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ABSTRACT 

The most common indicator currently employed in practice to assess boiling water reactor 

(BWR) instability, due to density wave oscillation (DWO) is the Decay Ratio (DR), an easy 

to grasp index that is regularly calculated from an estimate of the impulse response function 

of the reactor core, such impulse response appraisal is most of the time provided by an 

autoregressive (AR) modeling of the reactor core. The DR is the output of most stability 

monitoring systems available in the market. However, it is known that BWRs are intricate 

systems that may exhibit complex dynamics during instability that cannot be captured by 

the DR alone. Besides, AR models require linear and stationary signals to grant reliable 

models. Recorded BWR signals are not linear and are not stationary. Therefore, it is 

necessary to reignite BWR stability studies to develop more suitable stability 

methodologies and indicators capable of accommodating the complex nature of unstable 

BWR signals. To address this issue, the work presented in this thesis is related to the study 

of non linear signal processing methodologies to assess the stability of a BWR, due to 

DWO. 

This thesis is divided in eight chapters. The first one introduces the various BWR instability 

types that have been observed  in practice, it also introduces the DR definition. The second 

chapter introduces a state of the art of how BWR instability has been studied in the last 

three decades. The third chapter introduces the Empirical mode decomposition (EMD), a 

non-linear filter that accommodates non-stationary and non-linear behavior from real world 

signals. The EMD is the backbone of most of the BWR instability proposals given in this 

work. In the fourth chapter, a reduced order model (ROM) is studied, such ROM represents 

qualitatively the chaotic dynamic behavior of a BWR system during instability. The fifth 

chapter introduces the first non-linear instability indicator: The Shannon Entropy (SE) and 

its associated tests with BWR recordings is discussed in this chapter. The sixth chapter 

introduces the second non-linear instability indicator, the Sample Entropy (SampEn) and its 

experiments are discussed in this chapter too. Chapter seven discusses the third and final 

(and most powerful) non-linear instability indicator proposal: The Higuchi Fractal 

Dimension (HFD) and its associated experiments with artificial and real BWR signals are 

shown and discussed in this chapter. In Chapter eight, we introduce a novel and practical 

BWR instability monitor with decision rules based on the HFD for real time application. 

Final conclusions of the work performed in this thesis are given in chapter nine.      
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Prefacio 
La elaboración de la presente tesis surge a raíz del interés de desarrollar técnicas para 

estudiar la estabilidad de reactores nucleares de agua en ebullición (BWR, por sus siglas en 

inglés). Nos interesa entender a través de las señales medidas de centrales nucleares reales, 

qué es lo que ocurre desde el punto de vista fenomenológico cuando ocurre una 

inestabilidad de potencia en reactores muy específicos que son del tipo BWR como el de 

Laguna Verde. Los BWR pueden presentar problemas de inestabilidad de potencia de tipo 

divergentes; es decir, que la potencia va creciendo en forma divergente hasta que llega a los 

puntos donde el reactor pueda apagarse en forma automática (bajo el supuesto de que la 

planta cuenta con tales diseños). 

A través de los años se han hecho esfuerzos internacionales para contar con detectores de 

inestabilidad, y para tener una idea clara en qué consisten se puede hacer una analogía con 

una alarma sísmica. "Supongan que con alguna metodología se puede establecer que el 

inicio de un temblor puede ocurrir un minuto o un minuto y medio antes de lo que 

actualmente se avisa". En el pasado se han desarrollado métodos que permiten establecer 

con mucho tiempo de anticipación y poca información, que puede ocurrir una inestabilidad 

en un reactor nuclear. Lo anterior redunda en una mayor seguridad de la planta, pero 

además en que el operador cuenta con más tiempo para poder tomar acciones pertinentes. 

El problema actual de muchas metodologías de estabilidad tiene que ver con sus métodos 

de construcción. La gran mayoría de métodos empleados para estudiar la estabilidad de 

BWRs es que son herramientas lineales que no pueden medir toda la complejidad de un 

"sistema dinámico" como un reactor nuclear. Tales herramientas lineales asumen que el 

reactor se comporta bajo inestabilidades como un sistema de segundo orden o como un 

oscilador armónico. Lo cual es una suposición demasiado simple y distante de la realidad. 

Además, se ha observado que los BWRs bajo inestabilidad pueden llegar a presentar 

comportamiento "caótico". El "caos" no puede ser detectado con las herramientas 

existentes.  

Nuestro objetivo es desarrollar metodologías de estabilidad haciendo uso de métodos no-

lineales, las cuales son técnicas que se han desarrollado para estudiar la naturaleza de 

sistemas dinámicos complejos y/o caóticos como un BWR. En la literatura se ha explorado 

poco el estudio de estabilidad de BWRs con herramientas no-lineales. Por lo tanto, nos 

encontramos como investigadores en suelo fértil.  Las siguientes secciones están escritas en 

inglés, para que cualquier persona perteneciente a nuestra comunidad de científicos pueda 

hacer uso de ella en algún futuro.  
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Los lectores encontraran lo siguiente dentro de esta tesis:  

El Capítulo 1 está dedicado a introducir el tipo de inestabilidad BWR más comúnmente 

observado en las centrales nucleares comerciales, que es: la inestabilidad de la onda de 

densidad. Este capítulo también proporciona un resumen de los eventos de inestabilidad de 

BWR informados y de los instrumentos dentro del núcleo que se utilizan para evaluar la 

estabilidad de BWRs por razones de seguridad. Nuestros objetivos también se encuentran 

en este capítulo.  

El Capítulo 2 presenta el estado del arte de algunas obras que se han publicado en los 

últimos 40 años para analizar la inestabilidad de BWR. Además, las propiedades lineales o 

no lineales de los métodos proporcionados en esta sección se dan al final de esta sección, 

junto con algunos de sus obstáculos para la implementación en tiempo real.  

El Capítulo 3 presenta la descomposición de modos empírico (EMD), un filtro no lineal 

para descomponer señales no estacionarias que provienen de sistemas no lineales en un 

esquema de resolución múltiple. Este capítulo aborda las expansiones de EMD que se 

inspiraron en el EMD estándar para mejorar la descomposición de datos complejos. En este 

capítulo, también presentamos una expansión multivariada de EMD para analizar datos 

multicanal.  

El Capítulo 4 presenta un modelo simple pero potente de orden reducido (ROM) de un 

BWR. La ROM ayuda a comprender el comportamiento dinámico de un BWR bajo 

inestabilidad de onda de densidad. Realizamos algunos experimentos con la ROM para 

probar las limitaciones del DR estándar cuando se trata de evaluar la inestabilidad de BWR. 

Las limitaciones del DR expuestas en este capítulo abren la puerta para estudiar la 

inestabilidad de BWR (bajo onda de densidad) con otras herramientas más sofisticadas.  

El Capítulo 5 presenta la primera medición para evaluar la inestabilidad de BWR (bajo 

onda de densidad). La entropía de Shannon (SE), la SE es una medida no lineal de la 

complejidad de una variable aleatoria. La Entropía de Shannon se utiliza con frecuencia en 

telecomunicaciones. No obstante, aquí la aplicamos para evaluar la inestabilidad de los 

BWR mediante las grabaciones de los LPRM. Aquí desarrollamos las primeras 

metodologías de inestabilidad BWR no lineal en este capítulo con el SE en combinación 

con expansiones EMD.  

El Capítulo 6 analiza la segunda medición de estabilidad (una segunda propuesta) para 

evaluar la inestabilidad de los BWRs. La nueva medida es la Entropía de muestra 

(SampEn). El SampEn es una medida que se utiliza para evaluar la complejidad de señales 

fisiológicas, para diagnosticar "estados" enfermos. Aquí se aplica para separar los estados 

estables de BWR de los inestables. SampEn es una fórmula informática sofisticada para 

medir la complejidad de las series de tiempo, dicha fórmula se puede implementar en 
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tiempo real. El SampEn es un indicador muy sofisticado, más que la Entropía de Shannon 

que se introduce en el Capítulo 5. Elaboramos una metodología de estabilidad de BWRs 

basada en SampEn en combinación con una expansión EMD multi variable.  

El Capítulo 7 presenta la tercera propuesta de estabilidad (y la más poderosa), la dimensión 

Fractal Higuchi (HFD), una fórmula que mide la dimensión fractal de las series de tiempo. 

La dimensión fractal es un índice de rugosidad de una serie temporal. EL HFD proporciona 

estimaciones confiables de dimensiones fractales con pocos puntos de datos (esto es útil 

cuando hay pocos datos disponibles). El HFD solo necesita un parámetro de entrada simple 

a priori para su funcionamiento. Elaboramos una metodología de estabilidad BWR basada 

en HFD en combinación con una expansión EMD multi variable.  

El Capítulo 8 discute las limitaciones de los tres indicadores estudiados de los últimos 3 

capítulos. El indicador más fuerte entre los tres estudiados se elige para construir un 

monitor de estabilidad BWR robusto y práctico para la detección de oscilación DW con 

reglas de decisión. El indicador elegido es la potente dimensión Fractal de Higuchi (HFD).  

En el Capítulo 9 se exponen nuestras conclusiones y se dan sugerencias de futuros 

proyectos que podrían surgir a raíz de lo expuesto dentro de esta tesis.   
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Chapter 1  

Introduction  
Today, there are 78 nuclear boiling water reactors (BWRs) in the world dedicated to the 

generation of electricity. BWRs make a significant contribution to the production of global 

electric power and to date, BWRs are the simplest energy system to transform fission 

energy into electrical energy, due to the direct cycle to turbine with dry saturated steam. 

Nonetheless, there are many fundamental aspects related to their operation that under 

certain conditions, may induce BWR malfunctioning and affect its stability. The problem of 

the stability of the BWR has been a subject of significant scientific and technological work 

during more than four decades dedicated to its study.  

Instability events may occur during start up or during transients to change the region of 

operation of the reactor. Figure 1 shows the example of a typical power-flow map diagram 

of a nuclear power plant (NPP), the map shows the regions where the reactor should not be 

operated (red colored region) for reasons of stability, those ones where the BWR can be 

operated only under supervision (brown colored region) and finally, the diagram shows the 

regions of stable reactor operation ( regions where the core flow is high). Nowadays, there 

is a tendency to design reactor of higher power. In addition, refinement of fuel elements has 

encouraged the introduction of increasingly efficient fuels that allow the plant to operate at 

increasingly high power levels. Such a power increase induces a higher reactivity feedback 

and a decrease in response time, resulting in a lower BWR stability range when the plant 

operates at a low mass flow and at high nominal power. Another current trend is to increase 

the size of the core, which causes a weaker coupling in the neutron field which increases 

the susceptibility of the reactor to experiencing unstable oscillations. In summary, all 

current tendencies related to reactor design enhance the regions where the reactor should 

not be operated (reactor operation at low flow and high power).  
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Figure 1. Typical Power-Flow map of a BWR.  

Events of instability have already occurred in the past in commercial BWRs, such as the 

Laguna Verde Nuclear Power Plant (Gonzalez et al., 1995 and Farawila et al., 1996). Some 

cases of instability occurred inadvertently, while others were intentionally provoked for 

experimental purposes (Verdú et al., 2001). Periodic oscillations in the neutron flux were 

observed during these instability events via the electronic instrumentation of the reactor. 

After the first events of instability occurred, the corresponding authorities (regulatory 

commissions) requested the development of research projects to study the mechanisms 

involved in reactor stability to: 

1. Study the stability margins of the plant under normal operating conditions and in 

unusual conditions. 

2. Predict reactor transients in an event of instability. 

3. Develop measures to prevent and mitigate the consequences of an event of 

instability.  
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1.1 Density wave instabilities  
BWRs have complex responses that may result in various instability types, each type is 

characterized by a particular oscillating mode. Table 1 shows a summary of reported BWR 

instability events that have been observed in the past (Reproduced from D'Auria., 2008).  

 

Table 1: Summary of reported BWR Instability Events.  

Date NPP, Country, Manufacturer Event  

30/06/1982 Caorso, Italy, GE (General Electric) It occurred during startup of the 

reactor. The reactor thermal power 

was 53.5% and the recirculation flow 

38%. The operating point of the 

reactor entered the unstable region, 

the oscillations diverged and the 

reactor scrammed on high-high 

APRM signal (120% power). 

13/01/1984 Caorso, Italy, GE  The second event occured after trio of 

a recirculation pump and following 

loss of some preheater trains. The 

cold feed water and the strongly 

peaked axial power distribution led to 

neutron flux oscillation.  

23/02/1987 TVO-I, Finland, ABB Atom A power oscillaiton event took place 

when the plant was brought back to 

power after a short shutdown period. 

The reactor power was about 60% 

with a recirculation flow of 30% 

when increased APRM signal 

oscillations started to appear.  

09/03/1988 LaSalle 2, USA, GE Underwent a dual recirculation pump 

trip following which the unit 

experienced excessive neutron flux 

oscillations while it was in natural 

circulation. The resulting perturbation 

on the switches for anticipated 

transient without scram resulted in a 

trip of both recirculation pumps.  

15/01/1989 Forsmark 1, Sweden, ABB Atom After having carried out tests in 

several of the selected operating 

points, the stability boundary was 

even close. Moving from one point to 

another, the operator chose to switch 

from the pump speed control mode to 

the power control mode. This was 

done at 71% power and 4700 kg/s. A 

remaining control mismatch led to a 

small decrease in core flow. The 

combined effect of the power control 

system, caused power oscillation with 

an amplitude that increased to about 

20% after 20s enough the initiate a 

pump run-down.  

26/10/1989 Ringhals 1, Sweden, ABB Atom In 1989 these NPP was starting up for 

a new cycle, power oscillations were 

observed in the core. During the 

oscillations, several LPRMs gave a 

high level alarm, indicating that the 
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local power in those positions had 

exceeded 118%. The core was 

stabilized about 30 s after the partial 

scram.  

08/01/1990 Oskarshamn 2, Sweden, ABB Atom A planned power reduction from 

106% to 65% was performed. The 

power was reduced by reducing pump 

speed to a minimum. After about 1 

minute, power oscillations had 

developed, having peak-to-peak 

amplitudes of +/-10%. The APRM 

signals showed the oscillations to be 

in phase. A manual partial scram was 

performed which completely 

quenched the oscillations.  

29/01/1991 Cofrentes, Spain, GE Oscillations appeared after the 

operator withdraw control rods and 

reduced core flow in order to transfer 

the recirculation pumps from low to 

high speed.  

03/07/1991 Isar 1, Germany, Siamens The Isar NPP had a trip of four 

internal recirculation pumps, due to a 

reduction on seal water flow to the 8 

recirculation pumps. The power 

reduction due to the control rod 

insertion proved to be too slow to 

prevent the reactor from entering the 

unstable region of the power-flow 

map. neutron flux oscillations with 

increasing amplitude appeared at 

about 50% power and 30% core flow. 

When the oscillations reached peak-

to-peak amplitude of 30% 

corresponding to a peak power of 

65.5% at 30% flow, the reactor 

scrammed on the underlayed setpoint 

of neutron flux to core flow ratio. 

This occurred 44 seconds after the trip 

of the four recirculation pumps.  

15/08/1992 WNP 2, USA, GE The WNP 2 experienced power 

oscillations during startup. The event 

occurred early in cycle 8 operation. 

Upon recognizing the power 

oscillations, the operators manually 

initiated a reactor scram. Post event 

review indicated that the oscillations 

were in-phase and had grown to peak-

to-peak amplitude of about 25% of 

rated power.  

09/07/1993 Perry, USA, GE Entry into a region of core instability 

01/1995 Laguna Verde 1, Mexico, GE During startup of the reactor, at 34% 

power, the operator was waiting to 

increase pump recirculation speed. 

Power was increased to 37% by 

control rod withdrawal and closure of 

the control valves of the pumps was 

initiated, thus leading to power 

reduction. During these operations the 

operator observed power oscillations 

with a tendency to diverged and he 
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stopped the closure of the valves. At 

this time the peak-to-peak amplitude 

in the oscillations was 6%.  

17/07/1996 Forsmark 1, Sweden, ABB Atom Local oscillations due to a bad seated 

fuel assembly. 

08/02/1998 Oskarshamn 3, Sweden, ABB Atom Power oscillations due to a bad 

combination of core design and 

control-rod pattern during start up 

25/02/1999 Oskarshamn 2, Sweden Power oscillations after a turbine trip 

with pump runback  

 

In this thesis we will only focus on the most common instability type that has been 

observed in commercial BWR reactors. Such instability is called by the name: Density 

wave Instability (DW). We will now focus on the mechanisms that generate them.  

 

1.2 Density wave mechanisms 
 
A seasonal reduction of inlet flow in a heated channel increases the rate of enthalpy rise, 

thereby reducing the average density. This disturbance affects the pressure drop and the 

heat transfer behavior. For certain combinations of geometrical arrangement, operating 

conditions, and boundary conditions, the perturbation can acquire a 180   out-of-phase 

pressure fluctuation at the exit, immediately transmitted to the inlet flow rate and become 

self sustained (Stenning and Veziroglu, 1965). For boiling systems, the oscillations are due 

to multiple regenerative feedbacks between the flow rate, vapor generation rate, and 

pressure drop (Neal et al., 1967). Since transportation delays are of paramount importance 

for the stability of the system (Bouré, 1966; Bouré and Ihaila, 1967), the phrase "time-delay 

oscillations" has also been used. More practically, these are low frequency oscillations 

(centered around 0.5 Hz) in which the period is approximately one to two times the time 

required for a fluid particle to travel through the channel. Accordingly, density wave 

oscillations and density effect mechanism are also used to describe the phenomena. DW 

instabilities are the most common instabilities observed in commercial NPPs (March-

Leuba, 1992). Figure 2 illustrates the mechanisms that generate DWs.  
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Figure 2. Density wave mechanism introduces a lag. The effect of a power pulse is seen a 

few seconds later in the channel pressure drop due to void propagation delay.  

 
There are two kinds of DW oscillating modes: in-phase (global or core-wide) oscillations, 

and out-of-phase (regional) oscillations. In-phase oscillations are caused by the lag 

introduced into the thermal-hydraulic system by the finite speed of propagation of density 

perturbation (Lahey and Podoswski, 1989). At high-core void fractions and low flow 

conditions, the feedback becomes so strong that it induces frequency oscillations close to 

0.5 Hz. When this feedback increases, the oscillation becomes more pronounced, and 

oscillatory instability is reached. The term out-of-phase oscillation is applied to those 

instabilities in which different reactor core zones show a considerable phase shift (up to 

180 ) in neutron flux oscillation. It has been shown that stability depends on several 

variables such as control rod patterns, void fraction, burnup, inlet mass flow, among others. 

Figure 3 shows an example of an in-phase DW instability event whereas Figure 4 shows an 

example of an out-of-phase instability event (Please refer to Prieto-Guerrero et al., 2015 to 

learn the details about Figures 3 and 4). DW instabilities can be studied through the 

recordings of Local Power Range Monitors (LPRMs) located within the reactor vessel or 

core. In the following subsection, we will provide more information about how LPRMs are 

constructed, how they are used and how they are placed within the core. The average of 

various LPRMs of a particular core region is known as Average Power Range Monitor 

(APRM). APRMs are used for security purposes only (to trigger the emergency shutdown 

systems of a BWR, commonly referred to as SCRAM or Kill switches). In practice BWR 

stability appraisal is achieved only through APRM observation (In the estimate of many 
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researchers in the field, a mistake due to the fact that Out-of-phase oscillations might not be 

adequately detected by APRM circuits if the phase shift is strong).  
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Figure 3. Example of an In-phase instability event (no phase shift observed). 



18 

 

0 5 10 15
-6

-4

-2

0

2

4

6

IMF 4 (linked to BWR instability)

Time   [s]  

Figure 4. Example of an out-of-phase instability event (phase shift appears to be strong).  

1.3 Local Power Range Monitors  
The BWR reactor has an unconventional instrumentation system for neutron flow 

monitoring (NMS). In general terms the system monitors the reactor power and generates 

automatic action signals for core protection. The signals studied in this thesis are recorded 

by the local power range monitors (LPRM). LPRM detectors are fixed fission chambers 

inside the core, which receive high voltage and DC current. In fission chambers, nuclear 

reactions are carried out with the neutrons generated by fissions taking place inside the 

reactor core. The alfa particles are detected by the LPRMs that generate an electric pulse 

which is processed with amplifiers. Such flux amplifiers convert the current signal into an 

analog voltage signal. There is an amplifier for each LPRM detector. The gain of the 

amplifier can be adjusted based on the depletion of the uranium within the detector. The 

amplifier output is calibrated to give readings in units of Watts/cm2 (heat flow per unit 

area). The LPRM signals are fed to the Average Power Range Monitors (APRMs), where 

the average of the flow signals is determined to monitor the overall power of the core. 

LPRM signals are also used to control the reactor Protection System (RPS) for reactor 

safety and protection. 

The LPRMs are placed vertically within the core, separated from each other by a distance 

along the core, as shown by Figure 5. The first LPRM is located at a distance above the 
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bottom of the active fuel (Bottom Active Fuel, BAF). From the bottom up, the detectors are 

designated with the letters A, B, C and D. The cable of each detector terminates below the 

reactor vessel that attaches to the connector. There are coaxial cables that transmit the 

signal from the reactor, through the primary containment, to the monitoring cabinet.  

The LPRMs are placed in levels that are distributed in the radial direction of the core as 

shown in Figure 6. Figure 6 shows in red a total of 36 LPRMs of a reactor floor or level. 

The reactor of the Mexican NPP of Laguna Verde has a total of 4 levels, of 24 LPRMs 

each. That make a total of 96 LPRMs that are fed to 4 APRM monitors, each APRM is the 

average of the 24 LPRMs of a reactor level. The LV APRMs are enumerated for each level 

as: APRM A, B, C and D. In this work, we study the LPRM recordings of three BWRs. The 

Forsmark and Ringhals reactors located in Sweden and the LV reactor located in southern 

Mexico. In this work, we focus on the analysis of LPRMs due to the fact that a strong out-

of-phase DW event might ruin APRM monitoring (only if the dephasing among the LPRM 

signals that are used to compute the average is too strong or close to 180  ). In the 

following section, we will review the classic stability indicator to appraise the stability of a 

BWR. 

Steam Dryer

Water Level

Superior 

Plenary

Jet Bomb

Steam bomb
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Figure 5. Drawing of a BWR reactor and the longitudinal location of the LPRMs. 
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Figure 6. Example of axial placement of LPRMs. 

1.4 Decay Ratio 
Currently, the most common parameter to evaluate BWR stability is known as the decay 

ratio (DR), which is in most proposals calculated from the impulse response function that 

stems from an autoregressive (AR) modeling (Williams, 1977; Williams, 1982; Upadhyaya 

and Kitamura, 1981) of LPRM recordings. The decay ratio is an easy index to scale a 

margin to the stability boundary and this property is the main output of most stability 

monitoring systems (Van der Hagen et al., 2000).  

1.4.1 Linear System Dynamics: Stability 

The link between two variables in a system can be best described by a differential equation, 

if such equation is linear, such equation can be Laplace transformed and the transfer 

function between two variables can be obtained as the ratio of two polynomials in the s, the 

Laplace variable (or s domain). The roots of the denominator polynomials are called the 

poles of the transfer function and the denominator are the zeros. Once the transfer function 

(s)H  of a linear system is known. The output of this system (s)Y  for any input (s)X  is 

given by:  

(s) H(s)X(s)Y =  (1) 
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The output (t)y  can be obtained in the time domain by applying the a convolution 

operation between the time domain input ( )x t  and the impulse response function (t)h  (the 

time domain equivalent of the transfer function): 

 

(t) ( ) h(t )y x d  
+

−

= −   
 

(2) 

It is known that (t)h is the response of a system to a delta dirac input function. The features 

of (t)h  determine the stability of the system. If (t)h decays to zero, the output of the system 

follows the input. However, if (t)h grows in time, old input values are multiplied by a 

function that increases in magnitude. In this case, the response diverges in time and the 

system is unstable.  

 
In the Laplace domain, the poles rule the stability of the system. If at least one pole has a 

positive real part, the impulse response will grow exponentially and the system will be 

unstable whereas if all the real parts of the poles are negative, the system will be stable. 

Within the BWR stability domain, we are usually only interested in learning from systems 

that exhibit oscillatory features when the most positive (and thus unstable) pole is complex. 

It is in this context that the concepts behind the construction of the DR emerge.  

 

 
We know, that the impulse response of a system with a pair of complex conjugate poles 

look like this:  

(t) e cos( t )th   = +   (3) 

 
Where   is the real part and   is the imaginary part of the pole. The DR is defined as the 

ratio between the second and first peaks in the impulse response function (see Figure 7). 

Which in practice is commonly estimated through AR modeling of LPRM signals.   
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Figure 7. Decay ratio (DR) definition. 

This ratio is constant for any two consecutive peaks and equal to (March-Leuba, 1984): 

 

2
DR exp





 
=  

 
  

 

(4) 

 

For second order systems, the DR is related to the position of the poles and is a reliable 

measurement to monitor the stability of a system. The DR is the default indicator to scope 

the stability of BWRs due to density waves (DWs).  For DR validity it is of utter 

importance to assume that the BWR behaves as a second order linear system with a pair of 

complex conjugate poles. The latter assumption is unreal in practice, real BWRs are higher 

order systems with very complex behavior under instability (So, a second order linear 

modeling of BWRs is not sufficient to assess BWR stability). We therefore consider 

relevant to study and propose more elaborate stability indicators to assess the stability of a 

BWR.  
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1.5 Thesis objectives 
The main goal of this work is to develop new BWR stability monitors based on non-linear 

algorithms to compute indicators (of non-linear nature) that accommodate the complex 

dynamics of BWR signals recorded by LPRMs.  

1.5.1 Specific Objectives 

1. Study the physical phenomena behind a BWR instability event with the aid of 

reduced order models (ROMs) that capture the most important features of a BWR.  

 

2.  Find the limitations of DR estimates on artificial signals generated by ROMs 

dedicated to model the dynamics of a BWR.  

 

3. Propose new stability indicators based on non-linear formulas, such as the Shannon 

Entropy (SE), the Sample Entropy (SampEn) and the Fractal Dimension (FD).   

 

4. Validate the behavior of the proposed novel algorithms and stability indicators with 

artificial signals generated by ROMs and later by real signals of commercial BWRs.  

 

5. Study the variants of the empirical mode decomposition (EMD, Huang et al., 1998) 

to decompose real BWR signals.  

 

6. Interpret the results of studying real BWR signals (LPRM data) with the novel 

indicators.  

 

7. Propose a STABILITY MONITOR with decision rules based on adaptive techniques 

to analyze LPRM recordings to estimate a non-linear indicator (the best from the 3 

indicators mentioned in point 3).  
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1.6 Thesis structure  
 

Chapter 1 is dedicated to introduce the most commonly observed BWR instability type 

observed in commercial NPPs, which is: the Density wave instability. This chapter also 

provides a summary of reported BWR instability events and of the instruments inside of the 

core that are used to appraise the BWR stability for security purposes. Our objectives are 

also found in this chapter.    

Chapter 2 introduces a state of the art of some works that have been published over the 

past 40 years to analyze BWR instability. Also, the linear or non linear properties of the 

methods provided in this section are given at the end of this section, along with some of 

their obstacles for real time implementation.  

Chapter 3 Introduces the empirical mode decomposition (EMD), a non linear filter to 

decompose non-stationary signals that stem from non-linear systems in a multi resolution 

scheme. This chapter addresses EMD expansions that drew inspiration from the standard 

EMD to enhance the decomposition of complex data. In this chapter, we also introduce a 

multivariate expansion of EMD to analyze multi channel data.   

Chapter 4 introduces a simple but powerful reduced order model (ROM) of a BWR. The 

ROM helps to understand the dynamic behavior of a BWR under density wave instability. 

We perform some experiments with the ROM to test the limitations of the standard DR 

when it comes to the appraisal of BWR instability. The DR limitations exposed in this 

chapter open the door to study BWR instability (under density wave) with other more 

sophisticated tools.   

Chapter 5 introduces the first measurement to assess BWR instability (under density 

wave). The Shannon Entropy (SE), the SE is a non-linear measure of the complexity of a 

random variable. The Shannon Entropy is used frequently in telecommunications. 

However, in here we apply it to appraise BWR instability through LPRM recordings. We 

develop the first non-linear BWR instability methodologies in this chapter with the SE in 

combination with EMD expansions.   

Chapter 6 discusses the second stability measurement (a second proposal) to appraise 

BWR instability. The new measure is the Sample Entropy (SampEn). The SampEn is a 

measure that is used for assessing the complexity of physiological time-series signals, 

diagnosing diseased states. In here it is applied to separate BWR stable states from unstable 

ones. The SampEn is a sophisticated computer formula to measure the complexity of time 

series, such formula can be implemented in real time. The SampEn is a much sophisticated 

indicator that the Shannon Entropy estimator used in chapter 5. We elaborate a BWR 

stability methodology based on SampEn in combination with a multivariable EMD 

expansion.  

Chapter 7 introduces the third stability proposal (and the most powerful one), the Higuchi 

Fractal dimension (HFD), a formula that measure the fractal dimension of time series. the 

fractal dimension is an index of roughness of a time series. The HFD provides reliable 
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fractal dimension estimates with few data points (this is useful when there is little data 

available). The HFD needs only one simple input a priori parameter for operation. We 

elaborate a BWR stability methodology based on HFD in combination with a multivariable 

EMD expansion.  

Chapter 8 . In here we discuss the constraints of the three studied indicators of the past 3 

chapters. The strongest indicator among the three studied ones is chosen to build a robust 

and practical BWR stability monitor for DW oscillation detection with decision rules. The 

chosen indicator is the powerful Higuchi Fractal dimension (HFD).  
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Chapter 2  

State of the art 
This chapter introduces briefly and classifies some of the most relevant works in BWR 

stability over the past 40 years. The mentioned works may fall into one of the following 

major method categories for BWR stability appraisal:  

A) Models based on systems of differential equations (also known as reduced order models 

(ROMs)). 

B) Autoregressive (AR) modeling for decay ratio (DR) estimation.  

C) Short time Fourier Transform (STFT) and Autocorrelation function (AFC) for DR 

estimation (Spectral Analysis methods).  

D) Bifurcation Analysis. 

E) Computer Codes (programs that simulate the dynamic behavior of the reactor, the fine 

details of such programs are industrial secrets), that provide DR estimates.  

F) Wavelet based methodologies for DR estimation. 

G) Empirical Mode Decomposition based methodologies for DR estimation.  

H) Artificial Neural Networks (ANNs). 

2.1 Reduced order model proposals  

March-Leuba, 1986 developed a reduced order model of the linear dynamic behavior of a 

BWR. His model is based on studies of various physical processes involved. The proposed 

ROM is composed of only five differential equations. With the adequate input parameters, 

the ROM represents accurately the dynamic behavior of BWRs predicted by fine-mesh 

computations.   

Uehiro et al., 1996 proposed an analytical model to study the two-phase flow of in-phase 

and out-of-phase modes in boiling water reactors. The developed model for parallel boiling 

channels with the void-reactivity feedback loop, takes into consideration the interaction 

between channels with different void fraction variations. The authors performed a linear 

stability analysis of their model in the frequency domain. 

Hashimoto et al., 1997 developed a ROM model for linear multichannel analysis of out-of-

phase (regional) instability in BWRs. In their model, the zero-power transfer function of a 

spatial-harmonic mode, the nodal component of the harmonic amplitude and the node-wise 

feedback coefficients for the mode appear. They apply modal expansion to a transient flux 

to obtain the transfer function of the model, the nodal components and the feedback 

coefficients.  
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Muñoz-Cobo et al., 2004 developed another reduced order model (ROM) that includes the 

sub-cooled boiling. They obtained new additional equations for the next magnitudes: the 

effective inception length, the average void fraction in the sub-cooled boiling region, the 

average void fraction in the bulk boiling region, the mass fluxes at the boiling boundary and 

the channel exit. The ROM includes as well a modal kinetics with the fundamental mode 

and the first sub-critical one, and two channels representing both halves of the reactor core. 

Their model is able to display out-of-phase oscillations when enough feedback gain is 

provided.  

Lange et al., 2011 developed an advanced reduced order model (ROM). Such model was 

qualified in the framework of a novel approach for nonlinear stability analysis of BWRs. 

Their approach is called RAM-ROM method, where RAM is synonym for system code and 

ROM stands for reduced order model. In the RAM-ROM method, integrated BWR system 

codes and ROMs are used as complementary tools to examine the stability characteristics 

of fixed points and periodic solutions of nonlinear differential equations describing the 

stability behavior of a BWR loop. Their idea is a novel one, because they study the 

nonlinear processes behind BWR dynamics by applying validated system codes and by 

applying sophisticated techniques of nonlinear dynamics (e.g. bifurcation analysis).  

Dykin et al., 2013 developed another advanced ROM that includes four heated channels 

and is aimed to study the global and regional BWR instabilities. Their ROM contains three 

sub-models: a neutron-kinetic model ( that describes neutron transport), a thermal-hydraulic 

model ( describing fluid transport) and a heat transfer model (that describes heat transfer 

between the fuel and the coolant). The three models are coupled to each other by two 

feedback mechanisms: by void feedback and by Doppler feedback. Each sub-model is 

described by a set of ordinary differential equations, derived from their corresponding time-

and space-dependent partial differential equations.  

2.2 Autoregressive modeling for decay ratio 

estimation 
Mitsutake et al., 1982 applied a multivariable autoregressive (M-AR) model in the 

simulation study of the core stability test of a BWR. M-AR model technique was used for 

data analysis of Peach Bottom-2 core stability test, and provided the results of the stability 

margin of each component and global system in the reactor core. According to the authors 

their M-AR model is effective for the stability estimation of the reactor core.  

Kanemoto et al., 1985 applied an autoregressive (AR) modeling technique in BWRs. They 

improve the AR model using an associate matrix. In the reactor core, void and recirculation 

flow noise sources, which are most dominant in BWR plants, are qualitatively evaluated by 

their improved AR model. 

Shi et al., 2001 proposes a reliable method for detecting BWR instability through a 

nonlinear time series analysis approach namely exponential autoregressive (ExpAR) 

modeling. The ExpAR model is available for revealing types of nonlinear dynamics such as 
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fixed point, limit cycle, and even chaos. Furthermore, the authors claim that the ExpAR is 

real time estimated to make it suitable for the purpose of on-line BWR instability detection. 

Manera et al., 2003 presented a benchmark to compare the performances of exponential 

autoregressive (ExpAR) models against linear autoregressive (AR) models with respect to 

BWR stability monitoring. They employ the well known March-Leuba ROM model to 

generate the time series to be analyzed. They demonstrate that all the methods perform well 

in determining the stability characteristics of the studied signals.  

Some participants that contributed to the Forsmark stability benchmark (Verdú et al., 2003) 

proposed the AR based methods shown in Table 2. 

Table 2. Methods used in the Forsmark stability benchmark. 

Method Organisation Countries involved 

Auto-regressive (AR) 

methods and dominant poles 

PSI, UPV/CSN SIEMENS Switzerland, Spain, 

Germany/USA 

Auto-regressive (AR) 

methods and impulse 

response 

TOSHIBA, JAERI, IRI/TU-

Delft, PSU 

Japan, The Netherlands, 

USA 

Auto-regressive moving 

average (ARMA), plateau 

method 

PSI Switzerland 

 

2.3 Fourier transform based approaches. 
Yokomizo et al., 1990 developed a stability monitor that calculates the autocorrelation 

values of two delayed time intervals to compute the damping coefficient,  , of the impulse 

response, ( )h t , of a BWR core. If the  estimates are positive, the core is stable. However, 

if they become negative or zero, the core is unstable. The estimated   values can be 

converted to decay ratios. Due to its simplicity, this method is suitable for online 

monitoring.  

Hotta and Ninokata, 2002 estimated the core stability of the Ringhals unit 1 by numerical 

random noise that simulates indefinable two-phase flow noise sources in actual cores. Their 

noise model is expressed as a product of band white amplitude and arbirtrary shape 

functions. The two authors evaluate BWR instability by means of decay ratios. 

Navarro-Esbri et al., 2003 presented several tools to study the time dependence of the linear 

stability parameters of a BWR using neutron noise analysis. They studied the variation of 

the fundamental frequency of a signal via the short-time Fourier transform, they make 

comparisons of such method with calculations of a time dependent Power Spectral Density 

(PSD) function. The temporal variation of the DR analyzed using a method based on an AR 

model to fit the different blocks of the signal.   
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2.4 Bifurcation Analysis  
Tsuji et al., 1993 use the bifurcation theory for the stability analysis of BWRs. They derive 

the stability information by analysis of the bifurcation phenomena on the equilibrium states. 

Their approach was applied to the analysis of the stability linked with in-phase power 

oscillations. The loss of linear stability takes place at a lower reactor power as the coolant 

flow rate decreased, and this instability occurs at the Hopf bifurcation point. 

Lange et al., 2013 explored methods developed in the nonlinear dynamics field in order to 

reveal the nature of BWR stability states when power oscillations are being observed. A 

powerful method they used is: Bifurcation analysis. They demonstrate via some examples 

of phenomena which can only be understood in nonlinear terms by application of 

bifurcation theory and where linear interpretation leads to incorrect conclusions.  

2.5 Wavelet based methodologies for DR estimation 
Espinosa-Paredes et al., 2005 introduced a wavelet-based method to analyze BWR 

instability events. The proposed methodology includes the following features: a) A short-

time Fourier transform (STFT) analysis, b) decomposition using the continuous wavelet 

transform (CWT), and c) application of multi resolution analysis (MRA) using discrete 

wavelet transform (DW). STFT analysis permits the study, in time, of the spectral content 

of analyzed signals and the originality of the CWT provides information about ruptures, 

discontinuities, and fractal behavior of studied BWR data.   

Espinosa-Paredes et al., 2007 studied BWR unstable power oscillations with another 

wavelet based method for three different scenarios: a) during stable operation and in b) in-

phase conditions and c) out-of-phase conditions. The results obtained by the authors 

suggest that a Wavelet-based method can help with the understanding  of the dynamics in 

BWRs. The stability parameters: oscillation frequency and DR were calculated as a 

function of time according to the theory of wavelet ridges.  

Sunde and Pazsit, 2007 also used the Wavelet transform and Wavelet filtering techniques 

for the improvement of the estimation of the decay ratio to assess BWR stability. This work 

is divided into two main areas: the first one is concerned with the improvement of the 

quality of the auto-correlation function (ACF) for DR estimation. The second area is the 

estimation of the DR by the use of continuous Wavelet transform (CWT). The CWT 

appears to be a promising candidate to determine the critical DR even in the case of two 

oscillations being co-existent with different stability properties.  
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2.6 Empirical mode decomposition based 

methodologies for DR estimation 
Montesinos et al., 2003 presented for the very first time in BWR stability history an 

application of the empirical mode decomposition (EMD, Huang et al., 1998) technique to 

the stability analysis of BWR. Such method decomposes the original time series data in 

intrinsic oscillation modes or IMFs. Then, for each IMF, the Hilbert amplitude spectrum is 

computed. From the IMF related to BWR stability, the authors obtained by ordinary 

autoregressive(AR) modeling the DR value and the oscillation frequency of BWR signals.  

Prieto-Guerrero and Espinosa-Paredes, 2014 inspired by the work of Montesinos et al., 

2003 decided to develop a method based on the EMD to estimate an indicator associated 

with instability in BWRs. Such instability indicator is not the classical DR, but it is 

associated with it. The proposed method allows the decomposition of the studied signal 

(LPRM or APRM signal) in different levels of intrinsic mode functions (IMFs). One or 

more of these computed modes can be linked to the instability problem in BWRs. Their 

alternative DR is computed by means of the autocorrelation function (ACF)  of the IMF 

linked to the instability event. 

Prieto-Guerrero et al. 2015 developed a stability monitor based on the Multivariate 

empirical mode decomposition (MEMD) (Rehman and Mandic, 2009) to compute DR 

estimates and to measure out-of-phase oscillations. The MEMD is a method that 

decomposes multivariate signals into intrinsic mode functions (IMFs) or simply modes that 

capture the slow and fast oscillations of the targeted signal. The IMFs track the cyclic 

oscillations related to instability due to DW. The MEMD decomposes non-linear data that 

stems from non-linear sources. This proposal was an original one because it employed a 

non-linear technique (the MEMD method) to analyze BWR signals and compute the 

conventional DR. However, real BWR signals are non-linear and non-stationary and exhibit 

an intricate behavior that the DR does not accommodate. Thus, it is a must to develop new 

methodologies and indicators well adapted to accommodate the fine details of BWR signals 

for use when studying. 

2.7 Computer codes for DR estimation 
March-Leuba and Rey, 1993 made a state of the art of the existing computer codes 

(programs to simulate the dynamic behavior of BWRs) of their time, such codes can be 

divided into the following categories: 

Frequency domain codes (the most widely used): 

• LAPUR 

• NUFREQ 

• FABLE 

 

Time domain codes (the most widely used): 
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• RAMONA-3B 

• TRAC-BF1 

• TRACG 

• RETRAN  

• EPA 

• SABRE 

• TRAB 

• TOSDYN-2 

• STANDY 

• SPDA 

LAPUR (Otaduy, 1979; Otaduy and March-Leuba, 1989; March-Leuba, 1990; March-

Leuba and Otaduy, 1983) was developed by the Oak Ridge National Laboratory (ORNL) 

for the US NRC and is currently used by NRC, ORNL, and others. LAPUR's capabilities 

include both point kinetics and the first subcritical mode of the neutronics for out-of-phase 

oscillations. LAPUR's main result is the open and closed-loop reactivity-to-power transfer 

function from which a DR is estimated.  

NUFREQ (Peng et al., 1985) is a family of codes called NUFREQ-N, NUFREQ-NP, and 

NUFREQ-NPW that compute reactor transfer functions for the fundamental oscillation 

mode; the main differences between them are the ability to mode pressure as an 

independent variable (NUFREQ-NP) so that it can reproduce the pressure perturbation 

tests.  

FABLE (Chan, 1989) is a code used by General Electric (GE) which can model 24 radial 

thermal hydraulic regions that are coupled to point kinetics to estimate reactor transfer 

function for the fundamental mode of oscillation.  

RAMONA-3B (Wulff, 1984; Moberg and Tangen, 1986; Rohatgi, 1990) is a code that was 

developed jointly by the US NRC and ScandPower; it is used by the Brookhaven National 

Laboratory (BNL), ScandPower and ABB. RAMONA-3B has a full 3D neutron kinetics 

model that is capable of coupling to the channel thermal hydraulics in a one-to-one basis. It 

is costly in CPU time.  

TRAC (Weaver, 1986; Andersen, 1983; Shaug, 1990) has two versions currently used in 

BWR stability analysis. TRAC-BF1 is the open version used by the Idaho National 

Engineering Laboratory (INEL) and Pennsylvania State University. TRACG is a GE-

proprietary version. TRAC runs are very expensive in computational time: to minimize this, 

most runs are limited to the minimum number of thermal hydraulic regions that will do the 

job. both TRAC versions have full 3d neutron kinetics capability. 

RETRAN (Jensen and Galer, 1990; McFadden et al., 1981) is a time domain transients 

code developed by the Electric Power Research Institute (EPRI), it has 1D and point 

kinetics capability. RETRAN is a relatively fast-running code. It can run on a personal 

desktop computer.  
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EPA(Wulff et al., 1984) stands for Engineering Plant Analyzer. It's a combination of 

software and hardware that allows real time simulation of BWRs. EPA's software for BWR 

stability simulations is named HIPA. HIPA uses modeling methods similar to those of 

RAMONA-3B.  

SABRE (Chaiko, 1990) is a time domain code developed and used by the Pennsylvania 

Power and Light for transient analyses that include BWR instabilities.  

TRAB (Valtonen, 1990) is a 1D neutronics code with an average thermal hydraulics region. 

It was developed and used in the Finish Center for Radiation and Nuclear Safety.  

TOSDYN-2 (Takigawa et al, 1987) is a code that was developed by Toshiba Corporation. 

TOSDYN-2 models multiple channels as well as the balance of plant.  

STANDY (Yoshimoto et al., 1990; Muto et al., 1990; Yokomiso et al., 1987)  is a time 

domain code used by Hitachi Ltd. It has 3D neutron kinetics and parallel channel flow 

across at most 20 thermal hydraulic regions.  

SPDA (Haga et al., 1990) is a computer code used by the Japan Institute of Nuclear Safety.  

The participants that contributed to the Ringhals stability benchmark (Lefvert, 1996) used 

the codes shown in Table 3. 

Table 3. Methods used in the Ringhals stability benchmark. 

Organisation Code Frequency/Time Domain 

CSN/UPV, Spain LAPUR Frequency Domain 

NETCORP/SCANDPOWER, 

USA 

LAPUR Frequency Domain 

NFI, Japan STAIF-PK, DYNAS-2 Frequency Domain, Time 

Domain 

PSI, Switzerland RAMONA-3.5 Time Domain 

SCANDPOWER/ABB 

ATOM, Norway/Sweden 

RAMONA-3 Time Domain 

SIEMENS, Germany STAIF Frequency Domain 

TSI, Japan TSI Stab. Eval. Syst Frequency Domain 

University of Pisa, DCMN, 

Italy 

RELAP5/MOD2 Time Domain 

 

Anegawa et al., 1996 used SIMONTM on their BWR stability tests. This monitor analyses 

the core stability margins and plots its status via DRs. The information related to the 

algorithms used by  is classified. This monitor also provides information related to the 

dephasing of neutron detectors to infer out-of-phase oscillations. 

Sometime after the instability event that happened at La Salle in March 1988, the BWR 

owners group (BWROG) started a project to research endeavors that industries should 

consider to solve the stability issue as a problem that may appear during operation. As a 
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result, the BWROG decided that a long-term solution was required and that such function 

should have a rapid response that does not rely on the operator. The developed solution is 

called Long Term solution III (LT-III, Lehmann et al., 1996). LT-III solution is a system 

that grants reliable, automatic detection and deletion of stability related power oscillations. 

Option III solution includes three separate methods to detect stability related oscillations: A 

period based detection method (PBDA, Energy, 1995), a Growth rate algorithm (GRA) and 

an amplitude based algorithm (ABA). All three techniques perform calculations in OPRM 

cells (a cell of 1 to 8 LPRMs).   

Mowry and Nir, 2001 proposed a stability monitor that is made of a Period Based 

Algorithm (PBA) and a Confirmation Density Algorithm (CDA). The PBA evaluates the 

periodicity of the studied LPRMs to detect the presence of density waves (DWs) in the 

core. The PBA uses a Successive Confirmation Count Model (SCCM), described by Nir 

and Mowry, 1996. The CDA uses the PBA to identify DWs confirmation, that is, the 

fraction of LPRMs that reach a successive oscillation period confirmation. When such 

confirmation density exceeds a fixed stability threshold, a mechanism is triggered to 

suppress the reactor prior further growth in power of the unstable DW induced oscillation. 

Covington and Noël, 2003 proposed a stability monitor that deviated from the norm, i.e. 

AR modeling to compute the impulse response   function of the BWR core, and from   the 

DRs are estimated. Their stability monitor GARDEL-BWR estimates global and regional 

decay ratios through the explicit use of SIMULATE-3K (S3K). The S3K is the best-

estimate coupled neutronic and thermal-hydraulics code, used for performing BWR 

stability analysis (Grandi et al., 2011). As stated before, in order to trust DR estimates, it is 

necessary to assume that the BWR signals are stationary and linear. 

Grandi et al., 2011 used the coupled neutronic/thermal-hydraulics code, SIMULATE-3K 

(S3K), which is a program that many utilities, research institutes and regulatory authorities 

in Europe use for performing BWR stability analysis of European BWRs. Their work 

summarizes part of the extensive validation database for the code, and discusses the 

influence of fuel pin model parameters on the stability analysis.  

2.8 Artificial neural networks 
Tsuji et al., 2005 also developed another stability monitor to compute decay ratios. Their 

monitor performs a singular value decomposition (SVD) of neutron detector time series 

into independent extracted components in the sense that their cross-second moments 

vanish. The SVD procedure is followed by a trained artificial neural network (ANN) to 

perform an efficient screening of decomposed SVD components to provide reliable DR 

estimates. 

Tambouratzis and Antonopoulos-Domis, 1999 use the smallest possible number of points 

of the autocorrelation function at the shortest possible time lags as input to a number of 

back-propagation artificial neural networks (BP ANNs) which are trained to approximate 

the relationship that exists between the ACF of the neutron noise signals and the DR. Their 

technique can be implemented in real time.  
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2.9 Time line of techniques proposed to assess BWR 

stability over the past 40 years  
In this section, we present a time line of the works published over the past 40 years to study 

the stability of BWRs. Figure 7 shows a time line of many works that have been published 

since the early 80's to study the phenomena behind BWR instability and how to assess it in 

commercial BWRs.  

1980's: In the 80's, computer codes reigned supreme, in a total of 9 computer codes were 

developed in this decade. 2 published works proposed in this decade were related to AR 

techniques and only 1 published work was related to ROMs (March-Leuba, 1986 was a 

pioneer in the study of BWR instability through ROMs)  

1990's: In the early 90's 3 more computer codes were developed and two more appeared in 

1996. in the 90s we saw the early development of proposals that studied BWR instability 

via new methods: such as spectra analysis techniques, artificial neural networks and 

bifurcation analysis. 2 more ROM proposals appeared in the late 90's to understand the 

physical aspects behind BWR instability.  

2000's: In the time span of 2000-2010, BWR stability methodologies based on digital 

signal processing techniques became more dominant as computer power grew. Spectral 

analysis techniques dominated this decade along with proposals based on AR modeling. in 

2003, the EMD was used for the first time within the BWR stability community.   
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1980’s
1990’s

March-Leuba, 

1986

Mitsutake et al., 1982

RETRAN, 1981

EPA, 1984
TOSDYN-2C, 1987

STANDY, 1987

LAPUR, 1979 RAMONA-3B, 

1984 
Kanemoto et al., 1985

NUFREQ, 1985 

TRAC, 1986 

FABLE, 

1989 

2000-2010 2011-2015

SABRE, 1990
TRAB, 1990
SPDA, 1990

Uehiro et al., 1996
SIMON, 1996
LT-III, 1996

Hashimoto et al, 1997

Yokomizo et al., 1990

Tsuji et al., 

1993

Tambouratzis and

Antonopoulos-Domis, 1999 

Ringhals Stability Benchmark, 1996

Muñoz-Cobo et al., 2004

Shi et al., 2001 
Hotta and Ninokata, 2002 

Espinosa-Paredes al., 

2007 

Sunde and Pazsit, 2007 
Mowry and Nir, 2001 

Montesinos et al

., 2003 

Manera et al., 2003 
Ringhals Stability Benchmark., 2003 
Navarro-Esbri et al., 2003 
GARDEL-BWR, 2003

Espinosa-Paredes al., 2005 
Tsuji al., 2005 

Lange et al., 

2011

Dykin et al., 2013
Lange et al., 2013 Prieto-Guerrero and

Espinosa-Paredes, 2014 

SIMULATE-3K, 2011 Prieto-Guerrero et al, 2015 

 

 Bifurcation Analysis 

 ROMs 

 Spectral Analysis Methods 

 Autoregressive Models 

 Empirical Mode Decomposition 

 Wavelet Based Approaches 

 Artificial Neural Networks 

 Computer Codes 

 

Figure 7. Time line of BWR stability analyses methodologies over the past 40 years.  
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2011-2015: in the short time span of 2011 to 2015, non-linear techniques started to become 

more popular to address the BWR instability problem. A total of 3 bifurcation analysis 

methodologies were published from 2011 to 2013, only one new computer code appeared 

in 2011. And in 2014 and 2015 new BWR stability methodologies based on the EMD were 

published (the work of Montesinos et al., 2003 was the source of inspiration for these two 

proposals). These two final works published in 2014-2015 (based on the empirical mode 

decomposition) are the source of inspiration for the work presented in this thesis. EMD 

expansions (multivariate versions and improved versions of the default EMD) are also used 

in this work to develop new BWR stability appraisal methodologies. The EMD is an 

empirical algorithm and to this day, there is no sufficient mathematical theory to sustain it. 

But, nevertheless, its results in real signal analysis problems are impressive (Huang et al., 

1998). 

Finally, Table 4 distinguishes the linear proposals from the non linear ones.  

Table 4. Linear/Non linear features of BWR instability methodologies given in this section. 

Categories Authors Linear techniques / Non-

linear techniques 

Reduced Order Models (ROMs) 

 

March-Leuba, 1986 

Uehiro et al., 1996 

Hashimoto et al., 1997 

Muñoz-Cobo et al., 

2004 

Dykin et al., 2013 

Linear techniques, DR is 

computed via transfer 

function of proposed 

ROM. 

Auto regressive (AR) modeling 

 

Mitsutake et al., 1982 

Kanemoto et al., 1985 

Shi et al., 2001 

Manera et al., 2003 

Verdú et al., 2003 

Linear techniques, DR is 

computed through the 

impulse response 

function granted by the 

AR models. 

Spectral analysis methods Yokomizo et al., 1990 

Hotta and Ninokata, 

2002 

Navarro-Esbri et al., 

2003 

Linear techniques, DR is 

computed through auto 

correlation function 

(ACF) 
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Bifurcation Analysis 

 

Tsuji et al., 1993 

Lange et al., 2013 

Lange et al., 2011 

Non-Linear techniques, 

BWR stability is studied 

through analysis of Hopf 

bifurcations of solutions 

of differential equation 

models.These techniques 

are not yet practical for 

commercial BWRs for 

online detection. 

 

Wavelets 

 

Espinosa-Paredes et al., 

2005 

Espinosa Paredes et al., 

2007 

Sunde and Pazsit, 2007 

Wavelets are used in a 

"Wavelet transform", 

they are linear 

transformations of data. 

DR is computed via 

continuous Wavelet 

transforms (CWT) 

Computer Codes 

 

Otaduy, 1979; Otaduy 

and March-Leuba, 

1989; March-Leuba, 

1990; March-Leuba and 

Otaduy, 1983 

Peng et al., 1985 

Chan, 1989 

Wulff, 1984; among 

others.  

 

Computer programs to 

model and predict BWR 

dynamics. DR is the 

output of most of these 

proposals. Much of their 

construction details is 

industrial secret. They 

are linear methods. 

Artificial Neural Networks (ANNs) Tsuji et al., 2005 

Tambouratzis and 

Non-linear ANNs 

trained to compute 
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Antonopoulos-Domis, 

1999 
linear DR. Machine 

learning based methods 

are time consuming. 

The "training" step of 

ANNs is also highly 

demanding in terms of 

time and computer 

resources.   

Empirical Mode Decomposition (EMD) 

 

Montesinos et al., 2003 

Prieto-Guerrero and 

Espinosa-Paredes, 2014 

Prieto-Guerrero et al. 

2015 

EMD of data is a non-

linear procedure. 

However, the output 

stability parameter is a 

DR linear variant. EMD 

is suitable for real time 

signal analysis.  
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Chapter 3  

The Empirical Mode Decomposition (and its 

expansions)  
This chapter introduces in detail the default empirical mode decomposition (Huang et al., 

1998), an adaptive non-linear filter that is applied to study LPRMs to assess the stability of 

the BWR plant. Also, in this chapter, we introduce the some EMD expansions that address 

some issues of the default EMD when it comes to the analysis of intermittencies and 

transitory behavior of studied data. This thesis is a direct continuation of the work of Prieto-

Guerrero and Espinosa-Paredes, 2014 and of Prieto-Guerrero et al., 2015 that started with 

the contributions of Montesinos et al., 2003 to the BWR stability discipline.  

3.1 The default empirical mode decomposition  
The default EMD grants the decomposition of non-stationary signals that stem from non-

linear sources, into various intrinsic mode functions (IMFs) or simply modes.  The IMFs 

capture the fast and slow oscillations that compose the studied signal. The original signal 

can be reconstructed if all the extracted IMFs are added together. The default EMD has 

been applied to:  

1. Study Seismic signals (Han and Van der Baan, 2013; Wang et al., 2012; Yu and 

Zhang, 2017; Ivan, 1999). 

2. In the analysis of Electrocardiogram(ECG) signals (Kumar et al., 2018; Tan et al., 

2014; Weng et al., 2006; Yang et al., 2015). 

3. In the analysis of Climate Variability signals (Coughlin and Tung 2014; Molla et al., 

2011; Molla et al., 2006). 

The IMFs must satisfy the next properties: 

1. The number of extrema (maxima and minima) and the number of zero-crossings 

must be equal or differ at most by one.  

2. The local mean, defined as the mean of the upper and lower envelopes, must be 

zero.  

 

Method 1 (default EMD): The default EMD method can be described by the next steps, but 

first, let x  be the signal of interest to decompose into IMFs: 

 

Step 1. Set 0k =  and find all extrema of or x= . 

Step 2. Interpolate between minima (maxima) of kr  to obtain the lower (upper) envelope 

min maxe (e ) . 
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Step 3. Compute the mean envelope min max(e e ) 2m = + . 

Step 4. Compute the IMF candidate 1k kd r m+ = − . 

Step 5. Is 1kd +  an IMF? 

• Yes, save 1kd + , compute the residue 1 1

k
k ii

r x d+ =
= −  , do 1k k= + , and treat kr  

as input data in step 2.  

• No, treat 1kd +  as input data in step 2.  

Step 6. Continue until the final residue kr  satisfies some predefined stopping criterion.  

The refinement process (steps 2 to step 5) needed to extract every IMF, requires a certain 

number of iterations named as siftings. The extracted modes kd , 1,2,...,k K=  decompose 

x  and are in theory, nearly orthogonal to each other. To, illustrate how the EMD works, 

consider the next artificial signal x : 

 

(t) cos(2 2t) cos(2 1t) cos(2 0.5t)x x   = = + +  (5) 

 

The sampling frequency of x  is 20 Hz. Figure 8 shows a 10 s plot of this signal. Figure 9 

shows the EMD decomposition of x . A total of 4 IMFs were extracted from the studied 

signal, the last one (in red) is the residue of the decomposition. The EMD decomposes any 

studied signal in IMFs. Oscillations are extracted from highest frequency components to 

lowest frequency components. The first IMF (IMF 1) has captured the oscillation 

associated to cos(2 2t) , the second one (IMF 2) has captured the oscillation linked to 

cos(2 1t) , the third IMF (IMF 3) captured the lowest frequency oscillation of x : 

cos(2 0.5t) . The last IMF (IMF 4) is the residue of the decomposition. The decomposition 

is adaptive and data driven. However, the EMD is highly dependent on the sampling 

frequency of studied signals. We do not know how many IMFs will be extracted from a 

signal (the EMD lacks control of the number of IMFs to be computed). There is no 

mathematical theory to explain how the EMD works. Therefore, we must rely heavily on 

numerical simulations to extract as much information as possible from the EMD algorithm. 

As Huang et al., 1998 wrote in their proposal: We do not need to understand in detail how 

the digestive system works in order to eat. The EMD has shown impressive results in other 

disciplines of science (as described above). So, we have decided to continue using the EMD 

to analyze LPRM signals to assess BWR instability. We know by experience that the EMD 

is a trustworthy method to decompose non-stationary signals that are the output of non-

linear dynamical systems (there is no such thing as linearity in nature).  
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Figure 8. Artificial signal ( )x t . 

 

Figure 9. EMD of artificial signal ( )x t . 
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Figure 10 shows the EMD decomposition of a real BWR signal, an LPRM recording of 15 

s that belongs to LPRM 3 of case 4 of the Forsmark instability benchmark (Verdú et al., 

2003). This segment was decomposed through EMD, the results of the decomposition are 

shown in Figure 11. When it comes to BWR signals, we are interested in isolating the IMF 

associated to BWR instability (Montesinos et al., 2003), such IMF looks like a clean cyclic 

oscillating function of frequency close to 0.5 Hz. The EMD decomposed the segment into 5 

IMFs (see Figure 11). The first IMF is probably associated to noise of the acquisition 

equipment system and to noise produced by the recirculation pump. The second IMF looks 

like an oscillating function (although not fully clean) and it might be linked to BWR 

density wave phenomena, although a frequency analysis is required to confirm this (which 

will come later in this document). IMFs 3 to 5 are low frequency components and are 

related mainly to the reactor control system. The EMD decomposed the targeted signal 

segment in a multi resolution fashion and in an adaptive way and data driven way (no need 

to pre select a mother Wavelet, as is the case for Wavelet based transformations). As we 

have mentioned before, we have no control of the number of IMFs that will be extracted, in 

this case, the EMD decomposed the segment into 5 IMFs, if such IMFs are added together, 

we will recover the original signal. The EMD accommodates non-stationary and non-linear 

behavior of the studied signal and as such the IMFs are physically meaningful. There are 

however a few issues that might appear in the default EMD results, which we will discuss 

in the next subsection.   

 

Figure 10. Real BWR signal: LPRM recording of 15 s. 
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Figure 11. EMD of a real BWR signal. 

3.1.1 The mode mixing problem  

One of the major disadvantages of the EMD is the frequent appearance of an issue that is 

known as mode mixing, which is defined as a single intrinsic mode function (IMF) either 

consisting of signals of widely disparate scales, or a signal of a similar scale residing in 

different IMF components. This issue might spoil the meaning of individual IMFs. To 

alleviate this drawback, an interesting property of the EMD must be exploited: such 

property appears when the signal to decompose is a white Gaussian noise. When this 

Gaussian noise is decomposed, the EMD behaves as an adaptive dyadic filter bank, as the 

one shown in Figure 12. Where 5000 independent time series (of white Gaussian noise) of 

512 points each have been generated, and the average spectra of the first seven IMFs are 

plotted as a function of the normalized frequency. The methods that are discussed in the 

following, are expansions of the default EMD to address the mode mixing issue. The idea 

behind such methods is to add an ensemble of realizations of white noise to the signal of 

interest. The goal of such non-intuitive action is to repair and exploit the dyadic filter bank 

property of the EMD to improve the IMF separation of the targeted signal.  
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Figure 12. EMD equivalent filter bank for a white Gaussian noise.  

3.2 The ensemble empirical mode decomposition  
In order mitigate the mode mixing problem, the ensemble empirical mode decomposition 

(EEMD) method was introduced by Wu and Huang, 2009. In the EEMD method, the true 

modes are the average of the corresponding IMFs obtained from an ensemble I  of the 

original signal plus different realizations of white noise of standard deviation  . This 

approach is based on the insight gleaned from recent studies on the statistical properties of 

white noise, which showed that the EMD is effectively an adaptive dyadic filter bank when 

applied to white noise. These authors proved that noise could help data analysis in the 

EMD, through the exploitation of the filter bank property of the EMD, illustrated in Figure 

12. The EEMD has been applied before in:  

Rotor fault diagnosis of rotating machinery (Lei et al., 2009), in improving forecasting 

accuracy (Wang et al., 2015). In the fault diagnosis of locomotive roller bearings (Lei et al., 

2011) and in BWR instability (Montalvo et al., 2017) for the very first time in BWR 

instability history. 
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Method 2 (The ensemble empirical mode decomposition) The EEMD is described as 

follows: 

1. Generate ( ) ( )i ix x w= +  where 1,2,...,i I= . ( )iw  is a zero mean unit variance 

white noise realization of standard deviation   and I  is the number of noise 

realizations.  

2. Decompose completely each (i)x  by the default EMD, obtaining the modes 
( )

IMF
i

j . 

Where 1,...,j N=  indicates the corresponding mode.  

3. Assign IMF j  as the j th−  mode of x , obtained by averaging the corresponding 

modes: 
( )

1

1
IMF

iI
j

i j
IMF

I =
=  . 

 

The extraction of every 
( )

IMF
i

j  requires a different number of sifting iterations. It can be 

noticed that in the EEMD, every ( )ix  is decomposed independently from the other 

realizations and for every one of them a residue 
( ) ( ) ( )

1 IMF
i i i

j jjr r −= −  is obtained at each 

stage, with no connection between the different realizations, such is the cause of some 

EEMD disadvantages:  

 

• The decomposition is not complete. 

• Different realizations of signal plus noise might produce different number of modes.  

 

Figure 13 shows the EEMD decomposition of the previous LPRM recording of 15 s that 

belongs to LPRM 3 of case 4 of the Forsmark instability benchmark. A total of 7 IMFs 

were extracted by the EEMD, The first 2 IMFs are associated to acquisition noise and to the 

noise produce by the recirculation pump. IMF 3 looks like a clean cyclic oscillation, our 

experience might indicate that this IMF is related to BWR density wave instability (Olvera-

Guerrero et al., 2017), the oscillation looks clean (We are interested in recovering a 

oscillating function of a frequency close to 0.5 Hz and IMF 3 looks visually like that). 

IMFs 4 and 5 are low frequency oscillations probably related to reactor control system and 

are irrelevant for DW instability appraisal. As time passed, more authors started to develop 

better EMD upgrades to address the mode mixing issue, EEMD was the first proposal in 

that family of expansions. In the following subsections we will review two more modern 

methods to address the mode mixing phenomena. In the work of Prieto-Guerrero and 

Espinosa-Paredes, 2014, the authors built their proposal with the default EMD. They did 

not take into account the existence of the mode mixing problem. Our goal now is to 

upgrade the methodology they proposed by replacing the default EMD for the most reliable 

EMD expansion that addresses the mode mixing issue existing in default EMD. One issue 

of the EMD expansions is the computer time they require to do the decomposition of the 

studied signal.    
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Figure 13. EEMD of a real BWR signal ( 100I =  and 0.1 = ). 

 

3.3 The complete ensemble empirical mode 

decomposition with assisted noise 
 

The word "complete" presumably refers to decomposing completely everything, even 

added perturbations such as noise. The EEMD relies on averaging the modes obtained by 

EMD by applying several realizations of additive Gaussian white noise to the original 

signal. The resulting decomposition solves the mode mixing problem. However, it 

introduces new ones. In the method here discussed, a particular noise is added at each stage 

of the decomposition and a unique residue is computed to obtain each mode. The resulting 

decomposition is complete, with a numerical negligible error. Such EMD expansion is 

called the complete ensemble empirical mode decomposition with assisted noise 

(CEEMDAN) and was proposed by Torres et al., 2011 and has been applied widely in the 

next disciplines:  

Wind speed forecasting (Zhang et al., 2017). In ECG signal denoising (Xu et al., 2017) and 

in fault diagnosis of rolling element bearings (Lei et al., 2017). 
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Method 3 (The CEEMDAN) The complete ensemble empirical mode decomposition with 

assisted noise is described as follows (Torres et al., 2011): 

 

Observe that in the EEMD, each ix  is decomposed independently from the other 

realizations and so for each one a residue 1 IMFi i i
k k kr r −= −  is obtained.  

 

In the CEEMDAN, the decomposition modes, the decomposition modes will be noted as 

kIMF . The CEEMDAN authors proposed to calculate a unique first residue as:  

11r x IMF= −   (6) 

  

where 1IMF is obtained in the same way as in EEMD. Then, compute the first EMD mode 

over an ensemble of 1r  plus different realizations of a given noise obtaining 2IMF by 

averaging. The next residue is defines as: 22 1r r IMF= − . This procedure continues with 

the rest of the modes until the stopping criterion is reached. Let us define the operator 

( )jE  which, given a signal, produces the j th−  mode obtained by EMD. Let iw  be white 

noise with (0,1)N . If x  is the targeted data, we can describe our method by the following 

algorithm: 

1. Decompose by EMD realizations i
ox w+  to obtain their first modes and compute: 

1 11 1

1 I i

i
IMF IMF IMF

I −
= =  . 

2. At the first stage ( 1k = ) calculate the first residue as in equation (6):  

11r x IMF= − . 

3. Decompose realizations 1 1 1(w ),i 1,...,ir E I+ =  , until their first EMD mode and 

define the second mode: 2 1 1 1 11

1
(r E (w ))

I i

i
IMF E

I


−
= + . 

4. For 2,...,k K=  calculate the k th−  residue: (k 1) kkr r IMF−= − . 

5. Decompose realizations (w )i
k k kr E+ , with 1,...,i I=  until their first EMD mode 

and define the (k 1) th+ −  mode as: (k 1) 11

1
(r E (w ))

I i
k k ki

IMF E
I

+
−

= + . 

6. Go to step 4 for next k . 

 

Steps 4 to 6 are performed until the obtained residue is no longer feasible to be 

decomposed ( the residue does not have at least two extrema). The final residue satisfies: 

1

K
k

k
R x IMF

−
= −   
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With K  the total number of modes. Thus, the given signal x  can be expressed as: 

 

1

K
k

k
x IMF R

−
= +   (7) 

 

Equation (7) makes the proposed decomposition complete and provides an exact 

reconstruction of the original data. The coefficients i  allow to select the SNR (signal to 

noise ratio) at each stage. Concerning the amplitude of the added noise, Wu and Huang, 

2009 use small amplitude values for data dominated by high-frequency signals and vice 

versa. In this work, we used a few hundred realizations and fixed SNR for all the stages 

( j o =  in all the stages). Figure 14 shows the CEEMDAN decomposition of the previous 

LPRM recording of 15 s that belongs to LPRM 3 of case 4 of the Forsmark instability 

benchmark. The IMF that is probably associated to BWR instability is IMF 4, this IMF 

visually looks like an oscillating function (whose frequency according to our feeling must 

be close to 0.5 Hz). IMFs 1 - 3 are probably linked to noise and IMF 5 is probably related 

to reactor control system. This CEEMDAN method seems to work well, although more 

complex to implement in practice. This technique was later improved, in the following 

subsection we will review the features of this improved version.  

 

Figure 14. CEEMDAN of a real BWR signal ( 100I =  and 0.1o = ). 
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3.4 The improved complete ensemble empirical 

mode decomposition with assisted noise 
 

Taking into account the EEMD drawbacks, the CEEMDAN method was proposed, its 

authors proved how CEEMDAN overcomes the main difficulties of EEMD, but the method 

still has two problems. These issues, the presence of residual noise in the modes and the 

existence of spurious modes, are addressed by a recent improvement of the CEEMDAN 

technique, proposed by Colominas et al., 2014. Let ( )iw  be a realization of white Gaussian 

noise with zero mean and unit variance. Let us define ( )M  as the operator which produces 

the local mean( the average of the upper and lower envelopes of the studied signal 

interpolated by cubic splines) of the signal it is applied to and let  be the action of 

averaging throughout the realizations. The improved CEEMDAN has been applied in: The 

analysis of body signals for glucose detection (Li and Li, 2016), in Health degradation 

monitoring (Lv et al., 2018) and in speech signal analysis for mental disorder diagnostic 

(Alimuradov et al., 2019). 

 

Now, With the previously defined operators ( )jE , ( )M  and  in mind, the improved 

CEEMDAN is given by the next steps:  

 

Method 4 Improved CEEMDAN algorithm:  

1. Calculate by EMD the local means of I  realizations ( ) ( )
1(w )i i

ox x E= +  to obtain 

the first residue:
( )

1 (x )ir M= . 

2. At the first stage ( 1j = ) calculate the first mode: 1 1IMF x r= − . 

3. Estimate the second residue as the average of local means of the realizations 
( )

1 1 2(w )ir E+  and define the second mode: 

( )
2 1 2 1 1 1 2(r E (w ))iIMF r r r M = − = − + . 

4. For 3,..., Nj =  calculate the j th−  residue: 
( )

1 1(r E(w ))i
j j jr M − −= + . 

5. Compute the j th−  mode: 1j j jIMF r r−= − . 

6. Go to step 4 for the next j . 

 

Constants std( )j j jr =  are chosen to obtain the desired SNR between the added noise 

and the residue to which the noise is added, nonetheless, in this work, we fixed the same 

SNR for all the stages of this procedure ( j o = ). Studies about this parameter can be 

found in Colominas et al., 2012. Figure 15 shows the improved CEEMDAN decomposition 

of the previous LPRM recording of 15 s that belongs to LPRM 3 of case 4 of the Forsmark 

instability benchmark. IMF 3 looks like a cyclic oscillation (probably linked with the DW 
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instability phenomena), IMFs 1-2 are linked to the acquisition noise and IMF 4 and 5 are 

low frequency components not associated with the Density wave phenomena (no useful 

information can be extracted from them). Only a total of 5 IMFs are shown in this figure 

out of a total of 7 IMFs extracted by this method. The improved CEEMDAN was selected 

to build many of the BWR instability proposals described in this work (read chapter 4) at 

the  univariate level.      

 
Figure 15. Improved CEEMDAN of a real BWR signal ( 100I =  and 0.1o = ). 

 

3.5 The Hilbert-Huang transform  
 

Consider the next analytic representation of a signal x : 

  

ˆ j
nZ x jx Ae = + =   (8) 

 

Where A  and   are the envelope and the instantaneous phase of the signal, respectively. 

In this equation x̂  is the Hilbert transform (Benedetto, 1996) of the signal x , and is 

calculated as: 
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ˆ 1x x n=    (9) 

  

A convolution product between x  and the infinite impulse response filter 1 n . The 

Hilbert-Transform can be thought of as a phase shift of x  by 2  radians. As a result x  

and x̂  are said to be quadrature. This complex or analytic signal is completely 

characterized by its amplitude A  and its phase   with values in the interval [0,2 ) , 

forming a canonical pair. Consider the following:  

  

Re[Z ] Acos( )xx = =   (10) 

It is observed that this canonical representation of x  corresponds to a signal varying in 

amplitude and phase all the time. Based on this representation, to estimate the instantaneous 

frequency linked to the instantaneous phase  . From equation j
xZ Ae = . The 

instantaneous frequency is defined as: 

 

/inst d dn =   (11) 

 

The analytic signal xZ  associated with x  has the same amplitude and frequency range with 

x . It also comprises the phase information of the original signal x . According to this fact, 

we can construct the analytic signal corresponding to each IMF using the Hilbert-

Transform. The combination of EMD (or of any EMD expansion) applied to the signal x  to 

generate IMFs, and the Hilbert transform of each IMF is called the Hilbert-Huang 

transform (HHT). Since HHT is not based on the Fourier transform, the time-frequency 

resolution is not limited by uncertainty and there is no need to assume that the studied 

signals (LPRM signals) are stationary or linear.   

 

3.5.1 HHT on an artificial signal  

 

Consider the signal given in equation (5): (t) cos(2 2t) cos(2 1t) cos(2 0.5t)x x   = = + +  

illustrated again in Figure 16. Figure 17 illustrates again its EMD decomposition, into 4 

IMFs. However, only the first 3 IMFs are shown in this figure because the fourth IMF is the 

residue of the decomposition. The HHT of each IMF is also illustrated in red. The HHT 

grants the instantaneous frequency (IF), which is a time - frequency representation of an 

IMF function. the first IF oscillates around 2 Hz, the second IF oscillates strongly around 1 

Hz and the last one (IF 3) is an oscillation close to 0.5 Hz. The IFs are not rooted in the 

Fourier transform. Thus, this frequency-time representation is not limited by the constraints 

of the Fourier transform and it might serve as an alternative to study the frequency content 

of a time series. We highlight that there are still some difficulties with the HHT procedure 

on the edges of a signal (near the start and near the end of the time series). In the following 

subsection the HHT is tested with IMFs extracted from a segment of a real BWR signal 

(recorded by LRPMs). The studied BWR signal stems from case 4 of the Forsmark stability 

benchmark.         
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Figure 16. Artificial signal: (t) cos(2 2t) cos(2 1t) cos(2 0.5t)x x   = = + + .  

 
Figure 17. EMD decomposition of the Artificial signal along their IFs (estimated by means 

of HHT).  
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3.5.2 HHT on a real LPRM signal  

 

Figure 18 shows the previous EMD decomposition of a real BWR signal, an LPRM 

recording of 15 s that belongs to LPRM 3 of case 4 of the Forsmark instability benchmark 

(Verdú et al., 2003). However, now, the instantaneous frequency (IF) granted by the HHT 

is also shown (in red). The IF of IMF 1 is a high frequency oscillating around 5 Hz. The IF 

of IMF 2 oscillates close to 0.5 Hz (IMF 2 is the IMF linked to the density wave 

instability). The IF of IMF 3 oscillates close to 0 Hz and the IF of IMF 4 oscillates between 

0.1 Hz and 0.15 Hz.  We highlight that IMF 2 looks visually like a cyclic function with an 

IF close to 0.5 Hz, this IMF 2 is probably linked to DW instability whereas the other 3 

computed IMFs are unrelated to the DW problem.  

 
Figure 18. EMD of a real BWR signal along the IFs of each IMF. 

 

Figure 19 shows the same LPRM 3 signal segment decomposed by EEMD to address the 

mode mixing issue of the default EMD. But now, the IF of each IMF is shown too. The IF 

of IMF 1 oscillates around 5 Hz. The IF of IMF 2 oscillates close to 0.5 Hz. IF of IMF 3 

oscillates close to 0.1 Hz and IF of IMF 4 changes from 0 to 5 Hz in a quasi-squared wave 

fashion. The IMF linked to BWR instability is IMF 2 (its associated IF oscillates around 0.5 

Hz).  
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Figure 19. EEMD of real BWR signal along the IFs of each IMF.  

 

Figure 20 shows the CEEMDAN of the same LPRM 3 signal segment. The IFs of each 

IMF are now shown. The IF of the first 3 IMFs are high and linked to noise whereas the IF 

of IMF 4 is a frequency highly concentrated around 0.5 Hz and visually speaking, IMF 4 

looks like a cyclic function. IMF 4 is linked to DW instability. IMF 4 looks like a clean 

oscillating function. Figure 21 shows the improved CEEMDAN of the same LPRM 3 

signal segment. the IFs of IMFs 1 and 2 is high (linked to noise) and oscillates around 5 H. 

The IF of IMF 3 oscillates around 0.5 Hz and IMF 3 looks like a cyclic oscillating function 

(this is the IMF linked to DW instability). The IF of IMF 4 is a low frequency component 

close to 0.3 Hz. Visually speaking IMF 4 grants no information about the instability of the 

BWR. Improved CEEMDAN was the method that we chose to build BWR instability 

methodologies for uni variate signal analysis due to the fact that this EMD expansion is 

better that its predecessors and because the extracted IMFs linked to DW phenomena look 

clean and the oscillating function looks in our eyes, clean (the IMFs linked to the DW look 

visually like clean cosine functions of 0.5 Hz). The HHT is a powerful tool to reveal 

frequency content of a signal in a time-frequency plane. Any rapid change in the time 

domain signal will impact its frequency. The HHT is able to capture that sudden change 

whereas Fourier transform is unable to accommodate that sudden signal behavior. With the 

HHT we no longer feel trap with assumptions regarding linearity of the studied signals. 

With the HHT, the frequency analysis of a signal becomes more realistic.   
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Figure 20. CEEMDAN of real BWR signal along the IFs of each IMF. 

 

 
Figure 21. Improved CEEMDAN of real BWR signal along the IFs of each IMF.  
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3.6 The noise assisted multivariate empirical mode 

decomposition  
 

The multivariate empirical mode decomposition (MEMD) is a technique that was proposed 

by Rehman and Mandic, 2009 to make the default EMD suitable for processing of 

multichannel signals. To shed further light in the performance of the MEMD method, its 

behavior was analyzed in the presence of white Gaussian noise (Rehman and Mandic, 

2011) and it was found that, similarly to EMD. The developed MEMD also in essence acts 

as a dyadic filter bank on each channel of the multivariate input signal, such MEMD 

property is illustrated in Figure 22 and its algorithm is given below. However, unlike EMD, 

the MEMD better aligns the corresponding IMFs from different channels across the same 

frequency range which is crucial for real world applications and from such studies, the 

noise assisted multivariate empirical mode decomposition (NA-MEMD) emerged to help 

fix the mode mixing issue of the MEMD (the MEMD is the multivariate expansion of 

EMD).  
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Figure 22. Averaged spectra of IMFs (1-9) obtained for 50 realizations of eight-channel 

white Gaussian noise via MEMD.  
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The NA.MEMD method which makes use of the quasi-dyadic filter bank properties of 

MEMD on white noise, it is capable of significantly reducing the mode mixing problem for 

classes of signals where the quasi-dyadic filter bank structure proves useful. Embarking 

upon the quasi-dyadic filter bank structure of standard EMD for broadband noise, many 

EMD variants were proposed, in which multiple realizations of white noise were added to 

the input signal before being decomposed via EMD. This helps to establish a uniformly 

distributed reference scale which, in turn, results in corresponding IMFs exhibiting a quasi-

dyadic filter bank structure. Following the latter idea, to explore the benefits of the quasi-

dyadic filter bank structure of the default MEMD on white noise. In the NA-MEMD 

(Rehman and Mandic, 2011) a total of m  extra independent channels containing white 

noise are added in the MEMD decomposition of the multivariate signal of interest to exploit 

such interesting benefits of this filter bank property. The extracted IMFs corresponding to 

the m  channels of white noise are then discarded yielding a set of IMFs linked with only 

the original input signal. Since the added noise channels occupy a broad range in the 

frequency spectrum, MEMD aligns its IMFs based on the quasi-dyadic filter bank, with 

each component carrying a frequency sub band of the original signal. In doing so, IMFs 

corresponding to the original input signal also align themselves according to the structure 

of the quasi-dyadic filter bank. This, in turn, helps to mitigate the mode mixing problem 

within the extracted IMFs. The details of the NA-MEMD method are as follows, but first 

let us introduce the steps of the classic MEMD method: 

 

Method 5 (The multivariate empirical mode decomposition (MEMD)).  

 

Consider a multivariate signal ( )tv : 

Consider a sequence of N dimensional vectors 
=
=

1 1 2
{ ( )} { ( ), ( ),..., ( )}T

t N
t v t v t v tv  representing a 

multivariate signal with N components, and 
=

1 2
{ , ,..., }k k k k

N
x x xx  denoting a set of direction 

vectors along the direction given by angles    
−

=
1 2 1

{ , ,..., }k k k k

N
 on a (l-1) sphere. Then the 

extraction of the first IMF from the given MEMD steps is summarized in next steps:  

Step 1. Generate the point set based on the Hammersley sequence for sampling on an (l-1)  

sphere (Niederreiter, 1992).  

Step 2. Calculate a projection, denoted by 

=1
( )}k T

t
p t , of the input multivariate signal 

=1
{ ( )}T

t
tv  

along the direction vector kx , for all k (the whole set of direction vectors), giving 


=1
( )k K

k
p t  as the set of projections. 

Step 3. Find the time instants 

=1
{ }k K

i k
t  corresponding to the maxima of the set of projected 

signals 

=1
( )}k K

k
p t . 

Step 4. Interpolate  [ , ( )]k k

i i
t tv , for all values of k, to obtain multivariate envelope curves 



=1
( )}k K

k
te . 
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Step 5. For a set of K direction vectors, calculate the mean ( )tm  of the envelope curves as  



=

= 
1

1
( ) ( )k

K

k

t t
K

m e
 
  

Step 6. Extract the detail ( )c t  using = −( ) ( ) ( )c t x t m t . If the detail ( )c t  fulfills the stoppage 

criterion for a multivariate IMF, apply the above procedure to −( ) ( )x t c t , otherwise 

apply it to ( )c t . 

 

Once the first IMF (or mode) is extracted, it is subtracted from the input signal and the 

same process (steps from method 5) is applied to the resulting signal yielding the second 

IMF and so on, the process is repeated until all the IMFs are extracted and only a residue is 

left; in the multivariate case, the residue corresponds to a signal whose projections do not 

contain enough extrema to form a meaningful multivariate envelope. The sifting process for 

a multivariate IMF can be stopped when all the projected signals fulfill any of the stoppage 

criteria adopted in the conventional EMD. Now, that the steps of the MEMD method have 

been given, the NA-MEMD is calculated as:  

Method 6 The noise assisted multivariate empirical mode decomposition (NA-MEMD) 

Step 1. Create an uncorrelated Gaussian white noise time-series (m-channel) of the 

same length as that of the input.  

Step 2. Add the noise channels (m-channels) created in step 1 to the input multivariate 

(N-channels) signal, obtaining an (N + m)-channel signal. 

Step 3. Process the resulting (N + m)-channel multivariate signal using the MEMD 

algorithm (listed above), to obtain multivariate IMFs. 

Step 4. From the resulting (N + m)-variate IMFs, discard the m channels 

corresponding to the noise, giving a set of N-channel IMFs corresponding to 

the original signal.   

 

It should be mentioned that the noise assisted methods (EEMD, CEEMDAN, improved 

CEEMDAN and the multivariate NA-MEMD) for mitigating the mode mixing problem are 

expected to be most useful for signals in which the dyadic filter bank decomposition is 

relevant. This is the case for the studied BWR signals. To illustrate the mode alignment 

property of the MEMD, a synthetic hexavariate time series is explored; each component 

(variate), is shown in the top row of Figure 23 ( denoted by X,Y and Z), such signal was 

constructed from a set of four sinusoids. the component X is made by the sum of the four 

sinusoids of frequency modes: 2 Hz, 8 Hz, 16 Hz and 32 Hz. The component Y is made by 

the sum of two sinusoids of frequency modes: 16 Hz and 8 Hz and the last component Z is 

made by the sum of two sinusoids of frequency modes: 8 Hz and 2 Hz. The MEMD was 

applied to this decompose this signal yielding multiple IMFs shown in Figure 23. Observe 
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that the sinusoid common to all the components of the input is the third IMF, whereas the 

remaining three frequency modes were also accurately extracted in the respective IMF 

decomposition level. Such mode alignment cannot be achieved by the real-valued EMD 

applied component-wise, as it generally does not yield the same number of IMFs per 

component.  

 

 
Figure 23. Decomposition of a synthetic multivariate signal (X, Y, Z) exhibiting frequency 

modes (with f1=2 Hz, f2= 8 Hz, f3= 16 Hz and f4= 32 Hz) via the MEMD. Each IMF 

carries a single frequency mode, illustrating the alignment of common scales within 

different components of a multivariate signal.  

 

The multivariate EMD (MEMD) has been applied in other engineering applications, such 

as: in the classification of motor imagery brain computer interface (Park et al., 2012), in 

soil water prediction (Hu and Si, 2013) and for quantifying multivariate phase 

synchronization (Mutlu and Aviyente, 2011).  

 

Now, in order to illustrate the capabilities of the noise assisted MEMD (NA-MEMD). 

Consider a synthetic signal consisting of a combination of two different tones of low 

frequency, one tone is added to the other in seconds 24 to 31.  The resulting signal is shown 

in the top of Figure 24. Also shown in Figure 24 are the IMFs obtained from applying 

default EMD to the signal; mode mixing is evident since IMF 1 contains multiple modes, 
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the Original signal could not be separated successfully by default EMD. We next processed 

the same signal using the NA-MEMD method with two extra noise channels ( 2m = ).   

 

The IMFs from the resulting trivariate signal are shown in Figure 25. Observe that the 

IMFs corresponding to the first channel are now free from mode mixing, as all the tones are 

decomposed as separate IMFs (IMF 5 and IMF 6, respectively). The IMFs related to noise 

are later discarded (IMFs of noise 1 and IMFs of noise 2). In the NA-MEMD technique, the 

number of noise channels m  and the amplitude of noise channels must be chosen so that 

the desired dyadic filter bank structure of the MEMD is exploited. In the following example 

the NA-MEMD is tested with real BWR signals that stem from the Ringhals stability 

benchmark (Lefvert, 1996).  

 

 
Figure 24. IMFs of a synthetic signal obtained by applying default EMD. Mode mixing is 

evident in IMF 1, the Original signal could not be separated by default EMD. The two 

tones are still added together in IMF 1.  
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Figure 25. IMFs of a synthetic signal obtained by NA-MEMD (left hand column); the 

IMFs of the two noise channels shown in the middle and right hand column. Mode mixing 

observed in IMFs from default EMD is significantly reduced with IMF 5 and IMF 6 

containing the two original tones. 

 

Now, we decompose 3 LPRM segments of 15 s of time span each with the NA-MEMD. 

The chosen LPRMs belong to case 9 cycle 14 of the Ringhals stability benchmark and are 

labeled as LPRM 1, LPRM 2 and LPRM 3. Figure 26 shows the results of the NA-MEMD 

decomposition of the 3 LPRM segments. The original LPRM signals are shown on the top 

row this figure. The IMFs 1-3 of each channel were added together (such IMFs are linked 

to acquisition noise), The IMFs 4 exhibit a cyclic oscillating waveform (such IMFs 4 are 

related to the Density Wave instability), IMFs 5 and 6 are also shown and their content is 

irrelevant to our application.     
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Figure 26. IMFs of 3 LPRM segments of 15 s of time span each extracted by NA-MEMD. 

IMFs 1-3 of each channel are added together (IMFs 1-3 associated to acquisition noise). 

IMFs 4 are linked to the DW instability issue because they look visually like cyclic 

oscillating waveforms. IMFs 5 and 6 are also shown and their content is irrelevant to the 

detection of the DW instability. A total of 8 IMFs were extracted for each LPRM.    

 

Now, Figure 27 - Figure 29 shows the first four extracted IMFs from each LPRM (LPRM 1 

to 3). The instantaneous frequencies of extracted IMFs are also shown in these Figures (all 

the IFs are computed by means of HHT). The IFs of IMFs 1 to 3 are high and related to 

acquisition noise whereas the IF of IMF 4 is a line oscillating around 0.5 Hz. IMFs number 

4 are the IMFs linked to the density wave (DW) instability. The NA-MEMD is the 

technique that is chosen to analyze multichannel BWR signals from various LPRMs. The 

NA-MEMD can also be applied to decompose a uni variate signal if many noise channels 

are added to the ensemble. The NA-MEMD decomposes multi channel non-stationary 

signals that stem from non-linear sources in a data driven way. With the HHT it is possible 

to analyze the frequency content of each IMF.  
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Figure 27. Extracted IMFs of LPRM 1 with their respective IFs (computed by means of 

HHT). IMF 4 is the IMF linked to the density wave instability. 

 
Figure 28. Extracted IMFs of LPRM 2 with their respective IFs (computed by means of 

HHT). IMF 4 is the IMF linked to the density wave instability. 



64 

 

 

 
Figure 29. Extracted IMFs of LPRM 3 with their respective IFs (computed by means of 

HHT). IMF 4 is the IMF linked to the density wave instability. 
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Chapter 4 

Non-linear behavior of a BWR 

4.1 A non-linear reduced order model (ROM) 
Reduced Order Models are used to study system stability and its dynamics. They are 

usually obtained by averaging over time and/or space, and often represent a system by a set 

of non-linear ordinary differential equations (ODEs). In the nuclear engineering discipline, 

the basic point reactor kinetics model needs to be extended to capture the effects of several 

feedback mechanisms that play a significant role in reactor dynamics. For instance, changes 

in reactor power lead to changes in core component temperature and void fraction, which in 

turn have an impact on the reactivity. A simple but powerful model which has been 

extensively used for BWR stability analysis was developed by March-Leuba, 1986, such 

non-linear reduced order model (ROM) represents qualitatively the BWR dynamics, the 

complex (i.e., chaotic) dynamics of BWR unstable behavior are also captured by this 

model. The studied ROM is given by the next set of differential equations: 

(t) (t) ( )
( ) (t)

dn t
n t c

dt

  


−
= + +

 
  

(12) 

 

( )
( ) (t)

dc t
n t c

dt


= −


  

(13) 

 

1 2

(t)
(t) ( )

dT
a n a T t

dt
= −   

(14) 

2

3 42

(t) (t)
( ) (t)o

d d
a a t k T

dtdt

 


 
 + + =

  

(15) 

( ) ( ) (t)t DT t  = +
  

(16) 

 

Here the variables ( )n t  and (t)c  are converted by the following equations as fluctuations 

caused from the equilibrium values oN  and oC  of the steady state: 

 

(t) N
( ) o

o

N
n t

N

−
=   

(17) 

 

( )
( ) o

o

c t C
c t

N

−
=   

(18) 
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where (t)n  is the excess neutron population normalized to the steady state neutron 

population, ( )c t  is the excess delayed neutron precursors concentration also normalized to 

the steady state neutron population; ( )T t  is the excess average fuel temperature; and (t) . 

Since we are interested in the non-linear region above the threshold for linear stability, the 

indicators for the base case were calculated from a fit to the LAPUR transfer function for 

test 7 N of the Vermont Yankee reactor, the value of the indicators is given in the following 

Table 5:  

Table 5. Mode indicators for the Vermont Yankee test 7 N.  

 

Model coefficient  Value Units 

1a   25.94 Ks-1 

2a   0.23 s-1 

3a   2.25 s-1 

4a   6.82 s-2 

o   -3.70x10-3 K-1s-2 

D -2.52x10-3 K-1 

   0.0056 - 

   0.08 s 

   4x10-5 s-1 

 

The indicator   is related to the void reactivity coefficient and the fuel heat transfer 

coefficient.  controls the feedback gain, defining the stability of this reactor model. The 

value ( 1 = ) is the critical value at which the model becomes unstable. By artificially 

increasing the feedback gain 1   we can make the model unstable and under these 

conditions, we can study the model behavior in the non-linear region. For instance, Figure 

30  shows a stable reactor output ( )n t  for 0.75 =  and its reactivity value  . This is an 

example of a stable nuclear reaction; which means that the number of neutrons remains 

constant. If the fission reaction is kept stable: It is said that the BWR is critical. Ideally 

speaking the  of a stable fission reactor should be zero. In this example,   is in the 

order of 10-6.  

 

As soon as  starts to increase to approach the stability threshold point ( 1 = ) the reactor 

output (t)n  starts to show signs of cyclic behavior (as if it started to look like a cosine 

function). The reactivity value  becomes bigger. The moment   becomes positive, the 

reactor becomes unstable. The fission reactions are growing inside the core and the number 
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of neutrons is increasing beyond control. We say in the BWR jargon that the reactor is 

becoming supercritical.  

 

Figure 31  shows another stable reactor output ( )n t  for 0.95 =  and its reactivity value 

 . In this example, we are approaching the stability threshold point ( 1 = ); which means 

that the number of neutrons is starting to increase. ( )n t  begins to look like a damped 

oscillation. The ROM is still stable and the reactivity   has increased and now is in the 

order of 10-4. 

 

Figure 32 shows a marginally stable solution of this ROM for 1 =  (The ROM solution is 

now located on the threshold of instability). ( )n t  looks like a cyclic function now (and no 

longer damped).  reactivity   exhibits cyclic behavior too. The emerging   oscillation 

is still too small (in the order of 10-4). But,   is nevertheless positive.  The first signs of 

BWR instability are beginning to appear. The number of neutrons is beginning to increase.  

 

 
Figure 30. Stable ROM output for 0.75 = . 
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Figure 31. Stable ROM output for 0.95 = . 

 

 
Figure 32. Marginally stable solution of the ROM for 1 = . 
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Figure 33 now shows an unstable reactor output ( )n t  for a 1.05 = . The oscillation 

visually looks like a cyclic oscillation. But now, the oscillation is increasing with time. The 

reactivity   shows a similar behavior to ( )n t .   is positive and in the order of 10-3. The 

fission reactions are increasing within the core with no control.  

 

 
Figure 33. Unstable ROM output for 1.05 = . 

 

In all these simulations, the initial condition vector is kept at [ 0.1, 0.1, 1, 0, 0 ]. The 

numerical integration method is the standard Runge-Kutta 4th order method and the 

integration step is 0.01t =  s. The first 30 s of all the example reactor outputs were 

removed to eliminate transients.  

 

4.2 Bifurcations 
 

March-Leuba, 1986 investigated the evolution of stable limit cycles and a series of period 

doublings, which eventually led to chaotic oscillations. Muñoz-Cobo and Verdú, 1991 used 

this ROM to study the limit cycle oscillations in BWR by applying the Hopf bifurcation 

theory. In the stable regime, the system is said to be stable if following a perturbation, the 

resulting oscillation is eventually damped and the solution of the system converges to the 
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equilibrium state. Figure 30 shows an example for a stable system, for after a small 

perturbation the system returns to an equilibrium state. Nonetheless, when the system 

becomes unstable, the solution does not converge to an equilibrium point, but to a new 

equilibrium state defined by a limit cycle as in Figure 33 where the system leaves the 

equilibrium point and jumps to a limit cycle in which the amplitude of the oscillation 

remains constant for the rest of the time span of the simulation. In the next numerical 

integrations, we show the behavior of the system when we increase the feedback gain of the 

reactor 1   for three different values of the feedback gain [1.45,1.55,1.75] = , as 

illustrated in Figures 34-36. 

 

In Figure 34 the amplitude of the oscillation (equal to the maximum value of the pulses i.e., 

the signal envelope) follows a smooth curve and promptly converges to the final amplitude. 

For 1.55 = (Figure 35) the oscillation is following a new limit cycle of its own with twice 

the original period. This causes the signal to periodically exhibit two peaks of different 

magnitude and in the last case where 1.75 =  (Figure 36) the oscillation exhibits several 

pulses of different magnitude; the system in this case never converges to a final amplitude. 

In essence the amplitude of the limit cycle has become unstable and is following a new 

limit cycle of its own with 2n  the original period. This process is known in the literature by 

the name of period doubling pitchfork bifurcation. Such process continues as the value of 

  is increased further. The amplitude of each new limit cycle becomes unstable at critical 

values of the feedback gain, j  and a new limit cycle of twice the original period appears. 

This process is visualized in the Orbit diagram (or Route to chaos) shown in Figure 37.  
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Figure 34. Unstable ROM output for 1.45 = . 

 
Figure 35. Unstable ROM output for 1.55 = . 
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Figure 36. Unstable ROM output for 1.75 = . 
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Figure 37. Route to chaos showing the accumulation of critical bifurcation values and the 

onset of aperiodicity. 

 

 

In the diagram shown in Figure 37. The maxima of the oscillation are plotted for several 

values of the feedback gain  . In the region where 1   the model is stable and the 

maxima coincide with the equilibrium point. For a feedback gain between (1,1.55]   the 

equilibrium point is unstable but a new limit cycle exists with the amplitude defined by the 

maxima and minima of the oscillation. For a gain 1.65   this two turns limit cycle 

becomes unstable and a new four-turn limit cycle appears. In essence at every critical value, 

j , each of the branches in the diagram split (bifurcates) into two new branches. This 

implies that the critical value j  converge to an accumulation point   ( 1.71  ). The 



73 

 

solution of the system for a feedback gain greater than   will be aperiodic or chaotic. 

Currently, no definition of the term chaos is universally accepted yet, but almost everyone 

agrees on three ingredients used in the following working definition: Chaos is aperiodic 

long-term behavior in a deterministic system that exhibits sensitive dependence on initial 

conditions (Strogatz, 2014). In such region, the solution converges to a close curve or to an 

equilibrium point. Such type of solution is called a strange attractor. This region in phase 

space attracts the trajectories towards it, but once inside, the trajectories repel each other, so 

that there is not a final closed curve to maintain equilibrium. A situation similar to this has 

been postulated to explain turbulence phenomena. In resume, according to this simple 

ROM that contains the most important features of a BWR system. The BWR is a complex 

dynamical system that exhibits period doubling pitchfork bifurcations when the feedback 

gain of the system is increased beyond the critical feedback gain value 1 = . If this gain 

keeps increasing beyond the accumulation point  , the solution of the system will 

become aperiodic or chaotic.  

 

4.3 Decay Ratio estimation: Methodology and 

results 
 

In this section, numerical experiments are performed on artificial signals produced with the 

Reduced Order Model (ROM) previously introduced. In here, we estimate the decay ratio 

(DR) using a classical AR model. Our goal is to show the DR limitations to infer stability 

information of a complex dynamical system such as a BWR. The procedure to estimate the 

DR via AR modeling includes the next steps:  

 

Method 7 DR estimation via AR modeling  

Step 1. The BWR signal of interest (emulating a LPRM recording) ( )n t  is preprocessed to 

remove its trend.  

Step 2. The resulting signal of Step 1 is model through an autoregressive model. The 

Akaike information criteria (Akaike, 1974) is used to estimate the best possible AR model ( 

or apparently the best AR model) to describe the signal of interest.  

Step 3. From the best possible AR model, the impulse response ( )h t  of the system (of the 

reactor) is computed.  

Step 4. The DR is estimated from the autocorrelation function of the impulse response ( )h t , 

by computing the DR as the ratio between the second peak and the first peak of the ACF.  
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The DR was estimated from a set of 300 BWR signals ( )n t  for feedback gain values in the 

interval [0.75,1.80]  , covering in this way the entire stable and unstable regions of the 

chosen ROM model, in order to observe the DR behavior of this chosen ROM (we wish to 

figure out whether the computed DR is able to follow the route to chaos plotted in Figure 

37). Results of this DR estimation method are shown in Figure 38.  
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Figure 38. DR estimation for a set of signals with feedback gain values in the interval 

[0.75,1.8]  . 

 

The time span of the signals of interest is 130 s, however, we are suppressing the first 30 s 

of the signal (to eliminate transients). The initial condition vector for the entire set of 

signals is kept at [0.1, 0.1, 1, 0, 0], the numerical method is the standard Runge-Kutta 4th 

order method and the integration step is again 0.01t =  s.  

 

As we can see in Figure 38 (blue line), as soon as the feedback gain   increases beyond 

0.75, the DR increases accordingly, however, the DR is underestimated when   

approaches the critical value 1 =  that destabilizes the BWR, the DR increases again until 

  approaches the feedback gain value 1.1 =  already within the unstable region. From 

this value and onwards, the DR is again underestimated and does not follow adequately the 

route to chaos of this ROM, which is an indication of the lack of accuracy and the lack of 
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predictability the DR possesses to assess the instability of a complex dynamical system 

such as a BWR.  

 

Besides, the order p (green line) of the optimal AR model is too high to model unstable 

ROM signals. These high p order values in conjunction with poor DR values that did not 

get the proper BWR information about its instability (i.e., dynamics) are a proof that AR 

models at the core of BWR stability techniques are not the best option to study BWR 

stability (the same remark applies to the linear DR indicator, which does not capture the 

complex BWR dynamics shown by this ROM): Besides, methods using the correlation 

function, the impulse response (obtained by AR models) and neural networks were 

compared by Van der Hagen, 1995 and many drawbacks and inaccuracies of such methods 

are indicated in that reference in detail. Overall, Van der Hagen, 1995 calls for a 

reconsideration of the practical use of the DR. Therefore, the BWR stability problem needs 

to be readdressed in a different manner with tools that accommodate as much as possible, 

the non-linear dynamics of a BWR to infer instability (in particular, such tools must be able 

to detect the beginning of an instability event). In the next chapter, the Shannon Entropy 

(SE, Shannon, 1948) is studied to build a methodology to assess the complexity of BWR 

signals to infer information about BWR instability.  

 

4.4 Chapter 4 Conclusions  
 

The selected reduced order model (ROM) is simple and yet, adequate enough to highlight 

that BWR systems under density wave instability exhibit a chaotic nature described by 

period doubling pitchfork bifurcations. The density wave instability is introduced in the 

differential equation model via the parameter  , when it exceeds the ROM stability 

threshold of  1 = . Highly chaotic behavior for large  ( 1.8  ) is characterized by 

strange attractors. The BWR does not behave as a second order dynamical system (i.e., a 

harmonic oscillator). Therefore a simple linear parameter such as the DR will not 

accommodate altogether the complex nature of BWR under instability. The DR is in our 

estimate an unreliable BWR instability indicator. According to our experiments with a 

classic AR-DR model methodology, we conclude that the DR measurement misses the 

bifurcation phenomena which occurs in unstable BWR systems. The DR only predicts 

linear stability characteristics (stable BWR behavior). Thus, it is desirable to study more 

sophisticated stability indicators that do take into account the non-linear and non-stationary 

behavior of BWR recorded signals with the ambitious objective of enhancing BWR 

security systems and protocols. In the following chapters we will introduce the studied non-

linear instability indicators to address the appraisal of BWR instability phenomena.  
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Chapter 5 

BWR stability indicator 1: The Shannon Entropy  
In this chapter, we explore the Shannon Entropy (SE) as a possible non-linear stability 

indicator for BWRs. The Shannon Entropy is a concept introduced by Claude E. Shannon 

(Shannon, 1948) to characterize a discrete source through the content of the information of 

this source. In other words, the SE is a statistical index that quantifies the complexity of a 

signal. In our case, the BWR instability problem is studied by quantifying the intricacy of 

BWR signals through this proposed indicator. A low SE estimation indicates a predictable 

BWR event (a stable event) whereas a high SE value indicates an unpredictable BWR event 

(an unstable event). The SE estimation was validated with artificial signals issued from the 

ROM studied in the previous chapter and with real BWR signals that stem from the 

Forsmark (Verdú et al., 2001) and Ringhals (Lefvert, 1996) stability benchmarks and from 

a Laguna Verde instability event that happened in the year 1995.  

5.1 The Shannon Entropy  
In order to capture the complex dynamics of a BWR system, the Shannon Entropy (SE) is 

studied. In statistical mechanics and information theory, entropy is a functional that 

quantifies the information content of a statistical ensemble or equvalently, the uncertainty 

of a random variable. Its application in various scientific disciplines is countless. 

Nonetheless, the most important example of such a functional is the Shannon Entropy (also 

known as average information), the concept is established as: Consider a discrete random 

variable c , which can take a finite number of M  possible values {c ,...,c }i i Mc   with 

corresponding probabilities 1{p ,...,p }i Mp  . Its entropy (c)sH  is defined as: 

1

( ) ln(p )
M

s i i

i

H c p
=

= −  
 

 

(19) 

 

In general, the probability distribution for a given stochastic process is not known, and, in 

most situations, only small data sets from which to infer the entropy are available. For 

instance, it could be of interest to figure out the Shannon Entropy of a given BWR signal. 

In such circumstances, one could estimate the probability of each element i  to occur, ip , 

by making some assumptions on the probability distribution, as for example: 

i. Parametrizing it. 

ii. Dropping the most unlikely values.  

iii. Assuming some a priori shape for the probability distribution.  
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 Nevertheless, the easiest and most straightforward path to estimate them is by counting 

how often the value ic  appears in the available data set. Denoting this number by il  and 

dividing by the total size N  of available data set, we can obtain a relative frequency 

estimator given by: 

ˆ i
i

l
p

N
=

 
 

 

(20) 

 

Which naively approximates the probability ip  linked to the value ic . With this simple 

estimator in mind, the easiest way to compute the SE of the data set can be done by simply 

replacing the probabilities ip  by ˆ ip  in the entropy functional, giving an estimate of the 

Shannon Entropy:  

 

1 1

ˆ ˆ( ) ( ) ln( ) ln
M M

naive i i
s s i i

i i

l l
H c H c p p

N N= =

 
 = − = −  

 
   

 
 

(21) 

 

The quantity ( )naive
sH c  is an example of an entropy estimator proposed by (Knuth, 2006), 

in a very similar sense as ˆ ip  is an estimator of ip . In particular the minimum ( ) 0sH c =  is 

reached for a constant random variable, i.e., a variable with a determined outcome, which 

reflects in a fully localized probability distribution 1ip =  and 0ip =  for i j . At the 

opposite, ( )sH c  is maximal, equal to ln( )M , for a uniform distribution ( 1 2 ... Mp p p= = =  

). The SE is a quantity that increases with the number of possible states: for an unbiased 

coin, ( ) ln(2) 0.6931sH c =   while for an unbiased dice ( ) ln(6) 1.7918sH c =  . To 

estimate Equation (21), a histogram is required to infer the probabilities ip  of the data set. 

In this work, the number of bins M  of such histogram was computed with an optimal 

estimator proposed also in  Knuth, 2006. Shannon initially proposed this functional to 

quantify the information loss in transmitting a given message in a communication channel. 

A noticeable aspect of Shannon approach is to ignore semantics and focus on the pyhsical 

and statistical constraints limiting the transmission of a message, regardless of its meaning. 

The source generating the inputs ic c  is characterized by the probability distribution ip . 

Shannon Entropy ( )sH c  thus appears as the average missing information. That is, the 

average information required to specify the outcome x  when the receiver knows the 

distribution ip . It equivalently measures the amount of uncertainty represented by a 

probability distribution. In the context of communication theory, it amounts to the minimal 

number of bits that should be transmitted to specify x . Based on these facts and 

considering that the estimator in Equation (21) is the easiest way to estimate SE, it is the 

estimator used in our proposed methodologies to study the BWR instability due to density 

waves. The SE, estimated by our naive estimator, quantifies the uncertainty of the artificial 

studied signals. Through this approach, the instability problem of a chaotic dynamical 

system such as a BWR is studied. The SE is our tool to study reactor instability and as 
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such, the SE might serve as an alternative option to the conventional DR indicator. Our 

goal is to detect through SE the beginning of an incipient instability event (via a stability 

monitor), prior any further development of that emerging unstable event. We are also 

interested in gaining from the SE indicator as much information as possible regarding the 

dynamics of a BWR system.  

 

5.2 BWR stability monitor based on the Shannon 

Entropy for artificial signals 
 

In this section, a Shannon Entropy stability methodology is introduced, this technique is 

rooted in the SE estimator given before in Equation (21) and in the improved complete 

ensemble empirical mode decomposition method. The SE / improved CEEMDAN stability 

methodology is given by the following steps:  

 

1. The considered neutronic signal ( )n t  of interest obtained from the BWR ROM 

model (March-Leuba, 1986) discussed in Chapter 4 is decomposed using the 

improved CEEMDAN method for an ensemble of 100I =  realizations of white 

noise of standard deviation 0.2o = , obtaining in this way the corresponding IMFs. 

The selection of the chosen improved CEEMDAN indicators I  and o  were taken 

from Colominas et al., 2014. It is worth mentioning that this information is 

contained in the residue of this decomposition.  

2. The Hibert-Huang transform (HHT) is computed in order to get the instantaneous 

frequencies contained in each IMF.  

3. When tracking these frequencies, it is possible to get the mode linked to instability 

processes (IF highly concentrated around 0.5 Hz). In this regard, two possible ways 

may emerge: 

• The original entry signal ( )n t  is considered for further processing in cases 

where there is no IMF linked to instability (i.e., the BWR is within the stable 

region and no meaningful instantaneous frequencies around 0.5 Hz were 

found).  

• The IMF, from the decomposition of ( )n t  linked to BWR instability is 

considered for further processing when meaningful instantaneous 

frequencies around 0.5 Hz were found (i.e., the BWR is within the unstable 

region).  

4. The Shannon Entropy of the tracked IMF (or the original entry signal ( )n t  when 

the BWR is in a stable state) is computed considering the estimator given in 

Equation (21), using the probabilities estimator given by equation (20). The optimal 

number of bins M  for the histogram, is calculated with a technique given in Knuth, 

2006 in the interval 5 20M  . 

5. The mean and variance of the SE is calculated.  
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6. In order to range the SE between 0 and 1, the following normalization is given 

(Liang et al., 2016): 

 

1
ˆ ˆln( )

ˆ (c)
ln( )

M
i inaive i

s

p p
H

M

=
−

=


 
 

 

(22) 

 

Based on this methodology, the following experiments were implemented. We estimated 

global SE values with the estimator given previously by equation (21) and the normalized 

by the equation (22), in order to figure out whether the SE is able to follow accordingly the 

route to chaos of the chosen BWR ROM (shown previously in Figure 37). The initial 

condition vector for all the BWR ROM signals is kept again at [ 0.1, 0.1, 1, 0, 0 ], the 

numerical integration method is the Runge-kutta 4th order method and the integration step 

size is 0.01t =  s. Before to show the complete results sweeping this Route to chaos, we 

analyze two specific cases: one stable case and one unstable case to contrast what a low SE 

value means from a high one.  

 

5.2.1 Stable BWR signal  

 

Figure 39 shows the neutron density ( )n t , obtained from the studied ROM considering a 

stable behavior of the BWR. The time span of the signal is 130 s, however, the first 30 s of 

the signal are ignored (transient suppression). The value of the feedback gain   is 0.75.  

 

Figure 40 shows the first 5 IMFs of the improved CEEMDAN decomposition of the signal 

shown in Figure 39 from a total of 12 IMFs. The amplitude (and thus the energy) of the 

IMFs along time is not meaningful, thus our methodology detects these weak oscillations as 

an indication of a BWR stable operation (the IMF amplitude is in average 310− ).  

 

Figure 41 shows the instantaneous frequencies (IF) of the IMFs shown in Figure 40. No 

meaningful IF oscillation is highly concentrated around 0.5 Hz, thus, the IFs are of little 

interest when the BWR is in a stable state, we thus calculate the SE of the original signal 

( )n t . The global estimated SE (normalized according to ln(M)  in order to provide SE 

values in the interval 0 1SE  ) of this signal is SE=0.1883. This low SE value indicates 

that the uncertainty (thus the signal in Figure 39 has a high predictability) of the studied 

signal is not so high, thus, the BWR is located in its stable region. The estimated number of 

bins M  for this signal is 6 (calculated by the Knuth, 2006 proposal).  
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Figure 39. Stable BWR signal ( )n t  of the feedback gain value 0.75 = .  
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Figure 40. Improved CEEMDAN decomposition of the stable studied signal.  
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Figure 41. IFs of the IMFs (computed by means of HHT) shown in Figure 40.  
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5.2.2 Unstable BWR signal  

 

Now, the feedback gain of the ROM is increased beyond its critical value 1k =  (border 

between stable and unstable regions). The BWR signal ( )n t  is now unstable. This unstable 

signal is shown in Figure 42. The feedback gain value is now 1.2 = .  
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Figure 42. Unstable BWR signal ( )n t  of feedback gain value 1.2 = . 

 

Figure 43 depicts IMFs of the improved CEEMDAN decomposition of this unstable signal 

shown in Figure 42. Only, IMF 4 to IMF 8 are shown in Figure 43, because the IMF linked 

to BWR instability is the IMF 7 whose IF (i.e., IF 7 from the total IMF set, see Figure 44 to 

observe the respective IFs) is oscillating around 0.5 Hz (the energy of this IF 7 is highly 

concentrated around 0.5 Hz). Thus, the IMF 7 is chosen for further processing.  
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Figure 43. Improved CEEMDAN decomposition of the BWR signal shown in Figure 42. 
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Figure 44. IF of the IMFs (computed by means of HHT) shown in Figure 43. 
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The SE of the IMF 7 (the IMF linked to instability) is computed. The global estimated SE 

(normalized according to log(M)  in order to provide SE values in the interval 0 SE 1  ) 

is SE=0.8955. This high SE value indicates that the uncertainty (thus the signal in Figure 42 

has low predictability) of the IMF 7 is high, thus the BWR is located in its unstable region. 

The estimated number of bins M  for this signal is 20 (provided by the method given by 

Knuth, 2006). 

 

5.2.3 Full SE sweep of the ROM Route to chaos 

 

The global SE was estimated from a set of 300 BWR signals ( )n t  for feedback gain values 

in the interval [0.75,1.80] , to cover the entire stable and unstable regions of the studied 

ROM model to observe the behavior of the chosen SE estimator. Results of this experiment 

are shown in Figure 45. The time span of the signal of interest is 130 s. However, we are 

suppressing again the first 30 s of each signal. The Runge-Kutta indicators are kept as 

before and each SE value is normalized according to its optimal estimated value M . 

 

0.8 1 1.2 1.4 1.6 1.8

0

10

20

E
x
tr

e
m

a
 o

f 
n
(t

)

Route to chaos

0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

SE vs 

S
E


 

 

Figure 45. SE sweep of the ROM route to chaos.  
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The SE sweep of the ROM route to chaos, clearly permits to separate between BWR stable 

states from BWR unstable states, the SE behavior in the stable region ( 1  ) increases as 

soon as the ROM feedback gain approaches the critical value which destabilizes the reactor 

( 1 = ). Low SE values indicate BWR stability (and thus predictability) whereas high ones 

indicate instability (high uncertainty) or that the system is being destabilized due to 

feedback gain increasing values. Beyond the critical value ( 1 = ), the SE remains high 

throughout the entire unstable ROM region indicating instability.  

 

Figure 46 shows the estimated optimal number of bins M  for each case, estimated with the 

Knuth, 2006 technique. In the stable ROM region ( 1  ), the optimal number of bins is 5 

for all the stable cases (low BWR complexity). As soon as the feedback gain attains its 

critical destabilizing value ( 1 = ), the optimal number of bins increases dramatically to 

almost 20 and in the unstable ROM region ( 1  ), the optimal number of bins increases 

dramatically to almost 20 and in the unstable ROM region ( 1  ) the value M  oscillates 

between 14 and 20 bins to represent the histogram of the improved CEEMDAN IMF linked 

to BWR instability. Thus, the unstable BWR IMF signals require an elevated bin number 

M  to provide optimal histograms to represent data.  
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Figure 46. Estimated number of bins M  to compute the SE sweep of the ROM route to 

chaos.  
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5.3 Non-linear stability analysis of BWR real 

signals based on noise assisted empirical mode 

decomposition variants and the Shannon Entropy  
 

In this section, a novel methodology based on an adaptive Shannon Entropy estimator and 

on Noise assisted empirical mode decomposition variants is presented. This methodology 

was developed for real-time implementation of a stability monitor. This methodology was 

applied to a set of signals stemming from several nuclear power plants (NPPs, Ringals-

Sweden, Forsmark-Sweden and Laguna Verde-Mexico) under commercial operating 

conditions, that experienced instability events in the past. 

 

5.3.1 Methodologies based on Shannon Entropy 

 

In this section, two stability methodologies are introduced, labeled as methodology 1 and 

methodology 2, based on improved CEEMDAN and NA-MEMD respectively, to study 

individual BWR unstable events and multivariate ones.  

 

Methodology 1: Stability Monitor based on the improved CEEMDAN and the SE  

 

Step 1. The considered signal (APRM or LPRM) obtained from the BWR is segmented in 

windows of 15 s of duration each.  

 

Step 2. Each segmented signal (APRM or LPRM) is studied using the improved CEEMDAN 

method for a number of realizations of the ensemble 100I =  and standard deviation of the 

assisted noise 0.2o = , described above, obtaining in this way, the corresponding IMFs. It 

is worth mentioning that the APRM or LPRM signals are not being processed before. For 

instance, to remove the signal trend, due that this information is contained in the residue of 

the decomposition.  

 

Step 3. The Hilbert transform of each IMF is computed in order to get the instantaneous 

frequencies contained in each IMF (this step is known as Hilbert-Huang transform).  

 

Step 4. When tracking these frequencies, it is possible to get the mode linked to density 

wave (DW) instability. 

 

Step 5. The SE of the tracked IMF (mode of interest linked to BWR instability) is computed 

considering the estimator given in equation (21). The optimal number of bins M is again 
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calculated by the Knuth, 2006 proposal (Several rules of thumb exist for determining the 

number of bins, such as the belief that between 5 - 20 bins is usually an adequate number).  

 

Step 6. The mean and variance of the SE are calculated and averaged along all the studied 

segments of 15 s.   

 

Step 7. The SE estimates are ranged between 0 and 1 in the same way as in the previous 

section.  

 

Methodology 2: Stability Monitor based on the NA-MEMD and the SE 

 

Step 1. The considered multivariate signal (an array of N independent LPRM signals) 

obtained from the BWR are segmented in small windows of 15 s.  

 

Step 2. These segments ( of 15 s each of time span) are decomposed in parallel through 

NA-MEMD in N  independent channels. Also, m  independent channels of white Gaussian 

noise are added (to mitigate the mode mixing issue) for decomposition ( 3m =  for all of our 

computer experiments).  

 

Step 3. After decomposition, discard the m  channels corresponding to the noise, giving a 

set of N  -channel IMFs corresponding to the original signal segments.  

 

Step 4. The Hilbert transform of each IMF is computed in order to get the instantaneous 

frequencies contained in each N  -channel IMFs frequencies (i.e., the HHT).  

 

Step 5. When tracking these frequencies, it is possible to get the IMF linked to density wave 

instability. In this regard, only the IMFs linked to DW instability are considered for further 

processing. Exploiting the NA-MEMD properties, the chosen IMFs of interest are all 

located at the same level of decomposition.  

 

Step 6. The SE of the tracked IMFs (modes of interest linked to DW instability) are 

computed via Equation (21). The Knuth, 2006 proposal is used in a local way, within the 

interval 5 20M  . There are thus, N  different values of SE (each SE value is linked to 

one LPRM in particular).  

 

Step 7. The mean and variance of the SE values are calculated and averaged along all the 

studied multivariate segments of 15 s.  

 

Step 8. The SE estimates are ranged between 0 and 1 in the same way as in the previous 

section. 
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5.3.2 Results: methodologies performance and discussions  

 

The previous methodologies 1 and 2 are applied to BWR signals that stem from the 

Forsmark (Verdú et al., 2001), Ringhals (Lefvert, 1996) and the Laguna Verde Instability 

event (Gonzalez et al., 1995). The Ringhals plant stability benchmark test data has been 

widely applied to BWR stability studies because they cover various stability conditions, 

e.g., dominant fundamental mode related with in-phase instabilities, dominant first 

harmonic mode related with out-of-phase instabilities, and an overlapping of the two 

modes. The stability tests were performed (and controlled) in the Swedish BWR Ringhals 

Unit 1 from cycle 14 through cycle 17. The Forsmark benchmark is based on data from 

several measurements performed (performed) in the Swedish Reactor Forsmark 1 and 2, in 

the period 1989 to 1997. The Laguna Verde instability event was recorded during an 

unstable event that occurred in 1995 and is considered in the literature as a prototype of an 

in-phase instability.  

 

Stability analysis of the chosen real cases through methodology 1 
 

This methodology 1 is applied to the next three following cases: 

 

I. Case 4 of the Forsmark stability benchmark. This event is considered a challenging 

case to be analyzed due to the complexity of the phenomenon. For reasons of 

space, only this challenging case is presented in a detailed way. The studied Case 4 

contains a mixture between a global oscillation mode and a regional (half core) 

oscillation. This event corresponds to a situation where the neutronic power reactor 

suffers abnormal and apparently unstable oscillations. This event corresponds to a 

situation where the neutronic power reactors suffers abnormal and apparently 

unstable oscillations. The C4_APRM and C4_LPRM_x signals correspond to 

average power range monitor (APRM) and local power range monitor (LPRM) 

registers respectively, during the instability event. The entire case 4 was studied (a 

total of 23 signals, 22 LPRMs plus 1 APRM). However, only the analysis of one 

signal (C4_APRM_1) is described in this work and the other results (22 LPRMs) 

are summarized in a table.  

II. Case 9 cycle 14 of the Ringhals stability benchmark. Data given comes from 

measurements in the Swedish BWR reactor Ringhals 1. This case consists of a total 

of 36 LPRMs. Again, the whole case 9 (36 LPRMs) was studied, however, only the 

analysis of one signal (LPRM 1) is detailed in this work and the other results of 

LPRMs are summarized in a table.  

III. An APRM signal that stems from the Laguna Verde BWR that was recorded during 

an unstable event that happened in 1995. On 24 January 1995 a power instability 

event happened in the Laguna Verde Unit 1, which is a BWR-5 and is operated 

since 1990 at a rated power of 1931 MWt. The instability event happened during a 

cycle 4 power ascension without fuel damage. When the thermal power reached 

37% of the rated power, the recirculation pumps were running at low speed driving 

37.8% of the total core flow.  The flow control valves were set to their minimum, 

closed position in order to operate the recirculation pumps at a high speed. The 
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drop in drive flow resulted in a core flow reduction of 32% and, a power reduction 

also of 32%. Two control rods were also partially withdrawn during valve closure. 

The new low flow operating conditions resulted in growing power oscillations. 

This prototype of in-phase instability has been widely studied (Blazquez and Ruiz, 

2003; Moreno, 2016). 

 

APRM signal from the Forsmark benchmark 
 

The studied signal in this subsection is the APRM 1 of the Forsmark stability benchmark, 

Case 4. This signal of interest is shown in Figure 47. 
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Figure 47. APRM 1 signal from the Forsmark stability benchmark. Case 4.  

 

The Methodology 1 based on the improved CEEMDAN and the SE is applied to this signal. 

Such methodology splits the signal of interest in segments of 15 s, later the segment is 

decomposed through improved CEEMDAN into IMFs, the HHT is calculated to obtain the 

instantaneous frequencies of the IMFs. The IF of interest linked to instability is tracked (the 

energy of this mode connected to BWR instability is highly concentrated around 0.5 Hz in 

the Fourier domain, according to previous BWR stability observations). Later, the IMF 

linked to the IF of interest is selected for SE calculation. Figure 48, shows the analysis of 

one studied segment that was decomposed through improved CEEMDAN into multiple 

 



90 

 

IMFs and the IMF 3 is selected for more processing (because the IF (IF 3) of this IMF 

(IMF 3) is linked to BWR density wave instability, this key IF is shown in Figure 49). 

 

Figure 50 shows a power spectral density estimation of the extracted IMFs of the studied 

segment, to visualize the spectrum of the IMF 3 linked to instability and to observe the 

improved CEEMDAN capabilities to compensate for mode mixing, which translates into 

less overlap of contiguous IMFs spectrums. Figure 51 shows the plot of the estimated SE of 

all of the studied segments of the signal of interest. Also, in this same figure, a DR estimate 

of the segments is shown to illustrate the performance of the SE over the DR to analyze the 

stability of the studied signal. The DR was estimated in the same way as in (Olvera-

Guerrero et al., 2017). We have established empirical stability thresholds based on our 

numerical experiments for the SE (Although more experiments are needed in this direction 

to accurately confirm this finding, bu such studies leave the scope of this work). This 

stability threshold value is located around 0.8 (a stable segment has a SE < 0.8 whereas an 

unstable one has a SE>0.8). Now, regarding the DR, a stable segment has a DR<1. For this 

signal, the DR estimate indicates the beginning of an unstable event (an incipient one) 

whereas the SE throughout the whole time span of the signal, points to the existence of a 

fully developed instability event from the very beginning of the simulation. Figure 52 

shows the estimated number of bins M  for the extracted IMF for the studied case which 

remained very close to 5 bins and jumping beyond 5 in some segments.  
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Figure 48. Improved CEEMDAN decomposition of one of the segments of the APRM 1.  
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Figure 49. IF 3 linked to BWR density wave instability.  
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Figure 50. PSD estimate of the extracted IMFs of the studied segment.  
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Figure 51. Estimated SE and DR along time for the APRM 1 signal. The purple dotted line 

located at 0.8 is the SE threshold (segments whose SE is above this line are unstable) 

whereas the blue dotted line at 1 is the DR threshold (segments whose DR is above this line 

are unstable).  
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Figure 52. Estimated optimal number of bins ( 5 20M  ). 
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Ultimately, the estimated SE, DR and oscillation frequency for the rest of the LPRMs of the 

studied Case 4 are shown in Table 6 (only average (Mean) and their standard deviations 

(std) values along all the studied segments are shown in Table 6). The estimated averaged 

values for the DR are in perfect agreement with those estimated by the different 

methodologies presented in the benchmark. The DR estimates point to the beginning of an 

incipient instability event whereas the SE estimates indicate a fully developed instability 

event in the BWR. Thus, it is naive to assume that we can infer the dynamics of a complex 

system such a BWR through an estimate of a linear parameter such as the DR alone. In 

spite of the contradictions of what these two parameters (SE and DR) are indicating, they 

nevertheless pinpoint to an instability event in the BWR core. Although the SE does this 

form the very beginning of the stability analysis.  

 

Table 6. Average and standard deviations values for the SE, the DR and the oscillation 

frequency (f0) linked to instability of the Forsmark stability benchmark, Case 4, studied 

through Methodology 1 based on the iCEEMDAN. 

Detectors Mean SE Std SE Mean DR Std DR Mean f0  Std f0 

APRM 0.9553 0.0377 0.8136 0.0842 0.5279 0.0299 

LPRM 1 0.9527 0.0236 0.801 0.0765 0.519 0.0282 

LPRM 2 0.9564 0.0344 0.8007 0.1048 0.5101 0.03 

LPMR 3 0.9607 0.0222 0.8211 0.0778 0.5036 0.0202 

LPMR 4 0.9515 0.0268 0.7649 0.123 0.5116 0.0345 

LPRM 5 0.9323 0.0493 0.771 0.1269 0.5424 0.0317 

LPRM 6 0.9422 0.0304 0.765 0.1376 0.5444 0.0265 

LPRM 7 0.9409 0.0313 0.7623 0.0843 0.5513 0.0346 

LPMR 8 0.921 0.0411 0.6991 0.0873 0.5683 0.0509 

LPRM 9 0.9331 0.049 0.752 0.0966 0.5461 0.0384 

LPRM 10 0.9272 0.0429 0.7043 0.1315 0.574 0.0373 

LPRM 11 0.9224 0.0586 0.7527 0.0885 0.5513 0.0425 

LPRM 12 0.9074 0.0521 0.545 0.1649 0.5796 0.078 

LPRM 13 0.9436 0.0356 0.7753 0.1208 0.5462 0.0315 

LPRM 14 0.9334 0.0396 0.7783 0.0907 0.5386 0.0397 

LPRM 15 0.9428 0.0356 0.7569 0.1241 0.537 0.0408 

LPMR 16 0.9477 0.0331 0.7831 0.092 0.5362 0.0341 

LPMR 17 0.9449 0.0375 0.7683 0.089 0.5302 0.0486 

LPRM 18 0.9489 0.0375 0.7487 0.1392 0.5253 0.0362 

LPRM 19 0.915 0.0575 0.6295 0.1206 0.5111 0.0703 

LPRM 20 0.9152 0.0429 0.6834 0.1149 0.5631 0.0487 

LPMR 21 0.9227 0.0368 0.6841 0.1882 0.5777 0.0566 

LPRM 22 0.9026 0.0408 0.518 0.1275 0.5606 0.1011 
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LPRM signal from the Ringhals benchmark  
 

Now, the studied signal stems from the Ringhals stability benchmark case 9 cycle 14. The 

studied signal is shown in Figure 53. The Methodology 1, based on the improved 

CEEMDAN and the SE is applied to this signal. This stability methodology splits the signal 

of interest in short segments of 15 s, later the studied segment is decomposed through 

improved CEEMDAN into IMFs (or modes), the Hilbert-Huang Transform is calculated to 

obtain the instantaneous frequencies of the extracted IMFs. The IF of interest linked to 

instability (the energy of this IF of interest oscillates around 0.5 Hz) is tracked. Later, the 

IMF associated to this IF is selected for SE calculation. Figure 54 shows the analysis of one 

studied segment that was decomposed through improved CEEMDAN into n IMFs and the 

IMF 3 was selected for further processing (because the IF 3, of this IMF (IMF 3) is linked 

to BWR instability, this key IF is shown in Figure 55). 
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Figure 53. LPRM 1 from the Ringhals stability benchmark, case 9 cycle 14.  
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Figure 54. Improved CEEMDAN decomposition of one of the segments of the studied 

signal. 

285 290 295 300
30

40

50
Segment of the LPRM 1

285 290 295 300
-5

0

5
IMF 3 (linked to BWR instability)

285 290 295 300
0

0.5

1

F
re

q
u
e
n
c
y

[H
z
]

Time   [s]

IF- IMF 3

 
 

Figure 55. IF 3 linked to density wave instability. 
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Figure 56 shows a power spectral density estimate of the extracted IMFs of the studied 

segment, to visualize the spectrum of the IMF 3 linked to instability and to observe again 

the improved CEEMDAN capabilities to compensate for mode mixing, which translates 

into less overlap of contiguous IMF spectra.  
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Figure 56. PSD estimate of the extracted IMFs of the studied segments.  

 

Figure 57 shows the plot shows the plot of the estimated SE of all of the studied segments 

of the signal of interest. As before, in this figure, a DR estimate of the segments is also 

shown to illustrate the performance of the SE over the DR to analyze the stability of the 

studied signal. The instability thresholds for the DR and for the SE are the same as before. 

For this signal, again the SE indicates a fully developed unstable BWR behavior whereas 

the DR is pointing to an early development of an instability event (a quasi-instable event), 

because the average DR is high (not exactly one, but approaching it). Again, the high SE 

estimates of the studied segments of this LRPM 1 signal are clearly indicating an out of the 

ordinary BWR behavior. The estimated number of bins M remained throughout most the 

simulation constant at 7 bins. The proposed stability monitor, given in Methodology 1, 

proves again to be suitable to detect unstable or not ordinary BWR behavior prior further 

growth of such unforeseen unstable events, that may in the worst case scenarios, trigger 

increasing power oscillations beyond the nominal BWR constraints. Thus, it is necessary to 

be able to detect any incipient unstable events as fast as possible.   

 



97 

 

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

SE vs DR

Time   [s]

SE

DR

 
Figure 57. Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along time for 

the LRPM 1 signal, Case 9 from Ringhals stability benchmark. The purple dotted line 

located at 0.8 is the SE threshold (segments whose SE is above this line are unstable) 

whereas the blue dotted line at 1 is the DR threshold (segments whose DR is above this line 

are unstable). 

 

Finally, the estimated SE, DR and oscillation frequency for the rest of the LPRMs of the 

studied Cycle 14 Case 9 are shown in Table 7 (only average values and standard deviations 

along all the studied segments are shown in Table 7). The entire case consists of a total of 

72 LPRMs distributed on two different floors or levels (2 and 4) within the BWR core. In 

Table 7, only the analysis of the floor number 2 is studied. This floor consists of 36 LPRM 

detectors marked by odd numbers.    

 

The estimated DR results of this studied case and shown in Table 7, where in most LPRMs 

high and apparently this case exhibits and out-of-phase oscillation, which will be scoped in 

detail once Methodology 2 based on the NA-MEMD is used to perform a multivariate 

analysis of this particular case. Overall, The high SE estimated values, clearly indicate a 

fully developed unstable behavior of this case. Thus, the studied BWR floor 2 is unstable. 

The high DR estimates ( but still not above the 1, which is the stability threshold that must 

be exceeded by the DR to trigger BWR peril alarms) although high and depicting that there 

is something unusual going on in the BWR core. But, the estimates are not high enough to 
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trigger BWR protection alarms to warn the operators whereas the SE estimates would have 

trigger such BWR protection circuits.  

Table 7. Average and standard deviations values for the SE, the DR and the oscillation 

frequency (f0) linked to instability of the Ringhals stability benchmark Case 9 Cycle 14 

studied through the Methodology 1 based on the improved CEEMDAN. 

Detectors Mean SE Std SE Mean DR Std DR Mean f0 Std f0 

LPRM 1 0.9809 0.0084 0.9132 0.0161 0.5164 0.0248 

LPRM 3 0.9826 0.0069 0.9122 0.0171 0.5153 0.0226 

LPRM 5 0.9834 0.0094 0.9102 0.0162 0.5157 0.0246 

LPRM 7 0.9877 0.0153 0.8897 0.0367 0.5149 0.0243 

LPRM 9 0.9854 0.0082 0.9135 0.0184 0.5139 0.0266 

LPRM 11 0.9823 0.0078 0.9134 0.0172 0.5175 0.0248 

LPRM 13 0.9820 0.0106 0.9108 0.0214 0.5169 0.0219 

LPRM 15 0.9856 0.0088 0.9091 0.0179 0.5106 0.0270 

LPRM 17 0.9883 0.0080 0.9006 0.0221 0.5188 0.0241 

LPRM 19 0.9621 0.0436 0.8332 0.0778 0.5180 0.0274 

LPRM 21 0.9814 0.0270 0.8693 0.0506 0.5218 0.0267 

LPRM 23 0.9862 0.0149 0.8909 0.0301 0.5174 0.0248 

LPRM 25 0.9841 0.0122 0.8997 0.0273 0.5125 0.0267 

LPRM 27 0.9869 0.0142 0.8951 0.0352 0.5136 0.0281 

LPRM 29 0.9653 0.0509 0.8309 0.0762 0.5186 0.0364 

LPRM 31 0.9500 0.0441 0.8106 0.0820 0.5049 0.0348 

LPRM 33 0.9429 0.0409 0.6562 0.1321 0.4868 0.0286 

LPRM 35 0.9630 0.0352 0.7145 0.2115 0.5020 0.0365 

LPRM 37 0.9771 0.0203 0.8538 0.0490 0.5124 0.0272 

LPRM 39 0.9598 0.0335 0.7558 0.0766 0.5062 0.0338 

LPRM 41 0.9141 0.0637 0.5868 0.2425 0.4987 0.0423 

LPRM 43 0.8814 0.0672 0.4893 0.2241 0.4922 0.0386 

LPRM 45 0.9858 0.0124 0.8496 0.0415 0.5126 0.0265 

LPRM 47 0.9854 0.0094 0.8816 0.0284 0.5071 0.0242 

LPRM 49 0.9807 0.0091 0.9110 0.0173 0.5102 0.0279 

LPRM 51 0.9771 0.0086 0.9120 0.0133 0.5121 0.0218 

LPRM 53 0.9823 0.0077 0.9096 0.0184 0.5154 0.0262 

LPRM 55 0.9868 0.0091 0.8974 0.0250 0.5204 0.0218 

LPRM 57 0.9804 0.0076 0.9061 0.0143 0.5195 0.0188 

LPRM 59 0.9771 0.0087 0.9084 0.0149 0.5126 0.0223 

LPRM 61 0.9765 0.0101 0.9126 0.0149 0.5140 0.0229 

LPRM 63 0.9764 0.0089 0.9123 0.0137 0.5112 0.0245 

LPRM 65 0.9805 0.0085 0.9059 0.0185 0.5117 0.0268 

LPRM 67 0.9832 0.0113 0.9054 0.0202 0.5149 0.0223 

LPRM 69 0.9817 0.0093 0.9023 0.0184 0.5155 0.0197 

LPRM 71 0.9831 0.0073 0.9029 0.0181 0.5156 0.0253 
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APRM laguna verde  
 

The studied signal that is now studied stems from an instability event that happened in 

Laguna Verde, in the year 1995. This signal is shown in Figure 58 and was obtained via the 

integral Information Process System (IIPS). The channel A of the APRM trace shows no 

unstable behavior at 3:28:00 h. The value closure was initiated at 03:28:20 h. A small core 

flow reduction was noticeable 40 s later, and the APRM-A trace depicts signs of instability 

although the variations in the magnitude of the signal remained within the noise level. As 

the valve continued to close, the APRM-A trace shows clear unstable behavior starting at 

03:30:30 h. The valve reached the minimum position at 03:31:30 h. The valve reached the 

minimum position at 03:31:30 h, and the oscillations continued without any significant 

increase in their growth rate. The operator attempted to stabilize the power level by 

increasing the core flow opening the vales at 03:33:20 h. As a result of increasing the core 

flow, the oscillation started to decay at 03:34:40 h. At 03:35:20 h the oscillation reached 

3% of amplitude, when the reactor was manually scrammed (see the red boxes in Figure 

58). 
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Figure 58 . Laguna Verde (LV) APRM signal of an unstable event that occurred in 1995. 
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As before, Figure 59 shows the decomposition of one of the segments of the studied 

Laguna Verde APRM, decomposed according to Methodology 1 based on the improved 

CEEMDAN. The IMF linked to BWR instability in this case is the IMF 1, see its 

instantaneous frequency (IF 1) oscillating around 0.5 Hz. This IF 1 is shown in Figure 60 

and also the power spectral density estimates of all the extracted IMFs are shown in Figure 

61. Observe that the PSD of IMF 2 is slightly mixed with the PSD estimate of IMF 1, but 

the spectral energetic content of IMF 2 is negligible in comparison with that of IMF 1.  
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Figure 59. Improved CEEMDAN of one of the segments of the APRM signal of a Laguna 

Verde density wave instability. Only the first 2 IMFs are shown in this plot.  
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Figure 60. IF 1 linked to BWR instability. The time series of IF 1 oscillates in a quasi-

sinusoidal manner around 0.5 Hz (the region of interest for BWR instability events). 
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Figure 61. PSD estimate of the extracted IMFs of the studied segment through the 

improved CEEMDAN method.  
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Figure 62 shows the SE and DR estimates along all the studied segments of the APRM 

signal of interest. Prior the first 300 s of the signal, the DR oscillates between stability and 

instability. But, it is cumbersome to infer the dominant DR value due to its strong 

discontinuous jumps between stability and instability. However, after the 300 s mark, the 

DR is high and greater that its threshold value (DR = 1) and remains as such (and 

oscillating around 1.1) throughout the rest of the simulation. Thus, the DR indicates 

unstable BWR behavior but only after the 300 s mark. 

 

The SE estimate is highly more consistent than the DR prior the 300 s mark, because the 

SE clearly indicates unstable behavior (whereas the DR is unable to differentiate between 

the two) and after the 300 s mark, the SE slightly oscillates around 1 (and not in a dramatic 

way as the DR does). Nevertheless, the SE always indicates unstable BWR behavior, long 

before the DR is able to detect it. Thus, the SE is capable of indicating unstable behavior 

prior any further growth in power of the unstable oscillation within the core whereas the 

DR is only able to detect instability (without bias) once the unstable oscillation is fully 

sustained and powerful enough to damage the core. The optimal number of bins for this 

case remained most of the simulation constant at 10. 
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Figure 62. Estimated Shannon Entropy (SE) and Decay Ratio (DR) estimate along 

time for the APRM signal. The purple dotted line located at 0.8 is the SE threshold 

(segments whose SE is above this line are unstable) whereas the blue dotted line at 1 is 

the DR threshold (segments whose DR is above this line are unstable). 
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Finally, Table 8 shows the mean SE, DR and instantaneous frequency averaged along 

all the segments of the signal of interest. 

Table 8. Average and standard deviations values for the SE, the DR and the oscillation 

frequency (f0) linked to instability of the Laguna Verde APRM signal studied through 

the Methodology 1 based on the iCEEMDAN. 

Detector Mean SE Std SE Mean DR Std DR Mean fo  Std fo 

APRM 0.9592 0.0444 1.0079 0.1655 0.5385 0.0158 

 

Stability analysis of the chosen real cases through Methodology 2 
 

The stability methodology 2 is applied with the next following cases of nuclear power 

plants (NPP):  

I. Multidimensional analysis of the already mentioned Case 4 of the Forsmark 

stability benchmark. 

II. Multidimensional analysis of the also mentioned Case 9 Cycle 14 of the Ringhals 

stability benchmark. 

 

Regarding Laguna Verde instability event, the methodology 2 can also be applied. 

However, the signals from 96 LPRMs monitoring the core are not available for this specific 

instability phenomenon. 

 

LPRMs signals form Forsmark benchmark  
 

Now, the case 4 of the Forsmark stability benchmark is going to be studied with the 

stability Methodology 2 based on the NA-MEMD in a multivariate way m = 3 independent 

channels of noise to mitigate mode mixing. In here, the ensemble of LPRM signals is 

considered in the NA-MEMD and a local estimation of SE and of the DR (calculated 

according to Olvera-Guerrero et al., 2017) are computed based on the IMFs associated to 

the instability event (the oscillatory IMF around 0.5 Hz). Figure 63 shows the IMFs linked 

to BWR instability. 

 

Exploiting the time alignment property of the NA-MEMD, these IMFs of interest are 

located at the same level of decompositions, in this case the IMFs of interest are located at 

the fourth level of the NA-MEMD decomposition (IMFs number 4). We highlight that in 

Figure 63. the IMFs of interest linked to instability are in-phase among them. The 

instantaneous frequencies (IFs number 4) around the region of interest (0.5 Hz) of these 

IMFs of interest are shown in Figure 64. Later, Figure 65 shows the estimated SE locally 

for each IMF of interest (IMFs number 4). However, for simplicity, only a sample of 4 

IMFs are shown in this plot, the selected IMFs are LPRM 1, LPRM 7, LPRM 11 and 

LPRM 21. Also, the DR (depicted in Figure 66 and estimated in the same way as before) is 

estimated locally for each IMF but again, only 4 IMFs (the aforementioned 4 LPRM 

signals) are shown in such figure. In the multivariate scenario, overall the BWR is unstable 

because of the high SE estimates along time, in spite of 4 segments that had an SE below 

the stability threshold (SE < 0.8). Thus, again from the very beginning of the simulation, 
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the SE is able to detect an unusual BWR unstable behavior. The DR in the multivariate case 

prior the 150 s mark is apparently stable and after this 150 s mark, it fluctuates around 0.75, 

the DR estimate is high but not high enough to trigger the BWR warning mechanisms and 

thus the DR indicates quasi-instability.   
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Figure 63. NA-MEMD applied to a short time segment of Case 4 of the Forsmark 

instability benchmark.  
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Figure 64. Frequencies IFs (IFs 4) linked to density wave instability. 
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Figure 65. Local SE estimate along time for the selected 4 LPRM sample. The threshold 

SE bar is located at the same locus as before. 
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Figure 66. Local DR estimate along time for the selected 4 LPRM sample. 
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Finally, Table 9 shows the SE, DR and f0 (all of them calculated locally) of the entire 

studied Case 4 of the Forsmark stability benchmark, the APRM was ignored for this 

analysis. The estimated parameters are similar to those that stem from the univariate 

analysis performed through the Methodology 1 in Table 6 of this case (the estimates in 

Table 9 are similar to those depicted in Table 6 and within the 10% difference).   

 

Table 9. Average and standard deviation values for the SE, the DR and the oscillation 

frequency (f0) linked to instability of the Forsmark benchmark stability Case 4 studied via 

stability methodology 2 based on NA-MEMD. 

Detectors   Mean SE    Std SE  Mean DR   Std DR   Mean f0    Std f0 

LPRM 1 0.9208 0.0816 0.7669 0.1417 0.4754 0.0283 

LPRM 2 0.9220 0.0842 0.7670 0.1526 0.4867 0.0250 

LPMR 3 0.9164 0.0924 0.7791 0.1457 0.4875 0.0260 

LPMR 4 0.9034 0.1001 0.7551 0.1476 0.4867 0.0214 

LPRM 5 0.9278 0.0762 0.7328 0.1585 0.5030 0.0373 

LPRM 6 0.9234 0.0783 0.7383 0.1338 0.5034 0.0357 

LPRM 7 0.9176 0.0789 0.7232 0.1232 0.5012 0.0368 

LPMR 8 0.9160 0.0761 0.6595 0.1511 0.5047 0.0447 

LPRM 9 0.9241 0.0767 0.6749 0.1703 0.5016 0.0355 

LPRM 10 0.9127 0.0700 0.6131 0.1748 0.5129 0.0425 

LPRM 11 0.9278 0.0618 0.6466 0.1482 0.4980 0.0395 

LPRM 12 0.9167 0.0450 0.5177 0.1378 0.5163 0.0636 

LPRM 13 0.9218 0.0721 0.7076 0.1327 0.5020 0.0292 

LPRM 14 0.9130 0.0756 0.6945 0.1537 0.5047 0.0300 

LPRM 15 0.9162 0.0785 0.7021 0.1281 0.5028 0.0385 

LPMR 16 0.9108 0.0889 0.7145 0.1088 0.5018 0.0299 

LPMR 17 0.9235 0.0814 0.7331 0.1506 0.4927 0.0242 

LPRM 18 0.9233 0.0851 0.7158 0.1693 0.4990 0.0282 

LPRM 19 0.9235 0.0670 0.6521 0.1686 0.4947 0.0477 

LPRM 20 0.9060 0.0884 0.6337 0.1861 0.5020 0.0428 

LPMR 21 0.9256 0.0668 0.6290 0.1512 0.5037 0.0413 

LPRM 22 0.8900 0.0593 0.4413 0.1466 0.5118 0.0840 

 

 

LPRMs from Ringhals benchmark 
 

Now, the Case 9 cycle 14 of the Ringhals stability benchmark is studied through 

Methodology 2 based on the NA-MEMD. Figure 67 shows the NA-MEMD decomposition 

( with 3 independent channels of noise to compensate for mode mixing) of one of the signal 

segments, the IMF (IMF 4) linked to density wave instability in shown in this figure and 

the type of observed oscillation is an out-of-phase one. These type of oscillations can only 

be observed locally at the LPRM level because at the APRM level (an APRM signal is an 

average of n LPRMs) the averaging might cancel data, if the signals that participate in the 

average have ideal phase differences of 180 degrees among them.  
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Figure 68 shows the instantaneous frequencies IFs (IF 4) of the IMFs (IMF at the 4 level of 

NA-MEMD decomposition) associated to BWR instability, all of the IFs oscillate around 

0.5 Hz in a quasi sinusoid way. Figure 69 shows the SE estimates along time of a sample of 

4 LPRMs that were selected at random, the selected LPRMs were: LPRM 1, LPRM 10, 

LPRM 20 and LPRM 29. The SE estimates along time were high (beyond the SE stability 

threshold located at SE = 0.8) throughout the time span of the simulation for the 4 chosen 

LPRMs, thus the BWR is clearly unstable. 
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Figure 67. NA-MEMD applied to a short time segment of the Case 9 Cycle 14 of the 

Ringhals stability benchmark 
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Figure 68. Multivariate instantaneous frequency IF (IF 4) linked to BWR instability 

oscillating around the region of interest (0.5 Hz). 
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Figure 69. Local SE estimate along time for the selected 4 LPRM sample. All of the SE 

estimates exceed the stability threshold (located at SE=0.8). 
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Figure 70 shows the DR estimates along time for the chosen LPRMs, the DR estimates 

were high, clearly indicating the beginning of an unstable event, but they did not exceed the 

stability threshold to trigger BWR protection mechanisms.  
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Figure 70. Local DR estimate along time for the selected 4 LPRM sample. The threshold 

DR bar is located at the same locus as before. 

 

Table 10 shows the SE, DR and oscillation frequency of the entire Ringhals Case 9. Again, 

the computer parameters in Table 10 are similar (less than 10 % of difference) with the 

estimates shown previously in Table 7 when this case was analyzed (in an univariate way) 

through Methodology 1. We highlight that the NA-MEMD capabilities to compensate for 

mode mixing with only one realization of the algorithm whereas the improved CEEMDAN 

required a total of I = 100 (the size of the ensemble) realizations of the default EMD 

algorithm to compensate for it. Thus, the NA-MEMD excels in computation time and the 

SE and DR estimates Methodology 2 provides were slightly the same as those given by 

stability methodology 1. 

 

Table 10. Average and standard deviations values for the SE, the DR and the oscillation 

frequency (f0) linked to instability of the Ringhals benchmark stability Case 9 Cycle 14 

studied via Methodology 2 based on NA-MEMD. 

Detectors Mean SE Std SE Mean DR Std DR Mean f0 Std f0 

LPRM 1 0.9792 0.0064 0.9033 0.0170 0.5271 0.0223 

LPRM 3 0.9779 0.0062 0.9006 0.0158 0.5284 0.0215 

LPRM 5 0.9786 0.0089 0.8997 0.0194 0.5286 0.0209 
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LPRM 7 0.9793 0.0091 0.8841 0.0315 0.5251 0.0235 

LPRM 9 0.9791 0.0057 0.9003 0.0207 0.5244 0.0268 

LPRM 11 0.9792 0.0065 0.9007 0.0206 0.5270 0.0237 

LPRM 13 0.9762 0.0087 0.9005 0.0196 0.5306 0.0182 

LPRM 15 0.9790 0.0070 0.8977 0.0196 0.5256 0.0247 

LPRM 17 0.9808 0.0083 0.8910 0.0237 0.5239 0.0260 

LPRM 19 0.9708 0.0192 0.8468 0.0594 0.5373 0.0073 

LPRM 21 0.9750 0.0121 0.8682 0.0421 0.5337 0.0141 

LPRM 23 0.9802 0.0086 0.8894 0.0266 0.5307 0.0193 

LPRM 25 0.9789 0.0074 0.8930 0.0230 0.5286 0.0221 

LPRM 27 0.9776 0.0141 0.8881 0.0360 0.5314 0.0189 

LPRM 29 0.9728 0.0229 0.8402 0.0591 0.5346 0.0181 

LPRM 31 0.9635 0.0363 0.8150 0.0792 0.5381 0.0140 

LPRM 33 0.9648 0.0187 0.7227 0.1068 0.5318 0.0224 

LPRM 35 0.9681 0.0213 0.7680 0.0865 0.5308 0.0196 

LPRM 37 0.9769 0.0123 0.8573 0.0393 0.5304 0.0166 

LPRM 39 0.9731 0.0113 0.7923 0.0483 0.5310 0.0228 

LPRM 41 0.9544 0.0306 0.6935 0.1651 0.5312 0.0324 

LPRM 43 0.9600 0.0295 0.7080 0.1310 0.5368 0.0316 

LPRM 45 0.9471 0.0349 0.5754 0.2262 0.5408 0.0456 

LPRM 47 0.9782 0.0073 0.8511 0.0418 0.5279 0.0199 

LPRM 49 0.9796 0.0074 0.8805 0.0255 0.5310 0.0162 

LPRM 51 0.9803 0.0065 0.8992 0.0179 0.5299 0.0169 

LPRM 53 0.9786 0.0055 0.8999 0.0149 0.5271 0.0194 

LPRM 55 0.9813 0.0043 0.8970 0.0195 0.5293 0.0185 

LPRM 57 0.9802 0.0068 0.8868 0.0263 0.5274 0.0204 

LPRM 59 0.9730 0.0329 0.8719 0.1111 0.5254 0.0202 

LPRM 61 0.9698 0.0446 0.8734 0.1171 0.5272 0.0189 

LPRM 63 0.9680 0.0529 0.8790 0.0999 0.5276 0.0187 

LPRM 65 0.9646 0.0669 0.8737 0.1080 0.5265 0.0186 

LPRM 67 0.9685 0.0489 0.8734 0.0948 0.5269 0.0189 

LPRM 69 0.9717 0.0416 0.8735 0.1010 0.5239 0.0228 

LPRM 71 0.9752 0.0218 0.8722 0.1014 0.5275 0.0177 

 

 

Discussions  
 

Some important final remarks can be done regarding our proposal and recent researches 

about BWR stability: 

  

The common mechanism for BWR instability is the density wave (DW) oscillations effect 

(March-Leuba and Blakeman, 1991). A decrease in coolant flow increases the void fraction 

for a given reactor power. A high wave propagation velocity of voids (wave void) is then 

formed and accompanied by a high wave propagation velocity of pressure (wave pressure). 

Since an increase in pressure drop decreases the flow due to increased resistance to flow, a 

feedback loop results between inlet flow and pressure drop, which may lead to oscillations 
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in time. In addition, as the void fraction is increased as described above, the associated 

decrease in moderator density induces a negative reactivity feedback. This causes the 

power to decrease, which reduces the void fraction and fuel temperature and allows the 

power to build up again. As a result, self-sustained power oscillations may appear, 

depending on the operation conditions. 

 

According with (Muñoz-Cobo et al., 2016) the in-phase instabilities are driven by the 

interaction between the DWO mechanism and its coupling via the void reactivity feedback 

with the core neutron population. On the other hand, an in-phase instability implies 

growing neutron oscillations that are dominated by the fundamental neutronic mode. 

Regarding to the first azimuthal neutronic mode may also be unstable and growing, but its 

contribution to the total neutron population is relatively insignificant (Dokhane et al., 

2007). 

 

The mechanism of density wave oscillations for two-phase flow has recently received great 

attention, remaining as an important issue of scientific and technological interest (e.g. 

Muñoz-Cobo et al., 2016; Demeshko et al., 2015; Paul and Singh, 2014; Paul and Singh, 

2017; Vinai et al., 2014; Paruya et al., 2016; Pandey and Singh, 2017; Marcel et al., 2017). 

However, the core stability is due to fluctuations in coolant flow and power generation 

process coupled via nuclear feedback where the non-linear nature has been a challenge for 

the development of stability monitors. Therefore the methodology presented in this work 

constitutes a significant and novel advance towards the development of stability monitors 

able to predict linear and nonlinear effects, as well as the transition between them. 

 

 

Experiments on natural circulation BWR stability show that changing the fuel rods 

diameter affect to the stability performance of the system (Marcel et al., 2017). These 

authors clearly observed that at least two oscillatory modes exists in the system, one of 

them is the so-called reactor mode related to density waves travelling through the core, 

which is amplified by increasing the void reactivity feedback coefficient. Therefore, the 

methods based on SE presented in this work, are applicable to existing and advanced 

reactors of type BWR, and any two-phase flow system as well as characterization of 

stability limits (Pandey and Singh, 2017). A recent work showed that the stability of a 

BWR reactor was applied to assessment of optimum Fuel Reload Patterns for a BWR 

(Castillo-Durán et al., 2016). 

 

The methodology 1, developed in this work, is limited to the cases of neutron signal 

analysis of an APRM or LPRM where the instability in-phase can be detected like in a NPP 

as Laguna Verde which characteristic is its size (smaller compare to Forsmark and 

Ringhals) and where this kind of instability phenomena is expected. Regarding to 

methodology 2, it can be applied to both phase in-phase and out-of-phase instabilities. 

Given that the stability phenomena in BWR is a complex phenomenon in a heterogeneous 

two-phase flow system, where void propagation waves (propagation of the gas phase in the 

liquid phase) and pressure propagation waves (both in gas phase and liquid phase) generate 

the DW oscillation mechanics, then is preferable to implement an oscillation detector based 

on methodology  
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5.4 Chapter 5 Conclusions  

 
In this section two non-linear stability monitor methodologies based on noise assisted 

empirical mode decomposition methods (NA-EMDm) were proposed to analyze unstable 

BWR signals that stemmed from the Ringhals, Forsmark stability benchmarks and the 

Laguna Verde instability event, with the goal in mind of estimating the Shannon Entropy of 

those signals to measure their uncertainty and thus assess BWR stability through such novel 

measure. Also, the SE estimates were compared with Decay Ratio results computed via 

previous methods based on EMD variants. The proposed stability methodologies are rooted 

in noise assisted empirical mode decomposition algorithms, which are techniques that 

decompose non stationary signals that stem from non-linear sources in an adaptive (data-

driven) way to grant a physically meaningful decomposition of data, the data (the LRPM or 

APRM signals are split first in segments of 15 s) is decomposed into intrinsic mode 

functions (or simply modes), via the Hilbert transform it is possible to compute the 

instantaneous frequencies of the extracted modes to track the mode linked to BWR 

instability (whose IF is strongly concentrated around 0.5 Hz, the region of interest for BWR 

unstable events). Later, once the IMF (IMFs in the multidimensional case) of interest has 

been detected, the SE of this particular IMF is computed to assess the BWR stability of that 

particular 15 s signal segment that was analyzed via any of our stability methodologies. The 

major findings of our BWR stability studies are resumed in the following:  

a) regarding Methodology 1 based on the iCEEMDAN (univariate signal analysis) 

•  Case 4 of the Forsmark stability benchmark  

The estimated averaged values for the DR are in perfect agreement with those 

estimated by the different methodologies presented in [3]. The DR estimates 

indicate the beginning of an incipient instability event whereas the SE estimates 

indicate a fully developed instability event in the BWR core.   

•  Case 9 Cycle 14 of the Ringhals stability benchmark 

The high SE estimated values, clearly indicate again a fully developed unstable 

behavior of this case. Thus, the studied BWR floor 2 is unstable. The high DR 

estimates (but still not above the locus DR = 1) although high and depicting that 

there is something unusual going on in the BWR core but not high enough to 

trigger BWR protection mechanisms. 

•  The Laguna Verde instability event 

Prior the first 300 s of the signal, the DR oscillates between stability and 

instability. But, it is hard to infer the dominant DR value due to its strong 

discontinuous jumps between stability and instability. However, after the 300 s 

mark, the DR is high and greater that its threshold value (DR = 1) and remains as 

such (and oscillating around 1.1) throughout the rest of the simulation. Thus, the 

DR indicates unstable BWR behavior but only after the 300 s mark. The SE 

estimate is highly more consistent than the DR prior the 300 s mark, because the 
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SE clearly indicates unstable behavior (whereas the DR is unable to differentiate 

between the two) and after the 300 s mark, the SE slightly oscillates around 1 

(and not in a dramatic way as the DR does). Nevertheless, the SE always 

indicates unstable BWR behavior, long before the DR is able to detect it. Thus, 

the SE is capable of indicating unstable behavior prior any further growth in 

power of the unstable oscillation within the core whereas the DR is only able to 

detect instability (without bias) once the unstable oscillation is fully sustained and 

powerful enough to damage the core. 

  b)  regarding Methodology 2 based on the NA-MEMD (multivariate signal 

analysis) 

•  Multivariate analysis of the Forsmark stability benchmark (based on a sample 

of 4 LPRMs)  

Overall the BWR is unstable because of the high SE estimates along time, in spite 

of 4 segments that had an SE below the stability threshold (SE < 0.8). Thus, again 

from the very beginning of the simulation, the SE is able to detect an unusual 

BWR unstable behavior. The DR in the multivariate case prior the 150 s mark is 

apparently stable and after this 150 s mark, it fluctuates around 0.75, the DR 

estimate is high but not high enough to be a nuisance for BWR operation.  

•  Multivariate analysis of the Forsmark stability benchmark (based on a sample 

of 4 LPRMs): 

The SE estimates along time were high (beyond the SE stability threshold located 

at SE = 0.8) throughout the time span of the simulation for the 4 chosen LPRMs, 

thus the BWR is clearly unstable whereas, the DR estimates were high, clearly 

indicating the beginning of an unstable event, but they did not exceed the stability 

threshold to trigger the BWR protection mechanisms. 

According to our simulations it is naive to assume to infer information associated to BWR 

dynamics through one linear parameter alone such as the DR, because in most of our 

simulations, the DR only rises above its stability threshold (DR above 1) once the unstable 

oscillation has grown enough in power to damage the core (according to the stability 

analysis of the LV signal). Thus, it is necessary to propose another non-linear stability 

indicator (to replace the DR or to accompany it) to assess BWR stability, and the SE might 

be a suitable candidate to fulfill that role via our simple SE estimator or another more 

elaborate one that will be studied in future works.  

To select which stability methodology (between 1 and 2) is the most adequate to analyze 

BWR signals, is still not known and further stability cases must be studied in detail to 

decide which type of analysis works better; whether a univariate one or a mutlivariate one. 

Nevertheless, the SE (and DR) estimates extracted through these decomposition methods 

were similar (within the 10 % of difference). These noise assisted techniques have one 

cumbersome inconvenient and a difficult one to overcome. For instance, how to properly 

select the iCEEMDAN parameters I (the size of the ensemble of realizations of the EMD 

that this noise assisted method requires) and 
0
 (the standard deviation of the added 

assisted noise)? Nobody knows that answer yet in the EMD literature, thus further studies 
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are required to infer these two parameters. A similar question arises with the NA-MEMD, 

how many independent channels of noise are required in the decomposition scheme to 

mitigate the mode-mixing problem?, again, another question that has not been addressed in 

the specialized literature. However, once these questions are answered, then, our stability 

methodologies might be fully adaptive to be implemented in a real stability monitor and 

well adapted to decompose non stationary non linear data. 
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Chapter 6 

BWR Stability Indicator 2: The Sample Entropy 
 

In this chapter, we explore the Sample Entropy (SampEn) linked to the noise-assisted 

multivariate empirical mode decomposition (NA-MEMD) to infer whether BWR signals 

are stable or not. The SampEn (Richman and Moorman, 2000) is a measure that provides 

an index of signal complexity or irregularity of a time series. In this way, the SampEn 

might work as a possible nonlinear BWR stability indicator. SampEn was in principle 

developed almost exclusively to study physiological time series, over time, its utility 

expanded to other domains, such as: for daily weather temperature to measure climate 

complexity (Li et al., 2006) and for the measure the complexity of the dynamic 

reconfiguration of the brain to infer its association with normal aging (Jia et al., 2017). 

 

To properly estimate the SampEn from real BWR signals, the NA-MEMD was explored. 

The methodology we introduce here is based on the NA-MEMD and the HHT to compute 

an indicator linked to BWR density wave instability, such novel indicator is the Sample 

Entropy.  

 

6.1 The Sample Entropy  
 

The procedure for computing the sample entropy SampEn was introduced by Richman and 

Moorman (Richman and Moorman, 2000). In here, we grant a brief summary of their 

findings. SampEn is a measure of complexity. Let 1 2[x ,x ,..., x ]Nx =  be a time series of 

length N . To compute the complexity of this time series via SampEn, follow the next 

steps: 

1. Build a vector iv  with m  consecutive data points taken from x   

 

1 1[x ,x ,..., x ]i i i i mv + + −=   (23) 

 

where m  is the length of sequences to be compared, also called the embedding 

dimension. 
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2. For each i  define: 

 

   ( )
1

1,

1

1

N m
m
i i j

j j i

C r v v
N m

−

= 

=  − −
− −

   
 

(24) 

 

where i  varies in the interval (1 i N )m  − . In here, r  is the tolerance for 

accepting matches, std( )r s x=   where s  is a scaling parameter and std(x) is the 

standard deviation of x . ( )  is the Heaviside function: 

 

0, 0
(x)

1, 0

x

x


 = 


  

 

(25) 

 

and 
1

 is the Chebyshev distance, defined as: 

 

( )1 1 1 11
max , ,...,i j i j i j i m j mv v x x x x x x+ + + − + −− = − − −   (26) 

 

3. m
iC  represents the proportion of jv  (i j)  whose distances to iv  are less than r . 

Now, for each i  we also define: 

 

   ( )1

1
1,

1

1

N m
m
i i j

j j i

C r v v
N m

−
+

= 

=  − −
− −

   
 

(27) 

 

where 1m
iC +  represents the proportion corresponding to the dimension of 1m+ . 

m
iC  and 1m

iC +  have the same mold, but embedding vectors in both cases are defined 

in different spaces.  
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4. Average across all embedding vectors, to obtain: 
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and 
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(29) 

 

5. The SampEn is computed as   

 

1

SampEn ln
m

m

U

U

+ 
= −   

 

 
 

(30) 

 

SampEn is the negative natural logarithm of the conditional probability that two sequences 

similar for m  points remain similar at the next point, where self matches are not included 

in calculating the probability. Thus, a lower value of SampEn indicates more self-similarity 

(i.e. high order) of the studied time series whereas a higher value of SampEn points to 

higher complexity of the time series. The calculation of SampEn requires a priori 

determination of two unknown parameters, m and r (the length of data N  is up to the 

user). The suggested values of r are located in the range of 0.1-0.2 times the standard 

deviation of the studied signal x . In this section, we looked for the r  value that grants the 

global SampEn maximum because this maximum value leads to the correct interpretation of 

signals complexity (Chon et al., 2009). So, this r of interest is fixed in our simulations at 

0.1r = . The value of m  can be computed via the estimation of false nearest neighbor 

(Kennel et al., 1992). In our particular BWR stability discipline, the m  that was found 

through false nearest neighbors for our signals was most of the time equal to 2. Therefore, 

m is fixed at 2m =  for all of our computations. SampEn is, theoretically speaking, a 

fraction in the interval 0 SampEn  . However, the next two formulas can be used to 

find the lower bound and the upper bound of SampEn for fixed values of m  and N . 
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The lower bound is computed as:  

 

12[( 1)( )]N m N m −− − −   (31) 

 

The upper bound is computed as: 

 

ln( ) ln( 1) ln(2)N m N m− + − − −   (32) 

 

For all of our simulations m, r and N are fixed at 2m = , 0.1 std( )r x=  and 300N =  data 

points. Thus the lower bound is practically 0  whereas the upper bound is close to 11. 

However, the upper bound value was never attained for any simulation.  

 

6.2 BWR stability methodology based on the 

SampEn and the NA-MEMD 
 

The methodology to detect stable or unstable states (this methodology works with raw data. 

So, there is no need to preprocess the analyzed data) in a core of a BWR, based on the 

sample entropy and the NA-MEMD, is presented in the next steps: 

 

1. The studied raw signal (APRM or LPRM) obtained from the BWR is segmented in 

windows of 60 s of duration.  

 

2. Each segment (of 60 s of time span) is considered as just an independent channel 

(L=1) added with q independent channels of white Gaussian noise and decomposed 

through the NA-MEMD (for all of our computer simulations q=2). 

 

3. After decomposition, the q  channels corresponding to the noise are discarded, 

giving a set of  IMFs corresponding to each decomposed studied segment. 



119 

 

 

4. The Hilbert transform of each IMF (i.e. the HHT) is computed to get the 

instantaneous frequency of each IMF in the studied segment.  

 

5. When tracking these frequencies, it is possible to get the mode (or modes) linked to 

the density wave oscillation. In this way, only the mode (or modes) associated to 

BWR instability is considered for further processing whereas the remaining 

extracted modes are ignored. 

 

6. The SampEn of the tracked mode of interest (IMF) is computed for 300N =  (the 

length of the analyzed segment of 60 s), 2m = and 0.1 std(segment)r =   to attain 

the global maximum of the SampEn that leads to the correct interpretation of the 

studied segment complexity (Chon et al., 2009). 

 

7. The mean, median and the variance of the SampEn values are computed and 

averaged along all the studied segments of 60 s of the original signal. 

 

A high SampEn estimate (>1) points out high irregularity and high unpredictability of the 

studied BWR signal (LPRM or APRM) and this high value might indicate that the studied 

signal could be merely broad band non-coherent noise (BBNCN). This BBNCN, from the 

BWR point of view is a sign of stable behavior. On the other hand, a low SampEn value 

(<0.8) points to high predictability and regularity of the studied BWR signal. Such low 

value might indicate that the studied signal could be a cyclic one. Such waveform is a sign 

of BWR unstable behavior, due to the presence of a density wave that manifests in the 

LPRM or APRM signals as a cyclic waveform with a natural frequency that oscillates very 

close to 0.5 Hz. For forced convection phenomena, in the circulation natural convection the 

effect of the chimney changes this value (Marcel, 2007; Rohde et al., 2010). 

 

6.3 Results and discussions 
 

Now we validate the methodology given in subsection 3.1 with the next data sets, where fs 

is the sampling frequency of each set:  

1. Data set from a typical BWR:  

a) 208 steady state condition signals (i.e. stable signals), fs = 5 Hz. 

b) 96 unstable signals, fs = 10 Hz. 

 

2. Case 4 of the Forsmark stability benchmark:  

a) 1 APRM signal plus 22 LPRM signals, fs = 12.5 Hz. 
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3. Case 9 cycle 14 of the Ringhals stability benchmark:  

      a)  72 LPRM signals (located within 2 levels of the Ringhals reactor, each level has a   

total of 36 LPRMs, such levels are called 2 and 4), fs = 12.5 Hz. 

 

6.3.1 Stable signals 

 

The aim of this test is to observe the demeanor of the BWR in steady-state conditions. The 

results obtained are presented in Figures 71-77. Figure 71 shows the plot of one APRM 

stable signal of a typical BWR. Figure 72 shows in red dotted color, a studied segment of 

60 s of duration of the APRM signal with its power spectral density estimate (black-line). 

Figure 73 shows the first four extracted IMFs of the studied signal, which happens to be 

noise that is decomposed in a quasi-dyadic fashion by the NE-MEMD. Figure 74 shows the 

power spectral density of some IMFs.  

 

 

Figure 71. Stable signal from a typical BWR.  
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Figure 72. Analyzed segment of the studied APRM signal. 

 

Figure 73. A plot of the first 4 extracted IMFs in the analyzed segment. 
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Figure 74. PSD estimate of the first 6 extracted IMFs in the analyzed segment. 

Figure 75 shows the tracked IMF (IMF 3) of interest whose instantaneous frequency (IF) 

oscillates around 0.5 Hz. The computed SampEn of this IMF is 0.9351. Such high SampEn 

value indicates that the studied signal is broad band non-coherent noise (BBNCN), so the 

studied segment is stable and far from an unstable behavior. In this stable case, a mode exist 

whose IF is close to 0.5 Hz. However, the IMF 3 time series looks distant from a cyclic 

function we look for when an unstable event triggers in the core. All of the IFs were 

computed through the Hilbert-Huang transform of the extracted IMFs. Figure 76 shows the 

computed SampEn along time for all of the studied segments of 60 s, most of the SampEn 

estimates have a value slightly greater than 1 (i.e., the studied signal is stable). Table 11 

shows the mean(SampEn), median(SampEn) and std(SampEn) of the studied time series.  
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Figure 75. Tracked IMF (IMF 3) of interest and its associated instantaneous frequency (IF) 

around 0.5 Hz computed through the HHT. 

 

Figure 76. SampEn along time for the studied APRM stable signal. 
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Table 11: Mean(SampEn), Median(SampEn) and std(Sampen) of the analyzed APRM. 

Signal Mean(SampEn) Median(SampEn) Std(SampEn) 

APRM 1.1288 1.0994 0.1398 

 

Figure 77 shows a plot of the computed mean SampEn estimates of the 208 signals (each 

SampEn estimate is a blue point). A pattern appears, all of the mean SampEn estimates for 

the studied signals are higher than 1. Thus, the mean SampEn values point to BBNCN. 

Through SampEn estimation, the proposed stability methodology is able to detect stable 

signals and classify them in the stable category if their SampEn is greater than 1. 

 

 

Figure 77. Computed mean(SampEn) of the studied 208 stable signals. 
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6.3.2 Unstable signals 

 

Now, the studied signals stem from a density wave instability event. This instability case is 

registered by 96 LPRM signals. For reasons of space, only the analysis of one signal is 

presented. Figure 78 shows the plot of the studied signal (from LPRM 2), this signal looks 

like a cyclic function. Figure 79 shows a studied segment of 60 s (red dotted line) and its 

PSD estimate (black line), the segment looks like a noisy cyclic function. Figure 80 shows 

the first 4 extracted IMFs of the studied segment, the first 3 IMFs are linked with 

acquisition noise, whereas IMF 4 looks like a cyclic function (this is in fact the type of 

waveform commonly associated with density wave unstable events). Figure 81 shows the 

PSD estimates of the first 6 IMFs, the energetic content of IMF 4 is highly concentrated 

around 0.5 Hz, the energetic content of the other IMFs is meaningless next to the energy of 

IMF 4. The SampEn estimate of IMF 4 (IMF or mode linked to instability, see IF in Figure 

82 and PSD estimate in Figure 81) is 0.6181, this estimate is a clear indication of signal 

regularity and low complexity. The SampEn points to a simple function, in this case a 

cyclic function that in our context is linked with a density wave type of instability. Thus, 

the studied segment is unstable. Figure 83 shows the SampEn estimates along time for all 

of the studied segments of the signal of interest, all estimates are smaller than 1. 

 
Figure 78. Unstable signal from a typical BWR. 
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Figure 79. Analyzed segment of the studied LPRM 2 signal. 

 

 
Figure 80. A plot of the first extracted 4 IMFs in the analyzed segment. 
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Figure 81. PSD of the first 6 extracted IMFs in the analyzed segment. The PSD of the IMF 

4 is highly concentrated around 0.5 Hz. 

 
Figure 82. Tracked IMF (IMF 4) of interest linked to BWR instability and its associated 

instantaneous frequency (IF) around 0.5 Hz computed through the HHT. 
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Figure 83. SampEn estimates of the IMFs or modes of interest along time. 

 

Table 12 shows the mean(SampEn), median(SampEn) and std(SampEn) of the time series 

shown in Figure 83. Now, the tracked IF (IF 4) along time carries physical meaning. Thus, 

the mean(IF) and std(IF) values of all of the studied segments are now provided in this 

table.  

Table 12: Mean(SampEn), Median(SampEn) and std(Sampen) of the analyzed LPRM 2. 

Now the mean(IF) and std(IF) are included. 

Signal Mean(SampEn) Median(SampEn) Std(SampEn) Mean(IF) 

[Hz] 

Std(IF) 

[Hz] 

LPRM 2 0.5425 0.5258 0.0544 0.5374 0.0030 

 

Figure 84 shows a plot of the computed mean SampEn estimates of the 96 unstable signals 

(each SampEn estimate is a red point). A pattern appears, all of the mean SampEn estimates 

for the studied signals are smaller than 0.8. Thus, the mean SampEn values point to visually 

regular signals such as cyclic functions. Through SampEn estimation, we are able to build a 

binary classifier that separates BBNCN signals (linked to stability) from cyclic ones (linked 

to density wave instability). One core feature of SampEn is that it accommodates for 

complex non-linear and non-stationary data whereas conventional Decay Ratio estimates 
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must assume beforehand that the studied BWR signals behave linearly (an assumption that 

is false in real life). 

 
Figure 84. Computed mean(SampEn) of the studied 96 unstable signals. 

 

6.3.3 Comparison of stable and unstable signals 

 

To complete the analysis of the stable/unstable signals through SampEn, Figure 85 shows a 

comparison of the mean SampEn values of the studied sets (stable set of 208 signals plus a 

set of 96 unstable signals). The computed SampEn mean values of the stable signals 

fluctuate very close to 1.2 whereas the SampEn mean values of the unstable signals 

oscillate very close to 0.6. So the SampEn detects with success stable BWR signals from 

unstable ones via complexity analysis (of course with the aid of the NA-MEMD to denoise 

these signals and isolate the mode linked to instability). There is a distance of 

0.6 between the two states (stable from unstable). So, by fixing a threshold value around 

0.9, it is possible to differentiate one state from the other properly. Any SampEn estimate of 

a BWR signal segment higher than 0.9 is stable whereas any lower SampEn value from this 

threshold is unstable. 
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Figure 85. Comparison of the mean(SampEn) values for both studied sets (a stable set of 

208 APRM signals versus an unstable set of 96 LPRM signals).  

6.3.4 Case 4 of the Forsmark stability benchmark 

 

This particular event corresponds to a situtation where the neutronic power reactor suffers 

unusual unstable problems, i.e., presents a mix of oscillation modes. The C4_APRM and 

C4_LPRM_x signals correspond to average power monitors (APRM) and local range 

monitors LPRM. The entire case 4 consists of a total of 23 signals, 22 LPRMs and 1 

APRM. Nonetheless, only the analysis of the APRM is presented in this work. Figure 86 

shows the studied APRM signal of interest. Figure 87 shows a studied 60 s seconds 

segment (the dotted red line)  that is decomposed through NA-MEMD and its PSD estimate 

(the dashed-dotted green line). Figure 88 shows the first 5 extracted IMFs of the studied 

segment (as a reminder, the IMFs of the 2 noise extra channels are discarded). Figure 89 

shows the PSD estimates of the first 6 IMFs, we highlight that there's a bit of mixing 

between IMF 4 and IMF 5. Nonetheless IMF 5 is slightly closer to 0.5 Hz than the IMF 4 

and has more energy. 
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Figure 90 shows a plot of the IMF 5 of interest that is linked to BWR density wave 

instability and its linked instantaneous frequency (IF) that oscillates around 0.5 Hz ( we 

highlight that IMF 5 is slightly mixed with IMF 4 but this is a result due to complexity of 

the Forsmark case 4. However, IMF 5 has more energy than IMF 4). The SampEn of this 

IMF 5 is 0.5443. Thus this segment is unstable (SampEn points to high regularity and low 

complexity). Figure 91 shows the SampEn estimates of the IMFs or modes of interest along 

time for all of the studied segments of 60 s. All of the SampEn estimates are smaller than 

0.7. So, the studied APRM signal is unstable.  

 

Figure 86. Forsmark Case 4 APRM signal.  
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Figure 87. Studied segment of the Forsmark Case 4 APRM. 

 

Figure 88. A plot of the first 5 IMFs in a segment of the studied Forsmark APRM. 

 



133 

 

 

Figure 89. PSD estimate of the first 6 IMFs extracted in the analyzed segment.  

 

Figure 90. IMF 5 linked to BWR instability and its associated IF (oscillating close to 0.5 

Hz). 
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Figure 91. SampEn estimates of the IMFs or modes of interest along time. 

Table 13 shows the mean(SampEn), median(SampEn) and std(SampEn) of the time series 

shown in Figure 91 (SampEn estimates of IMF 4). The mean(IF) and std(IF) are also given 

in this table. Figure 92 shows a plot of the computed mean SampEn estimates of the 23 

unstable signals (each SampEn estimate is a red point). A pattern appears, all of the mean 

SampEn estimates for the studied signals are smaller than 0.8. Thus, the mean SampEn 

values point to visually regular signals such as cyclic functions. Through the proposed 

methodology, we are able to classify these 23 signals in the unstable category with success 

because their SampEn is smaller than 0.8.  

Table 13: Mean(SampEn), Median(SampEn) and std(Sampen) of the analyzed APRM. 

Now the mean(IF) and std(IF) are included. 

Signal Mean(SampEn) Median(SampEn) Std(SampEn) Mean(IF) 

[Hz] 

std(IF) [Hz] 

Forsmark 

APRM 

0.5369 0.5295 0.0411 0.5017 0.0234 
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Figure 92. Computed mean(SampEn) of the studied 23 unstable signals (SampEn of the 

IMFs linked to instability) of the studied Forsmark Case 4. 

6.3.5 Case 9 cycle 14 of the Ringhals stability benchmark 

 

The data of this case comes from measurements of the Swedish BWR reactor Ringhals 1. 

This case consists of a total of 72 LPRMs distributed in two floors or levels of 36 LPRMs 

each. As stated before, only the analysis of one signal (LPRM 1) is detailed in here. Figure 

93 shows a plot of the studied LPRM 1 signal (of level 4). Figure 94 shows a plot of the 

studied segment (the red dotted line) that is decomposed through NA-MEMD and its PSD 

estimate (the dashed-dotted green line). Figure 95 shows the first extracted 5 IMFs (by the 

way, IMF 4 looks like a cyclic function) of the segment. Figure 96 shows a plot of the PSD 

estimates of the first 6 IMFs. The PSD estimate of IMF 4 is highly concentrated around 0.5 

Hz. Figure 97 shows the tracked IMF 4 of interest linked to BWR instability, this IMF 4 

looks like a cyclic function and its associated IF is almost a line centered around 0.5 Hz. 

The computed SampEn of this IMF 4 is 0.4544 (the studied IMF 4 is unstable. Thus, the 

studied segment is unstable). Figure 98 shows the computations of the SampEn along time 

for all of the studied segments of 60 s. All of the estimates are smaller than 0.8 and located 

between 0.4-0.6. So, the studied signal is unstable and highly regular like a cyclic function.  
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Figure 93. Ringhals Case 9 cycle 14 LPRM1.  

 

Figure 94. Studied segment of the Ringhals Case 9 cycle 14 LPRM 1.  
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Figure 95. A plot of the first 5 IMFs extracted from the analyzed segment of the studied 

Ringhals case. 

 

Figure 96. PSD estimate of the first 6 IMFs extracted from the analyzed segment. 
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Figure 97. IMF 4 linked to BWR instability and its associated IF (very close to 0.5 Hz). 

 

 

Figure 98. SampEn estimates of the IMFs or modes (IMFs 4) of interest along time. 
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Table 14 shows the mean(SampEn), median(SampEn) and std(SampEn) of the time series 

shown in Figure 98. The mean(IF) and std(IF) of all of the studied segments of the targeted 

LPRM are also given in this table. Figure 99 shows the computed mean(SampEn) values of 

the 36 LPRMs of level 2 of the Ringhals reactor. It is observed, that all of the SampEn 

estimates are smaller than 0.8 (The percentage of classification of the studied signals in the 

unstable category is of 100%). The entire floor 2 is unstable and the SampEn estimates are 

located in the range 0.5-0.7. Figure 100 shows the computed mean(SampEn) values of the 

36 LPRMs of level 4 of the Ringhals reactor. It is observed, that all of the SampEn 

estimates are smaller than 0.8 (The percentage of classification of the studied signals in the 

unstable category is of 100% as well). The entire floor 4 is also unstable and the SampEn 

estimates are located in the range 0.45-0.7. The entire case 9 is unstable and SampEn was 

perfectly able to detect that behavior. 

 

Table 14: Mean(SampEn), Median(SampEn) and std(Sampen) of the analyzed LPRM 1. 

Now the mean(IF) and std(IF) are included. 

Signal Mean(SampEn) Median(SampEn) Std(SampEn) Mean(IF) 

[Hz] 

Std(IF) 

[Hz] 

Ringhals  

LPRM 1 

0.4668 0.4730 0.0497 0.5165 0.0328 

 

 
Figure 99. Mean(SampEn) values for the 36 LPRMs of level 2 of the Ringhals BWR unit. 
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Figure 100. Mean(SampEn) values for the 36 LPRMs of level 4 of the Ringhals BWR unit. 

6.4 Chapter 6 discussions 
In this chapter the Sample Entropy, a measure that provides an index of signal complexity 

or irregularity of a time series, was used to estimate complexity of a BWR time series for 

stability analysis. The SampEn was tested in conjunction with the noise-assisted 

multivariate empirical mode decomposition, a non-linear filter that decomposes non-

stationary data from non-linear sources. The NA-MEMD is used in this application to 

extract correctly the associated mode to the density wave oscillation, before to compute the 

SampEn. The proposed SampEn + NA-MEMD rolling window methodology allowed 

categorize stable BWR signals from unstable ones. The computed SampEn values of the 

stable signals, oscillated around 1.2 (a high SampEN value is linked to a broad band non-

coherent noise (BBNCN) associated with stable behavior). The SampEn values of unstable 

signals fluctuate close to 0.6 (they might be lower than that, but overall such SampEn 

estimates are below the threshold SampEn value of 0.8). A low value of SampEn points in 

this case to a simple cyclic function that is linked to density wave instability. 100% of the 

typical BWR studied cases were classified with success into stable or unstable categories. 

100% of the Forsmark Case 4 studied LPRMs confirm BWR instability through our 

proposed SampEn + NA-MEMD methodology. 100% of the studied LPRMs of level 2 and 
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4 of the Ringhals Case 9 cycle 14 confirm instability. According to these experiments, the 

SampEn paired with the NA-MEMD is a suitable candidate to be used as a BWR stability 

indicator. In the future, the SampEn might be tested in conjunction with other suitable non-

linear indicators (possibly fractal dimension estimators, as in Demazière et al., 2008) to 

build a robust BWR stability monitor based on 2 non-linear measurements, where one of 

them is going to be the SampEn. In general, the SampEn is a suitable and easy to 

implement BWR non-linear stability indicator for real time series analysis provided that 

there is enough data for SampEn computation. The SampEn requires sufficiently large data 

points to provide reliable estimates, by far the time series length constraint is the only 

handicap of the SampEn technique.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 

 

Chapter 7 

BWR stability indicator 3: The Higuchi fractal 

dimension 
 

In this chapter, the Higuchi fractal dimension (HFD, Higuchi, 1988) is explored to assess 

BWR instability due to density waves. The HFD is a non-linear measure of signal 

complexity in the time domain. The HFD is a numerical approach to compute the fractal 

dimension (FD), a tool that stems from fractal theory to provide an index of roughness of a 

pattern (i.e., a fractal pattern) by comparing how a detail in a particular pattern changes 

with the scale at which it is measured. The HFD is a fraction on the interval 1 < HFD < 2, 

where a low value of HFD indicates a predictable and regular time series whereas a high 

HFD indicates an unpredictable and very irregular time series (such as noise). In the BWR 

stability context, the HFD computations are aimed towards the detection and classification 

of stable states from unstable ones. The HFD based stability methodology for BWR 

developed in this chapter was tested with the real signals studied in past chapters.  

 

The HFD has been applied successfully in different areas of neurophysiology, from cellular 

to systems neurophysiology. The HFD was used for single neuron ( e.g., Spasić et al., 2011; 

Kesić et al., 2014), in EEG (e.g., Spasić et al., 2005a,b), and in magnetoencephalographic 

(MEG) signal analysis (e.g., Gómez et al., 2009; Gómez and Hornero, 2010; Poza et al., 

2012) 

 

However, further application of HFD in basic research and medical practice will reveal its 

complementarity with, advantages or disadvantages over existing linear and non-linear 

methods (Kesić and Spasić, 2016). When it comes to the test of non-linear fractal  

(Mandelbrot, 1983) based methods on the domain of BWR stability, various techniques 

have been tested before, such as the correlation exponent (Grassberger and Procaccia, 

2004) which is a characteristic measure of strange attractors and allows to differentiate 

between different strange attractors (Strogatz, 1994) which allows one to distinguish 

between deterministic chaos and random noise. The usefulness of the correlation exponent 

in characterizing experimental data which stems from very high dimensional systems is 

highlighted in the BWR stability domain in (e.g., Suzudo 2003; Suzudo et al., 1993; Otero 

et al., 2003) through a practical technique to compute the correlation exponent (Grassberger 

and Procaccia, 2004). 
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Nonetheless, this practical method requires a set of parameters that are not known a priori 

related to the studied data, such as embedding dimension, time delay, Theilers corrector 

(Theiler, 1990), the number of singular values (SV) and the generalization index. Even if 

optimal methods to compute the five aforementioned parameters are implemented in BWR 

stability proposals, their inclusion will increase the cost of the methodology proposed. 

Based on these facts, we explore more practical estimation methods based on fractal theory, 

and with less restriction involved in the computation of the input parameters of the studied 

techniques, to develop new stability methodologies where a fractal measurement is 

involved to provide information related to the status of reactor signals. 

 

7.1 What are fractals ?  
 

Fractals are complex geometric objects with a particularly property (in general): self-

similarity, i.e. a pattern is repeated in an embedded way at different scales. Sometimes such 

similarity is exact; more often it is only an approximate or statistical. Many natural 

structures are fractal-like such as mountains, clouds, coastlines, blood vessel networks, etc. 

In Figure 101 are displayed two classic fractals: one obtained from the Maldelbrot set 

(Mandelbrot, 1983) and the Von Koch curve (both generated from Matlab). The fractals 

obtained from the Mandelbrot set are beautiful images (even there were considered as Art) 

and the Von Koch curve looks like a rough but vigorous model of a coastline, wrote 

Mandelbrot to describe it. Further details related to the scientific applications of fractals, 

and their lovely mathematical theory behind them can be found in (Mandelbrot, 1983). 

 

Mandelbrot setVon Koch curve  
 

Figure 101. Examples of fractals. 

 

The mathematical key property of a genuinely fractal object is that its fractal metric 

dimension is a non-integer rational number called the fractal dimension (FD), a measure 

that can be used to characterize the shape of this object. In the topological sense, a curve in 

a plane always has a dimension of one. On the other hand, as the curve becomes more and 

more complex, the curve fills more and more the plane. Thus, in another sense, a complex 

curve can be considered to have a FD of greater than one. In terms of fractal dimension, a 
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straight line has a dimension of one, an irregular line has a dimension between one and two, 

and a complex curve completely filling this plane could have a dimension approaching of 

two. Besides, lines accumulating repeatedly in the plane by crossing and recrossing 

themselves, can even have fractal dimension of greater than two (Katz and George, 1985). 

In this way, fractal dimensions can be used to assign numbers to the degree of complexity 

of planar curves.  For example, the von Koch curve Fractal Dimension (FD) is 

approximately 1.26 (Strogatz, 1994). This measure is greater than the dimension of a line 

(1.0) and greater that the dimension of the Cantor set (0.63) (Fleron, 1994), which means 

that the Koch curve is rougher (i.e. more complex and intricate) than the Cantor set. Then, 

the FD is a natural measure of irregularity of a curve, in our case, a BWR time series that 

can be either stable or unstable depending on its irregularity. 

 

7.2 The Higuchi fractal dimension algorithm 
 

The FD estimator that is used in this work is the Higuchi Fractal Dimension (HFD), a 

nonlinear tool permitting to measure the complexity of a curve, in special to measure 

regularity of discrete-time series. This method was proposed by Higuchi, 1998 and it is 

summarized in the next steps: 

 

Step1. Given ( )x n , a N-points discrete-time series (1), (2),..., ( )x x x N ; construct a new self-

similar time series ( )kx m  as: 

 

( )
( )

( ), ( ), ( 2 ),..., ( int )k

N k
x m x m x m k x m k x m k

k

 −  
→ + + +  

  
                    (33)          

 

 

with 1,2,...,m k=  being the initial time; k  is the time interval, max1,...,kk =  is a free 

parameter, and int[ ]r  is the integer part of the real number r .  

 

Step 2. For each of the k  time series (or curves) ( )kx m , compute the length ( )mL k  as: 

 

int

1

1 1
( ) ( ) ( ( 1) )

int

N m

k

m

i

N
L k x m ik x m i k

N mk
k

k

− 
 
 

=

  
   −
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(34) 

  

where ( )( 1) int[( ) / ]N N m k k− −  is a normalization factor. 
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Step 3. Obtain an array of mean values ( )L k  for each max1,...,kk =  averaging ( )mL k  for 

all m  as: 

 

1
( )

( )

k
mm

L k
L k

k

==


  

 

(35) 

 

Step 4. Finally, estimate the HFD from the slope of the best least squares linear fitting the 

plot ln( ( ))L k  versus ln(1 )k , i.e. 

 

ln( ( ))
HFD

ln(1 )

L k

k
=   

(36) 

 

In the practical cases, the original time series can be segmented into smaller windows, 

overlapped or not. In this case, the method for computing HFD values should be applied to 

each window individually, with N  representing the length of each window. The mean of all 

HFD values for these windows can be used as a measure of complexity for the entire signal.  

 

In the case of the BWR signals, the HFD for a random white noise (stable state) will be 

estimated around 1.5  or higher, and for a low frequency sine wave around 0.5 Hz 

(instable state) will be 1 (HFD estimated value corresponding to a smooth curve). 

 

7.3 How to select an adequate kmax free parameter 

value?  

The HFD has only one free parameter noted as maxk  in the method previously described 

being his choice very important in the algorithm performance. Higuchi, 1988 did not 

elaborate extensively in his work on the selection of maxk  value, however some efforts 

have been developed in order to get the most suitable maxk  in according with the 

application (e.g. Accardo et al., 1997; Virkkala et al., 2002; Olejarczyk, 2007; Gómez and 

Hornero, 2010). 

 

In this work, various numerical experiments were performed with synthetic signals with 

well-known theoretical values of FD in order to figure out a quasi-optimal fixed maxk  

value. Such test experiments not only provide information related to the accuracy of the 

HFD, but also give information linked to the choosing of a quasi-optimal maxk  value, 

which is used for HFD estimates of BWR data. These experiments are next presented. 
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7.3.1 Synthetic signals: Fractional Gaussian noise 

In this subsection, the reliability of the HFD is tested with a set of complex noise signal 

paths with well defined values of fractal dimension. Our goal in mind is to infer an 

adequate estimate of maxk
 
to calibrate the HFD to suit the intended goal of  proposing a 

new BWR stability indicator able to provide the most accurate FD estimates HFD can 

provide for our real world application.  

 

Such complex signals are variations of fractional Gaussian noise (fGn) paths, which are 

defined as the increment process of fractional Brownian motion (Dieker, 2004). In discrete-

time, any fGn path corresponds to a time series ( ) H , , 1,0,1,x n n = −  indexed by a 

real-valued parameter 0 H 1  , and its autocorrelation function is given by:  

 

( ) ( ) ( )

( )

H H H

2
2H 2H 2H

1 2 1
2

xr k E x n x n k

k k k


= −  

= − − + +
                          (37)

 

 

where H  is the Hurst exponent (Hurst, 1951) and 2  is the variance of the noise. The 

Hurst exponent is a dimensionless estimator for the self-similarity of a time series. The 

Hurst exponent is related to the fractal dimension (FD) by the next simple relation: 

 

H 2 FD= −   (38) 

 

In fact, FD  and H are cousins measuring irregularity of a curve (in our context, a time 

series). For a very irregular time series H 0= , for white noise H 0.5  (Wood and Chan, 

1994) and H 1=  indicates a predictable direct motion, coming from a regular time series, 

possibly a smooth curve. In previous works further information about H  is presented (e.g., 

Rasheed and Qian, 2004; Mandelbrot and Hudson, 2010). The special case H 0.5=  reduces 

to white noise, whereas other values induce non-zero correlations, either negative when 

0 H 0.5   or positive when 0.5 H 1   that represent long-range dependence. In here, 

intensive simulations have been performed on such processes, with H varying from 0.1 to 

0.9 to build a set is   1,2,...,100i =  of 100 signals of fGn. The data length of each signal in 

the set is 512N = . The paths of fGn have been generated by the method given by Wood 

and Chan, 1994. Figure 102 shows for illustrative purposes the plot of 8 fGn signal paths 

where H  starts to increase from 0.1 (Figure 102A) until reaching the value 0.8 (Figure 

102H). With each increment of H the fGn paths become more regular (i.e. less rough and 

less complex) and predictable. The FD  decreases accordingly from 1.9 to 1.2. 
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Figure 102. fGn signals generated for 8 specific Hurst exponent ( H ) values. 
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For the next experiment, that now involves the FD estimation through the practical HFD 

technique, a set of 100 fGn signal paths is  ( 1,...,100)i =  of length 512N = , were 

generated. H  varies in the interval H 0.1 ,0.1 2 ,...,0.9H H= + +   with H 1 100 = . For 

each fGn signal in the set, the HFD is computed, for integer values of the free parameter 

maxk
 
chosen in the interval [2,3,4,...,32]  (for maxk 1=  the HFD is nonexistent, so this 

value is ignored for our simulations). 

 

This step will give us the next matrix 
maxH kG  : 

 max

max

1 1 1

2 2 2
H k

100 100 100

k

HFD( ,2) HFD( ,3) HFD( ,32)

HFD( ,2) HFD( ,3) HFD( ,32)
H

HFD( ,2) HFD( ,3) HFD( ,32)

s s s

s s s
G

s s s



 
 
 =
 
 
 

   (39) 

 

Each column of the matrix 
maxH kG   gives us a line of computed values of the HFD, as 

shown in Figure 103, the blue straight line is the theoretical FD line of the fGn paths in the 

set (this is the line this experiment is trying to approach through HFD for a particular fixed 

value of maxk ). In this figure, only 5 HFD lines (instead of the 32 different lines) are 

plotted for illustrative purposes. 
 

The mean square error (MSE) between the theoretical line of FD values and each column of 

maxH kG   is computed. Each 
maxH kG  column generates a line of HFD estimates for a fixed 

maxk value. This MSE between the desired blue line and each generated line of HFD 

estimates is shown in Figure 104. The best maxk  is the one that gives us the line that is the 

closest to the theoretical FD blue line. This line is also linked to the smallest MSE in the 

plot. The line that best approaches the theoretical blue line is the one where the HFD was 

computed for maxk 4=  as is depicted in Figure 105.  
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Figure 103. Plot of five columns of
maxH kG  . Each column grants a pseudo-straight line for 

a particular maxk  value.  

 

Figure 104. Computed MSE between the desired FD line and each column of
maxH kG  . 
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Figure 105. Plot of the theoretical FD line for the fGn set versus the best line computed via 

HFD for maxk 4= . 

 

Given the fact that the fGn signals are random ones, Figure 106 shows the best maxk  

obtained after 1000 realizations of this same search experiment for 1000 different 

realizations of the fGn is  signal set. Figure 106 is a histogram of how many times a maxk  

value appears along all the realizations performed on the various is  sets. The value that 

appeared most of the time was maxk 4= , this value was the best candidate to grant the best 

FD estimate. It can be seen that as soon as maxk  starts to increase beyond 6, the 

performance of the HFD to provide good FD estimates diminishes dramatically, to the point 

where maxk  values greater than 11 never show up in the histogram. Then, maxk 4=  is the 

optimal free HFD parameter value 40%  of the time. 
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Figure 106. Histogram of the maxk  (the best one for each realization of a fGn set is ) count 

for 1000 realizations of the experiment performed above with the various fGn is  sets, to 

infer their optimal maxk value for HFD estimation. 

 

Table 15 presents the HFD estimates for the fGn signals shown in Figure 102 for the found 

quasi-optimal free parameter value maxk . These studies of the HFD involving artificial 

signals granted the proper value of the free parameter maxk  to be used to analyze BWR real 

signals. This value is fixed at maxk 4=  for all of the studied BWR signals. The decision 

behind the choosing of the used maxk  value (of 4) for BWR simulations lies in the 

observation that the fGn paths are visually very complex and are also very difficult artificial 

signals to implement (and visually speaking, the fGn paths are much more complex than the 

studied BWR real signals) and for them, there is a 40%  chance of hitting the jackpot 

when computing the HFD with maxk 4=  for any fGn signal. Thus, our choosing of 

maxk 4=  for BWR signal analysis is linked to the fact that this particular value provided 

the best HFD estimates of  intricate fGn signal paths. 
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Table 15. Computed HFD value for eight fGn signals.  

Theoretical FD values 

for some fGn paths 

HFD estimate 

for maxk 4=  

1.9 1.8904 

1.8 1.7980 

1.7 1.7038 

1.6 1.5782 

1.5 1.4649 

1.4 1.4143 

1.3 1.3249 

1.2 1.2057 

 

 

7.4 The HFD as a novel BWR stability indicator 

In this section, the HFD is tested with its free parameter maxk  fixed to 4 due to the fact that 

this value was the best possible maxk  with which to attain the best FD estimates for the 

studied fGn signals, which are very complicated signals to investigate (and far more 

complex than real BWR signals). Therefore, it is believed that maxk 4=  will provide 

accurate FD estimates (hopefully the best ones) for real BWR signals. As a starting point, a 

simple detector methodology based on the HFD is given. Such detector methodology is 

tested with real signals that stem from a BWR. Our goal is to classify those signals into two 

categories: stable ones and unstable ones via analysis of signal irregularity or roughness. 
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7.4.1 A BWR instability detector methodology based on the HFD 

Now, a practical BWR detector methodology is introduced based on the HFD ( maxk 4= ) to 

infer whether a BWR signal is stable or unstable. Before giving the steps of this detector 

methodology. Let us define the next two estimators: 

 

• HFD is a practical estimator of the fractal dimension (FD) for time series. 

• eH  is a practical estimator of the Hurst exponent ( H ) for time series. 

 

The relationship that links HFD and eH  is the plug-in Eq. (6) which can be thought of as 

mapping of the HFD estimates from the interval [1,2]  to the interval [0,1]  which might be 

convenient in an online stability monitor for reasons that in the following will be given. 

However, this particular mapping of the HFD estimates to eH  ones is optional and up to 

the BWR user in turn. This mapping is in fact a benefit of working with the HFD and it is 

of utter importance to highlight it).  

 

The main steps of the methodology for novel non-linear indicator of BWR stability is given 

as follows: 

 

1. The considered signal (APRM or LPRM) obtained from the BWR is segmented in 

windows of 10 s of duration. 

2. Each segmented signal (APRM or LPRM) is studied with the HFD method, with the 

free parameter maxk 4=  to estimate its HFD. 

3. The mean (mean(HFD)) and standard deviation (std(HFD)) of the HFD estimates 

are calculated and averaged along all the studied segments of 10 s.  

4. Although the HFD is the main protagonist of this detector methodology. The Hurst 

exponent estimate ( eH ) can also be used to just range the HFD estimated values 

between 0 and 1 (plug in the HFD estimates in Eq. (6) to compute eH ). This step 

can be considered as optional.  

 

A high HFD ( 1.5) estimated value points out high irregularity and high unpredictability of 

the studied BWR signal (LPRM or APRM) and this high value might also indicate that the 

studied signal could be noise. This noise (could be white noise), from the BWR perspective 

is a sign of stable behavior. On the other hand, a low HFD ( 1 ) estimated value points out 

high predictability and high regularity of the studied BWR signal, also, this low value 

might indicate that the studied signal could be a regular sinusoid waveform. This particular 

waveform, in the context of BWR signal analysis is a sign of BWR unstable (i.e., 

undesirable) behavior due to the presence of a density wave, which manifests in the LPRM 

or APRM signals as a sinusoid function with a natural frequency that oscillates around 0.5 

Hz. If the Hurst exponent is employed (a reminder, the Hurst exponent is an optional 

indicator, but it is important to highlight it, because HFD estimates are related to eH  via a 

linear relationship), a high HFD value (sign of stable BWR behavior) is mapped to a low 

eH  value close to 0.5 whereas a low HFD value (sign of unstable BWR behavior) is 



154 

 

mapped to a high eH  value close to 1. Then, when HFD increases, the Hurst exponent 

decreases linearly.  

 

7.5 Results and discussions  
Now we validate the methodology given in Section 4.1 with the next data sets: 

 

1. Data set from a typical BWR: 

   a) 207 steady state condition signals (i.e. stable signals). 

   b) 96 unstable signals. 

2. Case 4 from the Forsmark stability benchmark: 

a) 1 APRM signal plus 22 LPRM signals.  

3. Case 9 cycle 14 of the Ringhals stability benchmark: 

   a) 72 LPRM signals. 

 

7.5.1 Stable signals 

 

The aim of this test is to validate the behavior of the BWR in steady-state conditions. The 

results obtained are presented in the Figures 107-112. Figure 107 shows the plot of one 

APRM stable signal of a typical BWR. 

 

 
Figure 107. Stable signal from a typical BWR. 
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Figure 108 shows in red color, a studied segment of 10 s of duration of the APRM signal, 

the FD of the red segment is estimated via HFD ( maxk 4= ). The FD of the segment is 

1.6431, such high FD value indicates that the studied signal is only acquisition noise 

around the steady state power signal, so the studied segment is stable and far from a 

sinusoid shape (unstable BWR signals have the shape of a quasi-sinusoid function).  

 

 
 

Figure 108. Analyzed segment of the studied APRM signal.  

 

Figure 109 shows the estimated HFD along time for the studied APRM signal. The HFD 

oscillates very close to the high value of 1.5 and thus nothing unusual is going on in the 

core. Figure 110 shows the Hurst exponent estimate eH  computed via HFD by the linear 

relation given by Eq. (6). It is observed that the value of eH  along time oscillates very 

close to 0.5. The Hurst exponent value associated to white Gaussian noise. So, eH  points to 

a typical stable case. The mean and the standard deviation are also computed in the final 

step.  
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Figure 109. Estimated HFD along time for the studied stable APRM signal.  

 

 
Figure 110. Estimated eH along time for the studied stable APRM signal. 
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Table 16 shows the mean(HFD) computed along time and the std(HFD) of the studied 

APRM signal. Figure 111 shows a plot of the computed mean HFD estimates of the 207 

signals (each HFD estimate is a blue bullet point). Figure 112 shows the computation of the 

mean value of eH  for the entire stable signal set. A pattern appears, most of the mean eH  

estimates for the studied signal set oscillate very close to 0.5. Thus, the mean eH  values 

pinpoint to complex (i.e., rough) signals such as white Gaussian noise. Through HFD 

( maxk 4= ) estimation, the proposed methodology is able to detect stable signals that are 

visually noisy ones. 

 

Table 16. Mean(HFD) and std(HFD) of the analyzed APRM 

APRM signal number mean(HFD) std(HFD) 

1 1.5409 0.0926 

 

 
Figure 111. Computed mean (HFD) of the studied 207 stable signals. 
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Figure 112. Computed mean ( eH ) of the studied 207 stable signals. 

7.5.2 Unstable signals of the laguna verde reactor 

 

The studied signal in this subsection stems from an instability event. This instability case 

consists of a total of 96 LPRM signals. Again, for reasons of space, only the analysis of one 

signal is presented. Figure 113 shows the plot the studied signal (from LPRM 1), this signal 

looks visually far from white noise. Figure 114 shows a studied segment of 10 s, the 

segment looks like a quasi-sinusoid function. Its HFD ( maxk 4= ) estimate is 1.0499, this 

HFD estimate is a clear indication of signal regularity and low complexity. Thus, the HFD 

points to a simple function, in this case a sinusoidal function. 
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Figure 113. Unstable signal from the Laguna Verde reactor. 

 

Figure 114. Analyzed segment of the studied LPRM 1 signal. 
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Figure 115 shows the estimates of the HFD along time for the LPRM 1 signal. The HFD 

oscillates close to 1, pointing to high signal regularity (i.e., a quasi-sinusoidal function that 

has little to no roughness). Figure 116 shows the eH  estimate of this LPRM 1. Its Hurst 

exponent eH  is high and very close to 1 (and much higher than 0.9). eH  is also pinpointing 

to low regularity and low complexity of the studied signal. In this case, eH  points to a 

sinusoidal function linked to instability. Thus, the studied signal is unstable and the 

estimated indicator (HFD) also indicates that the LPRM 1 signal is far from desirable 

acquisition white noise that stems from stable BWR operation. Table 17 shows the 

computed mean(HFD) and the std(HFD) of the studied LPRM 1 signal. 

 

Figure 115. Estimated HFD along time for the studied unstable LPRM 1 signal. 
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Figure 116. Estimated eH  along time for the studied unstable LPRM 1 signal. 

Table 17. Mean(HFD) and std(HFD) of the studied LPRM 1 signal. 

LPRM signal number mean(HFD) std(HFD) 

1 
1.0639 0.0197 

 

Figure 117 shows a plot of the computed mean HFD estimates of the 96 signals (each HFD 

estimate is a black bullet point). The mean HFD values (there is one HFD value for each 

signal, so, there are 96 HFD mean values) oscillate close to 1. Figure 118 shows the 

computation of the mean value of eH  for the entire unstable signal set. A pattern appears, 

most of the mean eH  estimates for the studied signal set oscillate very close to 1. 

 

Thus, the mean eH  values pinpoint to regular (i.e. no rough) signals such as sinusoidal 

functions (sinusoidal functions related to BWR instability). Through HFD ( maxk 4= ) 

estimation, the proposed methodology is able to detect in this context, unstable BWR 

signals. 
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Figure 117. Computed mean (HFD) of the studied 96 unstable signals of the set. 

 

 

Figure 118. Computed mean ( eH ) of the studied 96 unstable signals of the set. 
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7.5.3 Comparison between stable and unstable states 

Finally, to complete the analysis of stable/unstable signals through HFD, Figure 119 shows 

a comparison of the mean HFD values of the studied sets (stable set of 207 stable signals 

plus a set of 96 unstable signals). The HFD mean values of the stable signals fluctuate very 

close to 1.5 whereas the HFD mean values of the unstable ones oscillate close to 1. So, the 

HFD detects with success stable BWR signals from unstable ones via their complexity (i.e., 

roughness). Also, there is a distance of 0.5 between the two states (stable from unstable). 

So, by fixing a HFD threshold value around 1.35, it is possible to differentiate one state 

from the other properly. Any HFD estimate of a BWR signal segment higher than 1.35 is 

stable whereas a lower HFD value from this threshold is unstable. 

 

 

Figure 119. Comparison of the mean(HFD) values for both studied sets (a stable set of 207 

APRM signals versus an unstable set of 96 LRPM signals).  

 

Figure 120 shows comparison of the mean eH  values of the studied sets (stable set of 207 

signals plus unstable set of 96 signals). The eH  mean values of the stable signals fluctuate 

very close to 0.5 whereas the eH  mean values of the unstable ones oscillate close to 1. So, 

the Hurst exponent eH  detects with success stable BWR signals from unstable ones via 

their complexity (i.e., roughness). Also, there is a 0.5 distance between the two states 

(stable from unstable). So, by fixing a eH  threshold value around 0.65. It is also possible to 

differentiate one state from the other properly via eH . Any eH  estimate of a BWR signal 
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segment higher than 0.65 is unstable whereas a lower eH  value from this threshold is a 

sign of stable behavior.  

 

Figure 120. Comparison of the mean( eH ) values for both studied sets (a stable set of 207 

APRM signals versus an unstable set of 96 LRPM signals).  

 

7.5.4 Case 4 of the Forsmark stability benchmark 

 

Case 4 of the Forsmark stability benchmark (Verdú et al., 2001). This event is considered a 

challenging case to study by the complexity of the phenomenon. For reasons of space, only 

this case from this benchmark will be presented in a detailed way. This case contains a 

mixture between a global oscillation and a regional oscillation. This particular event 

corresponds to a situation where the neutronic power reactor suffers unusual unstable 

problems. The C4_APRM and C4_LPRM_x signals correspond to average power monitors 

(APRM) and local range monitors LPRM. The entire case 4 was studied that consists of a 

total of 23 signals, 22 LPRMs and 1 APRM. However, only the analysis of the APRM is 

presented in this work. The LPRMs analysis results is summarized in a Figure at the end of 

this section. Figure 121 shows the APRM signal. Figure 122 shows the plot of an analyzed 

10 s studied segment, the HFD ( maxk 4= ) of the segment is 1.0556, the HFD points to a 

regular smooth curve, in this context, a sinusoid like function was detected. Thus, the 

studied segment is unstable. Figure 123 shows the HFD estimates along time for this 

studied APRM signal. The HFD fluctuates very close to 1 with a few jumps above 1.2. The 

signal is unstable. Figure 124 shows the estimated eH  along time, the estimated Hurst 
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exponent values eH  oscillate close to 1. Thus, this complex APRM signal is overall 

unstable. Table 18 shows the mean(HFD) and the std(HFD) estimate of the studied APRM 

signal. 

 
Figure 121. Forsmark case 4 APRM signal.  

 
Figure 122. Studied segment of the Forsmark case 4 APRM. 
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Figure 123. Estimated HFD along time for the Forsmark case 4 APRM signal.  

 

 

Figure 124. Estimated eH  along time for the Forsmark case 4 APRM signal. 
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Table 18. Mean(HFD) and std(HFD) of the Forsmark case 4 APRM signal.  

Forsmark case 4 APRM mean(HFD) std(HFD) 

1 
1.0453 0.0143 

 

Figure 125 shows the mean HFD estimates (each mean HFD value is represented by a red 

bullet) for the 23 signals of this Forsmark case. It is observed that from the 23 signals of the 

set, the HFD analysis of 4 LPRMs (LPRM 12, LPRM 14, LPRM 15 and LPRM 22) failed 

because their mean HFD estimates are above the stability threshold fixed empirically at 

1.35. Then, chances are that such LPRM signals are transitioning from a stable state to an 

unstable one. Nevertheless, if the HFD based analysis of the aforementioned LPRMs is 

ignored and our focus goes to observe the mean HFD of the other 19/23 LPRMs, the HFD 

analysis of this case, confirms instability. Approximately, 83% of the studied LPRMs of this 

case confirm density wave instability. Figure 126 shows the mean eH  of the studied 

signals, the mean eH  values of the highlighted 4 LPRMs (LPRM 12, LPRM 14, LPRM 15 

and LPRM 22) is below the stability threshold fixed at 0.65. Nevertheless, the mean eH  

value of the other studied 19 LPRMs of this case were above this stability threshold and 

overall, the performed stability (based mainly on HFD and the optional eH ) analysis 

pinpoints to instability. 82% of the studied LPRMs confirm unstable BWR behavior.  

 

 

Figure 125. Mean(HFD) values for the entire Forsmark Case 4 set. 
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Figure 126. Mean( eH ) values for the entire Forsmark Case 4 set. 

 

7.5.5 Case 9 cycle 14 of the Ringhals stability benchmark 

The data of this case comes from measurements of the Swedish BWR reactor Ringhals 1 

(Lefvert, 1996). This case consists of a total of 72 LPRMs distributed in two floors or levels 

of 36 LPRMs each. As before, only the analysis of one signal (LPRM 1) is detailed in this 

work. Figure 127 shows the studied LPRM 1 signal, Figure 128 shows a 10 s studied 

segment of this signal. The HFD estimate of this segment is 1.053, the HFD points to a 

regular sinusoidal signal, the segment is unstable. Figure 129 shows the HFD estimates 

along time for this LPRM 1, the HFD fluctuate around 1, pointing to instability. Figure 130 

shows the estimated Hurst exponent eH  for the studied signal. eH  fluctuate around 1. 

Thus, eH  also points to BWR instability due to high regularity of the studied signal. eH  

oscillates around a high value above 0.9.  
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Figure 127. Ringhals case 9 cycle 14 LPRM 1. 

 

Figure 128. Studied segment of the Ringhals case 9 cycle 14 LPRM 1.  
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Figure 129. HFD along time for the studied Ringhals case 9 cycle 14 LPRM 1.  

 

Figure 130. 
eH along time for the studied Ringhals case 9 cycle 14 LPRM 1. 
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Table 19 shows the mean(HFD) and std(HFD) of the analyzed Ringhals LPRM 1. Figure 

131 shows the computed mean(HFD) values of the 36 LPRMs of level 2 of the Ringhals 

reactor. It is observed, that the HFD analysis of 21/36 LPRMs pinpoint to instability, 

whereas the HFD analysis of 15 LPRMs point to stability. But, overall, 58% of the mean 

HFD values of all the studied LPRMs confirm BWR instability in floor number 2.  
 

Table 19. Mean(HFD) and std(HFD) of the studied Ringhals LPRM 1. 

Ringhals case 9 cycle LPRM mean(HFD) std(HFD) 

1 
1.0512 0.0090 

 

Figure 131. Mean(HFD) values for the 36 LPRMs of level 2 of the Ringhals BWR unit. 

 

Figure 132 shows the computed mean( eH ) values of the 36 LPRMs of level 2 of the 

Ringhals reactor. It is observed, that the eH  analysis of 21/36 LPRM pinpoint to instability, 

whereas the eH  analysis of 15 LPRMs point to stability (the eH  mean values of these 15 

LPRMs is smaller than the eH  threshold located at 0.65). But, overall, 58%  of the LPRMs 

point to instability with the optional eH  indicator. 
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Figure 132. Mean( eH ) values for the 36 LPRMs of level 2 of the Ringhals BWR unit.  

 

Figure 133 shows the plot of the HFD analysis of the 36 LPRMs of level 4. In this level, the 

computed mean HFD of 34/36 LPRMs point to instability (the mean HFD is smaller than 

the HFD threshold value located at 1.35. The analysis of 2 LPRMs points to stability. 

However, in this case, 95%  of the analyzed LPRMs point to instability. So, level 4 is 

mostly unstable. Finally, Figure 134 shows the computed mean ( eH ) values of the 36 

LPRMs of level 4 and analogously, the mean eH  values of 34 LPRMs indicate BWR 

instability (the mean eH  values of 34 LPRMs is greater than the eH  stability threshold 

value of 0.65). Thus, level 4 is unstable and the analysis of 95% of the LRPMs indicate in 

here undesirable density wave instability. 
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Figure 133. Mean(HFD) values for the 36 LPRMs of level 4 of the Ringhals BWR unit. 

 

Figure 134. Mean(
eH ) values for the 36 LPRMs of level 4 of the Ringhals BWR unit. 
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7.6 Chapter 7 discussions   
In this chapter, a fractal dimension estimator known as the Higuchi fractal dimension 

(HFD) was applied to develop a non-linear methodology for BWR stability. The HFD was 

tested to accommodate the complex dynamics of a BWR during instability events. The 

HFD measures the complexity (i.e. roughness) of BWR signals. Via the observation of 

signal complexity through HFD it is possible to detect and classify stable signals from 

unstable ones. Numerical experiments with artificial signals were performed to infer the 

best possible value for the HFD free parameter maxk  for our BWR signal stability analysis.  

 

It was found that the best possible maxk  value to hit the jackpot (the best possible HFD 

estimate for the studied BWR signals, which is the closest estimate to the true FD value) is 

when maxk  is fixed to 4. All in agreement with the intensive experiments performed with 

complex Fractional Gaussian noise (fGn) paths. We hope that the information revealed by 

our findings might slightly contribute to the growth of the scientific literature surrounding 

the HFD. We found that the best maxk  are located within the interval [3,5]  whereas higher 

maxk  values lead to poorer HFD estimates (Figures 103-106). 

 

The proposed HFD analysis rolling window methodology permitted to classify stable BWR 

signals from unstable ones. The computed mean HFD values of stable signals, oscillated 

around 1.5 (a high HFD value is associated to high signal irregularity, the studied signal 

might be pure noise around the nominal value), such high HFD estimates point to noisy 

signals. The HFD values of stable signals fluctuate around 1 (such HFD values are linked to 

low signal complexity, the studied signal in this case is a sinusoidal one), pointing to a 

sinusoidal signal associated to BWR instability. 83% of the Forsmark case 4 studied 

LPRMs confirm BWR density wave instability through our proposed HFD stability 

analysis. 58% of the studied LPRMs of level 2 of the Ringhals case 9 cycle 14 confirm 

instability and 95% of the studied LPRMs of level 4 of this same Ringhals case confirm 

instability. Thus, 76% (55/72) of the studied 72 LPRMs of the studied Ringhals case 

confirm density wave instability. According to these experiments the HFD is a suitable 

candidate to be used as a BWR stability indicator.  
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Chapter 8  

A non-linear stability monitor for boiling water 

reactors based on the Higuchi fractal dimension 

with decision rules 
 

In the past three chapters, we have studied the potentialities of three different non-linear 

measurements to assess the complexity of time series with the goal of detecting oscillations 

related to density wave instabilities in BWRs. In here we discuss the constraints of the three 

studied indicators. The strongest indicator among the three studied ones is chosen to build a 

robust and practical BWR stability monitor for DW oscillation detection with decision 

rules.  

 

The studied Shannon Entropy estimator has the following limitations: 

 

The {c ,...,c }i i Mc   values that constitute c  (the studied LPRM signal) must be 

independent and identically distributed random variables. This is not achieved in practice 

because there is always a correlation between the samples that make up a LPRM time 

series. Besides, there is the need to estimate the optimal M  number of bins to build a 

histogram to compute ( )sH c  (SE, Equation (22) ). Such optimal estimation of M  is 

achieved through a complex Bayesian formula given in Knuth, 2006. In other words, we 

have two constraints: we are not fully respecting the Shannon Entropy theoretical rules and 

that the selected Bayesian formula to calculate the required Histogram for SE calculation is 

not a simple one.  

 

The SampEn has the following limitations:  

 

The studied time series must be too long to provide reliable SampEn estimates. In the 

case of LPRM recordings, the time span of the studied time series must be of a minimum of 

60 s of duration (For instance, if the sample frequency of the time series is 12.5 Hz, a 60 s 

signal sample has a total of 750 data points). We can do better and we can detect the 

density wave oscillation with shorter time spans of data. Besides, the SampEn requires two 

input parameters: m  and r  (Richman and Moorman, 2000). In the case of studied BWR 

signals, those two parameters were fixed at their default values of 2m =  and 

std(time_series)r = , where std is standard deviation and time_series is the studied LPRM 

recording. 

 

The Higuchi Fractal dimension (HFD) has only one limitation: there is not enough 

information regarding the selection of the maxk  input HFD parameter. But according to the 
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experiments shown in section 7.3, a reliable maxk  value is one selected in the interval [2,5]. 

We fixed maxk  at 4 for our experiments with LPRMs and according to our observations 

maxk 4=  worked incredibly well for our HFD computations of BWR signals. Besides, the 

time span of the BWR studied time series for HFD estimation is of 10 s. HFD provides 

credible fractal dimension estimates with few data points. The HFD proved to be the 

strongest proposal for BWR instability appraisal (for as long as the BWR instability event 

is triggered by Density Waves). In the Following, a stability monitor rooted in the Higuchi 

Fractal Dimension (Higuchi, 1988) will be presented. The main goal of this chapter is to 

introduce to the BWR scientific community the potentialities of studying the roughness of 

local power range monitors time series through fractal analysis to detect core stability 

instead of relying on conventional power spectrum analysis techniques to achieve this 

important goal for this type of nuclear reactors, the detection of instabilities. This monitor is 

tested with real unstable signals that are provided by the Forsmark and Ringhals stability 

frameworks and with stable signals that stem from a typical BWR. The proposed monitor is 

capable of classifying stable states from unstable ones.  

 

8.1 Background of the proposal  
A stability monitor is a system that detects BWR induced unstable power oscillations. In an 

ideal scenario, a stability monitor prevents unstable oscillations altogether. The stability 

monitor uses as input data, the recordings of local power range monitors (LPRMs) to detect 

the instability of the core.  The most common induced unstable power oscillation for BWRs 

is that associated with the density wave (March-Leuba and Rey, 1993). The density wave 

(DW) is the most common instability type that has been observed in real life BWR 

operation. DWs can be described as follows: given a flow disturbance, a wave of voids 

travels upwards through the channel inducing a pressure drop that is delayed with respect to 

the original disturbance. An increase in flow might induce an increase in pressure drop and 

a negative feedback that reduces the flow disturbance. The DW phenomena, delays such 

feedback, and, at some frequency, the delay is equivalent to a phase lag. So, at this 

frequency (which is very close to 0.5 Hz), the pressure drop feedback is positive. If the gain 

is sufficiently large enough, the channel flow becomes unstable and oscillates at that 

frequency highly concentrated around 0.5 Hz. Today, the most popular indicator to study 

BWR stability due to density wave oscillations is the decay ratio (DR), an indicator that is 

calculated from an estimate of the impulse response function of the BWR core. The DR is 

the only output indicator out-of-possibly all of the stability monitors proposed in the 

literature (Van der Hagen et al., 2000). The DR has been quite accepted and it is an easy 

indicator to implement in practice. Several stability monitors have been proposed in the 

past to detect and suppress unstable behavior in BWRs. Such as the ones given in: 

Yokomizo et al., 1990; Mitsutake et al., 1982 ; Covington and Noël, 2003; Grandi et al., 

2011; Anegawa et al., 1996; Mowry and Nir, 2001; Tsuji et al., 2005; Prieto-Guerrero et al., 

2015. All of the mentioned works provide DR estimates to appraise BWR intability, none 

of the mentioned proposals dared to explore non-linear indicators (to accommodate for non-

linearity and non-stationarity of data). We propose a novel BWR stability monitor based on 

the Higuchi fractal dimension (HFD). This technique estimates the fractal dimension of the 
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BWR signals to infer whether or not they are stable. The fractal dimension is a 

measurement that provides an index of roughness or complexity of a studied pattern 

(Higuchi, 1988). 

8.2 Stability monitor based on the HFD 
 The novel methodology to detect stable or unstable states in a BWR core is presented in 

the next steps: 

Step 1.  Let N be the number of LPRM signals. Where N is the number of LPRMs at a 

reactor level. Then, the N LPRMs considered are segmented in windows of 10 s of 

duration. It is important to mention that this methodology works exclusively with 

raw data, no need to preprocess the input signals.  

Step 2.  The HFD is applied locally to each LPRM of the ensemble. This step will provide 

N HFD estimates, one for each LPRM. Here the free parameter maxk  is fixed at 4 

(as we discussed at the beginning of this section).  

Step 3.  Once the estimation of the N different HFD values has been computed. The 

decision rule is applied, which is presented in Section 3.1 of this work.  

8.2.1 Decision rule 

The decision rule used for to the local HFD estimates (of the N - LPRMs) considers that if 

75% of the N - HFD estimates are below a HFD threshold set to 1.4 (indicating instability), 

a HFD alarm (HFDA) is set to 1 for the 10 s time segment. Else HFDA is set to 0.  

Now, if five consecutive time segments (of 10 s of duration each) are set to 1, a General 

HFD alarm (GHFDA) is set to 1 (indicating unstable behavior), otherwise the GHFDA is 

set to 0 (indicating stable behavior). 

The proposed methodology is illustrated in Figures 135 and 136. Figure 135 illustrates 

Steps 1 to Step 3 whereas Figure 136 shows how decision rule number one is applied.  
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N LPRM signal segments of 10s

LPRM number i

Compute the HFD

i = i + 1

i≤ N?
Yes No

Decision Rule 1

i=1

 

Figure 135. Flow chart to compute the HFD of raw LPRM signals.  
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N computed HFD values (N LPRMs)

Set HFD threshold =1.40

Is 75% of 

estimated

HFDs ≤ 1.40 

?

Set HFD alarm (HFDA) =0

Set HFD alarm (HFDA) =1

FIVE 

consecutive

HFDA =1?

Set GENERAL HFD 

ALARM (GHFDA)=0

Set GENERAL HFD ALARM 

(GHFDA)=1

Yes

No

Yes

No

 

Figure 136. Flow chart of decision rule. 

 

8.3 Validation  

Now we validate the stability monitor given in Section 3 with the next data sets, where sf  

is the sampling frequency of each set:  

1. Case 9 cycle 14 of the Ringhals stability benchmark ( s 12.5f = Hz): 

72 LPRM signals (located within 2 levels of the Ringhals reactor, each level has a 

total of 36 LPRMs, such levels are called 2 and 4). 

2. Case 4 of the Forsmark stability benchmark ( s 12.5f = Hz): 

22 LPRM signals and 1 APRM signal (a sample of 22 LPRM signals located within 

two levels of the Forsmark reactor). 

3. Stable signals of a Typical BWR ( s 5f = Hz) 

   A data set of 207 steady state condition APRM signals. 
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8.3.1 Case 9 cycle 14 of the Ringhals stability benchmark 

The data used in this case comes from measurements of the Swedish BWR reactor Ringhals 

(Lefvert, 1996). This Ringhals framework was developed to enable code developers in 

member countries to test their codes to validate their predictive capability to detect BWR 

instabilities. Data comes from measurements in BOC 14 and 15 in the Swedish BWR 

reactor Ringhals 1, designed by ABB Atom and operated by Vattenfall AB. The data 

provided by the benchmark can be used to validate and to compare models for methods 

used to evaluate BWR stability. The studied case consists of a total of 72 LPRMs arranged 

in two levels of 36 LPRMs each (such levels are called Level2 and Level4). A population of 

4 LPRMs from level 2 are presented (LPRM 1 to LPRM 4). Figure 137 shows the selected 

4 LPRMs and 4 segments of 10 s of duration of each LPRM (the 10 s segments are 

highlighted in green color). The local HFD estimates of the signals segments and the 

corresponding HFDA value are given in Table 20. The four HFD estimates are located 

below the stability threshold of 1.4. Thus, the waveforms associated to each segment are 

cyclic functions.  
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Figure 137. Ringhals NPP.  Four LPRMs and their respective 10 s segment. 
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Table 20. HFD estimates of the analyzed segments. 

 LPRM 1 LPRM 2 LPRM 3 LPRM 4 HFDA 

HFD 1.1362 1.1660 1.1708 1.2441 1 

 

In Figure 137, the four signals segments look like regular functions (their respective HFD 

estimates will be close to 1). Table 21 shows five consecutive segments of 10 s and their 

associated HFD alarm values where the General HFD alarm turns to 1 pointing to BWR 

instability.   

 

Table 21. HFD estimates of five consecutive segments. 

Segment # LPRM 1 LPRM 2 LPRM 3 LPRM 4 HFDA 

1 1.1362 1.1660 1.1708 1.2441 1 

2 1.1633 1.1791 1.1851 1.2775 1 

3 1.2081 1.2472 1.2081 1.3426 1 

4 1.1700 1.1797 1.1951 1.2549 1 

5 1.2031 1.1587 1.1831 1.3725 1 

GHFDA   1   

 

Table 22 shows the complete analysis of the four selected LPRMs based on the stability 

monitor given in Section 3, the HFDA and GHFDA were turned on (HFDA=1 and 

GHFDA=1) the whole time pointing to BWR instability. In this case, 75% or more of the 

LPRMs were unstable.     

 

Table 22. HFD estimates of all of the segments of the four analyzed LPRMs. 

Segment # LPRM 1 LPRM 2 LPRM 3 LPRM 4 HFDA 

1 1.1715 1.1359 1.1279 1.2855 1 

2 1.0836 1.1323 1.1474 1.2812 1 

3 1.1410 1.1297 1.1750 1.2953 1 

4 1.1502 1.1324 1.1738 1.2636 1 

5 1.1362 1.1660 1.1708 1.2441 1 

GHFDA   1   

6  1.1633 1.1791 1.1851 1.2775 1 

7 1.2081 1.2472 1.2081 1.3426 1 

8 1.1700 1.1797 1.1951 1.2549 1 

9 1.2031 1.1587 1.1831 1.3725 1 

10 1.1392 1.1255 1.1698 1.1960 1 

GHFDA   1   

11 1.1355 1.1116 1.1543 1.2545 1 

12 1.1333 1.1601 1.1941 1.2069 1 

13 1.2155 1.2711 1.2653 1.5381 1 

14 1.2924 1.2491 1.2692 1.4129 1 

15 1.1965 1.1832 1.1933 1.2555 1 

GHFDA   1   

16 1.1005 1.2214 1.2122 1.3002 1 

17 1.1637 1.2355 1.2724 1.2623 1 

18 1.2013 1.1433 1.2081 1.2335 1 
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19 1.1493 1.1898 1.2231 1.3084 1 

20 1.1492 1.1586 1.1623 1.2403 1 

GHFDA   1   

21 1.1557 1.2512 1.2284 1.2644 1 

22 1.1538 1.1248 1.2762 1.2604 1 

23 1.2132 1.2555 1.2417 1.3789 1 

24 1.2074 1.1548 1.1933 1.3243 1 

25 1.2202 1.1891 1.2821 1.3043 1 

GHFDA   1   

26 1.1763 1.2015 1.1998 1.3013 1 

27 1.1343 1.1624 1.1786 1.2962 1 

28 1.2158 1.2689 1.2577 1.2983 1 

29 1.1700 1.2061 1.2551 1.2757 1 

30 1.2022 1.2330 1.2828 1.3235 1 

GHFDA   1   

31 1.1981 1.2054 1.2069 1.3720 1 

32 1.3154 1.2630 1.2973 1.4538 1 

33 1.2993 1.3207 1.3179 1.5207 1 

34 1.1940 1.2320 1.2736 1.3240 1 

35 1.1942 1.2772 1.2897 1.4164 1 

GHFDA   1   

36 1.1687 1.1722 1.2205 1.3378 1 

37 1.1714 1.2109 1.2233 1.2785 1 

38 1.1778 1.1517 1.2887 1.3299 1 

39 1.2515 1.3234 1.2974 1.4857 1 

40 1.1656 1.2609 1.1620 1.4097 1 

GHFDA   1   

41 1.1547 1.2613 1.2253 1.3145 1 

42 1.1730 1.2478 1.2284 1.4333 1 

43 1.1755 1.2143 1.2560 1.3464 1 

44 1.1850 1.2395 1.2367 1.3411 1 

45 1.2226 1.2662 1.2114 1.4221 1 

GHFDA   1   

46 1.1489 1.1811 1.1668 1.2619 1 

47 1.1842 1.1622 1.2611 1.2893 1 

48 1.2325 1.2295 1.2568 1.3930 1 

49 1.1601 1.2057 1.1688 1.3131 1 

50 1.2150 1.1645 1.2814 1.3216 1 

GHFDA   1   

51 1.1472 1.2657 1.2323 1.4018 1 

52 1.1135 1.1468 1.1553 1.3078 1 

53 1.1573 1.1828 1.1719 1.2868 1 

54 1.2171 1.1858 1.1697 1.2878 1 

55 1.2120 1.2118 1.2113 1.3546 1 

GHFDA   1   

56 1.2439 1.2417 1.2609 1.3874 1 

57 1.2654 1.2653 1.2460 1.4056 1 

58 1.2499 1.2366 1.2836 1.4191 1 

59 1.2789 1.3151 1.3096 1.5519 1 

60 1.1113 1.1820 1.2262 1.2476 1 

GHFDA   1   

61 1.1440 1.1775 1.1475 1.2691 1 

62 1.1737 1.1810 1.1982 1.3297 1 

63 1.1445 1.1772 1.1354 1.2136 1 

64 1.1329 1.1452 1.1633 1.2829 1 
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Finally, Figure 138 shows the HFD estimates along time for the four LPRMs, the red dotted 

line fixed at 1.4 is the HFD stability threshold point. We highlight that LPRMs 1-3 show 

HFD values underneath our threshold set point whereas some HFD values of LPRM 4 are 

above this threshold during some segments. However, to trigger the activation of the HFD 

alarm, the HFD estimates of 75% or more of the LPRMs must be low (HFDs 1.4). 

 

Figure 138. HFD estimates along time for the four LPRMs. 

8.3.2 Case 4 of the Forsmark stability benchmark 

Events linked to undesired power oscillations have occurred in the past in various BWR 

reactors. As a response, a considerable amount of research and analytical activities were 

developed to better understand the underlining phenomenology of the oscillations, and to 

define final solutions to handle such events. For the experimental study of BWR 

oscillations, various stability tests have been performed at the Forsmark 1 & 2. The 

Forsmark 1 & 2 BWR stability benchmark is the second work in a series of benchmarks 

based on data from Swedish BWRs. This work was coordinated by Thomas Lefvert of 

Vattenfall AB with the help of the team at Ringhals 1. The results were published in the 

report NEA/NSC/DOC96(22) in 1996 (Verdu et al., 2001). The selected event is considered 

by many a difficult case to be studied due to the complexity of the physical phenomenon. 

Again, for reasons of space, only four LPRMs will be presented. This case consists of a 
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mixture between a regional and a global oscillation. Figure 139 shows the selected four 

LPRMs and four segments of 10 s of duration of each LPRM (the studied 10 s segments are 

highlighted in green color). The local HFD estimates of the studied segments and the 

corresponding HFDA value are given in Table 23. 
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Figure 139. Forsmark stability benchmark. Four LPRMs and their respective studied 10 s 

segment. 

Table 23. HFD estimates of the analyzed segments. 

 LPRM 1 LPRM 2 LPRM 3 LPRM 4 HFDA 

HFD 1.1365 1.0743 1.0645 1.0540 1 

 

Table 24 shows five consecutive studied segments of 10 s and their linked HFD Alarm 

values. The GHFDA changes to 1 indicating the BWR instability.  

 

Table 24. HFD estimates of five consecutive studied segments. 
 LPRM 1 LPRM 2 LPRM 3 LPRM 4 HFDA 

Segment ONE 1.1365 1.0743 1.0645 1.0540 1 

Segment TWO 1.2166 1.2086 1.1592 1.1251 1 

Segment THREE 1.2010 1.1659 1.1211 1.1567 1 

Segment FOUR 1.1251 1.0747 1.0650 1.0384 1 
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Segment FIVE 1.3080 1.2270 1.1234 1.1097 1 

GHFDA   1   

Table 25 shows the complete analysis of the four LPRMs based on the stability monitor 

given in Section 8.2, the HFDA and GHFDA were turned on the whole time pointing to  

BWR instability. In this case, 100% of the studied LPRMs were unstable.     

 

Table 25. HFD estimates of all of the studied segments of the four analyzed LPRMs. 
Segment # LPRM 1 LPRM 2 LPRM 3 LPRM 4 HFDA 

1 1.1365 1.0743 1.0645 1.0540 1 

2 1.2166 1.2086 1.1592 1.1251 1 

3 1.2010 1.1659 1.1211 1.1567 1 

4 1.1251 1.0747 1.0650 1.0384 1 

5 1.3080 1.2270 1.1234 1.1097 1 

GHFDA      

6 1.1719 1.1032 1.0919 1.0838 1 

7 1.3084 1.2191 1.1175 1.0781 1 

8 1.1342 1.1722 1.1162 1.0764 1 

9 1.1875 1.1612 1.0947 1.0893 1 

10 1.1332 1.0975 1.0737 1.0825 1 

GHFDA      

11 1.2809 1.1987 1.1573 1.0985 1 

12 1.1026 1.1019 1.0766 1.0958 1 

13 1.1688 1.1102 1.0790 1.0968 1 

14 1.2442 1.3536 1.1500 1.0931 1 

15 1.0730 1.0679 1.0618 1.0488 1 

GHFDA      

16 1.2610 1.1630 1.1158 1.0768 1 

17 1.2370 1.2163 1.1852 1.1323 1 

18 1.1284 1.1145 1.0853 1.0494 1 

19 1.2525 1.2473 1.2267 1.2368 1 

20 1.1412 1.1181 1.0868 1.0710 1 

GHFDA      

21 1.2453 1.1723 1.1199 1.1246 1 

22 1.1626 1.0905 1.0621 1.0677 1 

23 1.2708 1.1961 1.2050 1.0993 1 

24 1.1698 1.1449 1.1164 1.1051 1 

25 1.2105 1.1742 1.1854 1.1047 1 

GHFDA      

26 1.1924 1.1625 1.0827 1.0919 1 

27 1.1095 1.0830 1.0739 1.0833 1 

28 1.1914 1.1411 1.1323 1.0955 1 

29 1.1925 1.1476 1.1343 1.1006 1 

30 1.2118 1.1129 1.0740 1.0692 1 

GHFDA      

31 1.1316 1.1405 1.0982 1.0992 1 

32 1.1722 1.1219 1.1074 1.1391 1 

 

Figure 140 shows the HFD estimates along time for the four LPRMs. We highlight that the 

four LPRMs had HFD estimates underneath our threshold set point. Our entire Case 4 of 

the Forsmark operation is unstable. Please read Appendix A for comparisons with a DR 

estimation method. 
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Figure 140. HFD estimates along time for the four LPRMs. 

8.3.3 Stable signals of the laguna verde reactor 

The aim of this test is to validate the proposed stability methodology with stable signals 

that stem from a typical BWR. The studied signals were recorded by APRMs. The four 

studied APRM signals and their four studied segments of 10 s are shown in Figure 141. The 

studied signals look visually like recordings of broad band non-coherent noise (BBNCN); 

they all look like rough paths and a priori, their HFD estimates will be high. The local HFD 

estimates of the studied segments and the corresponding HFDA value are given in Table 26. 

The HFDA value is at 0, a sign of stable behavior.   
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Figure 141. Four APRMs from a typical BWR and their respective studied 10 s segment. 

 

Table 26. HFD estimates of the analyzed segments. 

 APRM 1 APRM 2 APRM 3 APRM 4 HFDA 

HFD 1.5060 1.4398 1.5447 1.5393 0 

 

Table 27 shows the complete analysis of the four APRMs based on the stability monitor 

given in Section 8.2, the HFDA and GHFDA were turned off the whole time pointing to  

BWR stability. In this case, 100% of the studied APRMs were stable. 

 

Table 27. HFD estimates of all of the studied segments of the four analyzed APRMs. 

 

Segment # APRM 1 APRM 2 APRM 3 APRM 4 HFDA 

1 1.5060 1.4398 1.5447 1.5393 0 

2 1.5337 1.4424 1.5192 1.5764 0 

3 1.6234 1.4860 1.6180 1.4958 0 
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4 1.4010 1.2901 1.4807 1.4805 0 

5 1.6027 1.5017 1.5979 1.4301 0 

GHFDA   0   

6 1.5297 1.3768 1.5833 1.4019 0 

7 1.5292 1.5310 1.6392 1.5335 0 

8 1.4502 1.3856 1.4191 1.3278 0 

9 1.4540 1.4842 1.5056 1.3845 0 

10 1.5452 1.4811 1.5906 1.5064 0 

GHFDA   0   

11 1.6033 1.5135 1.6429 1.4565 0 

12 1.4877 1.4354 1.5608 1.4878 0 

13 1.7060 1.5111 1.7088 1.6771 0 

14 1.5243 1.4339 1.4879 1.4703 0 

15 1.5503 1.4741 1.6079 1.4883 0 

GHFDA   0   

16 1.6004 1.5173 1.5484 1.6062 0 

17 1.5343 1.5347 1.6752 1.5858 0 

18 1.6067 1.4924 1.5728 1.5415 0 

19 1.5985 1.4468 1.4977 1.4121 0 

20 1.5900 1.5324 1.6866 1.6131 0 

GHFDA   0   

21 1.5151 1.4090 1.5589 1.4596 0 

22 1.5027 1.4090 1.6129 1.4047 0 

23 1.5099 1.3754 1.4357 1.5631 0 

24 1.6092 1.5150 1.6682 1.5721 0 

25 1.4448 1.3402 1.6071 1.4979 0 

GHFDA   0   

26 1.5057 1.4228 1.6052 1.4551 0 

27 1.6336 1.6092 1.5335 1.5734 0 

28 1.7663 1.6146 1.9187 1.5602 0 

29 1.5608 1.4788 1.5047 1.5032 0 

30 1.4876 1.4237 1.4983 1.4876 0 

GHFDA   0   

31 1.5108 1.5183 1.6409 1.5730 0 

32 1.6431 1.4753 1.5044 1.5964 0 
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33 1.4641 1.4076 1.5220 1.5212 0 

34 1.5550 1.4613 1.4328 1.5390 0 

35 1.5881 1.4789 1.6434 1.5577 0 

GHFDA   0   

36 1.6885 1.5792 1.7173 1.6050 0 

37 1.3912 1.3788 1.4921 1.5527 0 

38 1.5514 1.5767 1.6429 1.5689 0 

39 1.4517 1.3669 1.4961 1.4156 0 

40 1.4286 1.3513 1.5708 1.3796 0 

GHFDA   0   

41 1.6006 1.4560 1.6350 1.5591 0 

42 1.5692 1.5797 1.6029 1.5107 0 

43 1.4114 1.3609 1.4507 1.4312 0 

44 1.4853 1.4262 1.5736 1.5815 0 

45 1.5178 1.5121 1.5873 1.5252 0 

GHFDA   0   

46 1.5305 1.4133 1.5197 1.5525 0 

47 1.6136 1.5147 1.5006 1.5221 0 

48 1.4276 1.3833 1.4184 1.4045 0 

49 1.5073 1.4860 1.5936 1.5814 0 

50 1.5631 1.5333 1.5639 1.5064 0 

GHFDA   0   

51 1.3407 1.3774 1.4493 1.4702 0 

52 1.4421 1.4681 1.3620 1.3856 0 

53 1.6133 1.5675 1.6049 1.6131 0 

54 1.4217 1.4101 1.3223 1.3697 0 

55 1.3888 1.3036 1.4256 1.4945 0 

GHFDA   0   

56 1.5569 1.5362 1.5056 1.5235 0 

57 1.6221 1.6014 1.6452 1.6532 0 

58 1.5239 1.4220 1.4483 1.4742 0 

59 1.6034 1.5416 1.5653 1.5315 0 

60 1.3482 1.3412 1.5300 1.5214 0 

GHFDA   0   

61 1.6692 1.6394 1.6224 1.6186 0 
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62 1.4870 1.4183 1.4826 1.6139 0 

63 1.6570 1.6058 1.5723 1.6162 0 

64 1.5128 1.4705 1.5924 1.6170 0 

65 1.5262 1.3678 1.5376 1.5889 0 

GHFA   0   

66 1.4433 1.3892 1.5151 1.5136 0 

67 1.5594 1.5080 1.6362 1.5458 0 

68 1.5212 1.5257 1.6052 1.4908 0 

69 1.5666 1.4720 1.6800 1.5631 0 

70 1.6192 1.7527 1.8109 1.6262 0 

GHFDA   0   

71 1.4290 1.3599 1.5220 1.5772 0 

72 1.5163 1.4780 1.6114 1.5324 0 

73 1.6266 1.5685 1.5996 1.4830 0 

74 1.5840 1.6164 1.7286 1.6408 0 

75 1.5472 1.4402 1.5458 1.4769 0 

GHFDA   0   

76 1.8917 1.7352 1.6804 1.5876 0 

77 1.5160 1.4969 1.6372 1.6150 0 

78 1.6769 1.6097 1.7058 1.5848 0 

79 1.6069 1.4938 1.5761 1.5933 0 

80 1.4640 1.4285 1.4791 1.4059 0 

 

Finally, Figure 142 shows the HFD estimates along time for the four studied APRMs. It is 

vital to highlight that the studied APRMs had HFD estimates most of the time higher than 

the threshold set point (fixed at 1.4). The 4 studied APRMs show stable behavior. The 

BWR is operating within the stable region. 
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Figure 142. HFD estimates along time for the four LPRMs. 

 

For comparisons of the proposed stability monitor (based on the HFD) with a common and 

well understood linear stability technique (based on the DR). 

 

8.4 Chapter 8 discussions  
In this chapter, a novel boiling water reactor (BWR) stability monitor was constructed with 

the aid of the Higuchi fractal dimension technique with the following goals: 

1. Improving BWR density wave (DW) instability detection. 

2. Make the BWR stability monitoring more realistic. 

3. Build a methodology that can be used in conjunction with decay ratio estimation 

techniques that are currently the backbone of most of the BWR stability monitors 

out there.  

4. Change to the best of our abilities the DR centered ethos of BWR stability analysis.  

5. Propose a novel non-linear stability indicator rooted in fractal theory. 

 

The proposed HFD rolling window stability monitor allowed to categorize stable BWR 

signals from unstable ones. The estimated HFD values of unstable cyclic density wave 
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induced oscillations fluctuate close to 1. The stability monitor was tested with signals that 

stem from the Ringhals stability benchmark Case 9 Cycle 14 and with signals that stem   

from the Forsmark stability benchmark. This monitor was also tested with stable signals 

that come from a typical BWR. Our goal is to deploy the monitor presented in section 3 in 

real time and help it to evolve accordingly. The HFD calculation needs no preprocessing of 

the studied time series and needs no assumptions regarding the linearity or stationarity of 

studied data. The HFD calculation is not rooted in the Fourier domain. The HFD is able to 

provide reliable data with few data points. In further research works, a phase detection 

module will be added to enhance this monitor capabilities in order to detect an in-phase or 

an out-of-phase instability event. The HFD accommodates non-linear behavior of the 

studied LPRM signals.   
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Chapter 9  

 

Final Conclusions  
 

In this work, our research team decided to study BWR instability due to density waves 

through the lens of non-linear signal processing techniques because we believed for long 

that the DR was a really simple indicator to use to assess the stability of a complex 

dynamical system such as a BWR reactor system, besides, March-Leuba, 1986 proved 30 

years ago that the BWR behavior way beyond the stability threshold might turn chaotic. It 

is impossible for the DR to operate under such complex unstable conditions. Our first stop 

was to study a signal processing technique to analyze non-stationary signals provided by 

non-linear systems, the empirical mode decomposition (EMD) proved to be a powerful 

candidate to achieve this goal, as our theoretical knowledge of the EMD grew, we 

understood that it was necessary to address the mode mixing problem of the default EMD 

method to better decompose LPRMs into IMFs. The improved CEEMDAN for uni variate 

signals was the selected candidate to address this problem (because it is the most recent 

EMD expansion to alleviate the mode mixing issue) and the NA-MEMD was selected to 

study simultaneously several LPRMs (by the way, The NA-MEMD can be used to analyze 

a uni variate signal, provided that at least two channels of white noise are added to create a 

multi channel signal consisting of the studied single LRPM plus the two noise channels as 

shown in section 3.6 at the end of Chapter 3).  

 

Later, it was necessary to study in depth a differential equation model to understand more 

about the BWR behavior within its unstable region (the model had to emulate how the 

BWR operation is spoiled by density waves). Such simple and yet powerful ROM that we 

chose was developed in the late 80's by March-Leuba. By increasing one of its parameters, 

it was possible destabilize the reactor, and if we kept increasing such parameter, the signals 

provided by the ROM started to show chaotic behavior and strange attractors (Strogatz, 

1994). We realized immediately that the DR might not be a suitable candidate to study such 

signals, to prove this belief, we tested the ROM signals under many scenarios by a 

conventional AR modeling of these signals to grant DR estimates. Our belief was 

confirmed, the DR loses all credibility to measure instability as the BWR behavior becomes 

more unstable (and chaotic) when it's instability parameter is increased (as shown in section 

4.3). In this new light, we decided to observe BWR instability with entropy formulas to 

measure the complexity or intricacy of the studied data. The first candidate we 

implemented was a simple Shannon Entropy (SE) estimator, such computer formula 

estimates an optimal number of bins M  to calculate a Histogram (which is a probability 

density function (PDF) estimate of the studied data) that is used to later compute the SE, 

the SE estimator we developed was first tested with ROM signals, the SE measures the 

information content generated by the chaos of the ROM (more chaos equals more 

information content). Later the same SE estimator was tested with real BWR signals 
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provided by many popular BWR instability benchmarks (Forsmark, Ringhals and one data 

set from a laguna verde instability event that happened in 1994). The SE is a quantity 

located in the interval 0 SE 2  . 0 for low information content data (stable states) and 

closer to 2 for high information content data (unstable scenarios). In many cases the SE was 

high (on average 0.8 ) for the studied signals. The simple SE estimator that we 

implemented was a starting point of this research, much improvement could still be 

achieved.  

 

As our theoretical knowledge of entropy measurements increased, we decided to prove the 

capabilities of the Sample Entropy (SampEn), SampEn is a practical computer formula that 

measures the complexity of a studied time series, at that time, the SampEn remained solely 

tested with biomedical signals with success. We decided to explore SampEn with our BWR 

benchmarks, the input parameters of the SampEn, m  and r  were left at their default values 

( 2m =  and 0.25std(data)r = ), the SampEn detected with success BWR unstable scenarios, 

at the expense of longer time spans of data ( a minimum of 60 s of data were required to 

provide reliable SampEn computations). The SampEn was able to classify signals into two 

categories: stable signals and unstable ones (a feature that existing DR estimation methods 

in the literature do not provide). By the time we tested the SampEn, we had in our power 

for the very first time, stable signals of the laguna verde reactor that were used in the testing 

of the SampEn. Still, a single problem remained with this indicator, the long time spans of 

the studied signals.  

 

The final indicator we tested was a fractal dimension estimator developed by Higuchi, we 

now measured roughness (or fractured behavior) of the studied LPRM signals. The Higuchi 

fractal dimension (HFD) estimator was able to provide accurate estimates with very few 

data points (now the minimum time span of the studied signals was of 10 s) under noisy 

conditions ! with a really simple and reliable computer algorithm. With the HFD we were 

able again to classify signals into two categories: stable BWR signals and unstable BWR 

signals. With this HFD estimator we developed a practical and reliable BWR STABILITY 

MONITOR with decision rules for real time implementation (read chapter 8). Such 

STABILITY MONITOR based on the HFD does not need pre processing of the studied 

signals, it works with few data points, and the fractal dimension ignores any assumptions 

related to the stationary and linearity of studied data (whereas the DR needs such 

assumptions). This monitor differentiates stable BWR signals, known by the technical name 

of broad band non-coherent noise signals (BBNCN) from unstable BWR signals affected 

by density waves, known by the technical name of unstable cyclic oscillations. The HFD is 

a quantity located within the interval [1,2] . It is close to 1 for unstable cyclic oscillations 

and close to 1.5 for BBNCN signals. According to the works presented in this thesis, no 

stability monitor proposed in the literature is able to differentiate BBNCN signals from 

unstable ones.  

        

 

 

 

 



195 

 

 

9.1 Future works  
According to our own views, we could add a phase detection monitor between LPRMs to 

the STABILITY MONITOR proposed in chapter 8 to detect a possible out-of-phase 

instability event or an in-phase one. We need to test the proposed stability monitor with 

more BWR signals, signals that we do not have at the time and are really difficult to get. 

With more signals, we could obtain more information not considered at the time of the 

elaboration of this thesis. Another future goal would be to elaborate a patent of the stability 

monitor based on the HFD given in chapter 8. The estimation of the instantaneous 

frequencies of the IMFs related to instability can be improved as soon as more powerful 

Hilbert transform estimation methods are developed in the future (to improve the accuracy 

of the HHT step).  

It would be a viable project to implement our stability methodologies in real time with the 

aid of FPGAs or Raspberries.    
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