la curva de reducción del catalizador $Co/CeO_2 - ZrO_2$, correspondiente al catalizador. Aquí se aprecia la reducción de la especie $Ce^{4+} \rightarrow Ce^{3+}$.

En la curva roja, observamos al menos dos picos de reducción. De acuerdo con Lin et al. (2003), específica que hay dos picos característicos para el perfil de TPR del Co, dónde el primer pico se presenta T_{max} =220.48 °C, donde ocurre la reducción del óxido Co₃O₄ (Co^{+3, +2}) \rightarrow CoO (Co⁺²); y en el segundo, cercano a T_{max} =387.34 °C, donde ocurre la reducción a Co metálico de acuerdo con la

siguiente reacción: CoO (Co⁺²) \rightarrow Co⁰. Por tanto, podemos observar dos reducciones para el catalizador Co/CeO₂-ZrO₂ en la **Figura 35**, así mismo podemos asumir que la temperatura de reducción (500 °C) seleccionada para la activación del catalizador es suficiente para alcanzar el Co⁰ metálico.

V.6.4. Resultados y análisis de la temperatura programada de reducción (TPR) para el catalizador de Ni/CeO₂ – ZrO₂.

A continuación, a partir de la **Figura 36**, se presentarán la comparación de las especies reducibles identificadas en los TPR aplicados a los catalizadores Ni/CeO₂ – ZrO_2 .

En la **Figura 36**, observamos el comparativo entre las curvas entre el soporte de óxido mixto $CeO_2 - ZrO_2$ (negro) y el catalizador de Ni soportado en $CeO_2 - ZrO_2$ (NiCeZr, rojo). En la curva negra, que corresponde al soporte de óxido mixto $CeO_2 - ZrO_2$, observamos un pico de reducción en una temperatura máxima de 600 °C, donde se observa un solo pico de reducción, el cual es coincidente con un ligero aplanamiento de la curva correspondiente al catalizador Ni/CeO₂-ZrO₂, correspondiente al catalizador. Aquí se aprecia la reducción de la especie $Ce^{4+} \rightarrow Ce^{3+}$.

En la curva roja, observamos al menos dos picos de reducción. De acuerdo con Mierczynski et al. (2018), específica que hay dos picos característicos para el perfil de TPR del Ni, dónde el primer pico se presenta en T_{max} =271.60 °C, donde ocurre la reducción de NiO (Ni ⁺² \rightarrow Ni⁰); y en el segundo,

cercano a T_{max} =318.22 °C, se puede asumir como un "pico satélite" de la reducción Ni⁺² \rightarrow Ni⁰. Por tanto, podemos observar dos reducciones para el catalizador Ni/CeO₂-ZrO₂ en la **Figura 36**, así mismo podemos asumir que la temperatura de reducción para realizar la reacción de hidrogenación del CO₂ a 500 °C es adecuada para la activación del catalizador y lograr el estado de oxidación de Ni⁰ metálico.

V.6.5. Discusión y análisis de los resultados del análisis de TPR para los catalizadores de Fe, Co y Ni y el soporte de óxido mixto CeO₂ – ZrO₂.

En la **Tabla 36**, se comparan los resultados obtenidos para la técnica de análisis de TPR aplicada a los catalizadores de Fe, Co y Ni, así como para el soporte de óxido mixto de CeO₂-ZrO₂.

Soporte /Catalizador	Reacción de reducción	Estados de oxidación	Rango de temperatura reducción [°C]	Temperatura máxima de reducción [°C]	Especies asignadas
	$Ce^{+4} \rightarrow Ce^{+3}$	Ce ⁺⁴ , Ce ⁺³	300-500 °C	593 °C	CeO ₂ ; Ce ₂ O ₃ .
CeO ₂ -ZrO ₂	$Zr^{+4} \rightarrow Zr^{+2}$	Zr ⁺⁴ , Zr ⁺³	No observado	No observado	ZrO2; ZrO.
Fe/ CeO ₂ -ZrO ₂	$ \begin{array}{c} Fe^{+3} \rightarrow Fe^{+3} + Fe^{+2} \\ Fe^{+2} \rightarrow Fe^{0} \end{array} $	Fe ⁺³ , Fe ⁺² Fe ⁰	200-450 °C 450-550 °C	379.76 °C 471.23 °C	FeO; Fe ₂ O ₃ Fe ⁰ _{metálico}
Co/ CeO ₂ -ZrO ₂	$\begin{array}{c} Co^{+3} \rightarrow Co^{+2} \\ Co^{+2} \rightarrow Co^{0} \end{array}$	Co ⁺³ Co ⁺² , Co ⁰	150-240 °C 250-430 °C	220.48 °C 387.34 °C	C03O2 C0O, C0 ⁰ metálico.
Ni/ CeO ₂ -ZrO ₂	$ \begin{array}{c} Ni^{+3} \rightarrow Ni^{+2} \\ Ni^{+2} \rightarrow Ni^{0} \end{array} $	Ni ⁺³ Ni ⁺² , Ni ⁰	250-300 °C 300-370 °C	271.60 °C 318.22 °C	Ni₂O₃ Ni ⁰ , NiO y Ni(OH)₂;

Tabla 36. Cuadro comparativo de los resultados obtenidos para los catalizadores de Fe, Co y Ni, así como para el soporte de óxido mixto de CeO₂-ZrO₂.

Para el soporte de óxido mixto CeO_2 -ZrO₂, los resultados de TPR para el CeO₂ coinciden con un análisis de XPS donde se detectó las especies Ce^{+4} y Ce^{+3} . Para ZrO₂ no se encontraron resultados coincidentes con los análisis de XPS. Sin embargo, los análisis XPS revelan que sí hay especies ZrO₂; ZrO.

Para el catalizador de Fe/CeO₂-ZrO₂ se identificaron las especies de FeO y Fe₂O₃ ($T_{máx} = 379.76 \, ^{\circ}C_{,}$); Fe⁰_{metálico} ($T_{máx} = 471.23 \, ^{\circ}C_{,}$), las cuales son coincidentes con los resultados obtenidos en el análisis XPS para este trabajo. Cuando el Fe^{+3} comienza su reducción hacia Fe^{0} , se observa que se descompone en dos especies previas $Fe^{+3} \, y \, Fe^{+2}$ esto significa que no todas las especies de Fe^{+3} logran una reducción al 100% hacia Fe^{0} , esto se puede confirmar con el análisis XPS para este catalizador debido a que en el análisis XPS no se alcanza a distinguir un pico característico de Fe^{0} en su espectro XPS para este catalizador (véase **Figura 34**).

Para el catalizador de Co/CeO₂-ZrO₂ se identificaron las especies de Co₃O₂ ($T_{max} = 220.48 \,^{\circ}C_{,}$); CoO, Co⁰_{metálico} ($T_{max} = 387.34 \,^{\circ}C_{,}$), las cuales son coincidentes con los resultados obtenidos en el análisis XPS para este trabajo. Cuando el Co^{+3} comienza su reducción hacia Co^{0} , se observa que se descompone en dos especies previas $Co^{+3} \, y \, Co^{+2}$ esto significa que no todas las especies de Co^{+3} logran una reducción al 100% hacia Co^{0} , esto se puede confirmar con el análisis XPS para este catalizador debido a que en el análisis XPS no se alcanza a distinguir un pico característico de Co^{0} en su espectro XPS para este catalizador (véase **Figura 35**). A pesar de que la sal Co(NO₃)₂•6H₂O que

es precursora del catalizador Co/CeO₂-ZrO₂, especifica que su estado de oxidación es II, Sin embargo, el análisis TPR y XPS indican que hay una mínima concentración de la especie Co^{+3} esto puede deberse a que la sal fue fabricada en 2013 y esta misma sal se utilizó en el año 2022. Y no ha sido almacenada en condiciones controladas de humedad, al ser una sal higroscópica esto provoca que el compuesto sigue oxidándose mientras absorbe moléculas de agua.

Para el catalizador de Ni/CeO₂-ZrO₂ se identificaron las especies de Ni₂O₃ ($T_{máx} = 271.60 \, {}^{\circ}C$,); NiO con Ni(OH)₂, Ni⁰_{metálico} ($T_{máx} = 318.22 \, {}^{\circ}C$), las cuales son coincidentes con los resultados obtenidos en el análisis XPS para este trabajo. Cuando el Ni^{+3} comienza su reducción hacia Ni^{0} , se observa que se descompone en dos especies previas Ni^{+3} y Ni^{+2} esto significa que no todas las especies de Ni^{+3} logran una reducción al 100% hacia Ni^{0} , esto se puede confirmar con el análisis XPS para este catalizador debido a que en el análisis XPS no se alcanza a distinguir un pico característico de Ni^{0} en su espectro XPS para este catalizador (véase **Figura 36**). A pesar de que la sal Ni(NO₃)₂•6H₂O que es precursora del catalizador Ni/CeO₂-ZrO₂, especifica que su estado de oxidación es II, sin embargo, el análisis TPR y XPS indican que hay una mínima concentración de la especie Ni^{+3} esto puede deberse a que la sal fue fabricada en 2007 y esta misma sal se utilizó en el año 2022 y no ha sido almacenada en condiciones controladas de humedad, al ser una sal higroscópica esto provoca que el compuesto sigue oxidándose mientras absorbe moléculas de agua.

V.7. Evaluación de la estabilidad térmica de la actividad catalítica: resultados y discusión.

Para realizar el análisis de la evaluación catalítica de los catalizadores Fe, Co y Ni soportados en el óxido mixto de $CeO_2 - ZrO_2$, se subdividieron en los siguientes rubros:

- Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica para los catalizadores de Fe, Co y Ni soportados en el óxido mixto de CeO₂ – ZrO₂.
- Resultados y análisis de la evaluación de la actividad catalítica a diferentes temperaturas para los catalizadores de Fe, Co y Ni soportados en el óxido mixto de CeO₂ – ZrO₂.

V.7.1. Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica para los catalizadores de Fe, Co y Ni soportados en el óxido mixto de CeO₂ – ZrO₂.

El análisis de la evaluación de la estabilidad térmica de la actividad catalítica se dividirá en los siguientes rubros:

- Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica Fe/CeO₂ – ZrO₂.
- Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica Co/CeO₂ – ZrO₂.
- Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica Ni/CeO₂ – ZrO₂.

V.7.1.1. Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica $Fe/CeO_2 - ZrO_2$.

En la **Figura 37,** se muestra la estabilidad térmica de la actividad catalítica en función del tiempo para la reacción de hidrogenación del CO₂ que se llevó a cabo en el catalizador de Fe/CeO₂ – ZrO₂ a 400 °C, durante 8 h; flujo de H₂ de 60 mL/min, flujo de CO₂/N₂ (relación 0.2:0.8) de 60 mL/min (relación 1:5 con respecto al H₂); y una masa del catalizador de 53.4 mg. El catalizador fue reducido previamente a 500 °C durante 3 h.

Figura 37. Evaluación de la estabilidad térmica de la actividad catalítica a 400 °C para la reacción de hidrogenación catalítica del $CO_2 \rightarrow CH_4$ sobre el catalizador Fe/Ce $O_2 - ZrO_2$, durante 8 h.

En la **Figura 37**, observamos la caída de la conversión durante las primeras dos horas de la reacción de hidrogenación catalítica de CO₂ a CH₄. Esta caída de la presión se le puede atribuir al estado de oxidación del Fe que es III en la sal de impregnación, esto significa que el catalizador después de su proceso de reducción y durante las dos primeras horas de reacción, el catalizador sigue sufriendo un proceso de reducción hasta que su estado de oxidación cambie de acuerdo con el siguiente esquema:

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

$$Fe^{2+} + e^{-} \rightarrow Fe^{1+}$$

$$Fe^{1+} + e^{-} \rightarrow Fe^{0}$$

Se puede plantear la hipótesis que durante el proceso de reducción (3 h) se logra reducir dos estados de oxidación, es decir, el catalizador de Fe⁺³ llega al Fe⁺¹, sin embargo, cuando empieza la reacción a la temperatura de análisis, el Fe⁺¹ sigue un proceso de reducción durante las primeras dos horas de la reacción en la cual logra alcanzar el estado de oxidación del Fe⁰, que es justo donde se estabiliza la conversión y la selectividad para esta reacción de hidrogenación.

Aunque está hipótesis no se comprobó en este trabajo, sería interesante medir en condiciones *in situ*, el proceso de reducción de este catalizador así como el monitorear el cambio de estados de oxidación durante la reacción de hidrogenación catalítica del CO₂.

También se observaron que la conversión tiene un valor de X_{CO_2} < 4.80% durante los primeros 21 min de la reacción de hidrogenación catalítica del CO₂; a su vez se observó una conversión X_{CO_2} < 2.87% durante las 8 h que duró la reacción de hidrogenación del CO₂

Las concentraciones de los productos identificados en esta reacción de hidrogenación catalítica de CO_2 llevada a cabo en el catalizador de Fe/CeO₂-ZrO₂ se presentan en la **Figura 38.**

En la **Figura 38**, observamos un comportamiento típico de reacciones consecutivas, esto se deduce a partir del máximo que se presenta en los primeros 21 min de reacción donde se obtiene la concentración máxima de CO en la reacción de hidrogenación catalítica del CO₂. En esta figura podemos observar que a partir de las 3 h de reacción, la concentración de CO comienza disminuir, sin embargo, sigue siendo la concentración más alta de los productos obtenidos. El producto de interés particular en este trabajo que es el CH₄ presenta un incremento de la concentración a partir de las 3 h de reacción, sin embargo, la concentración de este producto es 21 veces menor en orden de magnitud con respecto a la concentración de CO. Durante las 2 horas de reacción podemos observar que los productos se encuentran en un equilibrio químico con el reactivo. Este comportamiento se debe a la alta selectividad que presentó el CO durante la reacción de hidrogenación catalítica de CO para el catalizador de Fe/CeO₂-ZrO₂ (véase **Figura 40**).

En la Figura 39, se presentan los resultados de los rendimientos de los productos de CO y CH4

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2 - COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. TESIS DE GRADO: NIVEL MAESTRÍA

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 39. Rendimientos de la actividad catalítica a 400 °C para la reacción de hidrogenación del CO₂ sobre el catalizador $Fe/CeO_2 - ZrO_2$.

En la **Figura 39**, observamos que el rendimiento de CO es mayor que el rendimiento del producto de interés para el CH₄. Se logra observar que el rendimiento máximo para el CO es a los 21 min de reacción con un valor de 4.54% y para el mismo tiempo, el rendimiento máximo para el CH₄ es de 0.26%.

En la **Figura 40**, se observa las selectividades para los productos de reacción del CO y CH_4 en la reacción de hidrogenación catalítica del CO_2 .

Figura 40. Selectividades de la actividad catalítica a 400 °C para la reacción de hidrogenación del CO_2 sobre el catalizador Fe/Ce O_2 – Zr O_2 .

En la **Figura 40.** observamos que la selectividad de CO es estable y muy alta por encima del 90% y se mantiene prácticamente constante durante las 8 h de reacción con un valor alrededor del 95.5%. Por otro lado, la selectividad hacía CH_4 , observamos que después del máximo (5.44%), que sucede en los 21 min de reacción, la selectividad cae en un valor mínimo de 2.84% (2 h de reacción) y después comienza a subir de forma constante hasta obtener un valor máximo de 4.52% a las 8 h de reacción. Se deduce que este catalizador tiene una alta selectividad para el producto no deseado que es el CO y una baja selectividad para el producto de interés que es el CH_4

V.7.1.2. Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica $Co/CeO_2 - ZrO_2$.

En la **Figura 41,** se muestra la estabilidad térmica de la actividad catalítica en función del tiempo para la reacción de hidrogenación del CO₂ llevada a cabo en el catalizador de Co/CeO₂ – ZrO₂ a 400 °C, durante 10 h; con un flujo de H₂ de 60 mL/min, flujo de CO₂/N₂ (relación 0.2:0.8) de 60 mL/min (relación 1:5 con respecto al H₂); y una masa de catalizador de 54.4 mg. El catalizador fue reducido previamente a 500 °C durante 3 h.

Figura 41. Evaluación de la estabilidad térmica de la actividad catalítica a 400 °C para la reacción de hidrogenación catalítica del $CO_2 \rightarrow CH_4$ sobre el catalizador $Co/CeO_2 - ZrO_2$, durante 10 h.

En la **Figura 41,** se observó que el incremento gradual de la rapidez de la reacción así como un aumento constante de la conversión en la reacción de la hidrogenación catalítica de CO_2 en el catalizador $Co/CeO_2 - ZrO_2$ que se llevó a cabo durante las 9:31 horas en que duró la reacción. Ambas variables se mantienen constantes y a la alza durante el tiempo que duró la reacción.

Durante el proceso de reducción se espera que suceda el siguiente esquema de reacción:

$$\begin{array}{c} Co^{2+}+e^- \rightarrow Co^{1+} \\ Co^{1+}+e^- \rightarrow Co^0 \end{array}$$

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

También se observaron que la conversión es un valor de $X_{CO_2} \approx$ 38.09%, durante las 10 h. que duró la reacción de hidrogenación catalítica para el CO₂.

Las concentraciones de los productos identificados en esta reacción de hidrogenación catalítica de CO_2 llevada a cabo en el catalizador de CO/CeO_2 - ZrO_2 se presentan en la **Figura 42**.

Figura 42. Concentraciones de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la estabilidad térmica de la actividad catalítica para el catalizador Co/CeO₂ – ZrO₂.

En la **Figura 42**, observamos un comportamiento típico de reacciones paralelas, esto se deduce a partir de los 31 min de reacción donde no se observan picos máximos para ninguno de los productos y la concentración comienza a ser constante tanto para productos como reactivos. En esta figura podemos observar que durante las 9:31 h de reacción, la concentración de CO_2 , CO y CH₄ son estables sin presentar cambios significativos en un aumento o decremento de las concentraciones. Este comportamiento se debe a la alta selectividad que presentó el CH₄ durante la reacción de hidrogenación catalítica de CO para el catalizador de Co/CeO₂-ZrO₂ (véase **Figura 44**).

la Figura 43, se presentan los resultados de los rendimientos de los productos de CO y CH₄

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2 - COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. TESIS DE GRADO: NIVEL MAESTRÍA

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 43. Rendimientos de la actividad catalítica a 400 °C para la reacción de hidrogenación del CO₂ sobre el catalizador Co/CeO₂ – ZrO₂.

En la **Figura 43**, observamos que el rendimiento de CH₄ es mayor que el rendimiento del producto CO. Estos rendimientos van aumentando de forma constante conforme pasa el tiempo de reacción y también se logra observar que el rendimiento máximo para el CH₄ es de 30.90% y para el CO 7.83%.

En la **Figura 44**, se observa las selectividades para los productos de reacción del CO y CH_4 en la reacción de hidrogenación catalítica del CO_2 .

Figura 44. Selectividades de la actividad catalítica a 400 °C para la reacción de hidrogenación del CO₂ sobre el catalizador Co/CeO₂ – ZrO₂.

En la **Figura 44**, observamos que la selectividad para el CH₄ y el CO son estables durante las 9:31 h de reacción. Para el caso del CH₄ se observa que la selectividad va en un decremento constante durante el tiempo que duró la reacción, sin embargo este decremento es tan pequeño que no se considera como un impacto significativo en la reacción de hidrogenación catalítica de CO₂ para este producto. Para la selectividad de CO va aumentando gradualmente durante el tiempo que duró la reacción. Este catalizador es apto para la reacción de hidrogenación catalítica del CO₂

V.7.1.3. Resultados y análisis de la evaluación de la estabilidad térmica de la actividad catalítica $Ni/CeO_2 - ZrO_2$.

En la **Figura 45**, se muestra la desactivación de la actividad catalítica evaluada para el catalizador de Ni/CeO₂ – ZrO₂ a 400 °C, durante 10 h; flujo de H₂ de 60 mL/min, flujo de CO₂/N₂ (relación 0.2:0.8) de 60 mL/min (relación 1:5 con respecto al H₂); y una masa de catalizador de 54.4 mg. El catalizador fue reducido previamente a 500 °C durante 3 h.

Figura 45. Evaluación de la estabilidad térmica de la actividad catalítica a 400 °C para la reacción de hidrogenación catalítica del $CO_2 \rightarrow CH_4$ sobre el catalizador Ni/Ce $O_2 - ZrO_2$, durante 10 h.

En la **Figura 41**, se observó el incremento gradual de la rapidez de la reacción así como un aumento constante de la conversión durante 8 h en que se evaluó la estabilidad térmica de la actividad catalítica en la reacción de hidrogenación catalítica del CO_2 llevada a cabo en el catalizador Ni/CeO₂ – ZrO₂ para el catalizador.

Durante el proceso de reducción se espera que suceda el siguiente esquema de reacción:

$$\begin{array}{c} Ni^{2+} + e^- \rightarrow Ni^{1+} \\ Ni^{1+} + e^- \rightarrow Ni^0 \end{array}$$

También se observaron que la conversión $X_{CO_2} \approx 62.67\%$ (la más alta para este trabajo) durante las 8 h. que duró la reacción de hidrogenación catalítica para el CO₂ en el catalizador de Ni/CeO₂-ZrO₂.

Las concentraciones de los productos identificados en esta reacción de hidrogenación catalítica de CO_2 llevada a cabo en el catalizador de Ni/CeO₂-ZrO₂ se presentan en la **Figura 46.**

Figura 46. Concentraciones de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la estabilidad térmica de la actividad catalítica para el catalizador Ni/CeO₂ – ZrO₂

En la **Figura 46**, observamos un comportamiento típico de reacciones paralelas, esto se deduce a partir de los 23 min de reacción donde no se observan picos máximos para ninguno de los productos y la concentración comienza a ser constante tanto para productos como reactivos. En esta figura podemos observar que durante las 8 h de reacción, la concentración de CO₂, CO y CH₄ son estables sin presentar cambios significativos en un aumento o decremento de las concentraciones. Este comportamiento se debe a la alta selectividad que presentó el CH₄ durante la reacción de hidrogenación catalítica de CO para el catalizador de Ni/CeO₂-ZrO₂ (véase **Figura 48**).

La Figura 47, se presentan los resultados de los rendimientos de los productos de CO y CH₄

Figura 47. Rendimientos de la actividad catalítica a 400 °C para la reacción de hidrogenación del CO_2 sobre el catalizador Ni/Ce O_2 – Zr O_2 .

En la **Figura 47**, observamos que el rendimiento de CH₄ es mayor que el rendimiento del producto CO. Estos rendimientos van aumentando de forma constante conforme pasa el tiempo de reacción y también se logra observar que el rendimiento máximo para el CH₄ es de 60.38% y para el CO un valor de 2.30%.

En la **Figura 44**, se observa las selectividades para los productos de reacción del CO y CH_4 en la reacción de hidrogenación catalítica del CO_2 .

Figura 48. Selectividades de la actividad catalítica a 400 °C para la reacción de hidrogenación del CO₂ sobre el catalizador Ni/CeO₂ – ZrO₂.

En la **Figura 48**, observamos que la selectividad para el CH₄ y el CO son estables durante las 8 h de reacción. Para el caso del CH₄ se observa que la selectividad va en un decremento constante durante el tiempo que duró la reacción, sin embargo este decremento es tan pequeño que no se considera como un impacto significativo en la reacción de hidrogenación catalítica de CO₂ para este producto. Para la selectividad de CO va aumentando gradualmente durante el tiempo que duró la reacción. Este catalizador es apto para la reacción de hidrogenación catalítica del CO₂

V.7.1.4. Discusión y análisis de la evaluación de la estabilidad térmica de la actividad catalítica para los catalizadores de Fe, Co y Ni y el soporte de óxido mixto CeO₂ – ZrO₂.

De acuerdo con los resultados obtenidos de la evaluación de la estabilidad térmica de la actividad catalítica, en la **Tabla 37**, se describe un cuadro comparativo de los resultados obtenidos.

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2 - COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Catalizador	Tiempo	Rapidez de la reacción $-r_A \left[\frac{mot}{g_{cat} \cdot s} \right]_* 10^{-1}$	Conversión $X_{\mathcal{CO}_2}(\%)$	Selectividad $oldsymbol{S}_{CH_4}(\%)$	Selectividad $S_{co}(\%)$	Concentración $\mathcal{C}_{co_2} \Big[rac{mol}{l} \Big] * 10^{-3}$	Concentración $c_{c_{H_4}} \left[rac{mol}{l} ight] _{* \ 10^{-3}}$	Concentración $\mathcal{C}_{co}\left[rac{mol}{l} ight]_{*10^{-3}}$
	21 min	0.254	≈5%	3%	≈96%	3.80	0.22	3.77
Fe/CeO ₂ -ZrO ₂	8 h	0.154	≈3%	≈4%	≈95%	3.87	0.18	3.81
Co/CeO ₂ -ZrO ₂	8 h	2.06	≈39%	≈80%	≈20%	2.30	2.95	0.74
Ni/CeO ₂ -ZrO ₂	8 h	3.43	≈63%	≈96%	≈4%	1.53	3.95	0.15

Tabla 37. Comparativo de los resultados para la reacción de estabilidad térmica de la actividad catalítica evaluada a 400 °C durante 8 horas.

De acuerdo con la **Tabla 37**, se observa que en los catalizadores de Co y Ni soportados en CeO₂-ZrO₂ la conversión es más alta (X_{CO_2} =38.73% y 62.67%) que en el catalizador de Fe/CeO₂-ZrO₂ (X_{CO_2} =2.88%). Durante los primeros 21 minutos observamos altas conversiones (X_{CO_2} =4.80%) para el catalizador de Fe/CeO₂-ZrO₂.

En términos de la selectividad hacia metano (S_{CH_4} %), observamos que para los catalizadores de Co y Ni soportados en CeO₂-ZrO₂ es más alta (80% y 96% respectivamente) a diferencia del catalizador de Fe/CeO₂-ZrO₂ que presentó la menor selectividad hacia metano con un valor de 4% durante las 8 h que duró la reacción. Con respecto a la selectividad hacia el monóxido de carbono (S_{CO} %), el catalizador Fe/CeO₂-ZrO₂ presentó la mayor selectividad hacia CO₂ con un valor del 95% durante las 8 h que duró la reacción. Los catalizadores de Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂ presentaron la menor selectividad hacia el CO, con valores de 20% y 4%

En términos de la rapidez de reacción, observamos que en el catalizador de Ni/CeO₂-ZrO₂ tiene la velocidad de la reacción más rápida ($-r_A = 3.43 * 10^{-1} \frac{mol_{CO_2}}{g_{cat}*s}$), seguido del catalizador de Co/CeO₂-ZrO₂ ($-r_A = 2.06 * 10^{-1} \frac{mol_{CO_2}}{g_{cat}*s}$), finalmente para el catalizador Fe/CeO₂-ZrO₂ se observa una velocidad de reacción más lenta a las 8 h de reacción. El comportamiento de estas velocidades de reacción para el catalizador de Fe/CeO₂-ZrO₂ muestra un comportamiento típico de reacciones consecutivas en este catalizador (véase **Figuras 37 y 38**), a diferencia de los catalizadores Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂ que presentan velocidades de reacción típicas de reacciones paralelas (véase **Figuras 40, 42, 45 y 46**).

En términos de la concentraciones, se puede apreciar en la **Tabla 37**, que los catalizadores de Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂ las concentraciones de CH₄ son las más altas (2.95 y 3.95 [*10⁻³ mol/L]) y a su vez estos presentaron las menores concentraciones de CO durante las 8 h de reacción. El catalizador de Fe/CeO₂-ZrO₂ presentó la menor concentración de CH₄ (0.22 a los 21 min y 0.18 a las 8 h de reacción [*10^{-mol/L}]), sin embargo, presentó la concentración más alta de CO (3.81 a las 8 h de reacción [*10⁻³ mol/L]).

De acuerdo con lo expresado en párrafos anteriores podemos deducir que los catalizadores idóneos para la reacción de hidrogenación catalítica del CO₂ son los catalizadores Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂, a diferencia del catalizador de Fe/CeO₂-ZrO₂, que de acuerdo con los datos experimentales, favorece la más la producción de CO en la reacción de hidrogenación del CO₂. Sin embargo el

compuesto de interés para este trabajo es la más alta en selectividad, conversión y en la velocidad de reacción para la producción de CH₄.

Los catalizadores de Co/CeO₂ – ZrO₂ y Ni/CeO₂ – ZrO₂ son los que presentaron mejores resultados en términos de selectividad y conversión para la reacción de hidrogenación catalítica del CO₂. Los resultados obtenidos para el catalizador Ni/CeO₂ – ZrO₂ son coincidentes con lo reportado en las referencias consultadas para este trabajo de investigación. Por otro lado, las temperaturas de trabajo no fueron coincidentes con lo reportado en las referencias consultadas. Para el catalizador de Co/CeO₂ – ZrO₂ no ha sido reportado como un catalizador monometálicos para el metal de Co, sino que este metal siempre se ha trabajado en catalizadores bimetálicos en conjunto con el Ni ya que este metal mejora considerablemente la selectividad y la conversión cuando se combina con otro metal. En la tabla se muestra el comparativo de los resultados obtenidos para este trabajo con respecto a la reportado en la **Tabla 1** del artículo de Kattel et al., (2017).

En la **Tabla 38**, se muestra un comparativo de los catalizadores de Ni soportados en CeO₂-ZrO₂ u óxidos similares para la reacción de hidrogenación catalítica de CO₂ hacia CH₄.

		Cond	Condiciones de reacción			Selectividad [%]		
Referencia	Catalizador	Proporción H2:CO2	Temperatura [°C]	Presión [MPa]	Conversión [%]	со	СН₃ОН	Сн₄
	Ni/CeO ₂	5:1	450	0.1	80	-	-	100
<u> </u>	Ni/CeO ₂	4.6	340	0.1	91.1	-	-	100
11	Ni/ZrO ₂	12.5	377	0.1	100	-	-	100
50	Ni/Ce _x Zr _{1-x} O ₂	4:1	350	0.1	71.5	0.9	-	98.5
al., (3	Ni/CeO ₂ /ZrO ₂ sol-gel	4:1	350	0.1	67.9	1.4	-	98.4
l et a	Ni/CeO ₂ /ZrO ₂ imp	4:1	350	0.1	25.4	14.5	-	84.7
te	Co/CeO ₂	3:1	300	0.1	3.8	39.4	-	-
at	15Ni-5Co/Al ₂ O ₃ - CeO ₂	19	300	2	N/A	-	-	100
×	15Ni-5Co/Zr _{0.75} - Ce _{0.25} O ₂	19	300	2	N/A	-	-	99
	15Ni-5Co/Al ₂ O ₃ - ZrO ₂	19	300	2	N/A	-	-	98
	Fe/CeO ₂ -ZrO ₂	5:1	350	0.1	≈5	≈36	-	≈64
	Co/CeO ₂ -ZrO ₂	5:1	350	0.1	≈75	≈0.49	-	≈99
Este	Ni/CeO ₂ -ZrO ₂	5:1	350	0.1	≈95	≈0.07	-	≈94
trabajo	Fe/CeO ₂ -ZrO ₂	5:1	400	0.1	≈13	≈37	-	≈63
	Co/CeO ₂ -ZrO ₂	5:1	400	0.1	≈90	≈0.66	-	≈99
	Ni/CeO ₂ -ZrO ₂	5:1	400	0.1	≈98	≈0.11	-	≈100

Tabla 38. Comparativo de los catalizadores de Ni soportados en CeO_2 - ZrO_2 u óxidos similares para la reacción de hidrogenación catalítica de CO_2 hacia CH_4 . Este cuadro compara los resultados obtenidos en la tabla 1 de Kattel et al., (2017) y los resultados obtenidos en este trabajo.

En la **Tabla 38**, se muestra el comparativo de los catalizadores reportados en la literatura y los resultados obtenidos en este trabajo. Con respecto al catalizador de $Co/CeO_2 - ZrO_2$. De acuerdo con la comparación de los resultados obtenidos en este trabajo y lo reportado en la literatura, se concluye que se mejoró bastante la conversión y la selectividad, comparado con el catalizador Co/CeO_2 . El catalizador de Ni/CeO₂ – ZrO₂ mejoró considerablemente comparado con sus homólogos reportados en Kattel et al., (2017). Este catalizador preparado por el método de impregnación húmeda, elaborado en este trabajo, mejoró la conversión y la selectividad, comparado con sus homólogo que también fue preparado por el método de impregnación húmeda así como el otro método de preparación a través del sol-gel.

V.8. Evaluación de la actividad catalítica a diferentes temperaturas para los catalizadores de Fe, Co y Ni soportados en el óxido mixto de $CeO_2 - ZrO_2$.

El análisis de la evaluación catalítica a diferentes temperaturas se dividirá en tres secciones para su análisis de resultados:

- Resultados y análisis de la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Fe/CeO₂ – ZrO₂.
- Resultados y análisis de la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Co/CeO₂ – ZrO₂.
- Resultados y análisis de la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Ni/CeO₂ – ZrO₂.

V.8.1.1. Resultados y análisis de la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Fe/CeO₂ – ZrO₂.

En la **Figura 49**, se muestra la actividad catalítica evaluada a diferentes temperaturas para el catalizador de Fe/CeO₂ – ZrO₂ desde 200 °C hasta 400 °C, incrementando 50 °C cada 2 horas. El flujo de H₂ de 60 mL/min, flujo de CO₂/N₂ (relación 0.2:0.8) de 60 mL/min (relación 1:5 con respecto al H₂); y una masa de catalizador de 55 mg. El catalizador fue reducido previamente a 500 °C durante 3 h.

Figura 49. Rapidez de la reacción a diferentes temperaturas para la reacción de hidrogenación del CO_2 sobre el catalizador $Fe/CeO_2 - ZrO_2$.

En la **Figura 49**, se observó que la rapidez de la reacción aumenta con una tendencia exponencial cuando la temperatura aumenta. La rapidez de reacción es más rápida a medida que la temperatura aumenta y esto también favorece el incremento de la conversión. Para este catalizador se observó una conversión mínima de 0.02% a 200 °C y una conversión máxima de 12.94% a 400 °C-

En **la Figura 50**, se presentan las concentraciones de los productos de la reacción de hidrogenación catalítica para el CO₂.

Figura 50. Concentraciones de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Fe/CeO₂ – ZrO₂.

En la **Figura 50**, observamos un comportamiento típico de reacciones consecutivas, esto se deduce a partir de los 250 °C, donde se observó un pico máximo para la concentración de CO ($2.89*10^{-6}$ mol/L). Para el CH₄ observamos que la concentración comienza a ser constante a partir de los 350 °C. Se obtuvo un concentración máxima de CH₄ de $2.45*10^{-6}$ mol/L.

Este comportamiento se debe a la baja selectividad que presentó el CH₄ durante la reacción de hidrogenación catalítica de CO para el catalizador de Fe/CeO₂-ZrO₂ (véase **Figura 52**).

La Figura 51, se presentan los resultados de los rendimientos de los productos de CO y CH4

Figura 51. Rendimientos de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Fe/CeO₂ – ZrO₂.

En la **Figura 51**, observamos que el rendimiento de CH_4 es mayor que el rendimiento del producto CO. Estos rendimientos van aumentando de forma exponencial conforme pasa el tiempo de reacción. También se logra observar que el rendimiento máximo para el CH_4 es de 8.13% a 400 °C y para el CO un valor de 4.81% a 400 °C.

En la **Figura 52**, se observa las selectividades para los productos de reacción del CO y CH_4 en la reacción de hidrogenación catalítica del CO_2 .

Figura 52. Selectividad de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Fe/CeO₂ – ZrO₂.

En la **Figura 52**, se analizó la selectividad hacia CH_4 y CO en la hidrogenación catalítica del CO_2 . Se observó que en la temperatura de 250 °C, la selectividad hacia CO presenta un valor máximo de 74.36%. Posteriormente se observa un decremento de la selectividad hasta un valor de 37.14% a 400° C. También se observó una selectividad hacia CH_4 con un valor máximo de 62.86% a una temperatura de 400° C.

La **Figura 52**, también describe que las reacciones de hidrogenación catalítica para el CO₂ suceden de manera consecutiva por tanto para este catalizador podemos proponer el siguiente sistema de reacciones consecutivas de acuerdo a los datos experimentales observados. A partir de la **Ecuación 9**, se deduce de forma general la secuencia de reacciones que sucede en el catalizador de Fe/CeO₂- ZrO₂.

$$CO_{2(g)} + 2H_{2(g)} \stackrel{Fe/CeO_2 - ZrO_2}{\longleftrightarrow} CO_{(g)} + 2H_2O_{(g)} \stackrel{Fe/CeO_2 - ZrO_2}{\longleftrightarrow} CH_{4(g)} \qquad \text{Ecuación}$$

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

9.

Como se puede observar en las **Figuras 50 y 52**, la mayor concentración del intermediario se observa a una temperatura de 250 °C, por tanto, esta no es una temperatura ideal de trabajo para este catalizador. La temperatura de trabajo ideal para este catalizador es a partir de los 350 °C.

V.8.1.2. Resultados y análisis de la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Co/CeO₂ – ZrO₂.

En la **Figura 53**, se muestra la actividad catalítica evaluada a diferentes temperaturas para el catalizador de Co/CeO₂ – ZrO₂ a desde 200 °C hasta 400 °C, incrementando 50 °C cada 2 horas. El flujo de H₂ de 60 mL/min, flujo de CO₂/N₂ (relación 0.2:0.8) de 60 mL/min (relación 1:5 con respecto al H₂); y una masa de catalizador de 55.3 mg. El catalizador fue reducido previamente a 500 °C durante 3 h.

Figura 53. Rapidez de la reacción a diferentes temperaturas para la reacción de hidrogenación del CO_2 sobre el catalizador $Co/CeO_2 - ZrO_2$.

En la **Figura 53**, se observó que la rapidez de la reacción aumenta con una tendencia exponencial cuando la temperatura aumenta. La rapidez de reacción es más rápida a medida que la temperatura aumenta y esto también favorece el incremento de la conversión. Para este catalizador se observó una conversión mínima de 2.07% a 200 °C y una conversión máxima de 89.88% a 400 °C-

En **la Figura 54,** se presentan las concentraciones de los productos de la reacción de hidrogenación catalítica para el CO₂.

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2 - COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 54. Concentraciones de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Co/CeO₂ – ZrO₂.

En la **Figura 54**, observamos un comportamiento típico de reacciones paralelas; esto se deduce a partir de los 250 °C, donde se observó una concentración constante para la formación de CH₄ y CO. Para el CH₄ se observa un decremento de la concentración a medida que la temperatura aumenta. A su vez la concentración del CO tiene un aumento muy ligero y constante a medida que la temperatura aumenta, sin embargo, es pequeña con respecto a los resultados obtenidos para la concentración del CH₄. Este comportamiento se debe a la alta selectividad que presentó este catalizador para la formación del CH₄ durante la reacción de hidrogenación catalítica de CO2 a diferentes temperaturas (véase **Figura 52**).

La Figura 55, se presentan los resultados de los rendimientos de los productos de CO y CH4

REMEDIACIÓN AMBIENTAL QUÍMICA.

Figura 55. Rendimientos de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Fe/CeO₂ – ZrO₂.

LABORATORIO DE CATÁLISIS AMBIENTAL.

90

En la **Figura 55**, observamos que el rendimiento de CH₄ es mayor que el rendimiento del CO. Estos rendimientos van aumentando de forma exponencial conforme aumenta la temperatura de reacción. También se logra observar que el rendimiento máximo para el CH₄ es de 89.29% a 400 °C y para el CO un valor máximo de 0.60% a 400 °C.

En la **Figura 56**, se observa las selectividades para los productos de reacción del CO y CH_4 en la reacción de hidrogenación catalítica del CO_2 .

Figura 56. Selectividad de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Co/CeO₂ – ZrO₂.

En la **Figura 56**, se analizó la selectividad hacia CH_4 y CO en la hidrogenación catalítica del CO_2 . Se observó que en la temperatura de 250 °C, la selectividad hacia CH_4 presenta un valor máximo de 100%. Posteriormente, se observa un decremento de la selectividad hasta un valor de 99.34% a 400 °C. También se observó una selectividad hacia CO con un valor máximo de 0.66% a una temperatura de 400° C.

La **Figura 56**, también describe que las reacciones de hidrogenación catalítica para el CO₂ suceden de forma paralela; por tanto para este catalizador podemos proponer el siguiente sistema de reacciones consecutivas de acuerdo a los datos experimentales observados. A partir de las **Ecuaciones 10, 11** y **12**, se deduce de forma general la secuencia de reacciones que sucede en el catalizador de Co/CeO₂-ZrO₂.

$$CO_{2(g)} + 4H_{2(g)} \stackrel{Co/CeO_2 - ZrO_2}{\longleftrightarrow} CH_{4(g)} + 2H_2O_{(g)}$$
 Ecuación 10.

$$CO_{2(g)} + 2H_{2(g)} \stackrel{Co/CeO_2 - ZrO_2}{\longleftrightarrow} CO_{(g)} + 2H_2O_{(g)}$$
 Ecuación 11.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

HIDROGENACIÓN CATALÍTICA DEL CO₂ A CH₄ A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO₂ - ZrO₂. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. TESIS DE GRADO: NIVEL MAESTRÍA

$$CO_{(g)} + 3H_{2(g)} \xleftarrow{CO/CeO_2 - ZrO_2}{\longrightarrow} CH_{4(g)} + H_2O_{(g)}$$
 Ecuación 12.

Como se puede observar en las **Figuras 54** y **56**, la mayor concentración del CH_4 se observa en rango de temperatura desde 200 °C a 400 °C. Por tanto, la temperatura ideal de trabajo para este catalizador es de 350 °C.

V.8.1.3. Resultados y análisis de la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Ni/CeO₂ – ZrO₂.

En la **Figura 57**, se muestra la actividad catalítica evaluada para el catalizador de Ni/CeO₂ – ZrO₂ desde 200 °C hasta 400 °C, incrementando 50 °C cada 2 horas. El flujo de H₂ de 60 mL/min, flujo de CO₂/N₂ (relación 0.2:0.8) de 60 mL/min (relación 1:5 con respecto al H₂); y una masa de catalizador de 54.4 mg. El catalizador fue reducido previamente a 500 °C durante 3 h.

En la **Figura 57**, se observó que la rapidez de la reacción aumenta con una tendencia exponencial cuando la temperatura aumenta. La rapidez de reacción es más rápida a medida que la temperatura aumenta y esto también favorece el incremento de la conversión. Para este catalizador se observó una conversión mínima de 15.28% a 200 °C y una conversión máxima de 98.17% a 400 °C-

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. Tesis de Grado: Nivel Maestría

Consejo Nacional de Ciencia y Tecnología (conacyt)

Figura 58. Concentraciones de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Ni/CeO₂ – ZrO₂.

En la **Figura 58**, observamos un comportamiento típico de reacciones paralelas; esto se deduce a partir de los 250 °C, donde se observó una concentración constante para la formación de CH₄ y CO. Para el CH₄ se observa un decremento mínimo de la concentración a medida que la temperatura aumenta. A su vez, la concentración del CO tiene un aumento muy ligero y constante a medida que la temperatura aumenta, sin embargo, es pequeña con respecto a los resultados obtenidos para la concentración del CH₄. Este comportamiento se debe a la alta selectividad que presentó este catalizador para la formación del CH₄ durante la reacción de hidrogenación catalítica de CO₂ a diferentes temperaturas (véase **Figura 60**).

La Figura 59, se presentan los resultados de los rendimientos de los productos de CO y CH4

Figura 59. Rendimientos de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Ni/CeO₂ – ZrO₂.

En la **Figura 59**, observamos que el rendimiento de CH₄ es mayor que el rendimiento del CO. Estos rendimientos van aumentando de forma exponencial conforme aumenta la temperatura de reacción. Se observa que a 300 °C comienza la formación de CO, a diferencia del CH₄ que desde los 200 °C comienza a incrementar el rendimiento de este producto. También se logra observar que el rendimiento máximo para el CH₄ es de 98.07% a 400 °C y para el CO un valor máximo de 0.11% a 400 °C.

En la **Figura 60**, se observa las selectividades para los productos de reacción del CO y CH_4 en la reacción de hidrogenación catalítica del CO_2 .

Figura 60. Selectividad de los productos de la reacción de hidrogenación catalítica del CO₂ en la evaluación de la actividad catalítica a diferentes temperaturas para el catalizador Ni/CeO₂ – ZrO₂.

En la **Figura 60**, se analizó la selectividad hacia CH_4 y CO en la hidrogenación catalítica del CO_2 . Se observó que en la temperatura de 250 °C, la selectividad hacia CH_4 presenta un valor máximo de 100%. Posteriormente, se observa un decremento mínimo de la selectividad hasta un valor de 99.89% a 400 °C. También se observó una selectividad hacia CO comenzando con la formación del CO a partir de los 300 °C y obteniendo un valor máximo de 0.11% a una temperatura de 400° C.

La **Figura 60**, también describe que las reacciones de hidrogenación catalítica para el CO₂ suceden de forma paralela; por tanto para este catalizador podemos proponer el siguiente sistema de reacciones consecutivas de acuerdo a los datos experimentales observados. A partir de las **Ecuaciones 13, 14** y **15**, se deduce de forma general la secuencia de reacciones que sucede en el catalizador de Ni/CeO₂-ZrO₂.

$$CO_{2(g)} + 4H_{2(g)} \stackrel{Ni/CeO_2 - ZrO_2}{\longleftrightarrow} CH_{4(g)} + 2H_2O_{(g)}$$

Ecuación 13.

Posgrado en Energía y Medio Ambiente **remediación ambiental química.** HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2. COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO. TESIS DE GRADO: NIVEL MAESTRÍA

Consejo Nacional de Ciencia y Tecnología (conacyt)

Como se puede observar en las **Figuras 58** y **60**, la mayor concentración del CH_4 se observa en rango de temperatura desde 200 °C a 400 °C. Por tanto, la temperatura ideal de trabajo para este catalizador es a partir de los 300 °C.

V.8.1.4. Discusión de los resultados de la evaluación de la actividad catalítica a diferentes temperaturas para los catalizadores de Fe, Co y Ni y el soporte de óxido mixto CeO2 – ZrO2.

A continuación en la **Tabla 39**, se muestra el comparativo de los resultados obtenidos en las reacciones de hidrogenación catalítica del CO_2 que evalúan la actividad catalítica a diferentes temperaturas. En la **Tabla 39**, se describe la temperatura mínima (200 °C) y la temperatura máxima (400 °C) a la que se trabajaron estas reacciones. También describe los parámetros obtenidos experimentalmente como la rapidez de reacción, conversión, el rendimiento de CO, la selectividad hacia CH₄, así como la selectividad hacia CO. La tabla también describe las temperaturas a partir de las cuales se comenzó a tener un valor específico de rendimiento de CO y selectividad hacia CO.

	Rapidez de la reacción $\left[\frac{mol_{CO_2}}{g_{cat} - s}\right] * 10^{-6}$		Rapidez de la reacciónConversiónRendir $\left[\frac{mol_{CO_2}}{g_{cat}-s}\right]*10^{-6}$ $[\%X_{CO_2}]$ $[\%$		Rendimie [%R _C	miento CO Selectividad CH %R _{CO}] [%S _{CH4}]		vidad CH ₄ S _{CH4}]	Selectividad CO [%S _{CO}]	
Catalizador	Min.	Máx.	Min.	Máx.	Min.	Máx.	Min.	Máx.	Min.	Máx.
	T=200 °C	T=400 °C	T=200 °C	T=400 °C	Variable	T=400 °C	T=200 °C	T=400 °C	Variable	T=400 °C
Fe/CeO ₂ -ZrO ₂	0.01*10 ⁻⁶	7.79*10 ⁻⁶	0.02%	12.94%	T>250 °C; 0.59%	4.81%	100%	62.86%	T>250 °C; 74.36%	37.14%
Co/CeO ₂ -ZrO ₂	1.13*10 ⁻⁶	48.90*10 ⁻⁶	2.07%	89.88%	T>300 °C; 0.33%	0.60%	100%	99.34%	T>300%; 0.74%	0.66%
Ni/CeO ₂ -ZrO ₂	0.86*10-1	5.28*10 ⁻¹	15.28%	98.17%	T>350 °C; 0.06%	0.11%	100%	99.89%	T>350 °C; 0.07%	0.11%

Tabla 39. Cuadro comparativo de los resultados obtenidos en la reacción de hidrogenación del CO₂ para los catalizadores de Fe, Co y Ni soportados en el óxido mixto CeO₂-ZrO₂.

En términos de la rapidez de la reacción observamos que el catalizador que tiene la mayor rapidez es el catalizador de Ni/CeO₂ – ZrO_2 , seguida del catalizador de Co/CeO₂ – ZrO_2 y en último lugar el catalizador de Fe/CeO₂ – ZrO_2 .

En términos de la conversión, entre más rápida la rapidez de reacción, la conversión del CO_2 aumenta en la reacción de hidrogenación catalítica del CO_2 y se mantiene estable durante las 8 h de reacción; esta aseveración se comprueba para los catalizadores de Fe/CeO₂-ZrO₂, Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂.

Consejo Nacional de Ciencia y Tecnología (conacyt)

En términos del rendimiento hacia CO y ($\% R_{CO}$), se observa que el menor rendimiento de CO se obtiene en el catalizador de Ni/CeO₂-ZrO₂ ($\% R_{CO} = 0.11\%, T = 400 \,^{\circ}C$), lo cual promueve que este catalizador tenga una alta selectividad hacia CH₄ ($\% S_{CO} = 99.98\%, T = 400 \,^{\circ}C$). A partir de las temperaturas mayores a 350 $^{\circ}C$ ($\% R_{CO} = 0.07\%, T > 350 \,^{\circ}C$), comienza a producirse el CO a través de la reacción de RWGS. Este mismo comportamiento sucede para el catalizador de Co/CeO₂-ZrO₂ ($\% R_{CO} = 0.33\%, T > 300 \,^{\circ}C$) y para el catalizador Fe/CeO₂-ZrO₂ ($\% R_{CO} = 0.59\%, T > 250 \,^{\circ}C$) la única diferencia es que la temperatura en la que comienza aparecer el CO es a partir de los 250 $^{\circ}C$.

En términos de la selectividad del metano ($\% S_{CH_4}$), para la reacción de hidrogenación catalítica del CO₂ hacia CH₄, se observa que para los catalizadores de Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂ aumenta con respecto a la temperatura; para el caso particular del catalizador Co/CeO₂-ZrO₂, demostró tener una alta selectividad hacia CH₄ ($\% S_{CH_4} = 100\%$ y 100%, $T_{min} = 200^{\circ}C$) desde la temperatura experimental más baja de 200 °C con un decremento mínimo de la selectividad ($\% S_{CH_4} = 96.34\%$ y 99.89%, $T_{máx} = 400 \circ C$) en la temperatura máxima de trabajo. Para el catalizador de Fe/CeO₂-ZrO₂ presentó alta selectividad hacía CH₄ ($\% S_{CH_4} = 100\%$, $T_{min} = 200^{\circ}C$), y mostró un decremento significativo a medida que la temperatura de trabajo iba aumentando ($\% S_{CH_4} = 62.86\%$, $T_{min} = 200^{\circ}C$).

Con respecto a la selectividad del CO ($\% S_{CO}$), el catalizador Fe/CeO₂-ZrO₂ mostró la mayor selectividad hacía CO con a la temperatura mayor de trabajo ($\% S_{CO} = 37.14\%$, $T_{min} = 400°C$), este máximo en la gráfica es un pico característico de las reacciones que suceden de forma consecutiva, en donde se obtiene la concentración (o selectividad) máxima del compuesto de transición (CO) hacia el compuesto de interés (CH₄). Para los catalizadores de Co/CeO₂-ZrO₂ y Ni/CeO₂-ZrO₂, la selectividad hacia CO ($\% S_{CO}$) mostró unos valores menores al <1% a 400 °C; siendo el catalizador de Ni/CeO₂-ZrO₂ con la menor selectividad hacia CO. Como se explicó en secciones anteriores, la reacción de hidrogenación catalítica del CO₂ y la reacción de RWGS suceden de forma paralela y esta se manifiesta a partir de los 300 °C y 350 °C respectivamente para cada catalizador.

En la **Figura 61**, se describen los mecanismos teóricos de reacción que puede seguir la reacción de hidrogenación catalítica del CO₂ para los catalizadores de Fe, Co y Ni soportados en el óxido mixto CeO₂-ZrO₂.

Figura 61. Mecanismos de reacción probables para la reacción de hidrogenación catalítica del CO₂ en los catalizadores Fe, Co y Ni en el soporte de óxido mixto CeO₂-ZrO₂. Las flechas azules representan el mecanismo para las reacciones paralelas y la flecha roja representa las reacciones consecutivas. Adaptado de Kattel et al., 2017.

En la Figura 61, se describen los probables mecanismos de reacción para los catalizadores de Fe, Co y Ni del soporte de óxido mixto CeO₂-ZrO₂. En párrafos anteriores, se especificó que en el catalizador Fe/CeO₂-ZrO₂ y la reacción de hidrogenación catalítica del CO₂, así como la reacción de RWGS suceden de forma consecutiva siguiendo la ruta marcada por la flecha roja que corresponde a la reacción de RWGS y la hidrogenación del CO hacia CH₄. Derivado de que no se realizó la técnica analítico de espectroscopia de infrarrojo por transformada de Fourier (FTIR) in situ para poder determinar la ruta exacta que toman estas reacciones consecutivas, se deduce que existe la probabilidad de que sucede una, dos o las tres rutas de reacción disponibles al mismo tiempo en la absorción de los reactivos para la hidrogenación catalítica del CO₂ y la reacción RWGS estudiadas en este trabajo. La única ruta en la vía de la reacción RWGS que no sucede es la hidrogenación catalítica hacía metanol (CH₃OH) derivado que esta se da en presiones altas (P \ge 50 atm). La reacción de RWGS se muestra a partir de la temperatura de los 250 °C para este catalizador. De acuerdo con los resultados de XPS, observamos que las especies de Fe detectadas en este catalizador son Fe⁰, FeO (II), Fe₂O₃ (II y III), las cuales representan el 15.03% dentro de la muestra analizada. Aunque en el análisis XPS no se pudo cuantificar la concentración exacta de cada especie, de acuerdo al espectro de esta muestra podemos determinar que de manera cualitativa la concentración de Fe⁰ es menor que las concentraciones de FeO (II), Fe₂O₃ (II y III) ($Fe^0 < FeO \ y \ Fe_2O_3$), se puede deducir que son pocas las especies de Fe reducidas al 100% para este catalizador, lo cual nos indica que hay una baja cantidad de sitios disponibles para la actividad catalítica para la reacción de hidrogenación del CO₂. Esta aseveración se puede contrastar con el análisis TPR donde en la temperatura de 471.23 °C se observa el pico de reducción de las especies $Fe^{+2} \rightarrow Fe^{0}_{metálico}$.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA Uninad Iztapai apa

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

Con respecto al análisis UV-vis, observamos que la mayoría de los aqua complejos depositados en el catalizador de Fe/CeO₂-ZrO₂, son especies octaédricas, las cuales se observaron a partir de la longitud de onda de 390 nm; estas especies quedan mayormente incrustados en el soporte de óxido mixto de CeO₂-ZrO₂, impidiendo que los sitios activos no estén tan fácilmente expuestos para la actividad catalítica en la reacción de hidrogenación de este catalizador.

Para el catalizador de Co/CeO₂-ZrO₂, se observó que la reacción de hidrogenación catalítica del CO₂, así como la reacción de RWGS suceden de forma paralela siguiendo la ruta marcada por la flecha azul que corresponde a la reacción de RWGS y la hidrogenación del CO hacia CH₄ y la segunda ruta que pertenece a la ruta directa de adherencia del enlace C-O. Derivado de que no se realizó la técnica analítica de espectroscopia de infrarrojo por transformada de Fourier (FTIR) in situ para poder determinar la ruta exacta que toman estas la reacción de RWGS y que sucede de forma consecutiva con la reacción de la ruta directa de la adsorción del enlace C-O, se deduce que existe la probabilidad de que sucede una, dos o las tres rutas de reacción disponibles al mismo tiempo en la absorción de los reactivos para la hidrogenación catalítica del CO₂ en la reacción RWGS estudiadas en este trabajo. Excepto la ruta en la vía de la reacción RWGS que no sucede es la hidrogenación catalítica del CO hacía metanol (CH₃OH) derivado que esta reacción sucede a presiones altas ($P \ge 50$ atm). La otra ruta de reacción conocida como "la ruta directa de adherencia del enlace C-O" es una de las rutas más directas para la obtención de CH₄ en la hidrogenación catalítica del CO₂ donde la quimisorción sucede en los grupos aldehído (*COH) principalmente en el carbono central; a diferencia de la reacción de RWGS donde la quimisorción se da principal en el hidrógeno adherido al grupo aldehído adsorbido en el catalizador (*HCO). En la reacción de RWGS se muestra a partir de la temperatura de los 300 °C sucede la reacción para este catalizador.

De acuerdo con los resultados de XPS, observamos que las especies de Co detectadas en este catalizador son Co⁰ y CoO (II), las cuales representan el 6.87% dentro de la muestra analizada. Aunque en el análisis XPS no se pudo cuantificar la concentración exacta de cada especie y que en el espectro XPS no se alcanza a distinguir con precisión el pico máximo del Co⁰, derivado de una transposición de señales, podemos determinar que de manera cualitativa la concentración de Co⁰ es menor que la concentraciones de CoO (II) ($Co^0 < CoO$), se puede deducir que son pocas las especies de Co reducidas al 100% para este catalizador, lo cual nos indica que hay una baja cantidad de sitios disponibles para la actividad catalítica para la reacción de hidrogenación del CO₂. Esta aseveración se puede contrastar con el análisis TPR donde en la temperatura de 387.34 °C se observa el pico de reducción de las especies de Co⁺² \rightarrow Co⁰_{metálico}.

Con respecto al análisis UV-vis, observamos que la mayoría de los aqua complejos depositados en el catalizador de Co/CeO₂-ZrO₂, son especies tetraédricas y octaédricas. En los espectros UV-vis líquidos y DRS, aunque no se cuantificó la concentración exacta de los aqua complejos, la mayoría de las especies depositadas en el soporte de óxido mixto de CeO₂-ZrO₂, fueron especies octaédrica como nos lo muestra el espectro UV-vis líquidos a partir de los 510 nm, las cuales quedan incrustadas más profundamente en el soporte. Sin embargo, también se identificaron especies tetraédricas para las longitudes de onda de 766 nm y 660 nm, las cuales quedan mayormente expuestas en el soporte de óxido mixto de CeO₂-ZrO₂ , donde se promueve una mayor cantidad de los sitios activos expuestos para la actividad catalítica en la reacción de hidrogenación del CO₂ que se llevó a cabo para este catalizador.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

Consejo Nacional de Ciencia y Tecnología (conacyt)

Para el catalizador de Ni/CeO₂-ZrO₂, se observó que la reacción de hidrogenación catalítica del CO₂, así como la reacción de RWGS suceden de forma paralela siguiendo la ruta marcada por la flecha azul que corresponde a la reacción de RWGS y la hidrogenación del CO hacia CH₄ y la segunda ruta que pertenece a la ruta directa de adherencia del enlace C-O. Derivado de que no se realizó la técnica analítica de espectroscopia de infrarrojo por transformada de Fourier (FTIR) in situ para poder determinar la ruta exacta que toman estas la reacción de RWGS y que sucede de forma consecutiva con la reacción de la ruta directa de adherencia del enlace C-O, se deduce que existe la probabilidad de que sucede una, dos o las tres rutas de reacción disponibles al mismo tiempo en la absorción de los reactivos para la hidrogenación catalítica del CO₂ en la reacción RWGS estudiadas en este trabajo. Excepto la ruta en la vía de la reacción RWGS que no sucede es la hidrogenación catalítica del CO hacía metanol (CH₃OH) derivado que esta reacción sucede a presiones altas ($P \ge 50$ atm). La otra ruta de reacción conocida como "la ruta directa de adherencia del enlace C-O" es una de las rutas más directas para la obtención de CH₄ en la hidrogenación catalítica del CO₂ donde la quimisorción sucede en los grupos aldehído (*COH) principalmente en el carbono central; a diferencia de la reacción de RWGS donde la quimisorción se da principal en el hidrógeno adherido al grupo aldehído absorbido en el catalizador (*HCO). En la reacción de RWGS se manifiesta a partir de la temperatura de los 350 °C sucede la reacción para este catalizador.

De acuerdo con los resultados de XPS, observamos que las especies detectadas en este catalizador son Ni⁰, NiO y Ni(OH)₂ (II), las cuales representan el 16.7% dentro de la muestra analizada. Aunque en el análisis XPS no se pudo cuantificar la concentración exacta de cada especie y que en el espectro XPS se alcanza a distinguir con precisión el pico máximo del Ni⁰ (852 eV), a pesar del curva deformada (no gaussiana) la cual muestra las señales unidas en una misma curva., podemos determinar que de manera cualitativa la concentración de Ni⁰ es menor que la concentraciones de NiO (II) y Ni(OH)₂ ($Ni^0 < NiO < Ni(OH)_2$), se puede deducir que son pocas las especies de Ni reducidas al 100% para este catalizador, lo cual nos indica que hay una baja cantidad de sitios disponibles para la actividad catalítica para la reacción de hidrogenación del CO₂. Esta aseveración se puede contrastar con el análisis TPR donde en la temperatura de 271.60 °C se observa el pico de reducción de las especies de Ni⁺² \rightarrow Ni⁰_{metálico}.

Con respecto al análisis UV-vis, observamos que la mayoría de los aqua complejos depositados en el catalizador de Ni/CeO₂-ZrO₂, son especies tetraédricas y octaédricas. En los espectros UV-vis líquidos y DRS, aunque no se cuantificó la concentración exacta de los aqua complejos, la mayoría de las especies depositadas en el soporte de óxido mixto de CeO₂-ZrO₂, fueron especies octaédrica como lo nos lo muestra el espectro DRS a partir de los 766 nm, las cuales quedan incrustadas más profundamente en el soporte. Sin embargo, también se identificaron especies tetraédricas para las longitudes de onda de 684 nm y 400 nm (λ = 400 nm, espectro UV-vis líquidos), las cuales quedan mayormente expuestas en el soporte de óxido mixto de CeO₂-ZrO₂, donde se promueve una mayor cantidad de los sitios activos expuestos para la actividad catalítica en la reacción de hidrogenación del CO₂ que se llevó a cabo para este catalizador.

En la **Tabla 40**, se presentan los resultados del orden de reacción calculados a partir de la ecuación de Van't Hoff, la cual se expresa en la siguiente ecuación:

Ecuación 16.

$$n = \frac{\log\left(\frac{r_1}{r_2}\right)}{\log\left(\frac{C_{A1}}{C_{A2}}\right)}$$

Donde:

n: orden de reacción.

 r_1 : rapidez de la reacción en la muestra no. 1.

 r_2 : rapidez de la reacción en la muestra no. 2.

 C_{A1} : Concentración del reactivo en la muestra no. 1.

 C_{A2} : Concentración del reactivo en la muestra no. 2.

En la **Tabla 40**, observamos que los órdenes de reacción presentan cifras decimales para todas las temperaturas de estudio, lo cual nos indica que la hidrogenación catalítica del CO₂ sucede a través de radicales libres.

Tabla 40. Orden de reacción en la hidrogenación catalítica del CO₂ para los catalizadores de Fe, Co y Ni soportados en el óxido mixto de CeO₂-ZrO₂.

Temperatura	Fe/CeO ₂ -ZrO ₂	Co/CeO ₂ -ZrO ₂	Ni/CeO ₂ -ZrO ₂
200	>3	>3	>3
250	>3	>3	0.93
300	>3	1.21	0.20
350	>3	≈0	0.05
400	>3	≈0	≈0

Por otro lado, también se observa que para el catalizador de Co/CeO₂-ZrO₂ a partir de la temperatura de 300 °C, el comportamiento del orden de reacción es de 1, a diferencia del catalizador de Ni/CeO₂-ZrO₂ donde comienza a tener un comportamiento de orden 1 a partir de los 250 °C y va disminuyendo a medida que la temperatura incrementa donde a los 400 °C ambos catalizadores ya tienen un orden de reacción de 0. Esta es una de las razones por las que estos catalizadores presentan una alta selectividad y conversión hacia CH₄, debido a que la probabilidad de colisiones entre reactivos y la superficie catalítica son más efectivas a diferencia del catalizador de Fe/CeO₂-ZrO₂ donde el orden de reacción menor fue de 6.73 a 400 °C.

En la **Tabla 38,** se presentan el cálculo de las energías de activación a partir de la linealización del ecuación de Arrhenius, la cual se representa en la siguiente ecuación:

$$lnk = -\frac{E_a}{R} \left(\frac{1}{T}\right) + lnA$$

Ecuación 17.

Donde

k: constante cinética de Arrhenius.

 E_a : Energía de activación.

- *R*: Constante Universal de los gases.
- A: Factor pre-exponencial.

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

T: Temperatura.

En la **Tabla 41**, observamos que las energías de activación ($-E_a$) están dentro del intervalo permitido (15-50 kcal/mol) para determinar que no hay problemas de transferencia de masa en la reacción de hidrogenación catalítica del CO₂. Únicamente, el catalizador de Fe/CeO₂-ZrO₂ no cumple con estas características en el intervalo de 200 a 400 °C, sin embargo, sí se toma en cuenta en un intervalo a partir de 300 °C a 400 °C el comportamiento de la energía de activación es idóneo para llevar a cabo la reacción de hidrogenación catalítica de CO₂ con este catalizador.

soportados en el óxido mixto de CeO ₂ -ZrO ₂ .								
	Energía de	e activación	Criterios de la E_a sin problemas de transferencia de masa					
Catalizador	E _a		Min.	15 kcal/mol	63 kJ/mol			
	Unidades		Máx.	50 kcal/mol	209 kJ/mol			
	kcal/mol	kJ/mol	Intervalo de temperatura		Observaciones			
Fe/CeO ₂ -ZrO ₂	16	67.8	300 a 400 °C		Sin problemas de transferencia.			
Co/CeO ₂ -ZrO ₂	19.1	79.9	200 a 400 °C		Sin problemas de transferencia.			
Ni/CeO ₂ -ZrO ₂	18.2	76.1	200 a 400 °C		Sin problemas de transferencia.			

Tabla 41. Energías de activación en la reacción de hidrogenación catalítica del para los catalizadores de Fe, Co y Ni

Por tanto, se puede afirmar que estos catalizadores son estables para trabajar la reacción de hidrogenación catalítica en el intervalo que va desde los 300 °C a los 400 °C, donde no hay problemas de transferencia de masa y de acuerdo al orden de reacción la mayoría de estas reacción tienen un orden de reacción aproximadamente de uno.

CAPÍTULO VI: VI. Conclusiones y recomendaciones.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

POSGRADO EN ENERGÍA Y MEDIO AMBIENTE REMEDIACIÓN AMBIENTAL QUÍMICA.

DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍAS (CBI) LABORATORIO DE CATÁLISIS AMBIENTAL.

Consejo Nacional de Ciencia y Tecnología (conacyt)

Capítulo VIII: Conclusiones y recomendaciones.

- ☑ Se logró evaluar los catalizadores de Fe, Co y Ni soportados en CeO₂-ZrO₂ para la reacción de hidrogenación catalítica del CO₂ a CH₄ donde los catalizadores de Co/CeO₂ ZrO₂ y Ni/CeO₂ ZrO₂ resultaron ser los catalizadores más activos (en términos de rapidez, conversión y selectividad) para la reacción de hidrogenación catalítica del CO₂ hacía CH₄ y que a su vez presentaron menor selectividad hacia el CO en la reacción de RWGS que es una reacción paralela a la reacción de hidrogenación catalítica del CO₂ y se puede considerar un producto no deseado.
- ☑ Se logró correlacionar sus propiedades estructurales a través del análisis fisicoquímico de diferentes técnicas de caracterización catalítica donde se determinó los catalizadores más aptos para la producción de gas natural (CH₄) en la reacción de hidrogenación catalítica del CO₂
- ☑ Se comprobó que los catalizadores monometálicos de Coy Ni soportados en el óxido mixto de CeO₂-ZrO₂, tienen la mayor actividad catalítica en términos de la rapidez, la conversión, el rendimiento y la selectividad para la reacción de hidrogenación del CO₂ hacia CH₄ en comparación con sus catalizadores homólogos que utilizan un solo óxido como soporte o catalizadores bimetálicos. No obstante esta hipótesis no se comprueba para el catalizador de Fe/ CeO₂ ZrO₂ que mostró un desempeño en la actividad catalítica en la reacción de hidrogenación catalítica del CO₂ hacía CH₄. Este catalizador promueve una alta selectividad hacia CO en la reacción de RWGS y un alto rendimiento en la misma reacción, por tanto, este catalizador no es recomendable para utilizarse cuando se desee realizar la reacción de hidrogenación del CO₂.
- ☑ Las tendencias futuras en el estudio de este trabajo es comparar estos catalizadores monometálicos soportados en el óxido mixto CeO₂-ZrO₂, con catalizadores de Cu y Zn sobre el mismo soporte y a su vez comenzar a probar combinaciones bimetálicas de acuerdo con aquellos metales que resulten tener resultados favorables para la reacción de hidrogenación catalítica del CO₂ hacía CH₄ para conocer si estos metales también son activos para la reacción de hidrogenación catalítica del CO₂ hacía CH₄.
- ☑ Si es interés, se puede llevar a cabo este experimento a nivel industrial, lo recomendable es probar en una planta piloto pellets de estos catalizadores para evaluar los problemas de transferencia de masa con un mayor flujo y mayor masa de catalizador; esto parámetros pueden resultar ser significativos para el desempeño de la actividad catalítica en la reacción de hidrogenación del CO₂ hacía CH₄ que se llevaría a cabo en reactores de nivel industrial.
- ☑ En términos medio ambientales, los catalizadores de Co/CeO₂ ZrO₂ y Ni/CeO₂ ZrO₂ son aptos para la producción de CH₄ a través del aire atmosférico. Si bien entendemos que el CH₄ es un gas de efecto invernadero y con GWP 7 veces más elevado que el CO₂, es importante resaltar que la transformación en el proceso de combustión del CH₄ hacia CO₂ genera pocas o mínimas emisiones a la atmósfera de contaminantes criterio, en comparación con otro tipo de combustibles de origen fósil. Por tanto, se recomienda llevar

Consejo Nacional de Ciencia y Tecnología (conacyt)

la combustión de este producto en condiciones controladas y aisladas del aire ambiente, se lograría obtener cero emisiones a la atmósfera de contaminantes criterio y el proceso ciclo de generación de gas natural y CO₂ atmosférico; favoreciendo así la disminución de los contaminantes emitidos a la atmósfera, lo que se traduce en una muy buena alternativa para el combate al calentamiento global y los gases de efecto invernadero.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

Posgrado en Energía y Medio Ambiente REMEDIACIÓN AMBIENTAL QUÍMICA.

División de Ciencias Básicas e Ingenierías (CBI) LABORATORIO DE CATÁLISIS AMBIENTAL.

Bibliografía.

- Ashok, J., Ang, M. L., & Kawi, S. (2017). Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods. *Catalysis Today*, 281, 304–311. https://doi.org/10.1016/j.cattod.2016.07.020
- 2. Avantange Software, Thermo Fischer Scientific. (2022). *Thermo Avantange* (v5.9931). Thermo Fischer Scientific.
- 3. PANanalytical B.V. (2005). X'Pert HighScore (2.1 (2.1.1)).
- Chesmistry, L. (s/f). Introduction to Crystal Field Theory. chem.libretexts.org. https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_an d_Websites_(Inorganic_Chemistry)/Crystal_Field_Theory/Introduction_to_Crystal_Field_T heory
- 5. Cotton, F. A.; Wilkinson, G. (1969). *Química Inorgánica Avanzada* (Primera ed). Limuisa-Wiley, S.A.
- 6. Cui, W.-G., Zhang, G.-Y., Hu, T.-L., & Bu, X.-H. (2019). Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. *Coordination Chemistry Reviews*, *387*, 79–120. https://doi.org/10.1016/j.ccr.2019.02.001
- Dai, Y., Zou, R., Ba, T., Zhang, J., & Liu, C. (2021). Highly active and coke resistant Ni/CeZrO2 catalyst prepared by cold plasma decomposition for CO2 reforming of methane. *Journal of CO2 Utilization*, *51*, 101647. https://doi.org/10.1016/j.jcou.2021.101647
- 8. EPA. (2021). *Descripción general de los gases de efecto invernadero*. https://espanol.epa.gov/la-energia-y-el-medioambiente/descripcion-general-de-los-gasesde-efecto-invernadero
- 9. EPA. (2022). Understanding Global Warming Potentials. epa.gov. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials
- 10. Fogler, S. H. (2008). *Elementos de ingeniería de las reacciones químicas*. PEARSON EDUCACIÓN.
- 11. Gobierno. (2016). Acuerdo de París: 5 acciones de México. gob.mx. https://www.gob.mx/epn/articulos/5-comprimisos-de-mexico-con-el-acuerdo-deparis#:~:text=México sigue demostrando liderazgo en,el Senado de la República.
- 12. Google. (2021). *Google Imágenes*. Google Imágenes. https://www.google.com.mx/imghp?hl=es
- 13. Hussain, I., Jalil, A. A., Hassan, N. S., & Hamid, M. Y. S. (2021). Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges.

Journal of Energy Chemistry, 62, 377–407. https://doi.org/10.1016/j.jechem.2021.03.040

- 14. HYDRA. (2015). *Hydrochemical Equilibrium Constant Database (HYDRA)* (Núm. 2009). Royal Institute of Technology. http://www.kemi.kth.se/medusa
- Jozwiak, W. K., Kaczmarek, E., Maniecki, T. P., Ignaczak, W., & Maniukiewicz, W. (2007). Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. *Applied Catalysis A: General*, 326(1), 17–27. https://doi.org/10.1016/j.apcata.2007.03.021
- Kattel, S., Liu, P., & Chen, J. G. (2017). Tuning Selectivity of CO 2 Hydrogenation Reactions at the Metal/Oxide Interface. *Journal of the American Chemical Society*, 139(29), 9739– 9754. https://doi.org/10.1021/jacs.7b05362
- Lin, Kuan-Hung; Wang, Chen-Bin; Chiu, Hui-Chi; Chien, S.-H. (2003). In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide. *Catalysis Letters*, 1(3), 68. file:///C:/Users/elysi/Downloads/In_situ_FTIR_Study_of_Cobalt_Oxides_for_the_Oxidat.p df
- MEDUSA. (2010). Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA) (Núm. 2010). Royal Institute of Technology. https://sites.google.com/site/chemdiagr/?pli=1
- 19. México, G. de. (2021). *Clasificación de los contaminantes del aire ambiente*. gob.mx. https://www.gob.mx/cofepris/acciones-y-programas/2-clasificacion-de-loscontaminantes-del-aire-ambiente
- Mierczynski, P., Mierczynska, A., Ciesielski, R., Mosinska, M., Nowosielska, M., Czylkowska, A., Maniukiewicz, W., Szynkowska, M., & Vasilev, K. (2018). High Active and Selective Ni/CeO2–Al2O3 and Pd–Ni/CeO2–Al2O3 Catalysts for Oxy-Steam Reforming of Methanol. *Catalysts*, 8(9), 380. https://doi.org/10.3390/catal8090380
- Mutschler, R., Moioli, E., Luo, W., Gallandat, N., & Züttel, A. (2018). CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies. *Journal of Catalysis*, *366*, 139–149. https://doi.org/10.1016/j.jcat.2018.08.002
- 22. Natural, F. de G. (2009). Guías técnicas de energía y medio ambiente.
- 23. Nedgia. (2022). Características del gas natural. https://www.nedgia.es/conocenos/caracteristicas-del-gas-natural/
- 24. ONU-CEPAL. (2022). *El gas natural en México*. https://repositorio.cepal.org/bitstream/handle/11362/47981/1/S2200638_es.pdf
- 25. ONU. (2021). COP26: Juntos por el planeta. https://www.un.org/es/climatechange/cop26
- 26. ONU. (2022). ¿Qué es el cambio climático? un.org. https://www.un.org/es/climatechange/what-is-climate-change

- 27. OriginPro. (2017). OriginPro (b9.4.2.380). OriginLab Corporation.
- 28. Plus, X. H. (2009). X'Pert HighScore Plus (3.0 (3.0.0)). PANalytical.
- 29. Quantachrome. (2015). ASiQwin (4.01).
- Ranga, C., Alexiadis, V. I., Lauwaert, J., Lødeng, R., & Thybaut, J. W. (2019). Effect of Co incorporation and support selection on deoxygenation selectivity and stability of (Co)Mo catalysts in anisole HDO. *Applied Catalysis A: General*, *571*, 61–70. https://doi.org/10.1016/j.apcata.2018.12.004
- 31. SEMARNAT. (2008). El efecto invernadero. gob.mx. https://apps1.semarnat.gob.mx:8443/dgeia/cd_compendio08/compendio_2008/compen dio2008/10.100.8.236_8080/ibi_apps/WFServlet5554.html
- SENER. (2015). Gas Natural. https://www.gob.mx/cms/uploads/attachment/file/12459/Documento_Gas_Natural_201 5.pdf
- 33. Technologies, A. (2003). GC ChemStation (A.10.02 [1757]).
- 34. UNAM. (2015). *Gas Natural*. http://profesores.fi-b.unam.mx/l3prof/Carpeta energ%EDa y ambiente/Gas Natural.pdf
- Urusov, V. S. (1992). A Geometric Model of Deviations from Vegard's Rule. *Journal of Solid State Chemistry*, *98*. https://www.sciencedirect.com/science/article/abs/pii/S0022459605802300

VIII. Anexos.

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA

Posgrado en Energía y Medio Ambiente **remediación ambiental química.**

División de Ciencias Básicas e Ingenierías (cbi) Laboratorio de catálisis ambiental.

109

Anexo I.

En la Tabla 42, muestra el comparativo de las condiciones de reacción en la hidrogenación catalítica de CO₂ a CO, CH₃OH y CH₄, en conjunto con la conversión y la selectividad sobre catalizadores metal/óxido reportado en Kattel et al., 2017.

Tabla 42. Comparativo de las condiciones de reacción en la hidrogenación de CO_2 a CO, CH_3OH y CH_4 en conjunto con la conversión y la selectividad sobre catalizadores Metal/Óxido. Fuente: Adaptado de Kattel et al., 2017.

		Condiciones de reacción			Conversión	Selectividad [%]		
	Catalizador	Proporción	Temperatura	Presión	[%]	со	СН₂ОН	CH
	6 /T 0	H ₂ :CO ₂	[°C]	[MPa]	0.54	02.6	42.0	04
		3:1	220	0.1	0.54	83.6	13.8	
		3:1	220	0.1	0.53	80.2	19.8	
		3:1	220	1.7	6	-	5/	
		3:1	350	1.7	6.9 N/A		70	0.55
		5:1	250	3	N/A	44.54	54.91	0.55
		5.1	250	3	N/A	27.97	71.94	0.09
		5.1	250	3	N/A	21.28	78.09	0.03
		3:1	350	1.7	4.8		58	
		3.1	350	I./	4	62.0	8/ 26.1	0
_	Cu/ZnO rod	3.1	250	2	0	03.9	30.1 61.9	0
J J	Cu/ZnO filamont	2.1	240	2	0		79.2	
		2.1	240	2	10.5		/8.2	
		2.9.1	170	5	5.7	85.4	11.0	
		2.8.1	170	5	1/1 3	45.1	54.8	
		3.1	230	3	23.2	43.1	60.3	
	Cu/ZnO/ZrO2	3.1	230	3	19.3		48.6	
	Cu/ZnO/ZrO2	3.1	230	8	21		68	
	Cu/Zn/ZrO2-Mn-	3.1	220	10	16		91	
	promoted	5.1	200	10	10		51	
	Cu/rod ZnO/Al ₂ O ₃	2:2:1	270	4.5	12.3		42.3	
	Cu/plate ZnO/Al ₂ O ₃	2:2:1	270	4.5	10.9		72.7	0.8
	Pd/CeO ₂	3:1	200	3	2.1	6.3	92.9	0.8
	Pd/CeO ₂	3:1	220	3	2.5	7.1	92.1	1.1
	Pd/CeO ₂	3:1	230	3	3.1	7.1	91.7	3.5
	Pd/CeO ₂	3:1	240	3	4.4	11.2	85.2	4.3
	Pd/CeO ₂	3:1	260	3	5.2	11	84.7	18.6
	Pd/Al ₂ O ₃	3:1	250	5	3.4	51.5	29.9	12.6
	Pd/Cr ₂ O ₃	3:1	250	5	2.1	65	22.4	0
	Pd/β-Ga ₂ O ₃	3:1	250	3	0.86	48	52	0.5
	Pd/Ga₂O ₃	3:1	250	5	19.6	47.9	51.5	
	Pd/rod Ga ₂ O ₃	3:1	250	5	11		41.3	
	Pd/plate Ga ₂ O ₃	3:1	250	3	17.3		51.6	
	Pd/SiO ₂	3:1	250	5	0.05	0	100	0
	Pd/TiO ₂	3:1	250	5	15.5	95.9	3.9	0.2
	Pd/ZnO	3:1	250	5	13.8	62.3	37.5	0.1
σ	Pd/ZnO (1% Pd), SI [SI = sol immobilization]	3:1	250	2	1.7	24	76	
P	Pd/ZnO (1% Pd), IM [IM = impregnation]	3:1	250	2	3.2	78	22	
	Pd/ZnO (1% Pd), SI	3:1	250	2	10.7	39	60	
	Pd/ZnO (1% Pd), IM	3:1	250	2	8.7	99	1	
	Pd/ZrO ₂	3:1	250	5	0.4	81.7	4.3	14
	Pd/Al ₂ O ₃	4:1	275	0.95	1.2		5.4	
	Pd/Al ₂ O ₃	2:1	275	0.95	0.23		49.1	
	Pd/TiO ₂	4:1	275	0.95	3.9		1.98	
	Pd/SiO ₂	4:1	275	0.95	0.8		9.5	
	Pd/SiO ₂	2:1	275	0.95	0.7		89.0	
	Pd/MgO	4:1	275	0.95	0.77		7.8	
	Pd/MgO	2:1	275	0.95	0.65		96.5	
	Pd/Al ₂ O ₃ - fresh	1:1	240	0.1	30			22
	Pd/Al ₂ O ₃ - aged	1:1	240	0.1	30			39
	Pd/La ₂ O ₃ /Al ₂ O ₃	1:1	240	0.1	30			30
	Pd/PrO ₂ /Al ₂ O ₃	1:1	240	0.1	30			24

Posgrado en Energía y Medio Ambiente REMEDIACIÓN AMBIENTAL QUÍMICA.

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2, COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO.

TESIS DE GRADO: NIVEL MAESTRÍA

Consejo Nacional de Ciencia y Tecnología (conacyt)

		Condiciones de reacción			Conversión	Selectividad [%]		
	Catalizador	Proporción	Temperatura	Presión	[%]	60		CH
		H ₂ :CO ₂	[°C]	[MPa]			СпзОн	CH ₄
	Pd/CeO ₂ (5)/Al ₂ O ₃	1:1	240	0.1	30			13
	Pd/CeO ₂ (10)/Al ₂ O ₃	1:1	240	0.1	30	89.6	-	19
Au		4:1	450	0.1	40.8		5	10.4
		3.1	220	0.5	5.3		5.4	
	Au/ZnO	3.1	240	0.5	0.2		50.2	
	Au/ZnO	3:1	240	0.5	0.4		100	
	Au/ZnO/ZrO ₂	3:1	220	8	1.5		1.5	
	Au/Al ₂ O ₃	3:1	220	0.5	2		0.4	
	Au/Al ₂ O ₃	3:1	240	0.5	3.7	100		
	D: /C: O	2.4	550	0.1	2.02	00.00		2
ž	Pt/SIO ₂	2:1	553	0.1	2.03	99.22		0.78
-	Pt/ 110 ₂	2.1	555	0.1	2.55	10.2		0.78
	Ni/SiO ₂	4:1	450	0.1	36.8			81.8
	Ni/γ- Al ₂ O ₃	3.5	350	0.1	~75			100
	Ni/Al ₂ O ₃	4:1	250	0.1	39	11.6		97
	Ni/SiO ₂	4:1	350	0.1	27.6	3.4		85.5
		4:1	300	0.1	42.4	~40		96.6
	10% Ni/SiO2	N/A	350	0.1	~10	10	-	~90
Ξ	Ni/CeO ₂	5.1	450	0.1	~80			~100
	Ni/CeO ₂	4:6	340	0.1	91.1			100
	Ni/ZrO ₂	12.5	377	0.1	~100	0.9		~100
	Ni/Ce _x Zr _{1-x} O ₂	4:1	350	0.1	71.5	1.4		98.5
	Ni/CeO ₂ /ZrO ₂	4:1	350	0.1	67.9	14.5		98.4
	sol-gel							
	Ni/CeO ₂ /ZrO ₂	4:1	350	0.1	25.4		73.2	84.7
	Imp Bo/ZrO	N/A	160	1	N/A		52.0	25.5
	Re/Nh ₂ Or	N/A	220	1	N/A		17.5	37.6
ę	Re/MgO	N/A	260	1	N/A		22.6	80.6
æ	Re/SiO ₂	N/A	180	1	N/A		18.2	74.7
	Re/Zeolon	N/A	220	1				75.7
	Rh/γ-Al ₂ O ₃	4:1	200	1	~98	88.1	6.8	~100
	Rh/SiO ₂	3:1	200	5	0.52	14.5	0.80	5.1
_	Rh/TiO ₂	1:1	270	2	7.89		60.7	72.7
R	Rh/TiO ₂	3:1	240	1	N/A		_	32.4
	Rh/ZrO ₂	3:1	240	1	N/A			99.9
	Rh/NgO	3:1	240	1	N/A		-	99
	Ru/TiO ₂	3.1 4·1	160	0.1	N/A N/A			100
	RU0 01 Ceo 00 O2	4:1	500	N/A	16			90
_	Ru/CeO ₂	4:1	250	0.1	92.7			
RL	Ru/Al ₂ O ₃	~5:1	190	0.1	N/A			42
	Ru/CeO ₂ /Al ₂ O ₃	4:1	250	0.1	~20		97	~100
۵0	Ag/ZnO/ZrO ₂	3:1	220	8	2	39.4		
A								
	Co/CeO ₂	3:1	300	0.1	3.8	67.0		
S	Co/γ-Al ₂ O ₃	3:1	300	0.1	3.8	73	0.0	
,e	Fe/TiO ₂	1:1	270	0.1	2.65	89.7		11.6
Ľ								
0.0	Mg/TiO ₂	4:1	450	2	0.8	97		10.3
Σ								
-	Mo/γ-Al ₂ O ₃	1:1	600	0.1	34.2	79.7		
δ								
tálicos	Cu-Ni/v-AlaOa	1.1	600	1	28.7	97.2	+	20.3
	Pd-Fe/SiO ₂	4:1	450	0.1	44.7	4.7	1 1	2.8
	Pd-Mg/SiO ₂	4:1	450	0.1	59.2	11.5	1 1	95.3
	Pd-Li/SiO ₂	4:1	450	0.1	42.6	11.0		88.5
time	Pd-Ni/SiO ₂	4:1	450	0.1	50.5	71		89
	PtCo/CeO ₂	3:1	300	0.1	3.3	89.4		
	PtCo/γ-Al ₂ O ₃	3:1	300	0.1	5.1	~99		

Posgrado en Energía y Medio Ambiente REMEDIACIÓN AMBIENTAL QUÍMICA.

División de Ciencias Básicas e Ingenierías (CBI) LABORATORIO DE CATÁLISIS AMBIENTAL.

HIDROGENACIÓN CATALÍTICA DEL CO2 A CH4 A PARTIR DE CATALIZADORES DE Fe, Co Y NI SOPORTADOS EN CeO2 - ZrO2, COMO PROPUESTA PARA LA OBTENCIÓN DE GAS NATURAL A PARTIR DEL AIRE ATMOSFÉRICO.

TESIS DE GRADO: NIVEL MAESTRÍA

Consejo Nacional de Ciencia y Tecnología (conacyt)

	Catalizador	Condiciones de reacción			Conversión	Selectividad [%]		
		Proporción H ₂ :CO ₂	Temperatura [°C]	Presión [MPa]	[%]	со	CH₃OH	CH4
	PtCo/TiO ₂	2:1	300	0.1	8.2	~92		~1
	PtCo/CeO ₂	2:1	300	0.1	9.1	~89		~8
	PtCo/ZrO ₂	2:1	300	0.1	7.8			~11
	15Ni-5Co/Al ₂ O ₃ - CeO ₂	~19	300	2	N/A			100
	15Ni-5Co/Zr _{0.75} - Ce _{0.25} O ₂	~19	300	2	N/A			99
	15Ni-5Co/Al ₂ O ₃ - ZrO ₂	~19	300	2	N/A	~100		98
	Fe-Mo/y-Al ₂ O ₃	1:1	600	1	~45	28.4	1.26	
	Rh-Fe/TiO ₂	1:1	270	2	9.16			57.2
	Co ₄ N/TiO ₂	~19	300	1.5	~98	62.3	37.5	~98

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

ACTA DE EXAMEN DE GRADO

No. 00106 Matrícula: 2203802575

