

UNIDAD IZTAPALAPA

Control Lineal de Composición en Reactores Continuos con Estructuras Básicas de Control

I.Q. Alejandro Regalado Méndez

Universidad Autónoma Metropolitana – Iztapalapa Distrito Federal, México

Asesor: Dr. José de Jesús Alvarez Ramírez

Departamento de Ingeniería de Procesos e Hidráulica Universidad Autónoma Metropolitana - Iztapalapa Distrito Federal, México

05 de Septiembre de 2003

CONTROLLINEALDECOMPOSICIONENREACTORESCONTINUOSCONESTRUCTURASBASICASDECONTROLTeorie deMagestrée en Cienciae en

Tesis de Maestría en Ciencias en Ingeniería Química

ALEJANDRO REGALADO MENDEZ Universidad Autónoma Metropolitana - Iztapalapa

JOSE DE JESUS ALVAREZ RAMIREZ Universidad Autónoma Metropolitana - Iztapalapa

Control Lineal de Composición en Reactores Continuos con Estructuras Básicas de Control

por

I.Q. Alejandro Regalado Méndez Universidad Autónoma Metropolitana - Iztapalapa (2001) Enviado al Departamento de Ingeniería de Procesos e Hidráulica en cumplimiento parcial para obtener el grado de Maestro en Ciencias en Ingeniería Química en la

© UNIVERSIDAD AUTONOMA METROPOLITANA - IZTAPALAPA Septiembre del 2003 Alejandro Regalado, 2003.

El autor agradece a la Universidad Autónoma Metropolitana – Iztapalapa el permiso para reproducir y distribuir copias de esta tesis.

Firma del autor.... Departamento de Ingeniería de Procesos e Hidráulica Julio de 2003

Certificado por.....

Dr. Héctor Puebla Núñez Instituto Mexicano del Petróleo

Certificado por...... Dra Ma Teresa López

Dra. Ma. Teresa López Instituto Mexicano del Petróleo

Aceptada por.....

Dr. José de Jesús Alvarez Ramírez Asesor, Departamento de Ingeniería de Procesos e Hidráulica

Sobre el Autor y el Asesor

Alejandro Regalado Méndez. Nació en Cd. Nezahualcoyotl, Estado de México, México, el 04 Mayo de 1976. Recibió el grado de **I.Q.** de la Universidad Autónoma Metropolitana Unidad Iztapalapa, en el 2001. Del 2001 al 2003 realizo estudios de Maestría en Ciencias en la misma casa de estudios. Sus intereses en la investigación incluyen aplicaciones del control lineal en cascada en reactores químicos continuos de tanque agitado industriales.

José Alvarez Ramírez. Nació en San Luis Potosí, México, el 18 de Marzo de 1963. Recibió el grado de **I.Q.** de la Universidad Autónoma de San Luis Potosí y el Grado de M. en C. y Dr. en Matemáticas Aplicadas en la Universidad Autónoma Metropolitana, en 1986, 1988 y 1993, respectivamente.

Desde 1993 se encuentra en el Departamento de Ingeniería de Procesos e Hidráulica en la Universidad Autónoma Metropolitana. Sus intereses de investigación incluyen teoría de control, análisis de sistemas dinámicos, control de proceso y caos. El Dr. Alvarez ha publicado más de 100 artículos científicos en diferentes revistas internacionales y es el actual jefe de área del Departamento de Ingeniería de Procesos e Hidráulica de la Universidad Autónoma Metropolitana.

Este trabajo lo dedico con mi admiración y respeto a mis tíos: Federico Méndez y esposa, por el cariño y comprensión que he recibido de ellos en estos 2 últimos años de mi vida y a todas las personas que han creído y las que nunca han creído en mí.

Prefacio

La teoría de control ha tenido un papel muy importante en el progreso de la tecnología e industria. Básicamente, los sistemas de control en los procesos químicos tienen tres funciones: la seguridad, la operabilidad (para que ciertos valores de los parámetros se mantengan en un rango de operación) y la calidad del producto. Actualmente existen dos esquemas básicos de control: el control a lazo abierto y el control retroalimentado. El primero de ellos supone un modelo perfecto y con base a tal idea se diseña un sistema de control. Sin embargo, los modelos de los procesos químicos son complejos y por tal motivo es mejor trabajar con un modelo que contenga las características dominantes del proceso y posteriormente se puede emplear la retroalimentación para tratar con las incertidumbres del modelo. Sin embargo se necesitan ciertos requerimientos en los sistemas de control retroalimentados, los cuales son: estabilidad, desempeño y robustez. El control lineal retroalimentado es simple y efectivo, además es de implementación barata y rápida, por tanto que sea una de las técnicas más usada en aplicaciones industriales.

En esta tesis el interés principal de investigación es el diseño de una estrategia de control lineal de composición en cascada en reactores químicos continuos de tanque agitado (**CSTRs**) con las estructuras básicas de control (proporcional e integral y/o combinaciones). Se diseñara un control en cascada que sea robusto ante perturbaciones externas y a cambios de **setpoint** para la composición en **CSTRs**, con diferentes configuraciones de control.

Agradecimientos

Quiero expresar mi más sincero agradecimiento a mi asesor, Dr. José de Jesús Alvarez Ramírez, por su gran apoyo y orientación durante el ultimo año del Posgrado (Maestría). Con lo cual aseguro que ha sido un gran privilegio y placer ser su estudiante.

Las contribuciones de los revisores ayudaron a mejorar substancialmente esta tesis. Aprecio la detallada y completa revisión de mi colega el M. en IQ. Jesús Valencia en la revisión de la primera versión de este manuscrito.

Agradezco el financiamiento otorgado por el Consejo Nacional de Ciencia y Tecnología (CONACyT) el cual me permitió realizar esta investigación y por ende mis estudios de Maestría.

Quiero agradecer a mis compañeros y amigos del Posgrado, por su apoyo directo o indirecto para hacer agradable mi estancia en la UAM-I. Todos ellos saben quienes son y me seria muy difícil mencionar a todos, y para no olvidar a ninguno, mejor lo dejamos de esta forma. En especial, a todas aquellas personas que han creído en mi, ya que con su aliento y aprecio me han hecho más fuerte y capaz de cumplir mis metas propuestas. Y esta tesis es una muestra a todas aquellas que nunca han creído en mi, para que vean que soy capaz de obtener lo que quiero. También quiero agradecer a un gran amigo mío, al cual admiro y respeto mucho, juntos hemos logrado que yo sea una gran persona y a través de sus enseñanzas y explicaciones me ha ayudado a salir adelante y además aprendí con eso que soy ser humano y que también tengo sentimientos y no soy de piedra como pensé que era, tu sabes quien eres y espero que estés conmigo por mucho más tiempo, al menos hasta que yo sea todo un profesionista respetado, capaz de resolver mis problemas personales y laborales, y de tal manera gracias por tu apoyo.

Lista de Acrónimos¹

BuA	: Butil-acrilato
CSTR	: Reactor Continuo de Tanque Agitado
FBR	: Reactor de Lecho Fluidizado
Ι	: Integral
IMC	: Control de Modelo Interno
IPD	: Programación Iterativa Dinámica
MMA	: Metil metacrilato
NIMC	: Control de Modelo Interno No-Lineal
NIPCC	: Control no lineal en Cascada Inferido Paralelamente
NIRS	: Espectroscopia Infrarroja
ODE	: Ecuaciones Diferenciales Ordinarias
Р	: Proporcional
PI	: Proporcional Integral
$P_T I_C$: Proporcional de Temperatura e Integral de Concentración
PI _T I _C	: Proporcional Integral de Temperatura e Integral de Concentración

¹ Debido a su aceptación universal, los acrónimos se derivan de sus siglas en ingles.

Control Lineal de Composición en Reactores Continuos con Estructuras Básicas de Control

Por

Alejandro Regalado Méndez

Enviado al Departamento de Ingeniería de Procesos e Hidráulica En Julio 2003, en cumplimiento parcial para obtener el grado de Maestro en Ciencias en Ingeniería Química

Resumen

En los años cincuenta Aris y Admunson analizaron y diseñaron controladores P y PI, en reactores continuos de tanque agitado (CSTRs). Desde entonces existe un gran número de publicaciones del estudio de control en este tipo de reactores (Puebla, 2000). Estos sistemas de control han dado lugar a muchas mejoras en los procesos, dando como resultado el ahorro de inversión, mayores ganancias para la industria de procesos, así como instalaciones más seguras, y por ende una mayor eficiencia y rendimiento en el proceso controlado.

Por mucho tiempo se ha detectado que uno de los problemas más complicados de la ingeniería es el control del lazo de composición. Sin embargo el control de composición es muy empleado en operaciones de transferencia de masa, este puede ser tan fácil o difícil según los múltiples lazos de control que puedan tener. Estos lazos de control están relacionados de acuerdo al número de variables que puedan afectar la calidad del producto. El control de composición presenta una gran complejidad en el análisis y medición de composición a diferencia del control de temperatura. No obstante, a eso existen sensores para mediciones de composición los cuales simplifican el trabajo del

control de composición. Los equipos más comunes son los cromatógrafos de gases y analizadores espectroscópicos (infrarrojos, ultravioleta, radiación visible, potenciómetros, conductometros, espectrómetros, etc.), los cuales son empleados para la medición de la composición de gases y líquidos respectivamente. El problema con los analizadores de composición es el retrazo del tiempo en las mediciones. Las características importantes del empleo de los analizadores de composición son (Shinskey, 1988):

- 1) sus problemas operacionales (fácil descalibración o desajuste) y
- 2) su costo relativamente alto

En este trabajo de tesis se estudiará el control lineal de composición en **CSTRs**, con estructuras básicas de control, empleando dos diferentes configuraciones de control en cascada.

El control de composición ha sido estudiado en controladores no-lineales, y principalmente en columnas de destilación, sin embargo el estudio del control de composición en **CSTRs** es un evento relativamente reciente, por ello que se muestra muy atractivo realizar el estudio de control lineal de composición en cascada en **CSTRs** con estructuras básicas de control.

El trabajo de esta tesis esta organizado de la siguiente forma: una introducción general en la cual se justifica el uso de los controladores tipo cascada, así como los controladores de composición, se mencionan algunos de los trabajos previamente hechos y la diferencia entre el presente estudio con respecto a los trabajos en control cascada y control de composición que existe en la literatura. También se mencionan los objetivos que se pretenden desarrollar en esta tesis. En el capítulo 2 se explica paso a paso la construcción de las dos configuraciones de control de composición en cascada a implementar en el caso de estudio; así como la determinación de sus parámetros de control. En el capítulo 3 se describe el caso de estudio, con sus consideraciones de modelado matemático, así como las suposiciones pertinentes para la simplificación del modelo matemático. En el capítulo 4 se ilustra con simulaciones numéricas la respuesta y desempeño de las leyes de control lineal de composición desarrolladas en el capítulo tres. En el capítulo 5 se encuentran las conclusiones obtenidas del análisis y discusión de los resultados obtenidos al implementar las estrategias de control desarrolladas. En el capítulo 6 muestra una sección de perspectivas de trabajos futuros que salen a relucir después del análisis y discusión de los resultados. En el capítulo 7 se encuentra la bibliografía citada a lo largo del desarrollo de esta tesis. En el capítulo 8 se muestra la teoría de control más relevante para el desarrollo de esta tesis, para que todo aquel lector que tenga un amplio interés en esta rama de la ciencia pueda acceder fácilmente a los conceptos básicos de la dinámica y control de procesos. Y finalmente contiene un glosario de términos empleados del área de control.

Índice de Contenido

1 Introducción	1
 1.1 Objetivos 1.2 Objetivo General 1.3 Objetivos particulares 	9 10 11
2 Diseño del Control en Cascada	12
2.1 Control Esclavo2.2 Control Maestro	13 15
 2.3 Control en Cascada de Concentración Configuración P_TI_C 2.4 Control en Cascada de Concentración Configuración PI_TI_C 2.5 Sintonizado de los Parámetros 2.5 1 Canancia del proceso para un Control Integral de Concentración 	17 18 19
 2.5.1 Ganancia del proceso para un control integral de concentración 2.5.2 Ganancia del proceso del control proporcional 2.5.3 Constante del Tiempo de Respuesta 	20
3 Caso de Estudio	21
3.1 Dinámica para el modelo de CSTR	21
$\begin{array}{c} \textbf{4} \textbf{KCSUITACIOS} \\ \textbf{4.1} Configuración P_TI_C \\ \textbf{4.2} Configuración PI_TI_C \\ \textbf{4.3} Comparación de las dos Configuraciones de Control Diseñadas \\ \textbf{6.5} $	28 37 44 50
5 Conclusiones	57
6 Trabajos a Futuro	61
7 Bibliografía	62
8 Teoría de Control	66
 8.1 El control 8.2 Tipos de Control 	67 71
 8.2.1 Control en Cascada 8.2.2 Controlador Proporcional (P):	71 71 72
 8.2.4 Controlador Proporcional Diferencial (PD): 8.2.5 Controlador Proporcional Integral Diferencial (PID): 	73 74

8.3	La ganancia	
8.4	Tiempo del Proceso	
8.5	Mapa de Fase	
9 G	ilosario	

Índice de Tablas

Tabla 3-1. Variables adimensionales.	.25
Tabla 3-2. Parámetros de reducción del modelo	.25
Tabla 3-3. Constantes de adimensionalización	.26
Tabla 3-4. Valores numéricos de los parámetros del sistema	.27
Tabla 4-1. Datos para encontrar el punto de equilibrio.	.29
Tabla 4-2. Datos de velocidades de reacción (V_{rxn}) adimensionales de cada una de las	
especies presentes en el sistema dinámico del caso de estudio.	.32
Tabla 4-3. Datos para la formación del mapa fase en estado estacionario	.34
Tabla 4-4. Valores numéricos del controlador en cascada de concentración, en su	
configuración P _T I _C	.38
Tabla 4-5. Condiciones iniciales para la configuración P _T I _C	.38
Tabla 4-6. Valores numéricos del controlador en cascada implementado con la acción	
integral de temperatura.	.44
Tabla 4-7. Condiciones iniciales configuración PI _T I _C	.44

Índice de Figuras

17
18
19
20
21
30
33
34
35

Figura 4-5. Respuesta Escalón positiva de la temperatura en función del tiempo t(min) el cambi	io
en escalón es de Tc = 640° K a 672° K.	36
Figura 4-6. Respuesta Escalón negativa de la temperatura en función del tiempo t(min), el	
cambio en escalón es de Tc = 640° K a 608° K	37
Figura 4-7. Respuesta del control en cascada para la concentración en su configuración P _T I _C 3	39
Figura 4-8. Respuesta del control en cascada para le temperatura del reactor en su configuración	n
$P_{T}I_{C}$ 4	40
Figura 4-9. Respuesta del control en cascada para le temperatura de la chaqueta de enfriamiento	0
en su configuración P _T I _C 4	41
Figura 4-10. Desempeño del control en cascada para la composición en su configuración $P_T I_C$	
variando el factor $\propto C_{ma}^{set} = 0.7$	42
Figura 4-11. Desempeño del control en cascada para la composición en su configuración P _T I _C	
arrancando a distintas condiciones iniciales4	43
Figura 4-12. Respuesta del control en cascada para la composición en su configuración	
PI _T I _C	45
Figura 4-13. Respuesta del control en cascada para la temperatura del CSTR en su	
configuración PI _T I _C 4	46
Figura 4-14. Respuesta del control en cascada para le temperatura de la chaqueta de	
enfriamiento en su configuración PI _T I _C 4	47
Figura 4-15. Desempeño del control en cascada para la composición en su configuración	n
PI _T I _C variando el factor alfa4	48
Figura 4-16. Desempeño del control en cascada para la composición en su configuración PI_TI_C	
arrancando a distintas condiciones iniciales4	19
Figura 4-17. Comparación entre las configuraciones de control P_TI_C y PI_TI_C de la	
respuesta ante cambios de setpoint y a perturbaciones en la temperatura de la	
chaqueta de enfriamiento en este caso fue de 630 °K a 640 ° K.	51
Figura 4-18. Ampliación de la comparación de las configuraciones de control $P_T I_C y$	
PI_TI_C de la velocidad de respuesta, para la convergencia del setpoint.	52
Figura 4-19. Ampliación de la comparación de las configuraciones de control P_TI_C y	
PI_TI_C ante cambios de setpoint.	53
Figura 4-20. Ampliación de la comparación de las configuraciones de control $P_TI_C y$	- 4
PI _T I _C ante perturbaciones	54
Figura 4-21. Retrato fase de la configuración $P_T I_C$ con un setpoint de $C_{ma}^{set} = 0.774$ %mol5	55
Figura 4-22. Retrato de fase de la configuración PI_TI_C con un setpoint de $C_{ma}^{set} = 0.774$ %mod	l.
5	55
Figura 8-1. Esquema de una acción de control	56
Figura 8-2. Reactor continúo de tanque agitado	57
Figura 8-3. Control por retroalimentación	58
Figura 8-4. Control en cascada	59
Figura 8-5. Esquema de la acción de un controlador PI	59
Figura 8-6. Puntos de equilibrio y estabilidad de un sistema	70
Figura 8-7. Ganancia en estado estacionario	76
Figura 8-8. Respuesta de un proceso de primer orden a un cambio en escalón de la	
función de forzamiento – constante de tiempo	79
Figura 8-9. Mapa de fase de un reactor químico batch.	30

1 Introducción

Los reactores químicos son el cerebro de los procesos químicos, en especial los reactores continuos de tanque agitado (CSTRs). Los CSTRs son muy empleados en la industria de procesos químicos. Ejemplos comunes donde se emplea este tipo de reactores son: en la polimerización para la producción de plásticos y pinturas, producción de acetato de sodio para la formación de jabones, producción de nitrobenceno para los explosivos, producción de etílglicol para anticongelantes, hidrolización de anhídrido acético para producir ácido acético, oxidación de Diesel para su deshidrodesulfuración, entre otros. Estos sistemas suelen tener hasta tres puntos de equilibrio y si el punto de equilibrio deseable es inestable el cual corresponde a la producción optima en el proceso de reacción, si las perturbaciones desaparecen lentamente, o si el tiempo de asentamiento es muy grande, se puede uno preguntar si es posible hacerlo estable, mejorar su estabilidad o disminuir el tiempo de asentamiento. La respuesta es si, por ejemplo para mejorar la estabilidad se aumenta la pendiente de la línea de eliminación de calor. Estos sistemas son dinámicos y en ellos siempre ocurren cambios y si no se toman las acciones pertinentes, las variables del proceso, es decir aquellas que se relacionan con la seguridad, la calidad del producto y los índices de producción, no cumplirán con las condiciones del diseño. La calidad de los productos es la más importante en la industria química debido a su valor agregado, por tal motivo que sea importante controlar la composición para la mejora del producto y obtener así mayores ganancias. Y para lograrlo existen sistemas de control, los cuales han jugado un papel importante en la industria química. Estos sistemas de control han dado lugar a muchas mejoras en los procesos químicos, dando como resultado el funcionamiento de los sistemas dinámicos, ahorro de inversión reflejado en mayores ganancias, así como instalaciones más seguras, de tal manera que dan una mayor eficiencia y rendimiento en el proceso.

Cabe mencionar que la aplicación del control es elemental para operar algunos procesos químicos, ya que de las técnicas de control usadas dependerá en buena parte la calidad y la cantidad de los productos. También el uso de técnica de control implica seguridad tanto en la planta como en el personal obteniendo así instalaciones más seguras. Por la parte de disminución de contaminantes, esto se cubre si se piensa que al operar eficientemente la planta o proceso químico, no existirán desviaciones en el proceso como: derrames innecesarios o emisiones de gases contaminantes a la atmósfera, además podrían implementarse plantas de tratamiento de agua, que se deberá hacer uso de control para obtener la calidad mínima requerida pedida por las autoridades para poder descargar el agua al drenaje, e incluso el agua podría reutilizarse.

Así que, el diseño de técnicas de control, pueden ser elementales para operar eficientemente los procesos químicos, y además el diseño de una técnica en particular dependerá de las necesidades de operación y de las variables necesarias para diseñar el control, las cuales pueden ser medidas, no medidas e inferidas.

En los años cincuenta Aris y Admunson comenzaron el diseño y análisis de controladores proporcionales integrales (**PI**), para mantener y determinar la estabilidad de **CSTRs**. Desde entonces existe un gran número de publicaciones del estudio de control de **CSTRs** (Puebla, 2002).

El control Proporcional Integral (**PI**) es un método de control muy popular y la razón principal para implementar este tipo de control es debido a que el control proporcional no puede compensar la desviación del estado estacionario cuando el proceso se somete a perturbaciones. Un análisis en el dominio de *Laplace* en un sistema a lazo cerrado se tiene que la acción integral es suficiente para compensar la desviación del estado estacionario, por consiguiente la acción integral es usada para alcanzar el punto de operación (**setpoint**) deseado.

El control en cascada es una de las herramientas más útiles para el diseño de controles avanzados. Su utilidad radica en su capacidad para rechazar perturbaciones, y reducir constantes de tiempo para mejorar el desempeño de los controladores. Esté tipo de estrategia es usada en los procesos químicos debido a que existen variables con medidas retardadas o procesos de gran capacitancia como columnas de destilación. En los cuales la implementación de una técnica de control convencional, como el uso de

controladores con estructura proporcional e integral implica retardos en las acciones de control y pobre desempeño de los controladores ya que las perturbaciones y los ruidos de medición no serán detectados al tiempo que ocurren y por lo tanto el control tardara en corregir la acción de control (Morales, 1998).

La idea de usar control en cascada se origino con el problema de rechazo de perturbaciones cuyos efectos se detectan más rápidamente en una salida de control secundario que en la variable controlada. Entonces, el uso del control en cascada es recomendado para aquellos procesos en los cuales la dinámica de un lazo de control secundario es más rápida que la dinámica del proceso primario (Stephanopoulos, 1984). En estas condiciones la interacción entre los dos esquemas de control formados es prácticamente nula, debido a la diferencia en sus dinámicas y por la cual se dice que no se presentan problemas grandes de sintonizado en el esquema de control en cascada.

A continuación se menciona la idea general de algunos de los trabajos que se toman como antecedentes para el desarrollo de esta tesis y que además forman parte del argumento del caso de estudio de esta tesis. Muchos procesos tales como columnas de destilación, reacciones químicas y neutralizaciones de pH son esencialmente no-lineales. Para la mayoría de los procesos no-lineales las estrategias de control se basan en modelos lineales con base en la linealización de los modelos. Henson y Seborg (1990) pudieron representar procesos altamente no-lineales por medio de la linealización entrada-salida, la cual es una forma simple y general de representar los procesos altamente no-lineales desarrollados por medio de métodos de geometría diferencial, el cual extrae una linealización exacta del modelo no-lineal que es independiente del punto de operación y además designa así controladores lineales para tener un sistema lineal equivalente. Este estudio fue evaluado en un modelo de dos **CSTRs** acoplados, además el objetivo de control en dicho sistema es el control del efluente de la concentración de la salida del segundo reactor, por medio de la manipulación de la velocidad del flujo de la corriente enfríante (Henson y Seborg, 1990).

Mc Avoy *et al.* (1996) introducen el uso del control no lineal que se infiere paralelamente en cascada (NIPCC) para el mejoramiento del desempeño de un sistema de control. En el cual la meta es detectar y compensar la existencia de los efectos en los disparos de las mediciones de las perturbaciones por el empleo del control retroalimentado. El NIPCC se comporta de una manera similar al control normal en cascada, pero NIPCC tiene una arquitectura retroalimentada en paralelo. La eficacia del NIPCC se demostró en el proceso de prueba de Tennessee Eastman (Mc Avoy *et al.*, 1996).

Wolf y Skogestad (1996) examinan la dificultad del control en cascada por la introducción de una segunda medición. La temperatura es muy usada como una medición secundaria porque es fácil de detectar, rápida y económica.

Por otra parte, la destilación se opera de esta manera debido a lo lento para aplicaciones de control multivariable. En la destilación al introducir las dos mediciones, da como resultado el mejoramiento en interacción y rechazo de perturbaciones, sin embargo si se midiera la composición está seria más sensible a las perturbaciones y el control deberá ser más critico (Wolf y Skogestad, 1996).

En Semino y Brambilla (1996) se estudian diferentes estructuras de control y sus interacciones del control cascada paralelo por medio del rechazo de las perturbaciones. También se comparan diferentes estructuras de control, y además muestra sus ventajas y desventajas a partir de las estructuras simples de control para formar estructuras en cascada. Del cual concluyen que la nueva estructura de control reduce las interacciones presentes en los controladores convencionales y además sus parámetros se pueden determinar por medio de la técnica de control de modelo interno (IMC) de igual manera que en el control convencional (Semino y Brambilla, 1996).

Lee y Park (1998) proponen un nuevo método de control **PID** basado en el modelo de sistemas de control en cascada, que consiste primeramente de un controlador ideal con respuestas a lazo cerrado en el cual la respuesta del controlador ideal esta representado por series de Maclaurin. Este método sólo se puede aplicar a procesos estables a lazo cerrado. Además este método es comparado con el método de respuesta de frecuencia. La

conclusión más relevante es que el control ideal se puede dar por la respuesta a lazo cerrado por medio de la aproximación del control ideal obtenido por la expansión de los tres primeros términos de la serie de Maclaurin (Lee y Park, 1998).

Por otra parte Alvarez- Ramírez *et al.* (1998) llegaron a la conclusión que muchos de los procesos químicos pueden ser modelados considerando un proceso de primer orden. En este caso los controladores **PI** retroalimentado son muy usados para la regulación de dichos procesos, debido a las capacidades de la acción integral para estimar las perturbaciones de mayor importancia, en el cual una cierta estabilidad marginal en el sistema a lazo cerrado se obtiene. La variable integral es suministrada en un estimador de perturbación. La meta del trabajo es extender las capacidades de estimación de perturbaciones dinámicas. Bajo ciertas ganancias del controlador propuesto, este se reduce a un controlador clásico **PI** (Alvarez-Ramírez *et al.*, 1998). Este articulo ayuda a entender la importancia que tiene la acción integral en los controladores lineales, por ende que sea de una gran utilidad en el diseño del control en cascada que se pretende desarrollar en está tesis.

Posteriormente Zaldo y Alvarez (1998) estudiaron una estrategia de control nolineal de Composición-Temperatura en un reactor semi-batch para la formación de la emulsión de un copolimero (vinil acetato(VAM) y n-butil acrilato(BA)). La producción de esta emulsión es uno de los pasos más importantes del proceso industrial para la producción de plásticos, en particular el uso de un reactor semi-batch para la formación de la emulsión ofrece ventajas con respecto a las propiedades de homogenización del copolimero. Sin embargo estos tipos de reactores tienen una dinámica compleja no-lineal, y el diseño del control sea del tipo no-lineal sin que deje ser de composición. De tal forma que, de acuerdo al problema planteado se logra la emulsión homogénea en un mínimo tiempo en el reactor semi-batch empleando una ley de control inversa dando como resultado una buena aproximación en la regulación de la distribución del peso molecular de la emulsión del copolimero (Zaldo y Alvarez, 1998). En este mismo año Barolo y Berto (1998) estudian una estrategia de control avanzada para el control de composición en una columna de destilación batch por medio de la estructura del modelo interno de control no-lineal. Además ellos comparan la estrategia propuesta con la estructura clásica de control **PI** de composición para columnas de destilación batch, en la cual el control **PI** sirve como un simple swish en el reflujo de la columna de destilación batch. La estrategia de control de composición es avanzada para la operación de columnas de destilación, la cual se derivo por medio del control de modelo interno no-lineal (**NIMC**) de tal forma que esta estrategia presenta un mejor desempeño que los controladores **PI** convencionales. Así mismo el desempeño del controlador no se ve afectado por los cambios de la composición en la alimentación o en la especificación de la composición (Barolo y Berto, 1998).

Monrroy y Alvarez (2001) estudiaron el problema dual de control de composición en una columna de destilación batch, en el cual el objetivo del control es regular la pureza de los productos del domo por medio de la manipulación de la velocidad del flujo del reflujo y la composición de los productos y fondos por la manipulación de la velocidad de flujo del rehervidor respectivamente. Del uso de estimadores del error de modelado, se diseñan compensadores retroalimentados de salida, los cuales muestran una equivalencia con respecto al controlador PID. También muestran y discuten la habilidad de los controladores propuestos para la regulación de la composición de los productos tanto como en el domo como en los fondos de la columna de destilación vía simulación numérica del modelo dinámico de la columna de destilación batch. En este trabajo el problema del control de composición se basa en un problema de dinámica inversa y la nueva idea propuesta para la estabilización robusta se basa en la técnica del modelo de compensación de errores y consiste del modelado y interpretación del modelado de los errores de señales como un estado dinámico que puede ser reconstruido por la medición de sus variables. Además los resultados de los controladores propuestos muestran equivalencias con los controladores PID estándar (Monrroy y Alvarez, 2001).

Posteriormente Lee y Oh (2002) desarrollaron una estructura general de control en cascada. Con la estructura de control propuesta, un controlador de modelo interno, se deriva para adquirir una respuesta deseada a lazo cerrado y además que pueda ser convertido a un simple controlador **PID** convencional. Varios ejemplos se proporcionan para ilustrar la superioridad de la estructura y control propuesto. Estas estructuras son mucho más robustas con respecto al ruido de las mediciones que el control convencional en cascada. En general los procesos se dividen en dos partes. Una parte consiste en la integración de los procesos inestables y estables por medio de sus polos y ceros. La otra parte consiste de los procesos estables normales. De tal forma que estos procesos se sintonizan por la técnica del **IMC** (Lee y Oh, 2002). Esté articulo es de un gran interés para el desarrollo de esta tesis ya que muestra que la técnica del control de modelo interno (**IMC**), conduce a excelentes estructuras de control en cascada, así como de la sintonización de los parámetros de los controles en cascada que se proponen.

Alvarez-Ramírez *et al.* (2002) mencionan que a pesar de que el control de composición en reactores químicos no es un evento muy reciente, todavía se muestran ciertos aspectos que no han sido explotados o resueltos. Por este motivo, es necesario unificar una sistematización *ad hoc* para la construcción de controladores de composición, y en tal forma establecer rigurosamente las propiedades de robustez, además explorar la posibilidad de mejorar el funcionamiento y construcción de los controladores de composición, para lograr un avance en esté campo, ellos proponen una configuración de control lineal en cascada (maestro/esclavo). Donde miden la estabilidad global interna del controlador propuesto por medio de la regulación asintótica de la corriente de composición dado un setpoint (Alvarez-Ramírez *et al.*, 2002).

Posteriormente, Othman *et al.* (2002) estudian una nueva estrategia de control de composición en un proceso de emulsión de copolimerización y termopolimerización, basada en el uso de técnicas de estimación y control no-lineal. La estrategia usa la estimación de la concentración de monómeros en el reactor, en el cual las variables manipulables usadas para el control de composición son la velocidad de flujo de la

mayoría de los monómeros reactivos, calculando la velocidad de reacción, de tal forma que da una anticipación a los cambios en la composición del polímero. Estos controladores se validan experimentalmente por cambios de setpoint mostrando que si es posible mantener la composición del polímero producido en un valor constante. Así la estrategia de control propuesta en este trabajo es robusta e independiente de la composición deseada (Othman *et al.*, 2002).

Por otro lado Vieira *et al.* (2002) proponen un algoritmo de control, el cual se diseña e implementa experimentalmente por una simulación de control de composición a lazo cerrado y el número del peso molecular de un copolimero de Látex. El algoritmo de control se desarrolla vía una estrategia de control predictivo y un algoritmo de programación iterativa dinámica (**IDP**) para optimización de procesos y la designación de las trayectorias dinámicas optimas en cada muestreo del tiempo. El control de un reactor semi-batch para la formación de una emulsión de copolimerización de metil metacrilato (MMA) y butil acrilato (BuA) muestra una buena aproximación. Las composiciones tanto del polímero como del monómero son medidas con la ayuda de un equipo de alcance de espectroscopia infrarroja (**NIRS**). Mientras que peso molecular promedio se infiere con la ayuda de un modelo del proceso. Las variables manipulables son las velocidades de flujo de las tres distintas corrientes de alimentación, el cual contiene concentraciones conocidas de ambos monómeros y de un agente de transferencia de cadena. (Vieira *et al.*, 2002).

En estudios más recientes Vicente *et al.*, (2003) implementaron una estrategia de control basada en una reacción calorimétrica para maximizar la producción de estireno/ n-butil acrilato en el Látex con la composición del copolimero y la distribución del peso molecular en reactores con capacidad de calor removida limitada. Para este propósito, se usaron controladores basados en el modelo no-lineal para la maximización de la producción, manteniendo los porcentajes de concentración de cada monómero y la concentración de los monómeros sin reaccionar para los valores requeridos del agente de la cadena de transferencia. En este trabajo la estrategia de control se desarrollo simultáneamente, el control de composición y la distribución del peso molecular del polímero en reactores con limitación de remoción de calor. De tal forma que esta

estrategia de control de composición desarrollada presenta un buen desempeño, la cual fue probada a nivel industrial (Vicente *et al.*, 2003).

Tal y como se muestra en los párrafos anteriores, existen pocos estudios de control lineal de composición en **CSTRs**, generalmente el tipo de control empleado en el control de composición es no-lineal. Se han hecho diversos estudios de control de **CSTRs** pero, lo que se ha controlado básicamente es la temperatura, empleando las estrategias de control lineal y no-lineal. El control de composición sólo se ha estudiado en controladores no-lineales, como por ejemplo: en los trabajos de Othman, Mc. Avoy y Alvarez Calderón entre otros, los cuales se realizan principalmente en columnas de destilación. Sin embargo el estudio del control lineal de composición en **CSTRs** es un evento relativamente reciente, por ello que se muestra muy atractivo hacer el estudio de control lineal de composición en **CSTRs** con estructuras básicas de control tipo Cascada. Hasta el mejor conocimiento del autor no existen desarrollos de control lineal, que incorporen lazos de control auxiliares para el diseño del control en cascada y que además proporcionen márgenes de robustez.

1.1 Objetivos

En este trabajo se empleara el control tipo cascada usando estructuras básicas de control las cuales se utilizan comúnmente en la industria de procesos químicos, además se sabe que el control de composición tendrá una gran aplicación en la industria de procesos químicos.

Con base a lo anterior los objetivos de esta tesis es estudiar el control lineal de composición tipo cascada en **CSTRs** con estructuras básicas de control, tales como: el control proporcional (**P**), control integral (**I**), control proporcional integral (**PI**), como por ejemplo: Control proporcional de temperatura con un controlador integral de

concentración (\mathbf{P}_{T} - \mathbf{I}_{C}), control proporcional integral de temperatura con un controlador integral de concentración ($\mathbf{P}\mathbf{I}_{T}$ - \mathbf{I}_{C})².

1.2 Objetivo General

- En esta tesis el interés principal de investigación es el diseño de una estrategia de control lineal de composición tipo cascada en CSTRs.
- Diseñar controladores en cascada para la regulación de la composición en CSTRs, el cual estará compuesto con estructuras clásicas de control P, I, y/o combinaciones de ellas, para el mejoramiento del desempeño de los controladores tipo cascada.
- El control en cascada a diseñar deberá de ser robusto ante perturbaciones externas y a cambios de setpoint para la composición en CSTRs, además se probaran dos diferentes configuraciones de control, a dichas configuraciones se le determinaran sus ventajas y desventajas.

A continuación se describen como estarán construidas las dos configuraciones de control que serán diseñadas:

- Diseño de un controlador proporcional de temperatura, con un control integral de composición (P_T-I_C) tipo cascada.
- Diseño de un controlador proporcional integral de temperatura, con un control integral de composición (PI_T-I_C) tipo cascada.

² En esta parte introductoria se han dado a conocer los términos necesarios para entender el área de control, en la sección de teoría de control se aborda mas detalladamente, los términos del área de control, para el lector que tenga un interés más profundo en dicha área.

1.3 Objetivos particulares

Los objetivos particulares son los pasos a seguir para resolver el problema de investigación.

- 1) Selección del modelo para probar las estrategias de control desarrolladas
- Determinación de los puntos de equilibrio del sistema dinámico seleccionado
- 3) Simulación del sistema dinámico elegido a lazo abierto
- 4) Identificación de modelos de entrada-salida simples
- 5) Diseño del control en cascada en sus dos configuraciones
- 6) Implementación de la estrategia de control vía simulaciones numéricas

2 Diseño del Control en Cascada

El objetivo principal de esté capítulo y en general de esta tesis es desarrollar configuraciones de control de composición en cascada en **CSTRs**, el capítulo esta organizado de la siguiente manera: Primero se define un controlador tipo cascada y su uso, posteriormente se definen dos diferentes tipos de configuraciones de control en cascada que son desarrollados en este capítulo y su aportación especifica, de tal manera que en él capítulo siguiente se implementaran las leyes de control diseñadas en un caso de estudio posteriormente.

La estructura de controladores en cascada es una de las herramientas más útiles para diseño de controladores avanzados en la industria. Su utilidad radica en su capacidad para rechazar perturbaciones y mejorar el desempeño de los controladores.

El uso del control en cascada es recomendado para aquellos procesos en los cuales la dinámica de un lazo de control secundario es más rápida que la dinámica del proceso primario. En estas condiciones, la interacción entre los dos esquemas de control formados es prácticamente nula debido a la diferencia en sus dinámicas y por lo cual se dice que no se presentan problemas de sintonizado en el esquema de control en cascada (Stephanopoulos, 1984).

La estructura de control cascada convencional esta compuesta por dos controladores retroalimentados, donde la salida del control primario o control maestro cambia el punto de referencia del control secundario o esclavo. La salida del control secundario incide directamente en la acción final del control (Morales, 1998).

Para determinar que estructura de control en cascada debe aplicarse, se tiene que hacer un análisis de las variables medidas disponibles de forma que de acuerdo a como

las perturbaciones del proceso afectan a las variables medidas a las variables controlantes.

Como el problema principal de esta tesis consiste en diseñar el control en cascada de composición para **CSTRs**, basado en la técnica del control lineal. Para lograrlo primero se diseña el control esclavo y posteriormente se diseña el control maestro, cabe mencionar que se diseñaran dos configuraciones de control en cascada, las cuales serán probadas posteriormente.

2.1 Control Esclavo

Tomando la expresión de un controlador proporcional (**P**), el cual se representa por medio de la siguiente ecuación (Smith y Corripio, 1994):

$$u = \overline{u} + kp(T^r - T).$$
....Ecuación 2-1

Reordenando tenemos:

$$\frac{u-\overline{u}}{T-T^r} = -kp$$
....Ecuación 2-2

Aplicando la transformada de *Laplace* a la ecuación (2-2), para obtener la función de transferencia tenemos:

$$\frac{u}{T} = \frac{\Delta u(s)}{\Delta T(s)} \approx -kp$$
....Ecuación 2-3

La expresión de una ecuación diferencial ordinaria (**ODE**) lineal, en términos de variables de desviación, esta dada por:

$$\tau_o \frac{dT}{dt} + T = k_{pr}u$$
....Ecuación 2-4

Despejando la derivada y ordenando tenemos:

.

$$\frac{dT}{dt} = \left(\frac{k_{pr}}{\tau_o}\right) u - \tau_o^{-1}T \dots$$
Ecuación 2-5

Donde:

 k_{pr} Es la ganancia del proceso

 τ_{o} Es el tiempo del proceso

A continuación se escribe la **ODE** lineal sin que sea sometida a perturbaciones, la cual se representa como sigue:

$$\frac{dT}{dt} = -\tau_c^{-1}T$$
....Ecuación 2-6

Igualando las ecuaciones (2-6) y (2-5), para encontrar los parámetros del controlador en términos de los parámetros del proceso, los cuales se pueden calcular fácilmente con el método IMC descrito en él capítulo de teoría de control, tenemos:

$$\left(\frac{k_{pr}}{\tau_o}\right)u - \tau_o^{-1}T = -\tau_c^{-1}T$$
.....Ecuación 2-7

Despejando $\frac{u}{T}$ y reordenando tenemos:

$$k_{pr}u - T = -\left(\frac{\tau_o}{\tau_c}\right)T$$
....Ecuación 2-8
$$\frac{u}{T} = k_{pr}^{-1} \left[1.0 - \frac{\tau_o}{\tau_c}\right]$$
...Ecuación 2-9

Ahora para encontrar la ganancia del control esclavo, se igualan las ecuaciones (2-9) y (2-3) obteniendo la siguiente relación:

$$kp = -k_{pr}^{-1} \left[1.0 - \frac{\tau_o}{\tau_c} \right] \dots \text{Ecuación 2-10}$$

El tiempo del proceso sin perturbaciones es directamente proporcional al tiempo del proceso real, de ahí que podamos tener la siguiente simplificación por medio de la siguiente expresión:

 $\tau_c = \alpha \tau_o$Ecuación 2-11

De tal modo que:

 $\frac{\tau_o}{\tau_c} = \frac{1}{\alpha}$Ecuación 2-12

Sustituyendo la ecuación (2-12) en la ecuación (2-10):

$$kp = k_{pr}^{-1} \left[\frac{1}{\alpha} - 1 \right]$$
....Ecuación 2-13

Analizando el termino $1/\alpha$, tenemos que no puede valer cero, ya que $1/\alpha \approx \infty$, y esto no puede ocurrir en estos procesos, en tanto que el otro limite extremo seria donde $1/\alpha = 1$, esto seria solo sí $\alpha = 1$, esto significa que el control se apagaría, entonces α indica la rapidez de la respuesta a la acción de control, así que:

$$0 < \alpha \leq 1.0$$

Por último sustituyendo la ecuación (2-13) en la ecuación (2-1) obtenemos que el controlador **P**, esta dado como:

$$u = \overline{u} + k_{pr}^{-1} \left[\frac{1}{\alpha} - 1 \right] \left(T^r - T \right) \dots \text{Ecuación 2-14}$$

Donde K_{pr} es la ganancia del proceso, la cual es calculada por el método **IMC** descrito en la sección de teoría de control.

La ecuación (2-14) es la ley del *Control Esclavo*, la cual es directamente proporcional a la temperatura, donde la constante de proporcionalidad resulta ser la ganancia del proceso.

2.2 Control Maestro

Ahora derivaremos en esta sección la ley del *Control Maestro* tal como se muestra a continuación. Sin embargo cabe mencionar que la razón principal para implementar la acción el control integral es debido a que el control proporcional no puede compensar la salida del estado estacionario cuando el proceso se somete a perturbaciones así que la acción integral es suficiente para compensar la eliminación del estado estacionario, por consiguiente la acción integral se usa para aumentar la convergencia del setpoint.

Empleando la acción de control integral de concentración en la temperatura de referencia del control proporcional de temperatura para obtener un control en cascada de

concentración ($P_T I_C$), la cual es la parte fundamental de esta tesis se expresa de la siguiente forma:

$$T^{r} = \overline{T} + K_{I,C} \int (C^{r} - C) dt \dots$$
Ecuación 2-15
$$K_{I,C} = \frac{1.0}{k_{pri} \tau_{I}} \dots$$
Ecuación 2-16

Donde:

- τ_{I} : Es el tiempo de convergencia del controlador proporcional
- K_{IC} : Es la ganancia del controlador integral
- k_{pri} : Es la ganancia del proceso de concentración

La ecuación (2-15) es la ley del *Control Maestro*, la cual es directamente proporcional a la integral de la concentración, desde un tiempo cero hasta un tiempo t cualquiera, donde la constante de proporcionalidad es llamada ganancia del controlador integral.

La ganancia del proceso del control integral de concentración se obtiene por medio de la pendiente de la gráfica de Concentración versus Temperatura del reactor en una concentración de referencia tal como se muestra en la sección de teoría de control.

La ganancia del proceso del control integral esta dada por la siguiente expresión:

$$k_{pri} = \frac{dC}{dT} \cong \frac{\Delta C}{\Delta T}$$
....Ecuación 2-17

A continuación se describirán las dos configuraciones de control, que serán probadas en un modelo de **CSTR**. Se describirán dos configuraciones de control para observar en cual de ellas existe un mejor funcionamiento y así por determinar sus ventajas y desventajas.

2.3 Control en Cascada de Concentración Configuración $P_T I_C$

El modelo de control lineal de composición tipo cascada en su configuración $P_T I_C$, consta de dos partes, un control maestro, que corresponde a la ecuación (2-19) y un control esclavo, la cual esta representada por el diagrama de bloques de la Figura 2-1, que le corresponde la ecuación (2-18), la cual esta representado por las siguientes expresiones:

Figura 2-1. Diagrama de bloques de la configuración de control P_TI_C.

2.4 Control en Cascada de Concentración Configuración $\mathbf{PI}_{\mathbf{T}}\mathbf{I}_{\mathbf{C}}$

Ahora adicionaremos una acción integral al control $P_T I_C$ tipo cascada desarrollado anteriormente, para hacer el reajuste del punto de operación, ya que un controlador proporcional trabaja con una desviación al punto de operación, para obtener la configuración de control tipo cascada $PI_T I_C$, la cual se expresa por medio de las siguientes expresiones:

Figura 2-2. Diagrama de bloques de la configuración PI_TI_C.

$u = \overline{u}$	$+k_{pr}^{-1}\left[\frac{1}{\alpha}-1\right]\left(T^{r}-T\right)+K_{I,T}\int\left(T^{r}-T\right)dt$	Ecuación 2-22
$T^r = \overline{I}$	$\overline{F} + K_{I,C} \int (C^r - C) dt$	Ecuación 2-23
$K_{I,C}$ =	$=\frac{1}{k_{pri}\tau_{I}}$	Ecuación 2-24
$K_{I,T}$ =	$=\frac{Kp}{\tau_o}$	Ecuación 2-25
Donde: τ_0	: Es el tiempo del proceso	

 τ_I : Es el tiempo de convergencia del controlador proporcional

2.5 Sintonizado de los Parámetros

Todo sistema de control pasa por un sintonizado de sus parámetros, el cual consta de calcular la ganancia de la planta y el tiempo que tarda en responder el control para obtener dichos parámetros sé pueden estimar de la siguiente forma.

2.5.1 Ganancia del proceso para un Control Integral de Concentración

El procedimiento para encontrar la ganancia del proceso del control integral de concentración, es como se muestra a continuación, y cuya representación gráfica se muestra en la Figura 2-1.

Figura 2-3. Esquema del cálculo de la ganancia de la planta de un control Ic.

La ganancia del proceso del control integral esta dada por:

$$k_{pri}^{real} = \frac{dC}{dT} \cong \frac{\Delta C}{\Delta T}$$
.....Ecuación 2-26

En forma adimensional tenemos que:

$$k_{pri} \cong \frac{\Delta C/C^*}{\Delta T/T^*} = k_{pri}^{real} \left(\frac{T^*}{C^*}\right)$$
....Ecuación 2-27

2.5.2 Ganancia del proceso del control proporcional

La ecuación representativa para calcular la ganancia del proceso toma la siguiente forma:

$$k_{pr} = \frac{T_{ee}^{N} - T_{ee}}{\Delta T_{ee}}$$
....Ecuación 2-28

Donde:

 $T_{...}^{N}$: Es la temperatura del reactor nueva de estado estacionario

 T_{ee} : Es la temperatura del reactor en estado estacionario

 ΔT_{ee} : Es el escalón de temperatura o también llamado u

2.5.3 Constante del Tiempo de Respuesta

Para encontrar la constante de tiempo en el caso de un control **PI**, se obtiene por medio de las siguientes expresiones:

$$\tau_o = tiempo_{ee}^N(64\%) - tiempo_{ee}$$
....Ecuación 2-29

Donde:

 $tiempo_{ee}^{N}$: Es el tiempo nuevo del estado estacionario

tiempo_{ee}: Es el tiempo del estado estacionario inicial

Esquemáticamente se obtiene como se muestra en la Figura 2-2.

tiempo^N

Figura 2-4. Esquema del cálculo de la ganancia de la planta en un controlador P.

3 Caso de Estudio

Para probar las leyes de control antes diseñadas, en esta sección se estudiara un reactor químico de lecho fluidizado (**FBR**), el cual se reduce a un modelo de **CSTR**, como se muestra en los párrafos siguientes, además se dan los valores numéricos de los parámetros del sistema para que posteriormente se apliquen las leyes de control diseñadas en el capítulo anterior.

3.1 Dinámica para el modelo de CSTR

El reactor químico considerado para el desarrollo de la esta tesis para probar las leyes de control antes diseñadas, es el de la oxidación parcial de benceno a anhídrido maleíco y óxidos de carbono. La reacción se realiza en un reactor químico de lecho fluidizado el cual se enfría por una corriente fresca de aire a través de una chaqueta de enfriamiento, como se muestra en la Figura 3-1 (Aoufoussi *et al.*, 1992, Alvarez *et al.*, 2002).

Figura 3-1. Reactor de lecho fluidizado (FBR).

La oxidación catalítica del benceno para la formación de anhídrido maleíco se puede representar por la siguiente reacción triangular:

Las expresiones de la velocidad de reacción son de pseudo-primer orden y están dadas por Aoufoussi *et al.* (1982) y se representan por medio de las siguientes expresiones:

$$r_1 = k_1 p_{bz} = k_1 C_{bz} T$$
, donde $k_1 = A_{1o} e^{(-E/RT)}$Ecuación 3-1
 $r_2 = k_2 p_{ma} = k_2 C_{ma} T$, donde $k_2 = A_{2o} e^{(-E/RT)}$Ecuación 3-2
 $r_3 = k_3 p_{ox} = k_3 C_{ox} T$, donde $k_3 = A_{3o} e^{(-E/RT)}$Ecuación 3-3

La dinámica del modelo fue desarrollada por Aoufoussi *et al.* (1982) el cual satisface los requerimientos de la reproducción de los fenómenos de transportes, como se describe a continuación:

Balances de Materia:

Fase Burbuja

La primera suposición que se hace es que la fase burbuja se encuentra en pseudoestado estacionario en relación con la dinámica de la fase densa. Esta suposición se escribe se representa por medio de la siguiente expresión:

$$u_b \frac{dC_{b,i}}{dz} = F_{be} \left(C_{b,i} - C_{e,i} \right) \quad i = bz, ma \dots$$
Ecuación 3-4
Donde *bz* y *ma* son los elementos benceno y anhídrido maleíco respectivamente. Las condiciones de frontera son $C_{b,i} = C_{o,i}$ en z = 0. F_{be} es el coeficiente de transferencia de masa para algún componente entre la fase burbuja y la densa.

Fase densa

La suposición sobresaliente en la fase densa es que se encuentra perfectamente mezclada. De tal manera que el balance de materia en estado inestable para cada componente (i) esta dado por la ecuación:

$$V_e \frac{dC_{e,i}}{dt} = u_{mf} A_r \left(C_{o,i} - C_{e,i} \right) + u_b \varepsilon_b \left(C_{b,i} - C_{o,i} \right) + M_c \sum v_{i,j} r_j \qquad \text{Ecuación 3-5}$$

$$i = bz, ma$$

Ahora si nosotros sustituimos la ecuación del balance de materia de la fase burbuja en la ecuación 3-5, obtenemos la ecuación para las concentraciones en la fase emulsión representada por la siguiente expresión:

$$V_{e}d\frac{dC_{e,i}}{dt} = A_{r}\left(C_{o,i} - C_{e,i}\right) + \left\{u_{mf} + u_{b}\varepsilon_{b}\left[1 - e^{\left(-F_{be}H/u_{b}\right)}\right]\right\} + M_{c}\sum v_{i,j}r_{j}$$
....Ecuación 3-6
$$i = bz, ma$$

Balances de Energía:

Dentro del reactor

El balance de energía de la fase emulsión suponiendo que se encuentra perfectamente mezclada puede ser escrito como sigue:

$$\left(M_{c}C_{pw} + \varepsilon V\rho_{g}C_{pg}\right)\frac{dC_{e,i}}{dt} = C_{pg}\left(T_{ro} - T_{r}\right) + h_{i}A_{i}\left(T_{w} - T_{c}\right) + M_{c}\sum_{j=1}^{3}v_{i,j}r_{j}$$
 Ecuación 3-7

Pared del reactor

Suponiendo que la estructura del soporte y la pared son iguales la temperatura es uniforme, puede escribirse del balance de energía como:

$$M_{w}C_{pw}\frac{dT_{w}}{dt} = h_{i}A_{i}\left(T_{r}-T_{w}\right) - h_{o}A_{o}\left(T_{w}-T_{c}\right) + \lambda Q$$
....Ecuación 3-8

Chaqueta de enfriamiento

Suponiendo que se encuentra en pseudo-estado estacionario, el balance de energía puede ser escrito como sigue:

$$0 = F_{cm}C_{pc}^{*}(T_{co} - T_{c}) + h_{o}A_{o}^{*}(T_{w} - T_{c}) + (1 - \lambda)Q$$
....Ecuación 3-9

Los parámetros hidrodinámicos fueron estimados por medio de las ecuaciones empíricas que se encuentran la literatura. El coeficiente de transferencia de calor en la entrada h_i fue evaluado con la correlación de Toomey y Johnstone (1997) mientras que el coeficiente de transferencia de calor de en la salida h_o entre el intercambiador de calor y la pared del reactor es aproximado por la aproximación del primer termino de la serie de Taylor por medio del flujo del aire a través de la chaqueta de enfriamiento, por ejemplo:

$$h_o = \alpha_e F_c$$
Ecuación 3-10

Las variables de adimensionales son. La temperatura característica $T^* = RT_fT_f/E_m$, fracción mol $y^* = y_{in}$ y el flujo $F^* = F_{cmax}$. Introduciendo las variables adimensionales de la tabla 3-1, se puede normalizar las ecuaciones que describen la dinámica del reactor de lecho fluidizado por medio de la siguiente forma:

Variable	Transformación	Clasificación
Temperatura de la cama T_r	$T = \left(T_r - T_f\right) / T^*$	Medidas de
Temperatura de la pared T_w	$T = \left(T_w - T_f\right) / T^*$	variable de
Fracción mol de anhídrido maleíco y_{ma}	$C_{ma} = y_{ma} / y^*$	estado
Temperatura de entrada al reactor	$\boldsymbol{\theta}_{T} = \left(T_{ro} - T_{f}\right) / T^{*}$	
Temperatura del enfríante	$\boldsymbol{\theta}_{C} = \left(T_{Co} - T_{f}\right) / T^{*}$	Entradas
Fracción mol de entrada del benceno	$C_{bz,in} = y_{bz,in} / y^*$	Perturbadas
Fracción mol del anhídrido maleíco	$C_{ma,in} = y_{ma,in} / y^*$	

Tabla 3-1. Variables adimensionales.

Tabla 3-2. Parámetros de reducción del modelo

$\beta_m = E_i / RT_m$	
$\beta_i = E_i / E_m$	
$E_{m} = (E_{1} + E_{2} + E_{3})/3$	
$\Theta_T = F_m C_{pg} / (m C_p)_r$	
$\gamma = h_i A_i / (m C_p)_r$	
$a_{3} = \rho_{s} V_{e} P y^{*} / \left[T^{*} \left(m C_{p} \right)_{r} \right]$	
$\Theta_{C} = A_{r} \left(u_{mf} + u_{b} \varepsilon_{b} \right) \left[1 - e^{\left(1 - F_{be} H / u_{b} \right)} \right] / N_{t}$	
$a_5 = \rho_s V_e P / N_t$	

A continuación se presentan las ecuaciones que describen la dinámica del reactor **FBR** para la reacción catalítica de benceno para la formación de anhídrido maleíco, el

cual se reduce a un modelo de **CSTR** tal como lo muestra en Alvarez-Ramírez *et al.* (2002).³

$$\xi_{i} = \exp(\beta_{i}T/(1+T/\beta_{m}))$$
....Ecuación 3-11

$$k_{i} = A_{i0} \exp \left(\frac{L_{i}}{RT_{f}} \right)$$
....Ecuación 3-12
$$rxn_{1} = a_{5} \left(k_{1f} \xi_{1} + k_{3f} \xi_{3} \right) C_{bz}$$
...Ecuación 3-13

$$rxn_2 = a_5 (k_{1f}\xi_1 C_{bz} - k_{2f}\xi_2 C_{ma})$$
....Ecuación 3-14

$$rxn_{3} = a_{3} \left(\left(\Delta H_{1}k_{1f}\xi_{1} + \Delta H_{3}k_{3f}\xi_{3} \right) C_{bz} + \Delta H_{2}k_{2f}\xi_{2}C_{ma} \right) \dots \text{Ecuación 3-15}$$

$$\frac{dC_{bz}}{dt} = \theta_c \left(C_{bzin} - C_{bz} \right) - rxn_1 \dots$$
Ecuación 3-16

$$\frac{dC_{ma}}{dt} = \Theta_c \left(C_{main} - C_{ma} \right) + rxn_2 \dots Ecuación 3-17$$

$$\frac{dT}{dt} = \Theta_T \left(T_{in} - T \right) - rxn_3 + \gamma \left(U - T \right) \dots \text{Ecuación 3-18}$$

Donde:

i = bz, ma, oxi

Las condiciones iniciales del modelo dinámico son:

$C_{bz} = 2.0$ % mol	en $t = 0$	Ecuación 3-19
$C_{ma} = 0.0$ %mol	en $t = 0$	Ecuación 3-20
$T = 633.1^{\circ}K$	en $t = 0$	Ecuación 3-21

Tabla 3-3. Constantes de adimensionalización.

 $T^* = 33.1^{\circ} \text{ K}$ $C^* = 2.0 \text{ %mol}$ $T_f = 633.1^{\circ} \text{ K}$

³ El modelo que deducido es sin dinámica en la chaqueta de enfriamiento y en forma adimensional.

Tabla 3-4. Valores numéricos de los parámetros del sistema.

$\beta_i = [1.1626, 0.6747, 1.1626]$	$\theta_T = 0.014 \text{ min}^{-1}$
$\beta_m = 19.1172$	$\gamma = 0.0100 \text{min}-1$
$\Delta H_i = [1.5161, 1.5161, 2.6885] 10^6 J / mol$	$a_3 = 5.47510^{-4}$ KgPa/J
$k_i = [0.1186, 0.0525, 0.0509] 10^{-4} mol/KgSPa$	$a_5 = 1.284710^4 KgPa/mol$
$\theta_c = 0.6265 \text{ min}^{-1}$	

En el siguiente capítulo se darán a conocer los resultados de la implementación vía simulaciones numéricas de los diseños de control en cascada que se presentan en esta tesis.

4 Resultados

En este capítulo de resultados se mostraran los mapas de fase. Estos mapas son empleados para trazar las trayectorias desde unas condiciones iniciales a unas finales, para obtener el estado estacionario.

También se muestra la implementación de las configuraciones de control en cascada de concentración obtenidas en él capítulo cuatro, así como los gráficos de repuesta a cambios de **setpoint** y ante **perturbaciones**.

Mostráremos los gráficos de cambio en escalón de la simulación a lazo abierto del reactor químico, con las cuales se obtendrán la ganancia del proceso y el tiempo del proceso, tal y como se describe en el capítulo de teoría de control. También se muestra la respuesta de las variables con respecto al factor α , mediante una gráfica. Así como la gráfica mediante la cual se obtuvo la ganancia del control integral.

En la tabla 6-1 se muestra la serie de datos en estado estacionario, obtenidos en la simulación del reactor químico del modelo de **CSTRs**. Los datos se obtuvieron corriendo el programa a distintos valores de la temperatura de la chaqueta (Tc(°K)).

También se mostraran las gráficas de la respuesta del arranque del reactor, las cuales son obtenidas variando las condiciones de inicio. Así como las respectivas gráficas de las respuestas del desempeño del control en cascada en sus dos configuraciones y de una forma secuencial la comparación de la respuesta del control de composición en sus dos configuraciones, para observar el desempeño.

Para obtener el punto de equilibrio del caso de estudio, se empleo el programa *PolyMath Ver. 5.0;* el cual se encontró después de simular el proceso varias veces, es decir cambiando las condiciones iniciales de las cuales comienza él cálculo las **ODE**. Una vez realizado lo anterior se obtiene la siguiente tabla de resultados, la cual es arrojada por la simulación del proceso en PolyMath. Además también obtenemos la gráfica de las variables con respecto al tiempo, así como su tabla de datos.

VARIABLE	VALOR INICIAL	VALOR MINIMO	VALOR MAXIMO	VALOR FINAL
t	0	0	60	60
x1	1	0.2335615	1	0.6463772
x2	0	0	0.3317376	0.2069577
x3	2.021	0.3521761	2.021	0.3521761
Тс	640	640	640	640
В1	1.1626	1.1626	1.1626	1.1626
В2	0.6747	0.6747	0.6747	0.6747
в3	1.626	1.626	1.626	1.626
vk1	1.186E-05	1.186E-05	1.186E-05	1.186E-05
vk2	5.25E-06	5.25E-06	5.25E-06	5.25E-06
vk3	5.09E-06	5.09E-06	5.09E-06	5.09E-06
Bm	19.1172	19.1172	19.1172	19.1172
E1	8.3726508	1.4948617	8.3726508	1.4948617
E2	3.4321929	1.2627793	3.4321929	1.2627793
E3	19.530185	1.7546687	19.530185	1.7546687
al	0.014	0.014	0.014	0.014
a2	0.1	0.1	0.1	0.1
a3	5.457E-04	5.457E-04	5.457E-04	5.457E-04
a4	0.6265	0.6265	0.6265	0.6265
a5	1.285E+04	1.285E+04	1.285E+04	1.285E+04
Н1	1.517E+06	1.517E+06	1.517E+06	1.517E+06
H2	1.152E+06	1.152E+06	1.152E+06	1.152E+06
НЗ	2.689E+06	2.689E+06	2.689E+06	2.689E+06
rxn1	2.5528053	0.2213875	2.5528053	0.2213875
rxn2	1.2757025	0.1295956	1.2757025	0.1295956
rxn3	0.2280197	0.0188157	0.2280197	0.0188157
ya	2	2	2	2
Та	33.1	33.1	33.1	33.1
Tf	633.1	633.1	633.1	633.1
ybi	2	2	2	2
Ti	633.1	633.1	633.1	633.1
d1	0	0	0	0
d3	1	1	1	1
ymai	0	0	0	0
u	0.2084592	0.2084592	0.2084592	0.2084592
d4	0	0	0	0

Tabla 4-1. Datos para encontrar el punto de equilibrio.

Después de un extenso trabajo en el cambio de las condiciones iniciales se concluye que solo hay un punto de equilibrio y que este debe de ser estable así que no es necesario el realizar las pruebas de estabilidad para cada uno de los puntos; la tabla y la gráfica que se presentan en este anexo es un ejemplo de ello. De tal forma que el punto de equilibrio es:

El vector del punto de equilibrio en forma adimensional es:

$$\vec{\xi} = \begin{bmatrix} 0.6464 & 0.2069 & 0.3522 \end{bmatrix}$$

El vector del punto de equilibrio en forma dimensional es:

$$\vec{\Psi} = [1.2868 \ \% mol \ 0.4138 \ \% mol \ 644.7578 \ ^{\circ}K]$$

Figura 4-1. Calculo del punto de equilibrio del caso de estudio con un valor de Tc = 640 °k.

En Figura 4-1 se muestra el comportamiento de la dinámica del sistema a lazo abierto, en la cual se observa claramente que el tiempo de asentamiento τ_A de la dinámica del sistema es aproximadamente de 39 min, es un tiempo bastante grande, pero este tiempo puede ser reducido introduciendo un sistema de control en el reactor, ya que una de las características de los controladores es reducir el tiempo de asentamiento. Mas adelante comprobáremos que se reduce el tiempo de asentamiento en el reactor al introducir la acción de control.

En cuanto a la estabilidad del reactor presentamos el siguiente análisis:

Para obtener los puntos de equilibrio del caso de estudio, se empleo el programa PolyMath Ver. 5.0; el cual se encontró después de un extenso trabajo de simulación de la dinámica del sistema varias veces, es decir cambiando las condiciones iniciales de las cuales comienza sistema dinámico se concluye que solo hay un punto de equilibrio y que este debe de ser estable así que no es necesario realizar las pruebas de estabilidad para el punto de equilibrio encontrado. Sin embargo con la Figura 4-1 se observa claramente el punto de equilibrio, de tal forma que leemos el vector del punto de equilibrio adimensional y por ende también obtenemos el vector del punto de equilibrio dimensional; tal y como se hizo anteriormente. Sin embargo en este caso es necesario encontrar el punto optimó de operación del sistema dinámico estudiado ya que el punto único de equilibrio es estable y no es el punto optimo de producción, así que realizaremos un análisis de las velocidades de reacción para encontrar la velocidad máxima de reacción del anhídrido maleíco y por ende encontrar el vector de operación de la forma $\vec{\psi} = \begin{bmatrix} C_{bz} & C_{ma} & T_r \end{bmatrix}$ el cual guarda una similitud del punto de equilibrio inestable y que a su vez será mucho más difícil de controlar. Para ello presentamos a continuación la tabla 4-2, que corresponde a los datos de las velocidades de reacción (V_{rxn}) adimensionales de cada una de las especies presentes en el sistema dinámico del caso de estudio.

Tc(°k)	r _{bz}	r _{ma}	r _{oxs}
300.000	0.000	0.000	0.000
320.000	0.001	0.000	0.000
340.000	0.001	0.001	0.000
360.000	0.002	0.001	0.000
380.000	0.003	0.002	0.000
400.000	0.004	0.003	0.000
420.000	0.006	0.004	0.000
440.000	0.009	6.000	0.001
460.000	0.013	0.009	0.001
480.000	0.019	0.013	0.002
500.000	0.028	0.019	0.002
520.000	0.041	0.028	0.003
540.000	0.060	0.040	0.005
560.000	0.089	0.058	0.007
580.000	0.134	0.086	0.011
600.000	0.206	0.127	0.017
620.000	0.309	0.181	0.026
640.000	0.408	0.222	0.036
660.000	0.475	0.240	0.042
680.000	0.532	0.243	0.047
690.000	0.545	0.241	0.050
700.000	0.532	0.238	0.049
720.000	0.565	0.230	0.053
740.000	0.579	0.219	0.055
760.000	0.589	0.208	0.057
780.000	0.597	0.195	0.058
800.000	0.603	0.183	0.060

Tabla 4-2. Datos de velocidades de reacción (V_{rxn}) adimensionales de cada una de las especies presentes en el sistema dinámico del caso de estudio.

Con base a los datos de la tabla 4-2 obtendremos los perfiles de las velocidades de reacción de cada una de las especies participantes en el modelo del **CSTR** estudiado en función de la temperatura de la chaqueta de enfriamiento.

Figura 4-2. Perfil de velocidades de reacción de las especies presentes en el sistema dinámico del caso de estudio en función de la temperatura de la chaqueta de enfriamiento.

De la línea punteada de la Figura 4-2 obtenemos el máximo de la forma $F(T_c({}^{\circ}K), V_{rxn}) = (670, 0.245)$ para realizar la simulación de la dinámica del sistema y encontrar así el vector del punto de operación óptimo el cual esta dado de la forma $\vec{\psi} = [0.41 \ \% mol \ 0.774 \ \% mol \ 710.144 \ \circ K]$. Sin embargo también nos dimos la tarea de simular la dinámica del sistema cambian la temperatura de la chaqueta de enfriamiento de tal manera que se obtiene la tabla 4-3 y las Figuras 4-3 y 4-4 en las cuales el vector optimo de operación coincide con el punto máximo del mapa de concentración temperatura del reactor y de la temperatura de la chaqueta de enfriamiento.

Cma	T(°K)	TC(°K)
0.001	494.355	300.000
0.003	515.289	350.000
0.009	536.407	400.000
0.024	557.992	450.000
0.061	580.752	500.000
0.154	606.665	550.000
0.273	626.167	580.000
0.406	642.938	600.000
0.654	674.784	630.000
0.745	694.167	650.000
0.774	710.144	670.000
0.761	730.301	700.000
0.734	742.277	720.000
0.682	758.962	750.000
0.585	784.741	800.000
0.528	799.454	830.000
0.492	809.044	850.000
0.410	832.445	900.000
0.341	855.235	950.000

Tabla 4-3. Datos para la formación del mapa fase en estado estacionario.

Figura 4-3. Mapa de concentración C_{ma} en estado estacionario del reactor continuo de tanque agitado (CSTR) en función de la temperatura del reactor T(°K).

Figura 4-4. Mapa de concentración C_{ma} en estado estacionario del CSTR en función de la temperatura de la chaqueta de enfriamiento T_c(°K).

Las Figuras 4-3 y 4-4 son los mapas de fase en estado estacionarios, los cuales nos sirven para observar el comportamiento dinámico del sistema del reactor químico continuo de tanque agitado simulado a lazo abierto. Es decir sin ninguna estructura o ley de control. Estos mapas nos dan una idea de cual seria el punto de referencia máximo que se podría alimentar, en la implementación de la estrategia de control desarrollada en sus dos configuraciones de control. Tanto en la Figura 4-3 como en la 4-4 se observa que aproximadamente el máximo valor de la composición del anhídrido maleíco es de 0.774 % mol aproximadamente. Como se decía anteriormente es importante obtener el valor máximo de la concentración del anhídrido maleíco ya que si en la simulación nosotros quisiéramos poner un valor de la composición de referencia mayor a 0.774 % mol no se alcanzaría tal conversión en la simulación. Sin embargo no trabajaremos por el momento en con el punto máximo porque causa problemas con el sintonizado, así se trabajara en un punto cercano al punto optimo, es cual esta designa por $T_c = 640$ °K.

Se realizaron pruebas en escalón como función de la temperatura de la chaqueta de enfriamiento de la siguiente forma:

$T_c = 640 + \iota$	l
donde	Ecuación 4-1
$u = \pm 5\%$	

Aplicando esta función obtenemos las Figuras 4-5 y 4-6, con base a estas gráficas obtenemos los parámetros del control **P** para la temperatura, los cuales están representados en la tabla 4-4. En esta Figura 4-5 de escalón positivo se observa que tarda aproximadamente 6 min entre un estado estacionario inicial a uno final, mientras que en la Figura 4-6 tarda aproximadamente 8 min. Comparando con un tiempo teórico, el cual puede calcularse matemáticamente como $\tau = 4(1/\theta_c)$, que no es más que cuatro veces el inverso de la tasa de dilución es $\tau = 6.38 \text{ min}$ donde $\theta_c = 0.6265 \text{ y } 1/\theta_c = 1.59 \text{ min}^{-1}$. De tal forma que $\tau_+ < \tau < \tau_-$, donde $\tau_+ = 6 \text{ min} \text{ y } \tau_- = 8 \text{ min}$

Figura 4-5. Respuesta Escalón positiva de la temperatura en función del tiempo t(min) el cambio en escalón es de $Tc = 640^{\circ} K$ a $672^{\circ} K$.

Figura 4-6. Respuesta Escalón negativa de la temperatura en función del tiempo t(min), el cambio en escalón es de $Tc = 640^{\circ}$ K a 608° K.

Con base a la teoría de control obtenemos los parámetros de las configuraciones de control P_TI_C y PI_TI_C , los cuales están reportados en las tablas 4-4 y 4-6 respectivamente.

En las siguientes secciones se muestra el comportamiento de las dos configuraciones de control diseñadas en él capítulo cuatro junto con un análisis de sus ventajas y desventajas, a sí como la comparación respectiva entre dichas configuraciones.

4.1 Configuración $P_T I_C$

En esta sección probaremos el comportamiento de la configuración $P_T I_{C.}$ En la tabla 4-4 se muestran los parámetros del control de composición en cascada de la configuración $P_T I_{C.}$

Tabla 4-4. Valores numéricos del controlador en cascada de concentración, en su configuración $P_{\rm T}I_{\rm C}$

$k_{pr} = 0.833 \text{ °K}^{-1}$	\overline{T} = 692.244 °K	
\overline{C}_{ma} = 0.733 %mol	\overline{T}_c = 645.000 °K	

La simulación del CSTR con la configuración de control P_TI_C implementada, tiene por condiciones iniciales tal y como se muestra en la tabla 4-5.

Tabla 4-5. Condiciones iniciales para la configuración $P_T I_C$

 $C_{bzo} = 2.0 \text{ }\%\text{mol}$ $C_{mao} = 0.0 \text{ }\%\text{mol}$ $T_{co} = 700.0 \text{ }^{\circ}\text{K}$

A continuación se muestran las curvas de la respuesta a la acción de control en cascada de la composición del anhídrido maleíco en su configuración $P_T I_C$ implementada en el modelo de CSTR.

Figura 4-7. Respuesta del control en cascada para la concentración en su configuración P_TI_C.

En esta Figura 6-5 se muestra el funcionamiento de la acción de control, la cual muestra un desempeño aceptable ya que el tiempo que tarda en responder la acción de control es bajo, este se encuentra aproximadamente entre los 8.5 min. Es decir tarda aproximadamente 8.5 min en llegar al **setpoint** que se pretende alcanzar. Además se observa que converge rápidamente desde los 6.0 min hasta los 8.5 min, de acuerdo a los siguientes parámetros empleados $\alpha = 0.4$, $kp_{ri} = 0.055$ %mol/°K, $\tau_o = 8.313$ min, $C_{ma}^{set} = 0.733$ y $\overline{T} = 692.244$ °K. Cabe aclarar que entre el intervalo de tiempo $0 \le t < 6.0$ es el tiempo de arranque del reactor bajo esta acción de control. También se ha logrado reducir el tiempo de asentamiento τ_A de 39 min a 8.5 min, es decir el $\tau_A^{control} P_T I_C \ll \tau_A^{hazo}$ abierto. En cuanto a la controlabilidad y operabilidad del sistema dinámico, de acuerdo a la variable a controlar, la cual sabemos que es la concentración del anhídrido maleíco, cumple con las condiciones de diseño establecidas en los objetivos en esta configuración de control ($P_T I_C$). Es decir existe un buen desempeño del control de composición en esta configuración de control.

Figura 4-8. Respuesta del control en cascada para le temperatura del reactor en su configuración $P_T I_C$.

En esta Figura 4-8 se muestra el funcionamiento de la acción de control, la cual muestra un buen desempeño en el sistema dinámico en cuanto a la temperatura del reactor, obsérvese que existe un error de aproximadamente del 2% entre la temperatura del reactor de referencia y la temperatura del reactor obtenida en la simulación con la implementación de la configuración de control en cascada $P_T I_C$, este comportamiento puede deberse a la forma del sintonizado de los parámetros, tal vez se debería ser más robusto al encontrar los parámetros de. Sin embargo esto no afecta en la acción de control ya que lo que se pretende controlar es la composición y como se ha visto y discutido en párrafos anteriores se cumple el objetivo del control con las condiciones de diseño establecidas en los objetivos en cuanto a esta configuración de control $P_T I_C$.

Figura 4-9. Respuesta del control en cascada para le temperatura de la chaqueta de enfriamiento en su configuración $P_T I_C$.

En esta Figura 4-9 el perfil de la temperatura de la chaqueta de enfriamiento en función del tiempo, ya que no es muy valido solo presentar los perfiles de concentración y la temperatura del reactor, en la cual se observa que no existe mucho es fuerzo realizado en la variable manipulada, además se observa un buen desempeño en el sistema dinámico en cuanto a la temperatura de la chaqueta de enfriamiento, obsérvese que existe un error de aproximadamente del 2% entre la temperatura de la chaqueta de enfriamiento obtenida en la simulación con la implementación de la configuración de control en cascada P_TI_C , este comportamiento puede deberse a la forma de sintonizado, tal vez se debería ser más robusto al encontrar los parámetros de sintonizado. Sin embargo esto no afecta en la acción de control ya que lo que se pretende controlar es la composición y como se ha visto y discutido en párrafos anteriores se cumple el objetivo del control con las condiciones de diseño establecidas en los objetivos en cuanto a esta configuración de control P_TI_C .

Figura 4-10. Desempeño del control en cascada para la composición en su configuración $\mathbf{P}_{T}\mathbf{I}_{C}$ variando el factor $\propto C_{ma}^{set} = 0.7$.

En la Figura 4-10 se muestra claramente el desempeño del control de composición en cascada para **CSTRs** variando el factor ∞ . Por ejemplo, la curva que corresponde a $\alpha = 0.1$ alcanza rápidamente al **setpoint**, es decir a un tiempo de 9.5 min, a pesar de que existe un sobre disparo en la concentración de anhídrido maleíco. En la curva correspondiente a $\alpha = 0.5$ existe un menor número de oscilaciones que en las demás curvas, tarda aproximadamente 17.3 min en llegar al **setpoint**, es decir mucho mas tiempo que en la curva correspondiente a $\alpha = 0.1$, a pesar de que no presenta fuertes sobre disparos en la concentración de anhídrido maleíco. Las curvas correspondientes a $\alpha = 0.3$, $\alpha = 0.7$ y $\alpha = 0.9$ presentan el mismo comportamiento, pero lo que las hace diferentes es el tiempo que tarda cada una de ellas en llegar al **setpoint**. A continuación se pone el orden en que las curvas presentan un mejor desempeño de control de composición en cascada en la configuración P_TI_C $\alpha = 0.1 > \alpha = 0.3 > \alpha = 0.7 > \alpha = 0.5 > \alpha = 0.9$. Este orden puede deberse al esfuerzo que realiza el control diseñado en este trabajo.

Figura 4-11. Desempeño del control en cascada para la composición en su configuración $P_T I_C$ arrancando a distintas condiciones iniciales.

En la Figura 4-11 se muestra el desempeño del control de composición en cascada, en el cual tiene un comportamiento muy parecido en las distintas curvas, salvo que la característica principal es que se va recorriendo el tiempo de asentamiento al ir cambiando las condiciones iniciales, ejemplo para las condiciones iniciales 1 por 0.0 665.0] el setpoint llega a un tiempo de 9.0 min, para las condiciones $\phi = [2.0]$ iniciales 2 $\vec{\phi} = \begin{bmatrix} 1.5 & 0.5 & 650.0 \end{bmatrix}$ el valor del punto de operación llega aun tiempo de 9.5 min, para las condiciones iniciales 3 $\vec{\phi} = \begin{bmatrix} 1.0 & 1.5 & 635.0 \end{bmatrix}$ el valor del punto de operación llega a un tiempo de 10.0 min y para las condiciones iniciales 4 $\vec{\phi} = \begin{bmatrix} 0.5 & 2.0 & 620.0 \end{bmatrix}$ el valor del punto de operación llega a un tiempo de 10.5 min. A continuación esquematizamos el desempeño del control de composición en cascada las curvas del grafico anterior conforme al desempeño C.I.1 > C.I.2 > C.I.3 > C.I.4.

4.2 Configuración PI_TI_C

En esta sección probaremos el comportamiento de la configuración PI_TI_C . En la tabla 6-5 se muestran los parámetros del control de composición en cascada de la configuración PI_TI_C .

Tabla 4-6. Valores numéricos del controlador en cascada implementado con la acción integral de temperatura.

$k_{\rm mr} = 0.833 {\rm ^oK^{-1}}$	$\tau_I = 1.35 \text{ min}$
k = 0.055 % mol/%	\overline{C}_{ma} = 0.733 %mol
$\kappa_{pri} = 0.035$ /onioly it	\overline{T} = 692.244 °K
$\tau_o = 8.313 \text{ mm}$	$\overline{T_c}$ = 645.000 °K

La simulación del CSTR con la configuración de control PI_TI_C implementada, tiene por condiciones iniciales tal y como se muestra en la tabla 6-6.

Tabla 4-7. Condiciones iniciales configuración PI_TI_C

C_{bzo}	= 2.0 %mol
C _{mao}	= 0.0 %mol
T_{co}	= 700.0 °K

La siguiente curva muestra la respuesta a la acción de control lineal de composición en cascada del anhídrido maleíco.

Figura 4-12. Respuesta del control en cascada para la composición en su configuración PI_TI_C.

En esta Figura 4-12 se muestra el funcionamiento de la acción de control, la cual muestra un desempeño aceptable ya que el tiempo que tarda en responder la acción de control es bajo el cual se encuentra aproximadamente entre los 6.4 min. Es decir tarda aproximadamente 6.4 min en llegar al valor de operación (**setpoint**) que se pretende alcanzar. Además se observa que converge rápidamente desde los 2.3 min hasta los 6.4 min, de acuerdo a los siguientes parámetros empleados $\alpha = 0.4$, $kp_{ri} = 0.055$ %mol/°K, $\tau_o = 8.313 \text{ min}$, $\tau_I = 1.39 \text{ min}$, $C_{ma}^{set} = 0.733$ %mol y $\overline{T} = 683.0$ °K. Cabe aclarar que entre el intervalo de tiempo $0 \le t < 2.3$ es el tiempo de arranque del reactor. También se muestra un sobre disparo muy pequeño de la composición de anhídrido maleíco, esto es entre el intervalo de tiempo de 4.3 < t < 5.4 aproximadamente, la cual llega hasta $C_{ma} = 0.735$ aproximadamente. Cabe aclarar que entre el intervalo de tiempo de 4.3 < t < 5.4 aproximadamente, la cual llega hasta cual liempo de arranque del reactor bajo esta acción de control. También se ha logrado reducir el tiempo de asentamiento τ_A de 39 min a 6.4 min, es decir el $\tau_A^{control} Pl_T l_c \ll \tau_A^{laxo} abierto$.En cuanto a la controlabilidad y operabilidad del sistema dinámico, de acuerdo a la variable a

controlar, de la cual sabemos que es la concentración del anhídrido maleíco, cumple con las condiciones de diseño establecidas en los objetivos en esta configuración de control PI_TI_C . Es decir existe un buen desempeño del control de composición en esta configuración de control.

Figura 4-13. Respuesta del control en cascada para la temperatura del CSTR en su configuración PI_TI_C.

En esta Figura 4-13 se muestra el funcionamiento de la acción de control, la cual muestra un buen desempeño en el sistema dinámico en cuanto a la temperatura del reactor, obsérvese que existe un error de aproximadamente del 1% entre la temperatura del reactor de referencia y la temperatura del reactor obtenida en la simulación con la implementación de la configuración de control en cascada PI_TI_C , este comportamiento puede deberse al sintonizado de los parámetros, tal vez se debería ser más robusto al calcular los parámetros de sintonizado. Sin embargo esto no afecta en la acción de control ya que lo que se pretende controlar es la composición y como se ha visto y discutido en párrafos anteriores se cumple el objetivo del control con las condiciones de diseño establecidas en los objetivos en cuanto a esta configuración de control PI_TI_C .

Figura 4-14. Respuesta del control en cascada para le temperatura de la chaqueta de enfriamiento en su configuración PI_TI_C .

En esta Figura 4-14 el perfil de la temperatura de la chaqueta de enfriamiento en función del tiempo, ya que no es muy valido solo presentar los perfiles de concentración y la temperatura del reactor, en la cual se observa que no existe mucho es fuerzo realizado en la variable manipulada, es mas presenta mucho menos esfuerzo que en la configuración $P_T I_C$, además se observa un buen desempeño en el sistema dinámico en cuanto a la temperatura de la chaqueta de enfriamiento, obsérvese que existe un error de aproximadamente del 1% entre la temperatura de la chaqueta de enfriamiento obtenida en la simulación con la implementación de la configuración de control en cascada $PI_T I_C$, este comportamiento puede deberse a la forma de sintonizado, tal vez se debería ser más robusto al encontrar los parámetros de sintonizado. Sin embargo esto no afecta en la acción de control ya que lo que se pretende controlar es la composición y como se ha visto y discutido en párrafos anteriores se cumple el objetivo del control con las condiciones de diseño establecidas en los objetivos en cuanto a esta configuración de control $PI_T I_C$.

Figura 4-15. Desempeño del control en cascada para la composición en su configuración PI_TI_C variando el factor alfa.

En la Figura 4-15 se muestra claramente el desempeño del control de composición en cascada para el **CSTR** variando el factor ∞ . Por ejemplo, la curva que corresponde a $\alpha = 0.1$ alcanza rápidamente al **setpoint**, es decir a un tiempo de 5.3 min, sin que presente un sobre disparo mayor que en las demás curvas de la concentración de anhídrido maleíco. En la curva correspondiente a $\alpha = 0.9$ existe un menor número de oscilaciones que en las demás curvas, pero desafortunadamente tarda aproximadamente 14.5 min en llegar al **setpoint**, es decir mucho mas tiempo que en la curva correspondiente a $\alpha = 0.1$, a pesar de que no presenta fuertes sobre disparos en la concentración de anhídrido maleíco. Las curvas correspondientes a $\alpha = 0.3$, $\alpha = 0.5$ y $\alpha = 0.7$ presentan el mismo comportamiento, sin embargo lo que las hace diferentes es el tiempo que tarda cada una de ellas en llegar al **setpoint**. Nótese que a medida que crece el valor de α va disminuyendo la velocidad de control es decir se va apagando el control en cascada hasta llegar a un simple control proporcional integral de temperatura (**PI_T**). A continuación se pone el orden en que las

curvas presentan el mejor desempeño del control de composición en cascada en la configuración $PI_TI_C \alpha = 0.1 > \alpha = 0.3 > \alpha = 0.5 >= 0.7 > \alpha = 0.9$.

Figura 4-16. Desempeño del control en cascada para la composición en su configuración $\mathbf{PI}_{T}\mathbf{I}_{C}$ arrancando a distintas condiciones iniciales.

En la Figura 4-16 se muestra el desempeño del control de composición en cascada, en el cual tiene un comportamiento muy parecido en las distintas curvas, salvo que la característica principal es que se va recorriendo el tiempo de asentamiento al ir cambiando las condiciones iniciales, por ejemplo para las condiciones iniciales 1 0.0 700.0] el valor del punto de operación llega a un tiempo de 2.2 min, para $\phi = |2.0|$ las condiciones iniciales 2 $\vec{\phi} = \begin{bmatrix} 1.5 & 0.5 & 650.0 \end{bmatrix}$ el valor del punto de operación llega aun tiempo de 6.1 min, para las condiciones iniciales 3 $\vec{\phi} = \begin{bmatrix} 1.0 & 1.0 & 600.0 \end{bmatrix}$ el valor del punto de operación llega a un tiempo de 12.2 min y para las condiciones iniciales 4 $\vec{\varphi} = \begin{bmatrix} 0.5 & 1.5 & 550.0 \end{bmatrix}$ el valor del punto de operación llega a un tiempo de 16.1 min. A

continuación esquematizamos el desempeño del control de composición en cascada las curvas del grafico anterior conforme al desempeño C.I.1 > C.I.2 > C.I.3 > C.I.4.

4.3 Comparación de las dos Configuraciones de Control Diseñadas

A continuación compararemos las dos configuraciones de control (PI_TI_C y PI_TI_C), después de haber generado sus guías de sintonizado adecuadas, tal como se mostrara en las siguientes gráficas.

En la Figura 4-17 se muestra la comparación de la respuesta de las configuraciones de control P_TI_C y PI_TI_C , en la cual se observa que en ambas acciones de control se llega rápido al **setpoint** deseado, sin embargo la configuración de control PI_TI_C , que corresponde a la línea discontinua responde más rápido en las tres secciones, es decir presenta un mejor desempeño. Para la sección a), en la configuración de control de composición en cascada P_TI_C el **setpoint** se alcanza hasta los 3.2 min, la cual corresponde a la línea continua y la configuración de control de composición en cascada PI_TI_C se alcanza a los 2.4 min aproximadamente y sin que se presente un sobre disparo, cosa que no sucede con la configuración de control de composición en cascada P_TI_C .

En la sección b) en la configuración de control de composición en cascada P_TI_C del **setpoint** se alcanza hasta los 11.3 min aproximadamente, la cual corresponde a la línea continua y la configuración de control de composición en cascada PI_TI_C se alcanza a los 10.9 min aproximadamente y con mayores sobre disparos en la configuración de control de composición P_TI_C c), se observa que la configuración de control de composición en cascada PI_TI_C responde mejor ante cambios de perturbaciones, es decir muestra un mejor desempeño. Además de que existe un pequeñísimo disparo en la concentración con la

configuración de control en cascada $P_T I_C$, fenómeno que no ocurre en la configuración de control de composición en cascada $PI_T I_C$. Por ultimo para la sección.

Figura 4-17. Comparación entre las configuraciones de control $P_T I_C$ y $PI_T I_C$ de la respuesta ante cambios de **setpoint** y a perturbaciones en la temperatura de la chaqueta de enfriamiento en este caso fue de 630 °K a 640 ° K.

Las Figuras 4-18 a 4-20 son ampliaciones de la Figura 4-17, en las cuales se muestran claramente dos detalles de las dos configuraciones de control estudiadas (P_TI_C , y PI_TI_C) de las cuales la línea discontinua corresponde a la configuración de control de composición en cascada PI_TI_C .

Figura 4-18. Ampliación de la comparación de las configuraciones de control $P_T I_C y P I_T I_C$ de la velocidad de respuesta, para la convergencia del **setpoint**.

En la Figura 4-18, que corresponde a la sección a) se observa que ambas configuraciones de control P_TI_C y PI_TI_C , responden bien ante cambios de setpoint, e incluso podría decirse que es suficiente emplear la configuración de control de composición en cascada P_TI_C para controlar este proceso. Sin embargo podemos observar claramente que la configuración de control de composición en cascada PI_TI_C presenta un mejor desempeño sin grandes sobre disparos en el control de la composición del anhídrido maleíco. Los parámetros empleados en esta parte de la simulación son exactamente los mismos que fueron reportados en párrafos anteriores para la sección a).

Figura 4-19. Ampliación de la comparación de las configuraciones de control $P_T I_C$ y $P I_T I_C$ ante cambios de **setpoint**.

En la Figura 4-19, que corresponde a la sección b) se observa que ambas configuraciones de control P_TI_C y PI_TI_C , responden bien ante cambios de **setpoint**, e incluso podría decirse que es suficiente emplear la configuración de control de composición en cascada P_TI_C para controlar este proceso, por que la configuración de control de composición en cascada PI_TI_C tarda aproximadamente 1.4 min en llegar al **setpoint**, mientras que la configuración de control de composición en cascada P_TI_C tarda aproximadamente 1.4 min en llegar al **setpoint**, mientras que la configuración de control de composición en cascada P_TI_C tarda aproximadamente 1.3 min, por ende que la configuración de control de composición en cascada P_TI_C tarda aproximadamente de la composición del anhídrido maleíco. Los parámetros empleados en esta parte de la simulación son exactamente los mismos que fueron reportados en párrafos anteriores para la sección b), pero sin embargo solo cambiaron los puntos de referencia a $\overline{C}_{ma} = 0.67$ %*mol* y $\overline{T} = 679.0$ °*K*.

Figura 4-20. Ampliación de la comparación de las configuraciones de control $P_T I_C$ y $P I_T I_C$ ante perturbaciones.

En la Figura 4-20, que corresponde a la sección c), que no es más que la parte en donde se introdujo una perturbación al sistema dinámico, la perturbación en la chaqueta de enfriamiento fue de 10 °K de 630 °K a 640°. En dicha gráfica se observa que la configuración de control de control de composición en cascada PI_TI_C , la cual corresponde a la línea discontinua responde más rápido que la configuración de control de composición en cascada P_TI_C ante perturbaciones, sin embargo presenta mayores sobre disparos en el control de la composición del anhídrido maleíco que la configuración de control de control de composición en cascada P_TI_C necesita en esta Figura. Así que por consiguiente puede concluirse que la configuración de control en cascada P_TI_C presenta un mejor desempeño ante perturbaciones en el sistema dinámico.

En las Figuras 4-21 y 4-22 de retrato fase de ambas configuraciones se observa claramente como todas las curvas convergen hacia el **setpoint** el cual corresponde ahora en

este caso en particular al vector de operación optimo encontrado después del análisis del sistema dinámico.

Figura 4-21. Retrato fase de la configuración $P_T I_C$ con un setpoint de $C_{ma}^{set} = 0.774$ %mol.

Figura 4-22. Retrato de fase de la configuración PI_TI_C con un setpoint de $C_{ma}^{set} = 0.774$ %mol.

Como se observa en los retratos de fase Figuras 4-20 y 4-21 presentan estructuras similares que los obtenidos cuando se operan en puntos de equilibrio inestables. Esto quiere decir que el punto optimo de producción calculado anterior mente es inestable.

En el diseño del controlador se hizó la suposición que todas las variables de estado están disponibles en la retroalimentación. Sin embargo, en la practica no todas las variables de estado están disponibles para su retroalimentación. Entonces, necesitamos estimar las variables de estado que no están disponibles y es el caso de la composición. Es importante señalar que debemos evitar diferenciar una variable de estado para generar otra. La diferenciación de una señal siempre decrementa la relación señal a ruido, porque este ultimo por lo general fluctúa más rápidamente que la señal de comando. En ocasiones, la relación señal a ruido se decrementa varia veces mediante un proceso único de diferenciación. Existen métodos para estimar las variables de estado que no se miden mediante un proceso de diferenciación. La estimación de semejantes variables de estado se denomina *observación* en el ámbito del control. Un dispositivo que estima las variables de estado se destado con base a las mediciones de las variables de salida y de control. Aquí es donde juega un papel importante la observabilidad.

Tomando en consideración que la composición es una variable de estado que no se puede medir directamente, este esquema de control diseñado presenta la desventaja que no se puede implementar de manera directa, porque la forma más frecuente de medir y de mejor aproximación es el uso de un cromatógrafo sin embargo esté provoca un retardo en la medición y el sistema que se ha trabajo es continuo, de tal forma que este retraso en la medición de la composición no ayuda en nada al desempeño del esquema de control diseñado en esta tesis. No obstante, a esto hay dos formas de enriquecer el sistema de control y mejorar el desempeño del esquema de control presentado; uno de ellos es el uso de ganancias con retardo y la otra es el uso de estimadores. Así que estas dos formas de enriquecimiento del control diseñado que se desarrollo en esta tesis se pondrán en perspectivas en el capitulo de trabajos a futuro.

5 Conclusiones

- Se diseñaron esquemas de control tipo cascada simples basadas en modelos de bajo orden entrada-salida obtenidos por medio de una ecuación diferencial lineal de primer orden. Los esquemas de control tipo cascada no presentan las desventajas de los controladores lineales clásicos (*i.e.*, desprecio de dinámica no modelas y de perturbaciones externas) diseñados por un modelo teórico lineal de primer orden. Esto se debe a que el efecto de la dinámica no modelada y la presencia de perturbaciones externas se incluye en la derivación del controlador por medio de un término que agrupa los errores del modelado del sistema.
- El diseño del control esclavo es desarrollado por medio de un simple control proporcional (P) y por medio de la una ecuación general diferencial ordinaria lineal de primer orden con y sin perturbaciones con la ayuda de herramientas de *Laplace*.
- El diseño del control maestro es realizado solamente con una parte integral por que es suficiente para estabilizar el sistema ya que el objetivo del control es la concentración, variable donde ocurren todas las perturbaciones extremas.
- Se realizo el diseño de dos configuraciones de control lineal de composición tipo cascada P_TI_C y PI_TI_C respectivamente. Estas configuraciones de control mostraron un buen comportamiento al mantener la referencia pedida.
- El esquema de control tipo cascada basado en el modelo lineal de primer orden en su configuración $P_T I_C$ tiene una estructura de control clásico PI con dos parámetros de ajustable, la constante proporcional de temperatura y la constante integral de concentración.

- El esquema de control tipo cascada basado en el modelo lineal de primer orden en su configuración PI_TI_C tiene una estructura de control PI^2 avanzada la cual contiene tres parámetros de ajustable, la constante proporcional de temperatura, la constante de tiempo de temperatura y la constante integral de concentración.
- Se encontraron los parámetros de las configuraciones de control de composición tipo cascada, por medio del IMC, así como el sintonizado adecuado para las dos configuraciones de control.
- Se realizaron múltiples simulaciones en ambas configuraciones de control para observar el desempeño del control en cascada, por medio de la variación del factor ∞ que no es más que el parámetro con el cual se hace más rápido o más lento el control de composición tipo cascada.
- Se realizaron múltiples simulaciones en ambas configuraciones de control para observar el desempeño del control en cascada, variando las condiciones de inicio.
- En esta tesis se ha estudiado el control en cascada para la composición de CSTRs, se han aplicado las dos configuraciones de control en cascada diseñadas en él capítulo dos, en las cuales ambas muestran un buen desempeño, ya que el propósito del estudio en esta tesis es desarrollar un control de composición tipo cascada, que sea robusto ante cambios de setpoint y perturbaciones extrenas. En cuanto a esto se refiere cumplen con el propósito de todo control.
- Para comparar las dos acciones de control se realizaron simulaciones de ambas configuraciones sometiéndolas a dos cambios de setpoint y una perturbación extrema de iguales magnitudes, para comparar y observar el
desempeño de las dos configuraciones de control lineal de composición tipo cascada.

- La adición de la acción integral es por que esta disminuye las desviaciones del punto de operación con la que trabaja el control P, es decir hace un reajuste para llegar más rápido y sin desviaciones al punto de operación también llamado setpoint.
- En cuanto a la comparación de las configuraciones de control en cascada $P_T I_C$ y $PI_T I_C$ desarrolladas y probadas en un CSTR, se ha encontrado que la configuración $PI_T I_C$, responde más rápido a los cambios de setpoint y a las perturbaciones, y como consecuencia que el tiempo de respuesta sea menor al de la configuración $P_T I_C$. Esto quiere decir que la configuración de control lineal de composición tipo cascada que mejor se desempeña es la configuración $PI_T I_C$.
- Los controladores tipo cascada actúan de manera rápida pero realizan al inicio un gran esfuerzo de control lo que se refleja en sobre disparos del control. Este comportamiento se debe a que el cálculo de temperatura del sistema de enfriamiento requerido, están involucradas las no linealidades del termino de reacción. Por lo que al sistema de enfriamiento se le esté pidiendo quizás más de lo que es capaz de rechazar.
- Para sistemas dinámicos en los que solo se tienen un punto de equilibrio es necesario realizar un análisis más detallado, es decir emplear un punto optimo de producción de la especie deseada por medio de la tasa de reacción máxima, la cual daría un punto de operación optimo el cual seria similar a un punto de operación inestable, en cuanto a la producción optima del proceso.
- Como ya se mencionó, se trabajaron modelos lineales tipo cascada, en los cuales los controladores mostraron un buen desempeño. Lo que en trabajos

previos no se había realizado, es decir, manejado modelos lineales para el control de composición en **CSTRs** simples. Los cuales se limitaban a construir modelos no-lineales de control de composición y principalmente en columnas de destilación y en reactores semi-batch. Así que este trabajo de tesis aporta una estrategia de control lineal de composición tipo cascada en reactores **CSTRs**.

Finalmente, se ha demostrado que para el caso de los CSTRs despliegan un gran comportamiento no-lineal, de tal modo que en este trabajo que se puede obtener un desempeño satisfactorio con esquemas simples de control lineal tipo cascada, empleando las estructuras básicas de control. Esto quiere decir que se han resuelto satisfactoriamente los objetivos establecidos al principio de esta tesis. Sin embargo, la motivación inherente de estudiar formalmente los alcances y limitaciones del control lineal se debe a su estructura simple y su aceptación en la práctica industrial.

Sin embargo el trabajo que se realizó no es final, ya que el esquema de control que se desarrollo en este trabajo de tesis presenta la desventaja de trabar con una variable de estado que no se puede medir directamente así que su medición presenta un retardo, la eliminación total o parcial de los retardos en la medición se llevaría acabo mediante el uso de ganancias con retardo en las mediciones o por medio de la implementación de un observador que estime la concentración con las variables de salida.

Con esto dejamos ver que todavía que mucho trabajo por realizar para mejorar la estrategia de control diseñada en la tesis, de tal forma que salen varios temas de trabajos posteriores o futuras tesis de maestría o doctórales.

6 Trabajos a Futuro

El trabajo más directo por hacer, es la implementación de ganancias con retardos y el uso de estimadores en la composición ya que esta variable de estado es la que presenta retardos en su medición.

Otra línea de investigación es el estudio de estabilidad en **CSTRs** debido a la implementación del esquema de control resultante del enriquecimiento con alguna de las formas propuestas de eliminación del retardo en la medición de la composición, por medio del rechazo de perturbaciones ya que se parte de la hipótesis de que el uso de controladores en cascada mejora el desempeño de los sistemas controlados, debido a su capacidad de rechazo de perturbaciones.

Por ultimo quedaría la investigación siguiente es la validación experimental de los controladores tipo cascada en **CSTRs** desarrollados en esta investigación, enriquecidos con alguna de las dos maneras propuestas para eliminar los problemas con los retardos en la medición de la composición. La implementación experimental del algoritmo de control resultante debería ser directa a través de los PLC comerciales. Debido a que el esquema de control derivado en esta tesis conduce a controladores clásicos \mathbf{P} y \mathbf{PI} , así que no debería ser tan aventurado pensar sobre una posible implementación a escala industrial con un equipo de control estándar.

7 Bibliografía

- Alvarez-Ramírez, Femat R., Barreiro A., (1997), A PI Controller with Disturbance Estimation, *Industrial Engineering Chemicals Research*, 36, 3668-3675.
- Alvarez Ramírez, J. y Morales A., (1998), Robust Proportional-Integral, <u>Industrial</u> <u>Engineering Chemicals Research</u>, 37, 4740-4747.
- 3. Alvarez-Ramírez, J. y Morales A., (2000), **PI** control continuously stirred tank reactors: stability and performance, *Chemical Engineering Science*, 55, 5497-5507.
- Alvarez-Ramírez, J. y Puebla H., (2001), On Classical PI Control of Chemical reactors, <u>Chemical Engineering Science</u>, 56, 2111-2121.
- Alvarez-Ramírez Valencia J. y Morales A., (2002), Composition Cascade Control for Chemical Reactors, *International Journal of Robust and Nonlinear Control*, 12, 1145 – 1171.
- Andersen H. Kümmel M., Hansen N. y Nilsen K., (1998), Tuning of Dual-Composition Distillation Column Control, <u>*Chemical Engineering Science*</u>, 44, 619-630.
- Aoufoussi H., Perier M., Chaouki J., Chavarie C. y Dochain, D., (1992), Feedback linearizing Control of Fluidized Bed reactor, <u>*The Canadian Journal Of Chemical Engineering*</u>, 70, 356 – 367.
- Barolo M. y Berto F., (1998), An Advanced Strategy for Composition Control in Batch Distillation, <u>IFAC (International Federation of Automatic Control)</u> <u>International Symposium on Dynamics and Control of Process Systems (DYCOPS</u> <u>5)</u>, 430 – 435.
- Distefano J. J., (1981), Retroalimentación y Sistemas de Control, <u>serie Schaum</u>, 87-90, McGraw-Hill, México.
- Fogler S. H., (2000), <u>Elements of Chemical reaction Engineering</u>, 10 11, third Edition, Prentice Hall.

- Franzén C. H., Albers Eva y Niklasson C., (1995), Use of the Inlet Gas Composition to Control the Respiratory Quotient in Microaerobic Bioprocess, <u>Chemical Engineering Science</u>, 51, 3391-3402.
- Henson M. A. y Seborg D. E., (1990), Input-Output Linearization of General Nonlineal Process, <u>AICnE Journal</u>, 36, 1753 – 1757.
- Katsuhiko, O., (1998), <u>Ingeniería de Control Moderna</u>, 710-785, Prentice Hall, México.
- Lee Y. y Park S., (1998), PID Controller Tuning To Obtain Desired Closed Loop Responses for Cascade Control Systems, <u>Industrial Engineering Chemicals</u> <u>Research</u>, 37, 1859-1865.
- 15. Lee Y. y Oh S., (2002), Enhanced with a General Cascade Control Structure, *Industrial Engineering Chemicals Research*, 41, 2679 - 2688.
- Luyben, W., L., (1995), <u>Process Modeling, Simulation and Control for Chemicals</u> <u>Engineers</u>, Pág. 205 – 300 y 404 - 414, McGraw-Hill, U. S. A.
- Luyben W. L. and Luyben M. L., (1997), <u>Essentials of Process Control</u>, 249-253, McGraw-Hill.
- Mc Avoy T.J., Ye N., y Gang C., (1996), Nonlinear Inferential Parallel Cascada Control, <u>Chemical Engineering Science</u>, 51, 5159-5169.
- Monrroy-Loropeza R. y Alvarez-Ramírez J., (2001), Dual Composition Control in a Middle-Vessel Batch Distillation Column, <u>Industrial Engineering Chemicals</u> <u>Research</u>, 40, 4377-4390.
- Morales A., (1998), <u>Diseño de Controladores Robustos Tipo Cascada Usando</u> <u>Técnicas no Lineales</u>, Tesis de Maestría en Ingeniería Química, Universidad Autónoma Metropolitana-Iztapalapa, 4-5.
- Othman N., Febote G. y McKenna T. F., (2002), Polymer Composition Control Emulsion Co- and Terpolymerizations, *Industrial Engineering Chemicals Research*, 41, 1261-1275.
- Perlmutter D. D., (1972), <u>Stability of Chemical Reactors</u>, 5-6 y 51-55, Prentice-Hall, U. S. A.

- Puebla H. (2002), <u>Control Lineal de Reactores Químicos Continuos</u>, Tesis de Doctorado en Ingeniería Química, Universidad Autónoma Metropolitana-Iztapalapa, 17-21.
- Russo L. y Bequette W., (1995), Impact of Process Desing on the Multiplicity Behavior of a Jacketed Exothermic CSTR, <u>AIChE Journal</u>, 41, 135-145.
- 25. Russo L. y Bequette W., (1998), Operability of Chemical Reactors: Multiplicity Behavior of a Jacketed Styrene Polymerization Reactor, <u>Chemical Engineering</u> <u>Science</u>, 53, 27-41.
- 26. Saraf V., Zhao F. y Bequette W., (2003), Trelay Autotuning of Cascade-Controlled Open-Loop Unstable Reactors, <u>Industrial Engineering Chemicals Research</u>, ASAP Article 10.1021/ie0011268 S0888-5885 (00) 01126-X.
- Semino D. y Brambilla A., (1996), An Efficient Structure for Parallel Cascade Control, <u>Chemical Engineering Science</u>, 35, 1845-1852.
- 28. Shiskey F. G., (1998), Process Control Systems, 26-28, McGraw-Hill, U.S.A.
- Smith, C. A. and Corripio, A. B., (1994), <u>Control Automático de procesos</u>, 177-223, Limusa, México.
- Stephanopoulos G. (1984), <u>Control Systems with Multiple Loop In Chemical</u> <u>Process Control</u>, Capítulo 20, Prentice Hall, U. S. A.
- Tirrell M. y Gromley K., (1980), Composition Control of Batch Copolimerization Reactors, <u>Chemical Engineering Science</u>, 36, 367-375.
- Vicente M., Leiza J. R., Arzamendi G., Lima L. E., Pinto J. C. y Asua J. M., (2002), Dynamic Optimization of Non-Linear Emulsion Copolymerization Systems Open-Loop Control of Composition and molecular Weight Distribution, <u>Chemicals</u> <u>Engineering Journal</u>, 85, 339-349.
- Vieira M., Sayer C., Lima L. E., y Pinto J. C., (2002), Closed-Loop Composition and Molecular Weight Control of a Copolymer Latex Using Near-Infrared Spectroscopy, *Industrial Engineering Chemicals Research*, 35, 475-484.
- Vicente M., Leiza J. R., y Asua J. M., (2003), Maximizing Production and Polymer Quality (MWD and Composition) in emulsion polymerization Reactors with Limited Capacity of Heat Removal, <u>Chemicals Engineering Research</u>, 58, 215-222.

- 35. Wolff E. y Skogestad S., (1996), Temperature Cascade Control of Distillation Columns, *Industrial Engineering Chemicals Research*, 41, 2915-2930.
- 36. Zaldo F. y Alvarez J., (1998), A Composition Temperature Control Strategy for Semibatch Emulsion Copolymer Reactors, <u>IFAC (International Federation of</u> <u>Automatic Control) International Symposium on Dynamics and Control of Process</u> <u>Systems (DYCOPS 5)</u>, 217 – 222.

8 Teoría de Control

En este capítulo, se muestran de manera general las herramientas necesarias para el análisis de sistemas y diseño de controladores, las cuales fueron usados en él capítulo cuatro. Se presenta el análisis de sistemas a lazo abierto y lazo cerrado, obtención y definición de funciones de transferencia.

El objetivo del control de procesos es de mantener en un determinado valor de operación las variables del proceso, tales como:

- > Temperatura
- Presiones
- ➤ Flujos
- Composición

En la Figura 8-1 se muestra un ejemplo de lo que hace un sistema de control.

Figura 8-1. Esquema de una acción de control.

Los procesos son dinámicos, en ellos siempre ocurren cambios y si no se toman las acciones pertinentes, las variables importantes del proceso, es decir aquellas que se relacionan con la seguridad, la calidad del producto y los índices de producción, no cumplieran con las condiciones del diseño. El uso de un controlador podría resolver el problema.

Por ende que el control en la industria de procesos es muy importante, debido a las cuestiones de seguridad, rendimiento y productividad de la empresa, generando así mayores ganancias.

Un reactor es la parte central de un proceso químico. El **CSTR** como el de la Figura 8-2, es ampliamente usado en la industria de procesos, de tal manera que existe un flujo continuo del reactivo.

Figura 8-2. Reactor continúo de tanque agitado.

Este tipo de **CSTRs** operan cerca de o en puntos de equilibrio inestables, los cuales corresponden a una producción óptima en el proceso.

8.1 El control

El diseño y análisis de controladores **PI**, para la estabilización y regulación de **CSTR** se origino en el trabajo de Aris y Admunson en los cincuentas, y desde entonces, ha dado lugar, a una abundante y numerosas aplicaciones exitosas (Puebla, 2002).

Todo sistema de control realiza tres operaciones básicas, las cuales son las siguientes:

- Medición (M): la medición de una variable que se controla se hace generalmente mediante la combinación de un sensor y un transmisor.
- Decisión (D): con base en la medición, el controlador decide que hacer para mantener la variable en el valor deseado.
- Acción(A): como resultado de la decisión del controlador se debe de efectuar una acción en el sistema, generalmente ésta es realizada por elemento final de control.

Un control es el que toma de decisiones, realizadas por un circuito de control, llevadas a cabo por medio de un controlador. Un controlador es el **"cerebro"** del circuito de control y es un dispositivo que toma la decisión (**D**) en el sistema de control y para hacerlo, el controlador:

- Compara la señal de proceso que llega del transmisor, la(s) variable(s) que controla(n), contra el punto de control (setpoint) y
- Envía la señal apropiada a la válvula de control o cualquier otro elemento de control, para mantener la variable que se controla en el setpoint

Hay varias estrategias de control pero el control por retroalimentación es la técnica más frecuentemente empleada en las industrias de procesos, en la Figura 8-3 se muestra una representación gráfica de este tipo de control.

Figura 8-3. Control por retroalimentación.

En muchos de los procesos, mediante la aplicación de otras técnicas de control, es posible y/o ventajoso mejorar el desempeño, para ello se requiere de mayor cantidad de ingeniería y equipo que en el control **feedback**, además de un estudio de la factibilidad económica.

Las técnicas de control antes mencionadas son: control de razón, control por acción precalculada, control por superposición, control selectivo, control multivariable y el control en cascada, esta última es de mi interés y se describirá posteriormente.

Una estructura de control en cascada contiene dos controladores **feedback** con la salida del controlador primario conectado como **setpoint** del controlador secundario, como sé muestra en la Figura 8-4.

Figura 8-4. Control en cascada.

Así como existen diferentes estrategias de control, también hay estructuras básicas de control, las cuales son: control proporcional (**P**), control proporcional integral (**PI**), control proporcional derivativo (**PD**) y el control proporcional integral derivativo (**PID**), a continuación se explica lo que es un control **PI**.

La mayoría de los procesos se controlan con un punto de control (**setpoint**), añadiendo **"inteligencia"** al controlador proporcional para eliminar la desviación. Esta inteligencia es la acción de ajuste y en consecuencia, el controlador se convierte en un control **PI**.

En la Figura 8-5 se muestra la comparación de la acción entre un controlador **PI** y **P**, en la respuesta **PI** se observa una línea pronunciada, la cual es la parte de inteligencia o acción integral, se dice que entre mayor sea su pendiente mayor respuesta a la acción de control.

Figura 8-5. Esquema de la acción de un controlador PI.

Por otro lado la estabilidad de un sistema se determina por su respuesta a las entradas y salida o por las perturbaciones de este.

Un sistema estable es aquel que permanece en reposo a no ser que se excité por una fuente externa y en tal caso, volverá al reposo una vez que desaparezcan todas las excitaciones, como es mostrado en la Figura 8-6.

Figura 8-6. Puntos de equilibrio y estabilidad de un sistema.

En la Figura 8-6 se observan los puntos de equilibrio, los cuales corresponden a los máximos y mínimos.

Imaginemos que dejamos caer una canica en el máximo la observación es que no regresa a su lugar de origen, mientras que en los mínimos regresaría a la posición en que comenzó a moverse la canica, lo que indica que estos serían puntos de equilibrio estables, y el máximo sería un punto de equilibrio inestable para este sistema en particular.

De esta misma forma a los sistemas de control se les mide su estabilidad, ya que es una parte fundamental de todo sistema de control, para esto existen diferentes criterios de estabilidad para medirla, de entre todos algunos son: el método de localización de raíces, el criterio de estabilidad de Routh, criterio de estabilidad de Hurwitz, criterio de estabilidad de la fracción continuada, estos métodos se describen detalladamente en secciones posteriores de control.

En esta parte introductoria se han dado a conocer los términos necesarios para entender el control, en la sección de tipos de control se aborda detalladamente, para el lector que tenga la inquietud o un interés más profundo de lo que es el control y tenga una descripción de lo que es el área de control, obteniendo así mayor información técnica, pueda leerla y entenderla, ya que esta es una recopilación de los conocimientos que se deben de adquirir para la realización de este trabajo de tesis.

8.2 Tipos de Control

En esta sección se describe la teoría de control que se necesita para desarrollar y en tender el contenido de esta tesis, así como su aportación y sus probables aplicaciones.

8.2.1 Control en Cascada

Es una técnica de control común, ventajoso y útil en las industrias de proceso, además es uno de los conceptos mas avanzados en control. Una estructura de control en cascada contiene dos controladores de retroalimentación con la salida del controlador primario que cambia el punto de operación del controlador secundario (Smith y Corripio, 1994). El control en cascada tiene dos propósitos:

- 1) Eliminar los efectos de perturbación y
- 2) Mejorar el funcionamiento dinámico del control a lazo.

Sin embargo estos controladores son desarrollados por las estructuras básicas de control, como son: Control proporcional (**P**), control proporcional integral (**PI**), control proporcional diferencial (**PD**) y por ultimo el control proporcional integral diferencial (**PID**) (Puebla, 2002, Mc Avoy *et al.*, 1996).

A continuación se describen detalladamente las estructuras clásicas de control retroalimentado.

8.2.2 Controlador Proporcional (P):

Es el tipo más simple de controlador **feedback**, el cual toma una decisión para mantener el punto de control, el cual se representa por medio de la siguiente ecuación:

 $m(t) = \overline{m} + kc * [r(t) - c(t)].$ Ecuación 8-1

0

$$m(t) = \overline{m} + kc * e(t)$$
....Ecuación 8-2

Donde:

m(t) = Salida del	l controlador
-------------------	---------------

- m = valor base
- r(t) = punto de control
- c(t) = variable que se controla
- e(t) = señal de error
- kc = ganancia del controlador

Para obtener la función de transferencia del control P la ecuación (8-2) queda:

$$m(t) - \overline{m} = kc * [e(t) - 0]$$
....Ecuación 8-3

Definiendo las siguientes variables de desviación:

$M(t) = m(t) - \overline{m} \dots$	Ecuación 8-4
E(t) = e(t) - 0	Ecuación 8-5

Entonces:

M(t) = kc * E(t)....Ecuación 8-6

Sacando la transformada de *Laplace* y despejando obtenemos la ganancia kc: $kc = \frac{M(s)}{E(s)}$Ecuación 8-7

La ventaja del controlador \mathbf{P} es que sólo se tiene un parámetro de reajuste kc. La desventaja de los controladores proporcionales es que operan con una desviación en la variable que se controla.

8.2.3 Controlador Proporcional Integral (PI):

La mayoría de los procesos se controlan con el punto de control, en este caso se añade **"inteligencia"** al controlador proporcional para eliminar la desviación. Esta inteligencia es la acción de ajuste y en consecuencia, el controlador se convierte en un control proporcional integral (Puebla, 2002). Y se representa por medio de la siguiente ecuación:

$$m(t) = \overline{m} + kc * e(t) + \frac{kc}{\tau_{I}} * \int e(t)dt \dots$$
Ecuación 8-8

Donde:

 τ = Es el tiempo de integración

Para obtener la función de transferencia del controlador **PI** la Ecuación (8-8) se rescribe como:

$$m(t) - \overline{m} = kc * (e(t) - 0) + \frac{kc}{\tau_{I}} * \int (e(t) - 0)dt$$
.....Ecuación 8-9

Sacando la transformada de Laplace y despejando obtenemos la ganancia kc:

$$\frac{M(s)}{E(s)} = kc * \left(1 + \frac{1}{\tau_I * s}\right)$$
....Ecuación 8-10

Los controladores proporcionales integrales tienen como ventaja, que la acción de integración o de reajuste elimina la desviación. La desventaja es que tiene do parámetros de reajuste kc y τ_{I} .

8.2.4Controlador Proporcional Diferencial (**PD**):

Este controlador se usa en procesos donde es posible utilizar un controlador proporcional, pero se requiere de cierta cantidad de **"anticipación"** (Luyben *et al.*, 1995, Smith y Corripio, 1994). Su ecuación descriptiva es:

$$m(t) = \overline{m} + kc * e(t) + kc * \tau_D * \frac{de(t)}{dt}$$
....Ecuación 8-11

La función de transferencia ideal es:

$$\frac{M(s)}{E(s)} = kc * (1 + \tau_D * s).$$
...Ecuación 8-12

Donde:

 τ_D = Es la rapidez de derivación

La desventaja del controlador proporcional es que opera con una desviación de la variable que se controla. La ventaja es que soporta mayor ganancia, que se traduce en una menor desviación que la que se tiene un control **I**.

8.2.5 Controlador Proporcional Integral Diferencial (PID):

Este es un nuevo modo de control esta ejercido por la acción derivativa, que se conoce como rapidez de **"precaución"**; que tiene como propósito *anticipar adonde va el proceso*, mediante la observación de la rapidez para el cambio del error.

Los controladores **PID** se usan en los procesos donde las constantes de tiempo son grandes (Luyben *et al.*, 1995).

Su ecuación descriptiva es la siguiente:

$$m(t) = \overline{m} + kc * e(t) + \frac{kc}{\tau_{I}} * \int e(t)dt + kc * \tau_{D} * \frac{de(t)}{dt}$$
....Ecuación 8-13

La ecuación de transferencia ideal es:

$$\frac{M(s)}{E(s)} = kc * \left(1 + \frac{1}{\tau_i * s} + \tau_D * s\right).$$
 Ecuación 8-14

La ecuación de transferencia real es:

$$\frac{M(s)}{E(s)} = kc * \left(1 + \frac{1}{\tau_I * s}\right) * \left(\frac{\tau_D * s + 1}{\sigma * \tau_D * s + 1}\right) \dots Ecuación 8-15$$

Donde:

 σ Toma valores entre 0.05 – 0.100.

La ventaja de controladores **PID** es que con su acción derivativa tiene la capacidad de anticipación (Smith y Corroipo, 1994, Perlmutter D., 1972).

8.3 La ganancia

Para un sistema de n-orden descrito por la ecuación diferencial ordinaria lineal:

$$a_{N} \frac{d^{N} y}{dt^{N}} + a_{N-1} \frac{d^{N-1} y}{dt^{N-1}} + \dots + a_{1} \frac{dy}{dt} + a_{o} y$$

= $b_{M} \frac{d^{M} y}{dt^{M}} + b_{M-1} \frac{d^{M-1} y}{dt^{M-1}} + \dots + b_{1} \frac{dy}{dt} + b_{o} y$Ecuación 8-16

Donde:

 a_i y b_i = coefficientes constantes

y = salida

u = entrada o función de forzamiento

Aplicando la transformada de *Laplace* para obtener la función de transferencia de la ecuación (9-16), temeos que:

 $G(s) = \frac{Y(s)}{U(s)} = \frac{b_M s^M + b_{M-1} s^{M-1} + \dots + b_1 s^1 + bo}{a_M s^M + a_{M-1} s^{M-1} + \dots + a_1 s^1 + ao} \dots Ecuación 8-17$

El denominador es un polinomio en *s* el cual corresponde a la ecuación característica del sistema.

Las raíces del denominador son dadas por los polos de la función de transferencia, las raíces del numerador son dadas por los ceros de la función de transferencia.

Factorizando ambos términos:

$$G(s) = \left(\frac{b_M}{a_N}\right) \frac{(s-z_1)(s-z_2)\dots(s-z_M)}{(s-p_1)(s-p_2)\dots(s-p_M)}$$
....Ecuación 8-18

Donde:

 z_i : Son los ceros de la función de transferencia

 p_i : Son los polos de la función de transferencia

Expresando la función de transferencia en términos de constantes de tiempo, en el lugar de los polos y ceros, esta dada por:

$$G(s) = kp \frac{(\tau_{z1}s+1)(\tau_{z2}s+1)...(\tau_{zM}s+1)}{(\tau_{p1}s+1)(\tau_{p2}s+1)...(\tau_{pM}s+1)}$$
....Ecuación 8-19

La ganancia en estado estacionario es la razón de la perturbación de salida en estado estacionario a la perturbación de entrada.

$$kp = \left(\frac{y^p}{u^p}\right)_{(t\to\infty)} = \left(\frac{\overline{y}^p}{\overline{u}^p}\right)$$
....Ecuación 8-20

En términos de variables totales es:

$$kp = \left(\frac{y - \overline{y}^{p}}{u - \overline{u}^{p}}\right)_{(t \to \infty)} = \left(\frac{\Delta \overline{y}}{\Delta \overline{u}}\right).$$
Ecuación 8-21

Para un paso de cambio en la variable de entrada de $\Delta \overline{u}$, la ganancia en estado estacionario, es encontrada simplemente por la división del cambio de estado estacionario en la variable de entrada $\Delta \overline{y}$ por $\Delta \overline{u}$, como se muestra en la siguiente Figura:

Figura 8-7. Ganancia en estado estacionario.

Por definición, el estado estacionario corresponde a que todas las derivadas del tiempo son iguales a cero. En el dominio de *Laplace s* reemplaza a d/dt, rotulando a *s* que tiende a cero, que lleva a la ganancia en estado estacionario.

Para comprobar la valides de lo antes dicho será demostrado, usando el teorema del valor final de transformadas de *Laplace*, de la siguiente forma (Luyben y Luyben, 1997):

 $\lim_{t \to \infty} \left[f(t) \right] = \lim_{s \to 0} \left[sF(s) \right] \dots Ecuación 8-22$

Considerando una función de transferencia arbitraria de la forma:

$$G(s) = \frac{Y(s)}{U(s)}$$
....Ecuación 8-23

Empleando una perturbación de escalón unitarario de la forma:

 $U(s) = \frac{1}{s}$Ecuación 8-24

Sustituyendo la ecuación (8-24) en la ecuación (8-23) y reordenando términos tenemos:

$$Y(s) = G(s)\frac{1}{s}$$
....Ecuación 8-25

Aplicando el teorema del valor final obtenemos que:

$$kp = \lim_{t \to \infty} \left[y(t) \right] = \lim_{s \to 0} \left[sG(s) \right].$$
 Ecuación 8-26

Sustituyendo la ecuación (8-25) en la ecuación (8-26):

$$kp = \lim_{s \to 0} \left[sG(s) \frac{1}{s} \right] = \lim_{s \to 0} \left[G(s) \right] \dots \text{Ecuación 8-27}$$

Entonces queda demostrado que:

$$kp = \lim_{t \to \infty} \left[y(t) \right] = \lim_{s \to 0} \left[G(s) \right] \dots \text{Ecuación 8-28}$$

Ya hemos definido la ganancia, como se calcula, pero hasta ahora no sé a dicho para que sirve y donde se emplea, el cálculo de la ganancia es muy importante para la dinámica del control ya que este parámetro sirve para regular el proceso, ya que es uno de los parámetros principales del control.

Entonces la ganancia del proceso indica cuanto cambia la variable de salida por unidad de cambio en la función de forzamiento o variable de entrada, es decir la ganancia define la sensibilidad del proceso.

Además la ganancia es un parámetro relacionado con la "*naturaleza*" del proceso que se controla y, en consecuencia depende de las propiedades físicas y los parámetros de operación del proceso.

8.4 Tiempo del Proceso

El tiempo del proceso τ_o , es una constante de tiempo, y esta en relación con la *velocidad* de respuesta del proceso, *una vez que el proceso comienza a responder* a la función de forzamiento.

Supongamos una variable de entrada $x_i(t)$, que se incrementa en unidades, es decir, sufre un cambio en escalón con A unidades de magnitud, lo cual se expresa matemáticamente como sigue:

$$u(t) = \begin{cases} x_i(t) = \overline{x}_i & \forall t < 0\\ x_i(t) = \overline{x}_i + A & \forall t \ge 0 \end{cases}$$
. Ecuación 8-29

$$F_i(t) = Au(t)$$
....Ecuación 8-30

Aplicando la transformada de Laplace se tiene:

$$F_i(s) = \frac{A}{s}$$
....Ecuación 8-31

Con la **ODE** lineal de primer orden, en términos de variables de desviación la cual se representa como:

$$\tau \frac{dy(t)}{dt} + y(t) = F_i(t) \dots \text{Ecuación 8-32}$$

Aplicando la transformada de Laplace tenemos:

$$\tau sy(s) - \tau sy(0) + y(s) = F_i(s) \dots \text{Ecuación 8-33}$$

Pero se sabe que y(0) = 0 entonces la ecuación se reduce a:

$$y(s) = \frac{1}{(\tau s + 1)} F_i(s)$$
....Ecuación 8-34

Reordenando:

$$\frac{y(s)}{F_i(s)} = \frac{1}{(\tau s + 1)}$$
....Ecuación 8-35

La ecuación (8-35), es la conocida comúnmente como función de transferencia, de primer orden, ya que fue desarrollada a partir de la **ODE** lineal de primer orden. El nombre de función de "transferencia" proviene del hecho de que con la solución de la ecuación se transfiere la entrada o la función de forzamiento, $F_i(t)$, a la salida o variable de respuesta y(t).

Sustituyendo la ecuación (10-32) en la ecuación (10-34) tenemos que:

$$y(s) = \left(\frac{1}{s\tau + 1}\right) \left(\frac{A}{s}\right) = \frac{A}{(\tau s + 1)s}$$
....Ecuación 8-36

Usando fracciones parciales para obtener la inversa de la transformada de *Laplace* se llega a:

$$y(t) = A(1 - e^{-(\tau/t)})$$
.....Ecuación 8-37

La ecuación (8-37) expresa el significado físico de τ , la cual se conoce como la constante del tiempo de proceso.

Si se hace $t = \tau$ se obtiene que:

$$y(t) = A(1 - e^{-(\tau/\tau)}) = A(1 - e^{-1})$$
....Ecuación 8-38
$$y(t) = 0.632A$$

Es decir en una constante de tiempo se alcanza el 63.2% del cambio total, lo cual se ilustra en la Figura 8-8, en consecuencia la constante de tiempo guarda relación con la velocidad de respuesta del proceso. Es decir mientras más lenta de un proceso ala función de forzamiento o entrada, más grande es el valor de τ ; tanto más rápida es la respuesta del proceso a la función de forzamiento, cuanto mas pequeño es el valor de τ . τ debe estar en unidades de tiempo (Shiskey, 1998).

Figura 8-8. Respuesta de un proceso de primer orden a un cambio en escalón de la función de forzamiento – constante de tiempo.

8.5 Mapa de Fase

Un mapa de fase o retrato fase es el análisis grafico de las variables dependientes, las cuales son resultado de las **ODE** lineales de primer orden, cuando la derivada con respecto al tiempo es cero dx/dt = 0. Para los **CSTRs** el mapa de fase se obtiene graficando la temperatura del reactor T versus la concentración C, y se obtiene de la siguiente forma:

Sea:

$$\frac{dC}{dt} = f_1(T,C)$$
.....Ecuación 8-39
$$\frac{dT}{dt} = f_2(T,C)$$
....Ecuación 8-40

si dividimos la ecuación (8-53) entre la ecuación (8-54) obtenemos:

$$\frac{dC}{dT} = \frac{f_1(T,C)}{f_2(T,C)} = m$$
....Ecuación 8-41

Estos mapas son empleados para trazar las trayectorias desde unas condiciones iniciales a unas finales, para obtener el estado estacionario.

Entonces las trayectorias pueden encontrarse con la pendiente instantánea de la siguiente forma (Perlmutter, 1972):

 $f_1(T,C) = mf_2(T,C)$Ecuación 8-42

En la Figura 8-9 se muestra la representación de un mapa de fase de un reactor químico tipo batch.

Figura 8-9. Mapa de fase de un reactor químico batch.

9 Glosario

Control: Es la operación que trata de mantener en un valor de operación las variables del proceso.

Controlar: significa medir el valor de la variable controlada del sistema y aplicar la variable manipulada al sistema para corregir o eliminar una desviación del valor medido a partir de un valor deseado.

Control retroalimentado: Se refiere a una operación que, en presencia a perturbaciones, tiende a reducir la diferencia entre la entrada de un sistema y alguna entrada de referencia y lo continúa haciendo con base en esta diferencia. Aquí solo se especifican con este término las perturbaciones impredecibles, dado que las perturbaciones predecibles o conocidas siempre pueden compensarse dentro del sistema.

Dinámica de un sistema: Se dice que es la variación de las propiedades del sistema con el tiempo.

Estabilidad: Una idea intuitiva de lo que quiere decir estabilidad su sugiere que en si misma no es una técnica del uso de la palabra común. Esta es asociada con firmeza y constancia. Se usa en la ingeniería designando el significado que debe ser mas preciso, y este debe estar en un marco encaminado para dar en sí mismo una descripción desde el punto de vista que dada la idea designada dentro del compromiso vital de la solución de este problema, las siguientes preguntas, se hacen como si no estuviera estable el sistema mientras puede dar lugar en un amplio contexto, envolviendo tales sujetos como múltiples estados estacionarios, la región de estabilidad, y completando las definiciones de estabilidad.

- ¿Bajo que condiciones puede un sistema de reacción dado tiene un estado estacionario? ¿Considerando esto se tienen que dar las condiciones necesarias para garantizar un único estado estacionario?
- ¿Cómo puede ser sugerida la estabilidad de un estado estacionario con respecto a un pequeño cambio de estados estacionarios, los valores instantáneos de la variable dependiente, o las entradas al reactor?
- 3. ¿Cómo se define la estabilidad para perturbaciones de magnitudes grandes relativamente? ¿Puede esta definición ser relacionada a limites en las respuestas que siguen los cambios en la entrada? ¿Qué especificaciones son las que hay que dar en un reactor transciente? (Distefano, 1981).

La estabilidad es una de las propiedades que un sistema de control que tiene en un proceso, y es un fundamento importante en los sistemas de control. Por tanto hay diferentes tipos de estabilidad en los sistemas de control.

La estabilidad de un sistema se determina por su respuesta a las entradas y salida o en las perturbaciones. Un sistema estable es aquel que permanece en reposo a no ser que se excité por una fuente externa y en tal caso, volverá al reposo una vez que desaparezcan todas las excitaciones. La estabilidad se puede definir, en términos de la respuesta al impulso de un sistema como se describe a continuación:

- 1. Un sistema es **estable** si su respuesta al impulso tiende a cero a medida que el tiempo tiende a infinito.
- 2. Un sistema es **estable**, si cada entrada limitada produce una salida limitada (Distefano, 1981).

Hay distintas formas de medir estabilidad o dicho de otra forma encontrar los puntos de estabilidad, estas pueden ser el método de localización de raíces, el criterio de estabilidad de Routh, criterio de estabilidad de Hurwitz, criterio de estabilidad de la fracción continuada, estos métodos se describen a continuación.

Función de transferencia: Es un método operacional para expresar la ecuación diferencial que relaciona la variable de salida con la variable de entrada. Es una propiedad de un

sistema dinámico. Es independiente de la magnitud y naturaleza de la entrada o función de excitación.

Modelos matemáticos: Estos pueden adoptar muchas formas distintas. Dependiendo del sistema del que se trate y de las circunstancias especificas, un modelo matemático puede ser más conveniente que otros. Por ejemplo, en problemas de control optimo, es provechoso usar representaciones en el espacio de estados. En cambio, para los análisis de la respuesta transitoria o de la respuesta en frecuencia de sistemas lineales con una entrada y una salida invariantes con el tiempo, la representación mediante la función de transferencia puede ser más conveniente que cualquier otra. Una vez obtenido un modelo matemático de un sistema, se usan diversos recursos analíticos, así como computadoras, para estudiarlo y sintetizarlo.

Perturbaciones del sistema: Cuando existen variables de entrada o salida del sistema que sufren cambios repentinos se dice que existen perturbaciones, ejemplos de ellas es los cambios de composición en los flujos de entrada, cambios de temperatura en la corriente de agua de enfriamiento, etc.

Setpoint: Es el valor de referencia o punto de operación del proceso.

Sistema: Es una combinación de componentes que actúan juntos y realizan un objetivo determinado. Un sistema no necesariamente es físico. El concepto de sistema sé aplica a fenómenos abstractos y dinámicos, tales como los que se encuentran en la economía. Por tanto, la palabra sistema debe interpretarse como una implicación de sistemas físicos, biológicos, económicos y similares.

Sistema lazo abierto: Se usa este término cuando el proceso no tiene retroalimentación de señal de control.

Sistema lazo cerrado: Es aquel en el cual existe un control retroalimentado que va a inferir cambios en el sistema.

Sistemas lineales: Un sistema se denomina lineal si se aplica el principio de superposición. Este principio establece que la respuesta producida por la aplicación simultánea de dos funciones de entradas diferentes es la suma de las dos respuestas individuales. Por tanto, para el sistema lineal, la respuesta a varias entradas se calcula tratando una entrada a la vez y sumando los resultados. Este principio permite desarrollar soluciones complicadas para la ecuación diferencial lineal a partir de soluciones simples.

Si en una investigación experimental de un sistema dinámico son proporcionales la causa y el efecto, lo cual implica que se aplica el principio de superposición, el sistema se considera lineal.

Sistemas lineales invariantes y variantes con el tiempo: una ecuación diferencial es lineal si sus coeficientes son constantes o son funciones sólo de la variable independiente. Los sistemas dinámicos formados por componentes de parámetros concentrados lineales invariantes con el tiempo se describen mediante ecuaciones diferenciales lineales invariantes con el tiempo (de coeficientes constantes). Tales sistemas se denominan sistemas lineales invariantes con el tiempo (o lineales de coeficientes constantes). Los sistemas que se representan mediante ecuaciones diferenciales cuyos coeficientes son funciones del tiempo, se denominan sistemas lineales variantes con el tiempo. Un ejemplo de un sistema de control variante con el tiempo es un sistema de control de naves espaciales. (Ya que la masa de la nave espacial cambia con el consumo del combustible)

Variable: Cualquier propiedad del sistema en estudio que este variando conforme el tiempo avanza.

Variable Controlada: Es aquella propiedad o característica del proceso que se desea mantener en un punto de referencia dado y estas pueden ser presiones, temperaturas, niveles de líquidos, etc.; todas estas propiedades están involucradas con la operación del proceso deseado.

Variable manipulada: Es aquella en la que se pueden inducir cambios para mantener a la variable controlada en un punto de referencia dado.

84