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Resumen  

La esquizofrenia es un trastorno mental que se caracteriza por la desintegración del 

proceso del pensamiento y de la capacidad de respuesta emocional. Se manifiesta más 

comúnmente como alucinaciones auditivas, delirios paranoides o extravagantes, o 

lenguaje y pensamiento desorganizado, y se acompaña por una significativa disfunción 

social. Se generó una infección materna utilizando un modelo de ratón por medio de la  

activación inmune prenatal durante el embarazo por el mimético viral poly(I:C) que 

redujo la sociabilidad y aumento la expresión de miedo en las crías descendencia para 

demostrar una posible disbiosis en la microbiota intestinal entre los ratones 

descendientes inmunemente activados (poly(I:C)) y los ratones descendentes control o 

vehículo (estériles libres de pirógenos). Se crearon dos generaciones descendencia F1 

y F2. La secuenciación masiva del genoma microbiano se llevo a cabo utilizando dos 

tecnologías de secuenciación diferentes (Ion Torrent PGM e Illumina Miseq) y el 

análisis bioinformático se basó en el uso de herramientas tales como Qiime, 

USEARCH, UCHIME y UPARSE entre otras. La investigación se dividió en tres 

objetivos principales. En el primero se demostró el desarrollo de una disbiosis en la 

primer generación (F1) entre las crías de ratones inmunemente desafiadas (poly(I:C)) y 

las crías de ratones control o vehículo, con ambas plataformas de secuenciación y el 

mismo análisis bioinformático, evaluando así las posibles similitudes y diferencias que 

pudieran existir en los resultados entre plataformas. Se encontraron diversos OTUs 

significativos entre los dos grupos tratamiento de ambos análisis, en especial ordenes 

de los fila Bacteroidetes y Firmicutes (g_Prevotella, s_Barnesiella), algunas de estas 

comunidades bacterianas se mantienen presentes, independientemente del tipo de 
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secuenciador a utilizar. En el segundo objetivo se evaluó la existencia de una posible 

transmisión de las comunidades bacterianas que están causando disbiosis en el grupo 

poly(I:C) de la F1 a la F2. El orden Clostridiales, específicamente algunas especies 

Gracillibacter que causan disbiosis en la F1 están siendo transmitidas a la F2 

manteniendo la disbiosis entre los grupos tratamiento con una menor abundancia en el 

grupo poly(I:C) en ambas generaciones. El orden de Bacteroidales también presenta 

una posible transmisión de  F1 a F2 con especies Barnesiella que muestran diferentes 

patrones de abundancia, ya que no se muestra claramente una relación entre la 

transmisión de estos OTUs significativos y su presencia o ausencia en el grupo 

poly(I:C), pero es evidente que juegan un papel importante en la disbiosis de ambas 

generaciones. Sin embargo, en el tercer objetivo donde se buscó un linaje (POL-M o 

POL-P) que fuera determinante en la transmisión de las comunidades bacterianas de la 

F1 a la F2, en el mismo cluster de Bacteroidales al separarse por linajes muestra una 

asociación de los OTUs siguiendo una dirección, se muestra una presencia o 

abundancia menor en los grupos poly(I:C) con respecto a los control, por parte de la F2 

la mayoría de ellos en POL-P y uno de ellos en POL-M, mostrando que el linaje paterno 

(POL-P) es relevante en el transmisión de comunidades bacterianas (Bacteroidales) de 

la primera a la segunda generación. Estos hallazgos apoyan la idea de una diferencia 

en la composición de la microbiota intestinal entre una descendencia control y una 

descendencia que presenta síntomas de un trastorno del neurodesarrollo 

(esquizofrenia), reafirmando la conexión existente entre la microbiota intestinal y el 

cerebro. Así como también demuestran la transmisión de grupos bacterianos causantes 

de disbiosis entre los grupos tratamiento de una generación F1 a otra F2. 
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1. Background 

1.1 Microbiota 

1.1.1 Gut Microbiota  

Humans are considered host to an amount of microorganisms that are grouped in 

complex and usually beneficial communities, which exceed the number of human cells 

by, tenfold33. The microbiota is a complex ecosystem, which is composed of trillions of 

bacterial cells in the body, collectively encoding more than 3.3 million non-redundant 

genes; exceeding by 150 times the genome encoded by the human host9. These 

bacterial communities occupy several different but distinct microbial ecosystems on-, 

and within the human body, including: nasal, oral, and otic cavities, the surface of the 

skin, the urogenital, and the gastrointestinal (GI) tracts45. It is important to mention that 

is within the GI tract where the principal reservoir of microbes in humans is contained, of 

at least 1,000 different microbial species. The two most predominant bacterial 

communities in the GI tract are the Bacteroidetes (~ 48%) and Firmicutes (~ 51%). The 

remaining 1% is composed of other bacterial groups, such as Proteobacteria, 

Verrucomicrobias, Fusobacteria, Cyanobacteria, Actinobacteria, and Spirochetes, plus 

several species of fungi, protozoa, viruses, and other microorganisms45. Microbial 

colonization of the GI tract and its composition along the life of the host will depend on 

various factors38. After birth, different kinds of environmental microbes colonize the GI 

tract of the newborn, forming the intestinal microbiome. Infant gestational age, type of 

delivery, type of nutrition, and early use of antibiotics alter the composition of the 

microbiota and can have significant and long lasting effects49.  
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The gut microbiota has several functions in the human host. For instance, it is directly 

involved in the synthesis of vitamins and cofactors, the breaking of complex lipids and 

polysaccharides, as well as on the detoxification of waste particles / toxins40. Through 

fermentation, gut microbiota produces short-chain fatty acids that play important roles 

working as fuel sources and maintaining the integrity of the gut epithelial attachment. At 

the same time, this could be related to disorders for which a "permeable gut " precedes 

the development of important diseases such as type1 diabetes57. 

1.1.2 Microbiota – Gut – Brain axis 

The microbiota-gut-brain axis, a strong and constant interaction between the gut 

microbiota and the central nervous system (CNS), is a set of communication channels 

established between the brain and the GI tract that provides to the intestinal microbiota 

and its metabolites a way by which interact with the brain, and vice versa. This axis 

includes the CNS, the neuroimmune and neuroendocrine systems, the sympathetic and 

parasympathetic arms of the autonomic nervous system (ANS), the enteric nervous 

system (ENS) and of course the intestinal microbiota13. These components interact to 

form a complex network with afferent fibers projecting to integrative structures of the 

CNS and efferent projections to the smooth muscle. This bidirectional communication 

network enables brain signals to influence the sensory, motor and secretory GI tract 

modalities as well as immune functions, including modulation of cytokine production by 

cells of the mucosal immune system, and conversely visceral messages from the gut 

may influence brain function, particularly brain areas involved in the regulation of 

stress21.  
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In the case of the ENS the effector arm integrates the responses and modulates the 

immune activity. By the other way, the afferent limb comprises sensory nerves that 

contribute to intestinal reflexes and transmit information to the brain about harmful 

stimuli such as bowel distension and potentially dangerous signs, including the 

presence of bacterial endotoxins or pro-inflammatory cytokines13. 

The ANS connects the intestine with the brain. The vagus nerve is a major pathway for 

signals originating from the foregut and proximal colon, whereas the sacral 

parasympathetic nerves innervate the distal colon. The sympathetic system mainly 

exerts an inhibiting influence on the intestine, decreased intestinal motor function and 

secretion through the release of neurotransmitters such as noradrenaline13, 21. 

The humoral components of the microbiota-gut-brain axis consist of the hypothalamic-

pituitary-adrenal axis, the enteroendocrine system and the immune system of the 

mucosa. Enteroendocrine cells from the gut epithelium produce hormones such as 

cholecystokinin and ghrelin, which regulate appetite, and the 5-hydroxytryptamine, 

which has a wide range of effects on intestinal and brain functions13, 8.  

It is known that emotional factors, stress or depression influence in the natural history of 

chronic GI diseases such as inflammatory bowel disease (Crohn's disease and 

ulcerative colitis) and inflammatory bowel syndrome (IBD) through the gut-brain axis47, 

13. These conditions are also associated with the development of a microbiota dysbiosis. 

(an irregularity in the microbiota within the body that can be triggered by various causes 

such as the effect of certain antibiotics, stress and excess of proteins and simple sugars 

in the diet47, a disruption of tissue homeostasis and normal immune responses64). 
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1.2. Neurodevelopmental disorders  

1.2.1 Neurodevelopmental disorders and its relationship with the gut microbiota  

The combination of new technologies of microbial genomics with metabolic and 

immunological analyzes are revealing important synergies between the microbiota and 

the host. It is now possible to understand this interaction and develop new treatment 

strategies for major diseases such as gastrointestinal as well as neurodegenerative, 

which have recently show to have an important relationship with the intestinal 

microbiota49.  

Neurodevelopmental disorders are characterized by an alteration in the brain, 

behavioral and cognitive development, and sometimes as well on physical 

abnormalities. Some of them share abnormal behavior in socialization, communication 

or compulsive activity35. 

The most recognized neurodevelopmental disorder is the Autism Spectrum Disorder 

(ASD)35, considered as a severe neurodevelopmental condition; it is diagnosed based 

on the presence and severity of stereotypic behaviors and deficit in language and social 

interaction39. The most characteristic features of the autism behavior include qualitative 

impairments in social interaction and communication, repetitive and stereotyped 

behavior patterns and a restricted repertoire of interests and activities.  

Schizophrenia, considered part of the Autism Spectrum Disorder, is a chronic and 

severe mental disorder that affects the way a person thinks, feels and behaves59, 61. 

People with schizophrenia may seem like they have lost touch with reality. Symptoms of 
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schizophrenia usually begin between 16 and 30 years. In rare cases could also occur in 

children. The symptoms are divided into 3 categories: positive, negative and cognitive59 

(Table 1). 

Table 1. Schizophrenia symptoms in patients: positive, negative and cognitive 

Positive symptoms Negative symptoms  Cognitive symptoms 
Hallucinations 
Delusions 
Thought disorders 
Movement disorders 

Flat affect 
Reduced feelings of pleasure in daily life 
Difficulty beginning and sustaining 
activities 
Reduced speaking 

Poor ‘executive function’ 
Trouble focusing or paying 
attention 
Problems with working 
memory 

While the standardized GI tract symptoms diagnosis in ASD and Schizophrenia has not 

yet been clearly defined, clinical and epidemiological studies have report abnormalities 

such as impaired GI motility and increased intestinal permeability. It has also been 

found that commensal bacteria affect a variety of complex behaviors including social, 

emotional and anxiety-related behaviors, and contribute to the development and brain 

function in mice and humans8, 20, 25.  

1.2.2 Prenatal infection 

Prenatal exposure to infectious pathogens or inflammatory stimuli is increasingly 

recognized to play an important etiological role in neuropsychiatric and neurological 

disorders with neurodevelopmental components60. Significant associations between 

infection during pregnancy and increased disease risk in later life have been revealed 

for various brain disorders32. The British epidemiologist David Barker initially proposed 

this theory as the “fetal origins of adult disease” or “prenatal programing hypothesis” in 

the 1990`s34. Remote disorders, such as schizophrenia, autism, attention-

deficit/hyperactivity disorder, and major depression share considerable amounts of risk 
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factors and brain dysfunctions, but they might lie along a continuum of genetically and 

environmentally induced neurodevelopmental causalities, wherein prenatal infection 

may be one of these factors. The nature and severity of changes at the maternal-fetal 

interface (Figure 1), including the placenta, amniotic fluid and fetal organism are 

influenced by various factors, most notably the identity or intensity of the pathogen, the 

gestational timing of exposure, and the genetic background of the infected host23. These 

overlapping effects are mostly characterized by increased fetal expression of 

inflammatory factors, such as pro-inflammatory cytokines and chemokines27. It is 

believed that abnormal expression of inflammatory factors in the fetal brain contribute 

to, or even mediate, abnormal brain and behavioral development following prenatal 

exposure to infection7. Indeed, as reviewed extensively elsewhere53, acute inflammation 

during early fetal brain development may negatively affect ongoing neurodevelopmental 

processes, such as neuronal/glial cell differentiation, proliferation, migration, and 

survival, and thus, predispose the developing offspring to long-term brain and 

behavioral dysfunctions. The pathological symptoms traditionally attributed to CNS 

dysfunctions, neurodevelopmental psychiatric illnesses, such as autism and 

schizophrenia, are also associated with a number of GI dysfunctions. Such 

abnormalities include chronic intestinal low-grade inflammation, increased intestinal 

permeability “leaky gut”, allergic reactions to dietary proteins, diarrhea, gastric 

dysmobility, and alterations in gut microbiota50.  
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Figure 1. Possible mechanisms mediating the pathological effects of maternal infection (Adapted from 50) 
Common immunological factors are key mediating factors changing developmental trajectories in the offspring. 
Inflammatory cytokines are typically induced during the acute phase response to infection and may represent a major 
developmental stressor for the organism. An increase in fetal cytokine levels may be caused by transplacental 
transfer of maternally produced cytokines, by placental production of cytokines, or by increased fetal cytokine 
synthesis. In addition, there is a strongly association with numerous other pathophysiological effects, including 
oxidative stress, referred to as an imbalance between the production and elimination of reactive oxygen species 
(ROS), some of which are highly cytotoxic and promote tissue injury. Upon activation, innate immune cells secrete 
ROS and reactive nitrogen species (RNS) as a central part of killing invading pathogens. Production of ROS and 
RNS is, thus, an important downstream mechanism of inflammation-mediated immune responses. Activation of the 
innate immune system (in response to infection) also changes the maternal and fetal availability of several 
micronutrients, including iron and zinc, both of which are highly important for the normal development of peripheral 
and central organs. In the case of iron, it is well established that infection leads to a temporary depletion of iron in the 
infected host. This process is mediated to a great extent by the pro-inflammatory cytokines IL-1β and IL-6 and serves 
to reduce the availability of this essential nutrient to the invading pathogens as part of the host’s inherent defense 
system. As part of the acute-phase response to infection, pro-inflammatory cytokines also trigger the induction of the 
zinc-binding protein metallothionein. During the course of pregnancy, this process leads to maternal and fetal zinc 
deficiency, which has further been associated with teratogenicity and abnormal developmental processes in utero. In 
addition may also impair the fetal supply for macronutrients. Indeed, it is well established that peripheral cytokine 
elevation in response to infection induces a set of behavioral and physiological changes collectively referred to as 
sickness behavior. Sickness behavior typically includes fever, malaise, and reduced exploratory, and social 
investigation, as well as decreased food and water intake, usually accompanied by weight loss. It should also be 
noted that at least part of the changes to the microbiome that emerge following prenatal infection might have an early 
prenatal origin. The conventional view is that microbial colonization begins at birth when the neonate is first exposed 
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to the microbiome of the mother and the surrounding environment, implying furthermore that the fetal environment is 
sterile and, therefore, lacks a microbiome before birth. Recently findings show that the human placenta is not sterile 
but, in fact, is colonized with nonpathogenic commensal microbiota. Perhaps even more important are the findings 
suggesting that the microbial composition of the human placenta can be modified by maternal infection during 
pregnancy, even if the infectious process takes place during the time of conception or in early gestation. Modifications 
of the placental microbiome, be it as a result of maternal infection or by other environmental factors, can critically 
shape the development of the offspring’s microbiome and, thus, predispose the developing organism to dysbiosis and 
other microbiome-associated abnormalities. 

 

1.2.2.1 Prenatal infection animal models  

With the knowledge that the alteration of neuroimmune mechanisms may play a role in 

the development of schizophrenia and other related psychotic illnesses, a number of 

mouse models have been established to explore the consequences of prenatal immune 

activation on the brain and the behavioral development. Existing models are normally 

based on a gestational maternal exposure to a specific infectious disease agent or an 

inflammatory marker as, for instance: the human influenza virus, the mimetic viral 

mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)], the lipopolysaccharide bacterial 

endotoxin or selected inflammatory cytokines52. Several of these mouse models show 

that the maternal exposure to infectious agents or immune system activation lead to 

post-acute robust immunological changes in the maternal-fetal interface, including 

placenta, amniotic fluid and the fetus organism itself. 

1.2.2.1.1The poly(I:C) model. One of the most robust and widely used method that uses 

immune activation agents, which evoke associated cytokines to the mother immune 

response without using live viral or bacterial pathogens, is the maternal administration 

of the poly(I:C)51. This prenatal poly(I:C) model has had a significant impact on 

researchers who focus on the basis of neurological and neuroimmune development of 

complex brain disorders such as schizophrenia52. In poly(I:C) model, pregnant mouse 
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dams are exposed to the immunological manipulation at a specific gestational stage, 

and the brain and behavioral consequences of the prenatal immunological manipulation 

are then compared in the resulting offspring relative to offspring born to vehicle-treated 

control mothers. Poly(I:C) is a commercially available synthetic analog of double-

stranded RNA52. Double-stranded RNA is generated during viral infection as a 

replication intermediate for single-stranded RNA or as a by-product of symmetrical 

transcription in DNA viruses26. It is recognized as foreign molecule by the mammalian 

immune system primarily through the transmembrane protein toll-like receptor 3 

(TLR3)5. Administration of poly(I:C) can therefore efficiently mimic the acute phase 

response to viral infection and leads to significant inflammatory processes in the fetus 

when given systemically to pregnant mouse dams52. An interesting feature of this 

prenatal poly(I:C) mouse model, is that the spectrum of behavioral, cognitive, and 

pharmacological disorders emerge only after the offspring has reached late 

adolescence or early adulthood50, 63. This ripening delay is indicative of a progression of 

pathological symptoms from puberty to adulthood, which is consistent with post-pubertal 

apparition of psychotic behavior in schizophrenia and other ASD related disorders52.  

1.2.2.1.2 Behavioral phenotypes in first- and second-generation offspring of 

immune-challenged mothers  

 A previous research17 evaluated the transgenerational transmission and modification of 

pathological traits induced by prenatal immune activation, using an established mouse 

model of prenatal immune activation by the viral mimetic poly(I:C), behavioral 

phenotypes emerging in F1 and F2 offspring of poly(I:C)-exposed mothers relative to 

corresponding control offspring were compared. For each generation, behavioral testing 



 
16 

started when the offspring reached postnatal day (PND) 70 and included tests 

assessing social interaction, cued Pavlovian fear conditioning, prepulse inhibition (PPI) 

of the acoustic startle reflex, and behavioral despair in the forced swim test. They found 

that reduced sociability (Figure 2) and increased cued fear expression (Figure 3) are 

similarly present in the first (F1) and second (F2) generation offspring of immune-

challenged ancestors, that the sensorimotor gating impairments (Figure 4) are confined 

to the direct descendants of infected mothers, whereas increased behavioral despair 

(Figure 5) emerges as a novel phenotype in the F2 generation. These transgenerational 

effects are mediated via the paternal lineage (Figure 6), demonstrating 

transgenerational non-genetic inheritance of pathological traits following in-utero 

immune activation. 

 

Figure 2. F1 poly(I:C)-exposed offspring displayed impaired sociability in a social interaction test, in which they were 
allowed to concomitantly explore an inanimate dummy object and an unfamiliar live mouse. Whereas F1 control 
offspring showed a strong preference for the live mouse versus the inanimate dummy object, F1 poly(I:C) offspring 
did not display such a preference. Moreover, F1 control and poly(I:C) offspring explored the dummy object to a similar 
extent, whereas the exploration times for the live mouse markedly differed between the two groups. F2 offspring of 
poly(I:C)-exposed ancestors showed a similar deficit in sociability without concomitant changes in general locomotor 
activity or dummy object exploration. 
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Figure 3. F1 poly(I:C) offspring displayed increased fear expression in a cued Pavlovian fear conditioning test. 
Whereas they did not differ from F1 controls during the initial acquisition of the conditioned fear response to 
successive CS(tone)-US(foot shock) presentations, F1 poly(I:C) offspring showed increased conditioned fear when the CS 
was no longer followed by the US. Similar fear-related abnormalities were also present F2 offspring of poly(I:C)-
exposed ancestors: Whilst the acquisition of the fear response during initial tone-shock conditioning was not different 
between F2 control and F2 poly(I:C) offspring, the latter displayed increased cued fear expression in the subsequent 
test phase. 

 

Figure 4. F1 poly(I:C) offspring displayed a robust reduction in PPI scores when 110 and 120 dB stimuli served as 
pulses. These effects were not associated with changes in the responses to prepulse-alone or pulse-alone trials (data 
not shown), suggesting that prepulse detection and startle reactivity per se were not affected by prenatal immune 
activation. F2 offspring derived from poly(I:C)-exposed or control ancestors showed comparable PPI  and responses 
to prepulse- and pulse-alone trials (data not shown). Hence, despite the robust PPI deficits in the F1 generation of 
immune-challenged mothers, the F2 generation did not inherit the sensorimotor gating deficit.  
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Figure 5. To examine affective behaviors in F1- and F2-generation offspring of immune-challenged mothers, the 
forced swim test was used. F1 poly(I:C) offspring did not differ from F1 control offspring with regards to the time spent 
floating. Despite the absence of behavioral despair in the F1 generation, however, F2 offspring of poly(I:C)-exposed 
ancestors spent significantly more time floating than F2 control offspring. Hence, F2 but not F1 offspring derived from 
immune-challenged mothers develop signs of behavioral despair. 

 

Figure 6. Paternal lineage (PL)-derived F2 poly(I:C) offspring showed deficits in social interaction, increased fear 
expression and behavioral despair, but not sensorimotor gating. The former behavioral abnormalities were not 
associated with changes in basal locomotor activity or altered acquisition of the fear response during initial tone-
shock conditioning. Interestingly, F2 poly(I:C) offspring did not display overt behavioral impairments when they were 
derived from the maternal lineage (ML) ancestor lineage. Demonstrating that the transgenerational transmission of 
behavioral deficits following prenatal immune activation is mediated via the PL but not ML. 
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1.3. Study of microbial communities  

1.3.1 Taxonomy  

The taxonomy is a division of the systematic field in biology; related with the 

classification of organisms according specialization31. It provides the methods, 

principles and rules for the classification of living organisms into taxa (categories)1. 

The categories consist of levels within groups in which the largest group covers the 

small one. Grouping organisms is based on similarities and differences, both natural 

(structural) and phylogenetic (family relationships or affinities with other missing 

organisms). The taxonomy provides direct and inferential information on the body 

structure and evolutionary history of organisms respectively. The most general 

taxonomic level is the Kingdom, which is divided then in other categories such as 

Phylum, Class, Order, Family, Genus, and Specie31.  

1.3.2 Metagenomics. 

Phylogenetic relationships (evolutionary) among microorganisms using “molecular 

characters” can be determined. For establishing these relationships, a series of 

methods based on the comparison of nucleic acid sequence, particularly the sequence 

of ribosomal RNA (rRNA, structural RNA ribosome, involved in RNA translation) are 

used31. One of the most important recent discoveries in biology is that the changes in 

the nucleotide sequence of ribosomal RNA (determined by mutations in the DNA 

encoding ribosomal RNA) can be used as a measure to establish evolutionary 

relationships between organisms.  
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Metagenomics is a new field in which it seeks to obtain genome sequences of different 

microorganisms, such as bacteria, which makes up a community, globally extracting 

and analyzing their DNA. The ability to directly sequence the genomes of microbes 

without cultivate opens new possibilities involving a change in microbiology. This is a 

scientific revolution because of its high performance and low cost that allows the access 

to the genome without seeing or cultivating microorganisms2. 

1.3.3 Bacterial identification by sequencing of ribosomal genes (16S rRNA) 

 

Figure 7. 16SrRNA structure, conserved regions and hipervariables regions (V1-V9)46  

To perform genome sequencing of microorganisms by analyzing their DNA, ribosomal 

RNA (rRNA) genes are used24. The rRNA gene is the most conserved DNA in the 

cells46. Portions of the rRNA sequence of distantly related organisms are remarkably 

similar, meaning that sequences of distantly related organisms can be aligned 

accurately, so that differences become easily measured. Therefore, rRNA encoding 
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genes become widely used to determine taxonomy and phylogeny, and also for 

estimating rates of divergence between bacterial species30.  

The 16S rRNA is the most widely used macromolecule in studies of bacterial phylogeny 

and taxonomy. Its application as a molecular clock was proposed by Carl Woese in the 

early 1970s, is the "target" gene most commonly used in studies of bacterial diversity, 

known as a universal marker relatively unaffected by environmental pressures over 

time. 16S rRNA contains about 1,500 basepairs46.  

16S rRNA contains two types of regions, hypervariable regions, where the sequences 

have been distanced by the evolutionary time designated as V1-V9 and strongly 

conserved regions that often flanked hypervariable regions (Figure 7)46. Specific primers 

are designed to bind to the conserved regions and amplify the variable regions.  

The sequence analysis of the16S rRNA of various phylogenetic groups revealed the 

presence of one or more characteristic sequences, which are termed “signature 

oligonucleotides”. Therefore, signature oligonucleotides can be used to locate each 

bacterium within their own group16.  

The DNA sequence of the gene 16S rRNA has been determined for an extremely large 

number of species24, 30. Sequences of tens of thousands of clinical and environmental 

isolates are available through various public databases, with free internet access, such 

as GenBank NCBI (National Center for Biotechnology Information), EMBL (European 

Molecular Biology Laboratory), Greengenes, RDP (Ribosomal Database Project), 

RIDOM (Ribosomal Differentiation of Medical Microorganisms), and other private 
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databases, as MicroSeq (Applied Biosystems), and SmartGene IDNS (Integrated 

Database Network System).  

It is important to keep in mind, that is the comparison of the complete genomes, and no 

the comparison of 16S rRNA, which provides an accurate indication of the evolutionary 

relationships. In its absence, the bacterial species are defined in taxonomy, as the set of 

strains that share a similarity of 70% or more. Experiments show that strains with this 

level of relatedness typically have a 97% identity or more between their 16S rRNA 

genes. Thus the strains with less than 97% identity in the16S rRNA sequences are 

unlikely to be related to species12. Today, the accepted species classification can only 

be achieved by the recognition of genomic distances and limits between the closest 

classified taxons (DNA–DNA similarity), and of those phenotypic traits that are exclusive 

and serve as diagnostic of the taxon (phenotypic property)70. 

The molecular identification method of bacteria by sequencing the 16S rRNA includes 

three successive stages: 1) gene amplification from the appropriate sample, 2) 

determining the nucleotide sequence of the amplicon, and 3) sequence analysis. 

1.3.4 Next Generation Sequencing  

DNA sequencing is a set of methods and biochemical techniques aimed at determining 

the order of nucleotides (adenine; A, cytosine; C, guanine; G and thymine; T) in a DNA 

oligonucleotide. Currently one of the most used techniques is the massive sequencing 

or "Next Generation Sequencing" (NGS) which allows for millions of sequences in the 

same process. 
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The continuous development of NGS, has led to a rapid increase in the amount of 

genomic data generated for processing and analyzing. Unlike traditional sequencing 

systems, these massive sequencing platforms, are capable of generating parallel and 

massively, millions of DNA fragments in a single sequencing process in record time and 

cost shrinking. Because of its high performance, this type of platform is ideal for 

numerous studies on a large scale impossible to address with any other existing 

technology, due to the enormous cost that this would entail.  

1.3.5 Next generation sequencers  

Different platforms carry out the NGS; the most common are Ion Torrent PGM (Thermo 

Fisher Scientific Inc)19, MiSeq (Illumina Inc), and 454 Life Sciences (Hoffmann-La 

Roche). The following explains the biochemical and physical principles of the two most 

commonly used NGS platforms: 

1.3.5.1 Ion Torrent PGM (IT) 

Ion Torrent PGM (Personal Genome Machine) directly translates chemical encoded 

information (A, T, G, C) into digital information (0,1), in a semiconductor chip, containing 

millions of wells that capture chemical DNA sequencing information and convert it into 

digital information19.  

The sequencing process begins when a DNA sample is cut into millions of fragments, 

which will bind to its complementary sequence found in each of the microspheres that 

will pass through wells, copies of each of these fragments were held covering the entire 

microsphere. These process covers millions of microspheres with millions of different 
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fragments. The microspheres will flow through the chip and will deposit in each of the 

wells (by probabilistic chance). Thereafter, the chip is immersed by 1 of the 4-nucleotide 

dNTP solutions (Deoxynucleotide Solution Mix), which contains equimolar nucleotides 

concentrations of: dATP, dCTP, dGTP and dTTP. When a nucleotide is incorporated 

into a DNA strand and is immersed in one of the nucleotide solutions, a hydrogen ion is 

released. The released hydrogen produces pH changes in each one of the wells, 

creating a voltage difference. This voltage change is registered, which indicates that a 

nucleotide has been incorporated. The process is repeated every 15 s with a different 

nucleotide solution and is carried out simultaneously in millions of wells (Figure 8)19 . 

 

Figure 8. Ion Torrent PGM (IM) sequencing process (adapted from19). Four processes from left to right:  
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1 DNA sample cut into million fragments bind to the spheres, copied and coating the entire area, the process is 
carried out in millions of spheres. 2 Spheres flow through the chip and deposited in each of the wells, the chip is 
immersed in one of the four equimolar solutions and when a nucleotide is incorporated into a DNA strand a hydrogen 
ion is released causing pH changes generating a voltage difference. 3 Example: A polymerase incorporates a 
cytosine nucleotide in the DNA strand, having a complementary nucleotide (guanine) in sequence, a release of a 
hydrogen, a pH change and a voltage difference will occur 4 Example 2: There are two identical bases together A-A 
(adenine), so two nucleotides are incorporated, there will be two hydrogen ions released one by each of the joints, 
the voltage will double and 2 continuous bases registered. 

 

1.3.5.2 Illumina MiSeq (IM) 

Illumina MiSeq NGS, uses clonal amplification and chemical synthesis sequencing to 

allow a rapid and accurate sequencing. The process (Figure 9) simultaneously identifies 

DNA bases and their incorporation into a nucleic acid strand. Each base emits a single 

fluorescent signal, as it is added to the growing chain, using this to determine the order 

of the DNA sequence. The IM sequencing method is similar to Sanger sequencing, but 

it uses modified dNTPs containing a terminator which blocks further polymerization, so 

a polymerase enzyme to each growing DNA copy strand can add only a single base.  

 
 
Figure 9. Illumina (IM) sequencing process29 
From left to right. During sequencing, we have the primer and the fluorophores, a laser comes and 
excites the molecule, the fluorophore will be released emitting a color spectrum which is specific for each 
nucleotide, once the issue occurs, the computer has a high definition camera, which takes a picture to 
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each of the spots, as the fluorophore is gone polymerization can occurs and the next nucleotide arrives, 
repeating the process. 

The sequencing reaction is conducted simultaneously on a very large number (many 

millions) of different template molecules spread out on a solid surface. The terminator 

also contains a fluorescent label, which can be detected by a camera. Only a single 

fluorescent color is used, so each of the four bases must be added in a separate cycle 

of DNA synthesis and imaging. Since single bases are added to all templates in a 

uniform fashion, the sequencing process produces a set of DNA sequence reads of 

uniform length29.  

General differences among NGS platforms exist, including relative turnaround times, 

per-base sequencing costs, read lengths, and several accuracies as shown in Table 2. 

Table 2. Technical specifications of Next Generation Sequencing platforms (IM-Ion Torrent PGM and IM-
Illumna MiSeq). Obtained from3 .All cost calculations are in dollars  

 

 IM-Ion Torrent PGM IM-Illumina MiSeq 
Principle of addition of 
nucleotides during DNA 
synthesis 

Prepares templates by using 
emulsion PCR 

DNA fragments are prepared by 
isothermic “bridge PCR”. 

Error rate The error rate averages of 1.5 
and 1.4 errors per 100 bases for 
read sequences from the 
forward and reverse directions, 
respectively 

The error rate average of 0.9 
errors per 100 bases for read 
sequences from the forward and 
reverse directions, respectively 

Sequence yield per run 20-50 Mb on 314 chip, 100-
200 Mb on 316 chip, 1Gb on 318 
chip 

1.5-2Gb 

Run Time 2 hours 27 hours 
Reported Accuracy Mostly Q20 Mostly > Q30 
Read length ~200 bases up to 150 bases 
Paired reads Yes Yes 
Insert size up to 250 bases up to 700 bases 
Typical DNA requirements 100-1000 ng 50-1000 ng 
Instrument Cost $80 KUSD $128 KUSD 
Sequencing cost per Gb* $1,000 USD (318 chip) $502 USD 
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1.3.6 Biodiversity 

Biodiversity is defined as "the variability among living organisms from all sources; this 

includes diversity within species, between species and of ecosystems41”. To understand 

the changes in biodiversity, separation of components or indexes alpha, beta and 

gamma can be very useful. Alpha diversity is the wealth of species in a particular 

community which is consider as homogeneous, beta diversity is the degree of change 

or replacement in species composition between different communities, and gamma 

diversity is species richness of all communities that are part of an ecosystem, resulting 

both alpha and beta diversities56. It is important to mention that this work focuses on 

structure and diversity of bacterial communities. 

1.3.6.1 Alpha diversity metrics. For full parameters of the diversity of species in a 

habitat, it is advisable to quantify the number of species and their representativeness. 

There are indexes that summarize a lot of information into a single value and allow us to 

make quick comparisons and subject to statistical verification between the diversity of 

different habitats and the diversity of the same habitat over the time41, 56.  

a) Chao1 diversity index. It is an estimate of the number of species from a community 

based on the number of rare species in the sample Chao 1 is a nonparametric 

model42. 

𝐶ℎ𝑎𝑜1 = 𝑆 + !!
!!

 

(S is the number of species in a sample; ‘a’ is the number of represented species only by a 
single individual in that sample and ‘b’ is the number of species represented by exactly two 
individuals in the sample). 
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b) Shannon diversity index. It is a commonly used index to characterize the diversity of 

species in a community, just as the Simpson index, Shannon index represents both 

the abundance and uniformity of the present species42. 

𝐻 = − 𝑝!∞
!!! 𝑙𝑛𝑝! 

 

c) Simpson diversity index. A community dominated by one or two species is 

considered less diverse than one where different and various species have a similar 

abundance. Simpson diversity index is a metric of diversity that takes into account 

the number of present species and the relative abundance of each species. So if 

richness and uniformity of species increase, the diversity increases42.  

𝐷 = 1− (
𝑛 𝑛 − 1
𝑁 𝑁 − 1 ) 

 

d) Simpson reciprocal diversity index. This is an index that increases with diversity 

rather than decrease. As its name says it will calculate the inverse of Simpson 

index42. 

∆= !
!

   

invD=1-D 

 

e) Rarefaction curves. Another way of exemplifying alpha diversity is through 

rarefaction curves. Rarefaction is a technique for assessing species richness from 

sampling results. Allows calculation of species richness for a given individual 

samples, based on the construction of rarefaction curves. These curves are a 

graphical representation of the number of species as a function of the number of 

1. The relative proportion of species (i) is calculated with the total number of species (pi) 

 

(n=total number of organisms of a particular species, and N=total number of 
organisms of all species). 

Taking D as the probability of an intra specified meeting, which will increase 
when the community is less equitable. 
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samples. The steep slope indicates the fraction of the diversity of species, which 

remains to be discovered, if the curve approaches asymptotically a maximum, it 

means that a reasonable number of individual samples have been taken41.  

1.3.6.2 Beta diversity metrics. The beta diversity or diversity between habitats is the 

degree of replacement of species or biotic change through environmental gradients, 

measuring beta diversity is based on ratios or differences41. These ratios can be 

evaluated based on indexes or coefficients of similarity, dissimilarity or distance 

between samples from qualitative (presence - absence of species) or quantitative data 

(proportional abundance of each species measured as number of individuals, biomass, 

density, coverage, etc.) as well as Heat maps, dendrograms, PLS-DA (Partial Least 

Squares Discriminant Analysis) or Principal Component Analysis PCA and Principal 

Coordinates Analysis PCoA graphs42. 

 

1.7  Massive data processing  

1.7.1 Bioinformatic analysis 

Bioinformatics is an emerging and relatively new discipline that integrates disciplines as 

biology, computer science, statistics and mathematics19. Bioinformatics comes as a 

response to the exponential increase in the volume of data generated by the scientific 

community over the last decade caused by the development of new high-performance 

technologies such as microarrays and next generation sequencing. The difficulty of 

managing a growing volume of data makes it necessary to develop new bioinformatic 
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solutions that facilitate the transformation of raw data produced in biological processes, 

so that we can advance in the understanding of the molecular processes involved. In 

the case of the next generation sequencing, there are many methods and bioinformatics 

tools for analyzing this obtained data, the preference of each individual for programs 

and platforms through graphic interfaces or terminal and also the power or 

characteristics of the available computer equipment or server. 

Some of these tools to perform the data analysis for the sequenced DNA microbiome 

involve using virtual machines as Bio Linux or Clovr containing a set of programs used 

to carry out the entire sequence analysis, open source web platforms as Galaxy where 

all information is kept in the "cloud" (http://galaxy-qld.genome.edu.au/galaxy), or open 

source bioinformatic pipelines and algorithms for raw data as Qiime (http://qiime.org), 

Mothur ((http://www.mothur.org), Uparse, Uchime, Usearch, Ublast, Uclust among 

others. Similarly, exist independent programs that allow carrying out some part of data 

processing as Trimommatic and FastQC (Babraham Institute, Cambridge UK). It is 

important to note that the person carrying out this type of analysis must have knowledge 

of commands through (Linux) terminal, since most tools require it. 

1.7.2 Bioinformatic tools for sample analysis  

QIIME ™ (Quantitative Insights Into Microbial Ecology; www.quime.org)43. QIIME is an 

open-source bioinformatics pipeline for performing microbiome analysis from raw DNA 

sequencing data. It has been used to analyze and interpret data from nucleic acid 

sequences of fungi, bacteria, viruses and archaea. QIIME is designed to take users 

from raw sequencing data generated on the IM, IT or other platforms through 
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publication quality graphics and statistics. This includes demultiplexing and quality 

filtering, OTU picking, taxonomic assignment, and phylogenetic reconstruction, and 

diversity analyzes and visualizations. QIIME has been applied to studies based on 

billions of sequences from tens of thousands of samples43.  Using QIIME to analyze 

data from microbial communities consists of typing a series of commands into a terminal 

window, and then viewing the graphical and textual output. Some fairly basic familiarity 

with a Linux-style command-line interface is useful44.  

Trimmomatic18 . Trimmomatic is a bioinformatics tool that performs a variety of useful 

tasks of trimming and quality analysis of the sequences. The selection of trimming steps 

and their associated parameters are supplied on the command line. The trimming steps 

are: 

• ILLUMINACLIP: Cut adapter and other Illumina-specific sequences from the read. 

• SLIDINGWINDOW: Perform a sliding window trimming. 

• LEADING: Cut bases off the start of a read, if below a threshold quality 

• TRAILING: Cut bases off the end of a read, if below a threshold quality 

• CROP: Cut the read to a specified length 

• MINLEN: Drop the read if it is below a specified length 

• TOPHRED33: Convert quality scores to Phred-33 

FASTQC28. FastQC is a quality control tool for high throughput sequence data. FastQC 

aims to provide a simple way to do some quality control checks on raw sequence data 

coming from high throughput sequencing pipelines. It provides a modular set of 

analyzes, which can be use to give a quick impression of whether the data has any 
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problems of which should be aware before doing any further analysis. The main 

functions of FastQC are:28  

• Import of data from BAM, SAM or FastQ files (any variant) 

• Providing a quick overview to tell you in which areas there may be problems 

• Summary graphs and tables to quickly assess your data 

• Export of results to an HTML based permanent report 

USEARCH and UBLAST36. UBLAST and USEARCH are new algorithms enabling 

sensitive local and global search of large sequence databases at exceptionally high 

speeds. They are often orders of magnitude faster than BLAST in practical applications, 

though sensitivity to distant protein relationships is lower. UCLUST is a new clustering 

method that exploits USEARCH to assign sequences to clusters. UCLUST offers 

several advantages over the widely used program CD-HIT, including higher speed, 

lower memory use, improved sensitivity, clustering at lower identities and classification 

of much larger datasets.36  

UPARSE37. UPARSE, is a pipeline which reports operational taxonomic unit (OTU) 

sequences with 1% incorrect bases in artificial microbial community tests, compared 

with >3% incorrect bases commonly reported by other methods. The improved accuracy 

results in far fewer OTUs, consistently closer to the expected number of species in a 

community. It works by quality-filtering reads, trimming them to a fixed length, optionally 

discarding singleton reads and then clustering the remaining reads, performs chimera 

filtering and OTU clustering simultaneously. It does not require technology or gene-

specific parameters, algorithms or data, which makes it highly robust and suggests that 
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could be successfully applied to a wide range of marker genes and sequencing 

technologies37.  

UCHIME62. Chimeric DNA sequences often form during polymerase chain reaction 

amplification, especially when sequencing single regions to assess diversity or compare 

populations. Undetected chimeras may be misinterpreted as novel species, causing 

inflated estimates of diversity and spurious inferences of differences between 

populations. Detection and removal of chimeras is therefore of critical importance in 

such experiments. UCHIME is a new program that detects chimeric sequences with two 

or more segments. It either uses a database of chimera-free sequences or detects 

chimeras de novo by exploiting abundance data. UCHIME has better sensitivity than 

ChimeraSlayer (previously the most sensitive database method), especially with short, 

noisy sequences. UCHIME is >1000× faster than ChimeraSlayer62.  

Databases. It is important to mention that to carry out the processing of massive 

sequencing data, one of the most important steps is the OTU picking, which needs the 

use of a database as reference. 16S rRNA gene sequence and hyper variable regions 

have been determined for a number of organisms, and are available in various free 

access databases such as: Greengenes (http://greengenes.lbl.gov/cgi-bin/nph-

index.cgi), SILVA (http://www.arb-silva.de), RDP (Ribosomal Database Project) 

(http://rdp.cme.msu.edu/) among others, and choosing one or another depends on the 

researcher and the project needs or preferences. 
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2. Justification  
 

About 1 in 6 (16%) children in the world had a developmental psychoneurological 

disability (2006-2008), such as speech and language impairments to serious ones, as 

intellectual disabilities, cerebral palsy, and autism11. The prevalence of the Autism 

Spectrum Disorder (ASD) is being increasingly in the last years, about 1 in 68 (1.5%) 

children have been identified with ASD according to estimates from Autism and 

Developmental Disabilities Monitoring Network6. The total costs per year for children 

with ASD in the US were estimated to be between $11.5-$60.9 billion USD. 

Representing a variety of direct and in-direct costs, from medical care to special 

education to lost parental productivity. On average, medical expenditures for children 

with ASD were 4.1–6.2 times greater than for those without ASD14. 

Schizophrenia is a mental disorder considered as part of the Autism Spectrum Disorder. 

Although there is no cure (as of 2007) for schizophrenia, the treatment success rate 

with antipsychotic medications and psychosocial therapies can be high. After 30 years, 

of the people diagnosed with schizophrenia22: 

• 25% Completely Recover 

• 35% Much Improved, relatively independent 

• 15% Improved, but require extensive support network 

• 10% Hospitalized, unimproved 

• 15% Dead (Mostly Suicide) 

Today the leading theory of why people develops Schizophrenia is that it is a result of a 

genetic predisposition combined with an environmental exposures and stress during 
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pregnancy or childhood that contribute to, or trigger, the disorder14. The prevalence rate 

for schizophrenia was approximately 1.1% of the population over the age of 18 in 

201322. Schizophrenia is a devastating disorder for most people who are afflicted, and 

very costly for families and society. The overall U.S. 2002 cost of schizophrenia was 

estimated to be $62.7 USD billion, with $22.7 USD billion excess direct health care cost 

($7.0 billion USD outpatient, $5.0 billion USD drugs, $2.8 billion USD inpatient, $8.0 

billion USD long-term care)15.  

These neurodevelopmental diseases are disorders that are present in our society and 

its incidence is increasing every day, therefore, is important to continue investigating 

and trying to find new solutions using latest technologies. NGS is arguably one of the 

most significant technological advances in the biological sciences over the last 30 

years4. An increasingly diverse range of biological problems is harnessing the power 

NGS technologies. Nowadays, is expected to help find the elusive, causative genetic 

defects associated with neurodevelopmental disorders, such as the relationship that 

exists between the brain and the gut microbiota. In comparison with traditional 

sequencing, the use of NGS is regarded as ideal to discover genetic mutations and 

gene expression variations causative of neurodevelopmental disorders because of the 

amount and diversity of genetic variants these technologies can reveal. Biomedical 

research can provide a great amount of new information, which, at times, is unrelated to 

the issue that first prompted the study. This series highlights the breadth of next–

generation sequencing applications and the importance of the insights that are being 

gained through these methods4.  
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3. Hypothesis  
 

If the gut microbiota is a relevant factor on the etiology of schizophrenia, a microbial 

dysbiosis will be observed in the mouse model of prenatal infection, which might work 

as a microbial vector that might be also horizontally transmitted across generations. 
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4. Main objective 

To demonstrate the influence of the gut microbiota in neurodevelopmental disorders by 

applying bioinformatics algorithms for processing data from the next generation 

microbial genome sequencing. For which the characterization of gut microbiota based in 

an established mouse model of prenatal immune activation by the viral mimetic 

poly(I:C), was raised. 

 

4.1 Specific objectives 

I. To compere the gut microbiota composition in relative abundance and diversity of 

the F1 generation of immune challenged mice by the prenatal treatment with 

poly(I:C) and the vehicle control mice. 

II. To compare the results of two different NGS platforms (Illumina Miseq vs. Ion 

Torrent PGM). 

III. To assess whether there is a transmission of bacterial communities that are causing 

dysbiosis from the F1generation to a F2 generation. 

IV. To evaluate whether there is a preponderant transmission linage (maternal vs. 

paternal) that is relevant for the transmission of bacterial communities from the 

generation F1to a generation F2. 
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5. Materials and methods  

 

Figure 10. (Adapted from 17) a) F1 males born to poly(I:C)-exposed mothers were mated with F1 females born to 
poly(I:C)-exposed mothers (N = 6 litters); and F1 males born to control mothers were mated with F1 females born to 
control mothers (N = 8 litters). b) The maternal (ML) and paternal lineages (PL) of F1 poly(I:C) offspring for the 
subsequent generation of F2 offspring was dissected. To obtain F2 poly(I:C) offspring via the ML, female F1 poly(I:C) 
offspring with male F1 control offspring were crossed (N = 6 litters); and to generate F2 poly(I:C) offspring via the PL, 
male F1 poly(I:C) offspring with female F1 control offspring were crossed (N = 7 litters). F1 control males and F1 
control females were crossed to obtain the F2 control lineage. c) Experimental flow chart: the prenatal infection was 
carried out with the mimetic molecule poly(I:C) to the F1 and F2 generations as shown in a) and b), subsequently the 
offspring was divided in two different cohorts, the first one on which the behavioral tests were applied, and the second 
one which continue with the Microbial sample collection from the cecum, the DNA extraction, the 16SrRNA library 
preparation and NGS with IM-Illumina MiSeq or IM-Ion Torrent PGM and finally the bioinformatics analysis and data 
processing with Qiime. 

5.1 Poly(I:C) prenatal infection model.  C57Bl6/N mice were used throughout the 

study. To generate the first-generation (F1) offspring of poly(I:C)-exposed or control 

mothers (F0), female mice were subjected to a timed-mating procedure. Pregnant F0 

dams on gestation day (GD) 9 were randomly assigned to receiving either a single 

injection of poly(I:C) (5 mg/kg) or vehicle (sterile pyrogen-free). For each experimental 

series involving F0 exposures, a total of 16 pregnant dams were used, half of which 

were allocated to the poly(I:C) treatment, and the other half to the vehicle treatment. 

c 
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The selected gestational window (GD 9) in mice corresponds roughly to the middle of 

the first trimester of human pregnancy with respect to developmental biology and 

percentage of gestation from mice to humans. All F1 offspring (48 offspring) were 

weaned and sexed on postnatal day (PND) 21. Littermates of the same sex were caged 

separately and maintained in groups of 3 to 5 animals per cage. Upon reaching early 

adulthood (PND 70), F1 offspring were either allocated to behavioral testing or breeding, 

the latter of which served to produce subsequent generations of immune-challenged or 

control ancestors. Hence, behaviorally naive littermates were always used as breeding 

pairs to obtain the F2 generation, thereby avoiding possible confounds in breeding mice 

arising from prior behavioral testing. For generating the F2, F1 males born to poly(I:C)-

exposed mothers were mated with F1 females born to poly(I:C)-exposed mothers; and 

F1 males born to control mothers were mated with F1 females born to control mothers. 

In a second series of experiments, the maternal (ML) and paternal lineages (PL) of F1 

poly(I:C) offspring were dissected for the subsequent generation of F2 offspring. To 

obtain F2 poly(I:C) offspring via the ML, female F1 poly(I:C) offspring was cross with 

male F1 control offspring; and to generate F2 poly(I:C) offspring via the PL, male F1 

poly(I:C) offspring was mate with female F1 control offspring. F1 control males and F1 

control females were crossed to obtain the F2 control lineage17.   

5.2 Behavioral testing. For each generation, behavioral testing started when the 

offspring reached PND 70 and included tests assessing social interaction, cued 

Pavlovian fear conditioning, pre-pulse inhibition (PPI) of the acoustic startle reflex, and 

behavioral despair in the forced swim test. For each generation, 1-2 offspring per sex 

and litter were randomly selected and behaviorally tested to minimize possible 
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confounds arising from litter effects. Both male and female offspring were used in the 

first experimental series. Given that the first experimental series did not reveal sex-

dependent effects in the F1 and F1 poly(I:C) offspring, all subsequent experimental 

series were conducted using male offspring only in order to minimize the number of 

animals. The sample sizes ranged from 9 to 14 offspring per group and sex17.  

It is important to mention that the poly(I:C) model and the behavioral testing were the 

ones of the previous research17: ‘Transgenerational transmission and modification of 

pathological traits induced by prenatal immune activation’. We used these immune 

active and tested mice for our further NGS processing and analysis of gut microbiota 

relating the transmission of behavioral phenotypes across generations already reported 

with the possible dysbiosis in the gut microbiota which might work as a microbial vector 

that might be also horizontally transmitted across generations. 

5.3 Microbiota sample collection. All the animals were sacrificed by decapitation to 

proceed with the sampling. Intestinal cecum from rodent was obtained (Figs 11&12). 

 

Figure 11. Sample collection process of cecum in mice (from left to right) 

 

Figure 12. Acquire content (intestinal microbiota) from cecum process  
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Then the content from cecum was acquire, to obtain a sample of intestinal microbiota 

found in it (Figure 12). The microbiota sample collection was held by the Physiology and 

Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, 

Schwerzenbach, Switzerland.  

5.4 DNA extraction. The DNA extraction (Figure 13) from intestinal contents for further 

16S libraries preparation was carried out with the DNA extraction kit: QIAmp DNA Stool 

Mini Kit66.  

Figure 13. DNA extraction process from left to right  

5.5 16S Library Preparation and Next generation sequencing.  

 

Figure 14. 16S Library preparation process for further sequencing  
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Biotechnology and Food Science in Norwegian University of Life Sciences (NMBU-

Norway). It is important to mention that with the exception of the second objective where 

we compared the results of two different NGS platforms (IM-Illumina Miseq vs. IT-Ion 

Torrent PGM), all the samples were sequenced for consistent results with only one 

platform (IM-Illumina MiSeq since this was carried out at NMBU). Both the library 

preparation and the next generation sequencing of the samples were carried out in the 

aforementioned laboratories.  

5.6 Analysis and data processing. The analysis and data processing was divided in 

three main phases (Figure 15), each one represents one of the specific objectives. 

 

Figure 15. Three main phases  (in order form left to right) of the analysis and data processing  

This bioinformatic analysis and data processing obtained from the next generation 

sequencing was carried out using bioinformatic tools such as: Qiime, Useacrh, Uparse, 

Uchime, Trimommatic, FastQC, Matlab Clustal X and MEGA; additionally, Greengenes 

was used as the reference data base for all the analyzes. This processing is divided into 

3 main stages or scripts: The Pre-processing, the OTU picking, and the Core diversity 

analysis (Table 3).  

Table 3. Three stages or scripts (Pre-processing, OTU_picking and Core diversity) used for the bioinformatic 
processing of the data with their function, commands and bioinformatic tools.  

Stage (script) Function Commands Bioinformatic tools 
Pre-processing Decompressing files, 

extract barcodes, 
join forward and 

‘Extract_all_barcodes.py’ 
‘Join_all_pairedends.py’ 

‘Split_all_libraries.py’ 

Qiime 
Trimmomatic 

FastQC 

Stage	1	
F1	analysis	(IT,	IM)	

Stage	2	
F1	vs	F2	analysis	

(IM)		

Stage	3	
F1	vs	F2	(POL-P	and	POL-M)	

(IM)	



 
43 

reverse reads, 
trimming, quality 
assessment, and 
merge sequences 

into a large 
sequence file. 

‘fastq_stats’ 
‘fastq_filter’ 

‘Add_qiime_labels.py’ 

USEARCH 

OTU_picking Taxonomic 
assignment, 
inference of 

phylogeny, creation 
of an OTU table. 

‘Derep_full_length’ 
‘Abundance sort’ 
‘OTUs de novo’ 

‘Reference chimera check’ 
‘Assign_taxonomy.py’ 

‘Filter alignment’ 

Qiime 
USEARCH 
UPARSE 
UCHIME 

Core_diversity Alpha and beta 
diversity, 

comparisons of 
samples, taxonomy 
graphs, statistical 

analysis of 
significance between 

groups. 

‘Alpha_rarefaction.py’ 
‘Beta_diversity_through_plots.py’ 

‘Summarize_taxa_through_plots.py’ 
‘Compare_alpha_diversity.py’ 

‘Group_significance’. 

Qiime 

Since the F1 samples were processed with two different sequencers (Illumina Miseq and 

Ion Torrent PGM), some modifications to the Pre-processing script were carried out. 

The following stages: the OTU picking and the Taxonomical assignment and diversity 

were run identically regardless the platform.  

5.6.1 Pre-processing (Script1 ‘Filtering’) 

The preprocessing includes a series of steps and commands that prepare our data 

merging all sequences into one large sequence file, decompress all files, get the quality 

statistics and in the case of the IM samples extract the barcodes and join all forward 

and reverse reads.  

All processes need a metadata file or mapping file; it must be created with all the 

information of our samples. As a minimum, must contain the barcode sequence used for 

each sample, the name of the samples, the sequence primer used to amplify the 

sample and a description column44. This document must be created with raw text format 
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as a .txt. Subsequently we must ensure that the mapping files previously generated, 

have a properly formatted and are free of errors that may affect the analysis. Qiime 

contains a command that performs this function  

5.6.1.1 Pre-processing with IM-Illumina MiSeq samples  

 

1) The Pre-processing with the IM files starts decompressing the files generated by the 

sequencer.  

2) Then, the barcodes must be extracted, using the ‘Extract_All_barcodes.py’ 

command, which is designed to a fastq sequence format and barcode data. In the 

output directory, there will be fastq files (barcode file, and one or two reads files)66. 

We extract the barcodes in each of our 48 samples of F1 and 42 samples for the F2. 

3) Next, forward and reverse IM reads need to be joined with the 

‘Join_All_pairedends.py’. This script takes forward and reverse IM reads and joins 

them using the method chosen. Will optionally create an updated index reads file 

containing index reads for the surviving joined paired end reads66. The ‘Join 

paired_ends’ method (default method) has been selected for the samples. 

4) The next step is splitting all libraries; we demultiplex fastq sequence data. In this 

step, we are "turning off" filter parameters, and storing the demultiplexed fastq file 

with the ‘Split_All_Libraries.py’ command (Qiime scripts ) 

5) Then, all the sequences are merged into one large sequence file. This file will be 

used in the second stage or script: the OTU_picking.  
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6) After that, the quality statistics that are needed for the trimming and quality 

assessment for the following steps are obtained. The ‘fastq_stast’ command is used, 

which reports statistics on reads in a fastq file67.  

7) Finally, the quality reads must be removed. We make a trimming of the sequences, 

and a quality assessment with the values obtained in the log file of the previous step, 

using the ‘fastq_filter’ command, which performs this quality filtering and trimming of 

the sequences, and also the conversion of a fastq file to fasta format67. 

A value should be selected for the option –fastq_maxee E, which discard reads with > E 

total expected errors for all bases in the read after any truncation options have been 

applied, in both analyzes (F1 and F2), we selected a value of 0.33; for the –fastq_minlen 

L option, which deletes sequences with < L number of basepairs, as the variable 

regions V3 and V4 were sequenced with IM for both generations (∼450 pb), a min 

length of 350pb was selected. 

5.6.1.2 Pre-processing IT-Ion Torrent PGM samples.  

Since for the IT samples we only work with forward reads and not with reverse reads, 

and the sequences are free of barcodes and decompressed by the sequencer, we don’t 

need to use the commands for this.  

1) First is the trimming and quality assessment of the samples. Here, we evaluate the 

quality by base sequence and quality scores, the content basis, the distribution of 

sequence length and presence and quality of adapters, in order to crop, adjust, or 

remove sequences.  
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We chose the command line of Trimommatic and FastQC as a graphical tool to carry 

out this first step of pre-processing the F1 samples with IT. Since the variable region V3 

of the 16SrRNA gene was assessed (with length of 250pb) the sequences with less 

than 150bp and a quality score phred33 were discarded, also both sides were trimmed 

by removing bases that not displayed in a range of good quality for each of the 48 

samples. It is noteworthy that each of the samples contains a range of 25,000 to 

260,000 sequences per sample.  

2) Next, the data format of the files must be adapted to be processed with Qiime. IT 

sequencer, generates the data in a fastq or SFF format, so it must be converted to a 

fasta format (accepted format by Qiime).  

3) The last step is to generate one single file (seqs.fna), which contains all the 

information and sequences of each of our samples merging them all. The 

add_qiime_labels.py command is used, which takes a directory, a metadata 

mapping file, and a column name that contains the Fasta file names that 

SamplesIDs are associated with, combines all the files that have valid Fasta 

extensions into a single Fasta file, with valid Qiime Fasta labels66. A 

‘combined_seqs.fasta’ file will be created in the output directory, with the sequences 

assigned to the SampleID given in the metadata-mapping file44.  

Since the merged file containing all the sequences and information of the samples is 

generated in both Pre-processing analyses we can continue with the OTU picking. 

5.6.2 OTU selection (Script 2 ‘OTU_picking’) 
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The OTU picking, is possibly the most important stage taken, is where the taxonomic 

assignment, the inference of phylogeny and the creation of an OTU table takes place. 

Obtaining Operational Taxonomic Units (OTUs) is based on the similarity of the 

sequences within the readings, and one representative sequence of each OTU is 

obtained. The protocol, assigns taxonomic identities using a reference database, aligns 

the OTU sequences, creates a phylogenetic tree and builds an OTU table, which 

represents the abundance of each OTU in every sample. This protocol requires a 

demultiplexed sequences file as those generated in the previous step in both pre-

processing analyzes. In this stage other bioinformatics tools such as Usearch, Uchime 

and Uparse are used. This second stage ‘OTU_picking’ in turn is divided into three 

stages: Filtering processing, OTU processing and Taxonomy processing. 

5.6.2.1 Filtering processing 

1) The first step: ‘derep_full_length’, discard duplicated sequences, annotate with 

cluster sizes and sort by decreasing cluster size. The aim is to reduce the number of 

readings with errors. The –sizeout option may be used to specify that size 

annotations are added to the unique sequence labels. USEARCH supports full-

length and prefix dereplication, but currently not substring67.  

2) The next step: ‘Abundance sort’, is used for clustering when more abundant 

sequences make better centroids. In 16S OTUs, more abundant sequences are 

likely to be accurate biological sequences while rare or singleton reads are more 

likely to contain sequencing errors or be due to PCR artifacts such as chimeras67.  

3) The ‘sort_by_size’ command, sort sequences by decreasing size annotation, which 

usually refers to the size of a cluster. The size is specified by a field -size=N; where 
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N is an integer. The ‑minsize option can be used to specify a minimum size. In this 

case it was decided to use a –minsize of 2, so readings containing a single 

sequence will be discarded as being consider chimeras or artifacts. 

 

5.6.2.2 OTU processing  

1) OTU Clustering (de novo chimera checking). The UCLUST algorithm divides a set of 

sequences into clusters. A cluster is defined by one sequence, known as the 

centroid or representative sequence. Every sequence in the cluster must have 

similarity above a given identity threshold with the centroid. UCLUST is effective at 

identities ~75% above for nucleotides. The cluster_otus command performs this 

OTUs grouping using the algorithm UPARSE-OTU67. A threshold of 97% of similarity 

between sequences is assigned to form part of the same cluster. 

2) Subsequently the ‘reference chimera check’ is performed. The fundamental step in 

UCHIME is a search for a 3-way alignment of a query sequence with two parent 

sequences (A and B) such that one parent is more similar to one segment of the 

query (Q) and the other parent is similar over another segment. A score is calculated 

from the alignment. Higher scores indicate a stronger chimeric signal. A score cutoff 

set by the ‑minh option (0.28 by default) determines whether the query is classified 

as a chimera. This search can be performed with a reference database provided by 

the user, or the database can be constructed de novo from the query sequences. 

For the uchime_ref command, the reference database should include sequences 

that might appear as parents in the query set. These should be high-quality 

sequences that are believed to be free of chimeras. Errors in reference sequences 



 
49 

will degrade detection accuracy and increase the number of false positives. 

Chimeras will not be detected if their parents (or sufficiently close relatives) are not 

present in the database67.  

3) In the next step, the ‘fasta_number.py’ command, will replace fasta labels with xxx1, 

xxx2, xxx3 etc, where xxx is a prefix provided as a command-line argument. Used 

e.g. to label OTUs as OTU_1, OTU_2 etc67.  

4) After that the ‘Usearch_global’ command is used, to search for one (default) or a few 

high-identity hits to a database using the USEARCH algorithm. The alignments are 

global. To get more than one hit, increase –maxaccepts, an identity threshold must 

be specified. Fasta and UDB formats are supported67. A threshold of 97% of identity 

and Greengenes database were selected. 

5) Next, the OTU_table will be generated with help of the ‘uc2otutab_mod.py’ 

command. This OTU_table is a .txt file that contains all the information obtained from 

our OTUs sequences. 

6) Finally, this OTU_table is converted in a biom format, so that can be carried out to 

further analysis (taxonomy assignment). 

 

5.6.2.3 Taxonomy processing 

1) Taxonomy assignment. Given a set of sequences, ’assign_taxonomy.py ‘attempts to 

assign the taxonomy of each sequence. The output of this step is an observation 

metadata-mapping file of input sequence identifiers (1st column of output file) to 

taxonomy (2nd column) and quality score (3rd column). There may be method- 

specific information in subsequent columns66. Greengenes database was selected. 
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2) Add taxonomy to biom file. This taxonomic assignment now will be added to the 

biom file (OTU_table.biom) generated in previous steps, creating a new OTU_table, 

which will become again in a txt format for easy viewing and analysis. 

3) Subsequently the alignment of sequences is performed in Qiime, with the 

‘align_seqs.py’ command, which aligns the sequences in a FASTA file to each other 

or to a template sequence alignment, depending on the method chosen. All aligners 

will output a fasta file containing the alignment and log file in the directory specified 

by --output_dir. Greengenes database was used66.  

4) Next, the ‘Filter alignment’ command is used, this script should be applied to 

generate a useful tree when aligning against a template alignment. Additionally, the 

user can supply a lane mask file, that defines which positions should be included 

when building the tree, and which should be ignored66.  

5) Then, the tree is built with the ‘make_phylogeny.py’ command, which produces a 

tree from a multiple sequence alignment66.  

6) Finally, a compilation is generated in a summary of all the information that resides in 

the biom file. A BIOM file is taken as input, and print a summary of the count 

information on a per-sample basis including the number of sequences and readings, 

the number of observations and the total count (sum of all values in the table) to the 

new file specified by the -o parameter66.  

 

5.6.3 Core diversity analysis (Script3 ‘Core_diversity’) 

This last stage of all this processing consists in a script that plugs several Qiime 

diversity analyzes together to form a basic workflow beginning with a biom table, 



 
51 

mapping file, and optional phylogenetic tree. The included scripts are those run by the 

workflow scripts66:  

• alpha_rarefaction.py, generates rarefied OTU tables, computes alpha diversity 

metrics for each rarefied OTU table, collate alpha diversity results and generate 

alpha rarefaction plots for each index that the user selects. 

• beta_diversity_through_plots.py, performs beta diversity, principal coordinate 

analysis, and generate a preferences file along with 3D PCoA Plots. 

• summarize_taxa_through_plots.py, summarizes OTU by category, summarize 

taxonomy and plot taxonomy summary at the different phylogenetic levels.  

• compare_alpha_diversity.py, compares the alpha diversity of samples found in a 

collated alpha diversity file. The comparison is done not between samples, but 

between groups of samples. The groupings are created via the input category.  

• group_significance.py, is used to compare OTU frequencies in sample groups and to 

ascertain whether or not there are statistically significant differences between the 

OTU abundance in the different sample groups. The script will compare each OTU 

based on the passed sample groupings to see if it is differentially represented. The 

sample groupings are determined by the -c option. Any samples that do not contain 

a value under the given header will not be included in the comparison. At a basic 

level, the script is constructing an OTUxSample (rowXcolumn) contingency table, 

and testing whether or not each OTU is differentially represented in certain groups of 

columns (determined by the metadata category passed).  
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Is important to mention that here the depth of sequencing is selected, the normalization 

value or values to be set for the sequences of each of the samples (standardization). 

For both analyzes (IT and IM) first the value of normalization of the sequences per 

sample was selected. Three values for the IT F1 were chosen: 5,000, 7,000 and 10,000 

and two for the IM F1and F2: 13,000 and 15,000. This because of the different amount of 

sequences per sample that each analysis present. 

In each of the standardization analyzes, a different number of samples is discarded. 

Those samples that are discarded are the ones that do not reach the set number of 

sequences per sample. These values were chosen randomly, trying to make the 

smallest possible number of discarded samples. For the alpha analysis: Shannon, 

Simpson, Simpson reciprocal and Chao1 indexes were selected, also the number of 

Observed Species. Finding significant differences between groups was conducted with 

the statistical analysis for nonparametric data, Kruskal Wallis. A p value ≤0.05 was 

consider as significant. In addition to this three stages of data processing, for all the 

analyzes with both generations F1 and F2 some MATLAB plots of the significant OTUs 

were created, and taxonomy trees were build using the RDP (Ribosomal Database 

Project), MEGA and Clustal X for a better analysis of the data.  
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6. Results and Discussion 

6.1 F1 generation gut microbiota sequenced with IT-Ion Torrent PGM vs. IM-

Illumina MiSeq. 

Is important to mention that with the exception of mandatory differences in platform-

specific sequencing adaptors, the bidirectional sequencing strategy used in IM (forward 

and reverse primers) and the hypervariable regions that were sequenced (V3 IT vs. V3 

and V4 for IM) which necessarily are uncontrolled variables, the processing and data 

analysis of the samples was maintained identically for both sequencing NGS 

technologies.  

The generated data with two NGS platforms presents several similarities and some 

important differences. This 16S rRNA amplicon analysis was done by separating the 

data in the two interest groups poly(I:C) (POL) and control (SAL) for each NGS platform 

analysis, focusing on the finding of similarities and differences between both; specially 

in the abundance and the presence of bacterial communities in each group that can 

lead to a dysbiosis.  

The normalization of the number of sequences per sample was better for the analysis 

with IM (13,000 and 15,000 sequences/sample) since most of the samples were found 

in a smaller range of sequences, in contrast to the IT samples (5,000, 7,000 and 10,000 

sequences/sample). 

6.1.1 Taxonomy classification. The taxonomy classification plots (Figs 16 & 17) 

shows the most abundant bacterial communities that were present in each group. We 
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did not find significant difference (Chi2) in taxonomy between the diverse analyzes of 

standardization neither on IM nor in IT.  

 

Figure 16 F1 IT-Ion Torrent taxonomy assignment  (10,000 normalization value) in both treatment groups (POL: 
poly(I:C) offspring, SAL: control offspring). A genus of the order of Clostridiales (1) as the most abundant community 
with ∼30%, a genus of the family of Lachnospiraceae (2) as the second most abundant community with ∼25%, and a 
genus of the S24-7 family (3) as the third most abundant community with ∼20%. 

 

Figure 17 F1 IM-Illumina taxonomy assignment  (15,000 normalization value) in both treatment groups (POL: 
poly(I:C) offspring, SAL: control offspring). A genus of the order of Clostridiales (1) as the most abundant community 
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with ∼26%, a genus of the family S24-7 (2) as the second most abundant community with ∼19%, and a genus of the 
family of Lachnospiraceae (3) as the third most abundant community. 

In the F1 IT samples showed a dominance of the bacterial communities Firmicutes and 

Bacteroidetes can be observed; a genus of the order of Clostridiales as the most 

abundant community with ∼30% in both groups and a genus of the family of 

Lachnospiraceae as the second most abundant community with 28.5% in the POL 

group and a less abundance in the SAL group with 20.0% both of them from phylum 

Firmicutes. From the Bacteroidetes phylum a genus of the S24-7 family is the third most 

abundant community with ∼20%.  

Now using IM platform the F1 data indicate also a dominance of bacterial groups 

Firmicutes and Bacteroidetes. Being the most abundant bacterial community the genus 

of the order of Clostridiales with ∼26% in both groups. A genus of the family S24-7 from 

the Bacteroidetes phylum was the second most abundant community with ∼19%, and a 

genus of the family Lachnospiraceae was the third most abundant community with 8.9% 

in the POL group and 8.6% in the SAL group. It should be noted that a reduced relative 

abundance in both treatment groups was observed compared with the IT taxonomy 

results where this community was the second most abundant with 28.5%, and 20.0% 

respectively.  

For both sequencing technologies (IT vs. IM), a very similar distribution of the most 

abundant bacterial communities was obtained the groups, with a predominance of the 

order Clostridiales from the phylum Firmicutes and the family S24-7 order of 

Bacteroidales and from the Bacteroidetes phylum. Hoffman et al. 3 reported results with 
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similarities in the taxonomy abundance of bacterial communities when comparing both 

sequencers (IT vs. IM).  

6.1.2 Alpha diversity analysis. Rarefaction curves are shown in Figures 18 & 19 of the 

10,000 and 15,000 sequences/sample normalization values respectively are presented 

as they implicitly include the other standardization analysis (5,000, 7,000 IT and 13,000 

sequences/sample IM, plots can be visualized in the Annex 2). 

For the IT case in all the rarefaction curves it was observed a tendency and a significant 

difference of the POL group to have lower diversity values in contrast to the SAL group. 

This result can be interpreted as a less diversity and abundance of bacterial species in 

the POL group in comparison to the SAL group. For the IM case, no significant 

difference (t-stud) was observed, as they don’t present more or less abundance with 

respect the other group. This data is contradictory since for IT NGS platform there is a 

significant group effect, where as for the IM NGS platform groups have a similar 

abundance of bacterial diversity regardless of pre-natal treatment (POL vs. SAL).  

6.1.2.1 Rarefaction plots  

 

A B 

* * 
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Figure 18. F1 Rarefaction curves of alpha diversity in both treatment groups (POL: poly(I:C) and SAL: 
control) with the Ion Torrent analysis. Indexes of diversity: A) Chao1, B) Observed species, C) Shannon, D) 
Simpson and E) Simpson reciprocal. POL-red line, SAL-blue line. A tendency of less diversity in the POL group with 
respect the SAL group can be observed. 
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Figure 19. F1 Rarefaction curves of alpha diversity in both treatment groups (POL: poly(I:C) and SAL: 
control) with the Illumina analysis. Indexes of diversity: A) Chao1, B) Observed species, C) Shannon, D) 
Simpson and E) Simpson reciprocal. POL-red line, SAL-blue line. No tendency of less or more diversity can be 
found in any of the treatment groups. 

It is relevant to mention that in both cases in Shannon, Simpson and Simpson reciprocal 

indexes can be observed that the sequencing effort was enough, as the curve tends to 

stabilize before the 2,000 sequences/ sample. 

6.1.2..2 Statistic analysis of alpha diversity. The statistical analysis (t-stud) for the IT 

samples the Chao 1 index (Fig 18-A) and the Observed species (Fig 18-B) reported a 

statistical significant difference between both groups F1 POL and F1 SAL, in all the 

different analyzes of standardization. This data can be interpreted as the diversity and 

abundance in the F1 POL samples were less than those in the F1 SAL samples. 

C D 
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Interestingly, in the other three indexes Shannon (Fig 18-C), Simpson (Fig 18-D) and 

Simpson reciprocal (Fig 18-E) there wasn’t a statistical significant difference, but the 

mean values obtained showed that there is a trend of lower diversity of the F1 POL 

group compared to the F1 SAL group. In contrast, for the IM data the rarefaction curves 

showed no statistical significant difference (t-stud) between the abundance and diversity 

of the F1 POL and F1 SAL groups (Fig 19). 

In this regard, alpha diversity analysis showed controversial results when comparing 

two different NGS platforms, as the analysis with the IT platform did found statistically 

significant differences, whereas IM did not. A possible explanation for this inconsistence 

might be related to some artifacts in sequencing or an error rate of sequencers. It is 

important to mention that to our knowledge differences in alpha diversity comparing two 

or more NGS platforms have not been previously reported, thus the validity and 

reproducibility of this sequencing technologies might be still questionable, and the 

necessity of standardization procedures and references are necessary and desirable to 

develop in the near future. 

6.1.3 Significant OTU selection. Interestingly, a different quantity of significant OTUs 

were obtained for each of the standardization values in both analyzes IT vs. IM (Tables 

4 & 5). The complete tables with all the significant OTUs could be visualized in Annex3. 

Table 4. Number of significant OTUs with the IT-Ion Torrent analysis in the three normalization values (5000, 
7000 and 10,000 sequences/sample) 

5,000 Analysis  7,000 Analysis  10,000 Analysis  
77 Significant OTUs 88 Significant OTUs 100 Significant OTUs 
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Table 5. Number of significant OTUs with the IM-Illumina analysis in the two normalization values (13,000 and 
15,000 sequences/sample) 

13,000 Analysis  15,000 Analysis  
15 Significant OTUs 10 Significant OTUs 

 

The total assignment of bacterial communities in each of our analysis, generated a 

different value of OTUs: 411 in IM and 2,756 in IT. This may explain why a different 

amount of significant OTUs (Kruskal Wallis) was obtained from each of the treatment 

groups depending on the NGS platform; for IT 100 statistically significant OTUs were 

obtained, while for IM just 10 statistically significant OTUs were obtained (both statistical 

analyzes were performed taking into account the larger value of: 1,000 and 15,000 

sequences per sample respectively). It is important to mention that we found common 

significant OTUs independent of the NGS platform employed. For instance, the S24-7 

families from the Bacteroidetes phylum, diverse OTUs from the order of Clostridiales, 

some Prevotella genus and Distasonis species. However, the reported relative 

abundance of these OTUs varied considerably between the NGS platforms. Similarly, 

Hoffman et al.3 have previously reported that the abundance of one or more organisms 

detected by a NGS platform (OTUs) was significantly different from that detected by 

other NGS platform. 

Most of the significant OTUs found in the IT analysis belong to the Firmicutes and 

Bacteroidetes phylum: 

• Different orders of Clostridiales and Lachnospiraceae, Ruminococcaceae and 

Erysipelotrichaceae families from Firmicutes  
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• Many S24-7 and some Rickenellaceae families, some Prevotella and Oridobacter 

genus from the Bacteroidetes phylum.  

• Also significant bacterial communities present from the Proteobacteria phylum: 

Rhodobacter, Sutterella and Rhodoplanes genus, and Chromatiaceae and 

Alcaligenaceae families.  

Consistentetly, most of the significant OTUs found in the IM analysis also belong to the 

Firmicutes and Bacteroidetes phylum: 

• From the Firmicutes phylum: orders of Clostridiales, families of Lachnospiraceae 

and Ruminococcaceae, and Candidatus Arthromitus, Dehalobacterium and Dorea 

genus are present.  

• From the Bacteroidetes phylum: S24-7 and Rikenellaceae families, Prevotella and 

Parabacteroides genus  

• One genus from Actinobacteria phylum: Adlercreutzia.  

6.1.3.1 Significant OTU selection regardless the normalization value. It is important 

to mention that not all of the statistically significant OTUs found in one analysis with a 

specific NGS platform / normalization value, were found with another analysis with a 

different NGS platform / normalization value (Figs 20 & 21). Therefore, we decided to 

focus just on the OTUs that remained constantly statistically significant different 

between treatment groups regardless the value of normalization. 



 
62 

 

Figure 20. 6 OTUs that show statistically significant difference between groups. White: SAL (control group), 
Black: POL (poly(I:C)) group, regardless the normalization value with IT-Ion Torrent analysis. 
A-D show OTUs that are less abundant in the POL in comparison to SAL (Bacteroidales S24-7, Prevotella, 
Oscillospira, Lachnospiraceae); E-F show OTUs that are more abundant in the POL in comparison to SAL 
(Bacteroidales S24-7 and Erysipelotrichaceae). 

For the IT analysis, 6 OTUs that remained statistically significant different (Kruskal 

Wallis) in the three analyzes were obtained (5,000, 7,000 and 10,000 

sequences/sample), 3 from the phylum of the Bacteroidetes (the genus Prevotella of the 

family Paraprevotellaceae (Fig 20 A) and 2 genera of the family S24-7 of the order 

Bacteroidales (Fig 20 B and Fig 20 F) as well as 3 OTUs of the phylum Firmicutes (the 

family Lachnospiraceae of the order Clostridiales (Fig 20 C), the genus Oscillospira of 

the family Ruminococcaceae (Fig 20 D) and the family Erysipelotrichaceae of the order 

Erysipelotrichales (Fig 20 E). It must be taken into account, that the OTUs 45 
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(Prevotella), 1063 (S24-7), 1201 (Lachnospiraceae) and 1328 (Oscillospira) showed a 

significantly less abundance in the POL group with respect the SAL treatment (Fig 20 A-

D). Conversely the OTUs 54 (S24-7) and 154 (Erysipelotrichaceae) showed a greater 

abundance in the POL with respect the SAL group (Fig 20 E-F). 

 

Figure 21. 6 OTUs that show significant difference between groups White: SAL (control group), Black: POL 
(poly(I:C)) group, regardless the normalization value with Illumina analysis.  
The first 4 OTUs (Clostridiales, Bacteroidales S24-7, Prevotella) are less abundant in the POL group, the last 2 OTUs 
(Bacteroidales S24-7 and Distasonis) are more abundant in the POL group.  

For the IM analysis, also 6 OTUs that remained significant (Kruskal Wallis) after of 

normalization (13,000 and 15,000 sequences/sample); 4 from the phylum of the 

Bacteroidetes: the genus Prevotella of the family Paraprevotellaceae (Fig 21 C), two 

genus of the family S24-7 of the order Bacteroidales (Fig 21 B and Fig 21 E) and the 
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specie Distasonis of the genus Parabacteroides (Fig 21 F) as well as 2 OTUs of the 

phylum Firmicutes: two families of the order Clostridiales (Fig 21 A & D). In this case, 

the OTUs 323 (Distasonis), and 283 (S24-7) showed a significantly higher abundance in 

the POL group; conversely the OTUs 69 (S24-7), 280 (Clostridiales), 20 (Prevotella) 

and 311 (Clostridiales) showed a less abundance in the POL group in comparison to 

SAL condition (Fig 21 A-D). 

6.1.4 Phylogenetic analysis. For a better visualization and classification of these 12 

significant OTUs, phylogenetic trees were built using Clustal X, MEGA, and a taxonomy 

reassignment with Ribosomal Database Project (RDP).  

As shown in the phylogenetic tree data is organized into 2 microbial clusters; one that 

belongs to the phylum Bacteroidetes and the other belonging to the phylum Firmicutes 

(Figure 22). From the Bacteroidetes cluster a closer grouping showed three pairs of 

OTUs; the OTUs 20 IM and 45 IT remained grouped and seemed that they belong to 

species of Prevotella, being both of them less abundant in the F1 POL group (Fig 20 A & 

Fig 21 C). The OTUs 283 and 69 IM and 54 and 1063 IT cluster together belonging to 

the order Bacteroidales as in the Greengenes assignment, but in a more specific way 

they seemed to be Barnesiella species. It is remarkable that OUT 69-IM and OUT 1063-

IT showed a less abundance in the F1 POL group (Fig 21 B & Fig 20 B), and the other 

pair (OTU 283-IM and OUT 54-IT) showed a dominance of abundance in the F1 POL 

group with respect the F1 SAL group (Fig 20 F & Fig 21 E).  
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Figure 22. Phylogenetic tree of the significant OTUs in the F1 generation for both analyzes (IT-Ion Torrent 
and IM-Illumina). (The numbers in each branch are the values of the Bootstrap and the length of the branches the 
phylogenetic distance) Firmicutes phylum: Green / Bacteroidetes phylum: red. Taxonomy re-assignment with RDP. 
Prevotella OTUs (20 IM and 45 IT) and Barnesiella OTUs (283 and 69 IM, 54 and 1063 IT), are present as significant 
in both NGS platforms. 

In the other big cluster (Firmicutes) OTUs were not grouped with a high similarity as in 

the first one. All OTUs seemed to be some species and genus of Clostridiales, but there 

was not a specific grouping between OTUs with any of the NGS platforms.  
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With the help of the phylogenetic tree and the generated clusters it is documented that 

some of these significant OTUs in each analysis are phylogenetically close, with some 

of them being reassigned taxonomically using the RDP database. 

In summary, these results indicate that there are differences in the presence and 

abundance of bacterial communities in the gut microbiota between the F1 generation of 

immune challenged mice that present a neurodevelopmental disorder generated by 

poly(I:C) with respect the control mice. This change might be considered as an 

irregularity in the microbiota within the body and therefore a dysbiosis. Importantly, we 

found important and significant differences in results with each type of NGS platforms 

as shown in Table 6. However, results from both NGS platforms (IM or IT) consistently 

reported the irregularity in the gut microbiota with specific bacterial communities of the 

orders Clostridiales and Bacteroidales. 

Table 6. Summary and comparison between platforms (IT and IM). * Normalization value (sequences/sample), 
o_order, f_family, g_genus, s_specie. 

Specifications  IT-Ion Torrent PGM IM-Illumina MiSeq 
Sequenced hypervariable 
regions 

V3 V3 and V4 

Normalization values 5,000 7,000 and 10,000 13,000 and 15,000 
Taxonomy assignment (most 
abundant bacterial communities) 

Order Clostridiales 
Family Lachnospiraceae 
Order Bacteroidales (S24-7) 

Order Clostridiales 
Order Bacteroidales (S24-7) 
Family Lachnospiraceae 

Alpha diversity Less diversity abundance in POL 
group 

No difference in diversity 
abundance between groups 

Total OTU selection 2,756 OTUs 411 OTUs 
 
Significant OTUs between 
treatment groups POL vs SAL 

5,000*= 77 OTUs 
7,000*= 88 OTUs 
10,000*= 100 OTUs 

13,000*= 15 OTUs 
15,000*= 10 OTUs 

Significant OTUs between 
treatment groups POL vs SAL 
regardless the normalization 
value 

g_Prevotella, 2 o_Bacteroidales 
(S24-7), f_Lachnospiraceae, 
g_Oscillospira, 
f_Erysipelotrichaceae. 

2 o_Clostridiales, 2 
o_Bacteroidales (S24-7), 
g_Prevotella, s_Distasonis. 

More abundant significant OTUs 
in POL group  

f_Erysipelotrichaceae and o_ 
Bacteroidales (S24-7) 

O_ Bacteroidales (S24-7) and 
s_Distasonis 

Less abundant significant OTUs 
in POL group 

g_Prevotella, 2 o_Bacteroidales 
(S24-7), f_Lachnospiraceae, 
g_Oscillospira. 

2 o_Clostridiales, 
o_Bacteroidales (S24-7), 
g_Prevotella. 
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6.2 Possible transmission of bacterial communities that are causing dysbiosis 

between the F1 to the F2 generation. 

For the second objective the transmission of a dysbiosis in the gut microbiota from the 

F1 to the F2 generation was assessed. The same way as in the first objective, the 

analysis was done by separating the data in the two treatment groups POL and SAL but 

now also analyzing it across two generations (F1 vs. F2). It is important to mention that 

just IM-NGS platform was employed to avoid an additional variable. All the F1 

generation analysis is the same data that was already obtained in the first objective (IM 

analysis). Additionally, the value of normalization of 15,000 sequences/sample was 

selected based on the previous results; all the subsequent analyzes were reported 

using it. Plots with data of the 13,000 sequences/sample normalization value can be 

observed in Annex2. 

6.2.1 Taxonomy classification. Taxonomy remained very similar in both generations 

as shown in Figs 23 & 24. The same bacterial communities appeared to be the most 

abundant and a dominant: Firmicutes and Bacteroidetes. 

 The most abundant bacterial community was a genus of the order of Clostridiales with 

∼28% in both generations, and it seemed to be more abundant in the F2 generation with 

26.3% (F1-POL) and 29.4% (F2-POL) and 27.8% (F1-SAL) and 31.1% (F2-SAL). A 

genus of the family S24-7 from the Bacteroidetes phylum was the second most 

abundant community with ∼19% presenting a little more abundance in the F2 generation 

POL group 18.8% (F1) and 19.63% (F2). A genus of the family of Lachnospiraceae was 

the third most abundant community with less abundance in the F2 generation with 8.9% 
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(F1-POL) and 5.1% (F2-POL) and 8.6% (F1-SAL) and 7.5% (F2-SAL). A genus of the 

family of Rumminococcaceae presented more abundance in both POL and SAL groups 

for the F2 generation with 5.0% (F1-POL) and 6.0% (F2-POL), and 3.6% (F1-SAL) and 

5.8% (F2-SAL).  

By the other way a genus of the family of Rikenellaceae presented less abundance in 

both POL and SAL groups for the F2 generation with 6.5% (F1-POL) and 3.7% (F2-POL) 

and 6.8% (F1-SAL) and 3.6% (F2-SAL). No significant difference neither in the SAL 

groups or POL groups between generations was found (Chi2).  

  

Figure 23. Taxonomy assignment for the F1 and F2 generations in SAL: control offspring treatment group.  A 
genus of the order of Clostridiales (1) with 27.8% (F1-SAL) and 31.1% (F2-SAL), a genus of the family S24-7 (2) with 
19.7% (F1-SAL) and 19.5% (F2-SAL), a genus of the family of Lachnospiraceae (3) with. 8.6% (F1-SAL) and 7.5% (F2-
SAL), a genus of the family of Rumminococcaceae (4) with 3.6% (F1-SAL) and 5.8% (F2-SAL) and a genus of the 
family of Rikenellaceae (5) with 6.8% (F1-SAL) and 3.6% (F2-SAL). 
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Figure 24. Taxonomy assignment for the F1 and F2 generations  in POL: poly(I:C) offspring treatment group. 
A genus of he order of Clostridiales (1) with 26.3% (F1-POL) and 29.4% (F2-POL), a genus of the family S24-7 (2) 
with 18.8% (F1-POL) and 19.63% (F2-POL), a genus of the family of Lachnospiraceae (3) with. 8.9% (F1-POL) and 
5.1% (F2-POL), a genus of the family of Rumminococcaceae (4) with 5.0% (F1-POL) and 6.0% (F2-POL) and a genus 
of the family of Rikenellaceae (5) with 5.0% (F1-POL) and 6.0% (F2-POL). 

6.2.2 Alpha diversity analysis. For the alpha diversity analysis, in both cases no 

significant group difference of abundance in the alpha diversity rarefaction plots (Annex 

2) were observed. This data allow us to conclude that both treatment groups remain 

with a very similar diversity for each generation F1 and F2. Consistently, no statistically 

significant difference were found in abundance and diversity between the POL and SAL 

groups in both generations F1 and F2 with the statistical analysis (data not shown).  

6.2.3 Significant OTU selection. The number of total obtained assigned OTUs in each 

analysis was different. The F1 generation had an allocation of 411 OTUs and the F2 

generation an allocation of 342 OTUs before applying the statistical test (Kruskal Wallis) 

for significance. The number of statistically significant OTUs between each of the 

generations was different for each generation: 10 significant OTUs were obtained in the 

F1 generation and 30 significant OTUs in the F2 generation. It is noteworthy that the vast 
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majority of these OTUs belong to the same families and genera across generations. 

The complete tables with all the significant OTUs could be visualized in Annex3. 

6.2.3.1 Significant OTU selection F1. For the F1 analysis all statistically significant OTUs 

belong to the Firmicutes and Bacteroidetes phylum, as follow:  

• Different genus from the order of Clostridiales, and the Mogibacteriaceae family also 

from the Clostridiales order. 

• Many S24-7 families, the Prevotella genus and the Distasonis specie from the 

Bacteroidales order.  

 

Figure 25. Significant OTUs present between treatment groups (POL: poly(I:C) and SAL: control) in the F1 
generation. A-G show OTUs that are less abundant in the POL group than in SAL (Clostridiales, Bacteroidales S24-
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7, Prevotella); H-J show OTUs are more abundant in the POL group than in SAL (Mogibacteriaceae, Bacteroidales 
S24-7 and Distasonis). 

Analysis indicate that for the F1 generation the OTUs 20 (Prevotella), 42 (S24-7), 69 

(S24-7), 400 (S24-7), 311 (Clostridiales), 215 (Clostridiales) and 280 (Clostridiales) 

showed a significant less abundance in the POL group than in the SAL group (Fig 25 A-

G), and in the case of the OTUs 323 (Distasonis), 283 (S24-7) and 388 

(Mogibacteriaceae) they showed more abundance in the POL group than SAL group 

(Fig 25 H-I).  

This F1 generation results that we obtained show some similarities with the previously 

reported Hsiao35 results, were they postulated that “the microbiota modulate behavioral 

and physiological abnormalities associated with neurodevelopmental disorders” with the 

same poly(I:C) model in a F1 generation offspring; they reported changes in the diversity 

of the gut microbiota specifically in Clostridia and Bacteroidia OTUs (same as we are 

reporting), however, in the next taxonomic levels (family, genus or specie) they found as 

significant the bacterial communities of the families: Lachnospiraceae, 

Ruminococcaceae, Erysipelotrichaceae, Alcaligenaceae, Byphyromonadaceae, 

Prevotellaceae, Rikenellaceae and un-classified Bacteroidales, where only the 

Prevotellaceae family coincided with our results. Interestingly, they reported that 

Porphyromonadaceae, Prevotellaceae, unclassified Bacteriodales and Lachnospiriceae 

were more abundant in poly(I:C) offspring. Conversely, Ruminococcaceae, 

Erysipelotrichaceae, and the beta Proteobacteria family Alcaligenaceae were more 

abundant in control offspring, suggesting that specific Lachnospiraceae, along with 

other Bacteroidial species, may play a role in ASD pathogenesis, while other taxa may 

be protective. And we reported that Mogibacteriaceae, Bacteroidales S24-7 and 
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Distasonis were more abundant in the poly(I:C) offspring and Clostridiales, another 

Bacteroidales S24-7 and Prevotella were more abundant in the control group, 

suggesting that Mogibacteriaceae and Distasonis may play a role in ASD pathogenesis, 

while Prevotella and another Clostridiales may be protective. 

In another previous research of gut microbiota in ASD human individuals, Song et al.68, 

reported a significant increase specifically in Clostridium bolteae and Clostridium 

clusters I & X, and Wang et al.69 reported higher abundance of Sutterella and 

Ruminococcus spp. in individuals with ASD compared to controls without a family 

history of ASD. 

6.2.3.2 Significant OTU selection F2. In the F2 generation, most of the significant OTUs 

between treatment groups POL and SAL belong to the Firmicutes and Bacteroidetes 

phylum and some others belong to the Cyanobacteria and Verrucomicrobia phylum, as 

follows: 

• Several genus of the order Clostridiales, the Mogibacteriaceae, Lachnospiraceae 

and Ruminococcaceae families, and the Ruminococcus, Lactobacillus and 

Oscillospira genus and the gnavus specie from the Clostridiales order. 

• Two S24-7 families, and two Rikenellaceae families from the Bacteroidales order.  

• The order YS2 from the Cyanobacteria phylum. 

• The specie Muciniphila order of Verrucomicrobiales from the Verrucomicrobia 

phylum. 
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Figure 26. Significant OTUs present between treatment groups (POL: poly(I:C) and SAL: control) in the F2 
generation, this OTUs presented more abundance in the POL group. 

As shown in Figure 26 the OTUs: 284 Clostridiales (A), 209 Ruminococcaceae (B), 324 

Oscillospira (C), 44 Muciniphila (D), 152 Clostridiales (E), 261 S24-7 (F), 27 

Ruminococcus (G), 294 YS2 (H), 10 Clostridiales (I), 63 Rikenellaceae (J), 268 

Lachnospiraceae (K) and 171 Lactobacillus (L), showed more significant abundance in 

the F2 POL group with respect the F2 SAL group. By the other way in Figure 27 the 

OTUs: 301 Oscillospira (A), 84 Clostridiales (B), 129 Oscillospira (C), 191 

Ruminococcus (D), 91 Oscillospira (E), 180 S24-7 (F), 45 Clostridiales (G), 252 

Mogibacteriaceae (H), 76 Clostridiales (I), 343 Ruminococcus (J), 153 

Ruminococcaceae (K), 39 Clostridiales (L), 248 Ruminococcus (M), 246 Clostridiales 

(N), 293 Lachnospiraceae (O), 183 Rikenellaceae (P) and 263 Clostridiales (Q) showed 

less significant abundance in the F2 POL group with respect the F2 SAL group.   
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Figure 27. Significant OTUs present between treatment groups (POL: poly(I:C) and SAL: control) in the F2 
generation, this OTUs presented less abundance in the POL group. 

Furthermore, for the F2 generation, some of the significant OTUs between treatment 

groups from the F1 generation remained present (i.e. transmitted): S24-7 families, 

various orders of Clostridiales and the Mogibacteriaceae family. However, some of the 

OTUs in the F2 generation that are significant (Kruskal Wallis) between treatment 

groups were not found as statistically significant (Kruskal Wallis) in the F1 generation, as 

follow: Lachnospiraceae and Ruminococcaceae families from the Firmicutes phylum, 

Rikenellaceae families from the Bacteroidetes phylum, an order of Cyanobacteria and 

Muciniphila species from the Verrucomicrobia phylum (Figs 26 A-L & 27 A-Q). 
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Interestingly, in both F1 and F2 generations, most of the found significant OTUs were 

reported with a less abundance in POL groups compared to SAL groups.  

6.2.4 Phylogenetic analysis. In the phylogenetic tree shown in Figure 28, it can be 

visualized that there are two big clusters of bacteria; the large one of the Firmicutes 

phylum and the small one of the Bacteroidetes phylum.  

In the Firmicutes phylum cluster the pairs of OTUs: 215 F1 with 263 F2 and 280 F1 with 

246 F2 from the order Clostridiales more specifically Gracillibacter species, produced 

differences in the gut microbiota all of them with less abundance in the POL group and 

more specifically were clearly transmitted from F1 generation to F2 generation.  

On the other hand, within the Bacteroidetes phylum cluster presented a possible 

transmission from the F1 to the F2 generation as shown by the aggrupation of OTUs: 42, 

283, 69 and 400 for the F1, and 261 and 180 for the F2, which were assigned as 

Barnesiella species. However, it is not clearly shown a relationship between the 

transmission of these significant OTUs across generations and their abundance in the 

POL group vs. SAL grup. 

In summary, these results suggest that both F1 and F2 generations showed differences 

in the presence and abundance of bacterial communities in the gut microbiota of 

immune challenged mice that present a neurodevelopmental disorder generated by 

poly(I:C) with respect the control mice. The orders Clostridiales and Bacteroidales are 

confirmed as the primary drivers of gut microbiota differences between the prenatal F1 

treatment groups (POL vs. SAL). It is important to mention that specifically the species 

Gracillibacter (Clostridiales) with a less abundance in the POL group and Barnesiella 
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(Bacteroidales) were transmitted from F1 generation to F2 generation. All these results 

have a direct relationship with the results of novel phenotypes across generations17 in 

which our work is based and the same cohorts of mice are analyzed, inasmuch as they 

demonstrated that prenatal viral-like immune activation leads to a transmission of 

behavioral phenotypes across generations. Whereas social interaction deficits and 

increased cued fear expression are similarly present in the F1 and F2 offspring of 

immune-challenged mothers, and increased behavioral despair emerges as a novel 

phenotype in the F2 generation, suggesting that maternal immune activation during 

pregnancy can induce latent behavioral symptoms that are passed on to and become 

manifest only in subsequent generations.   

In both researches, for the F1 generation, the behavior changes (impaired sociability, 

increased fear expression, robust reduction un sensorimotor gating) and bacterial 

composition of gut microbiota (10 different significant OTUs mainly of the orders 

Clostridiales and Bacteroidales) was presented in the immune challenged mice (POL) in 

contrast to the control mice (SAL). Furthermore, for the F2 generation these responses 

are increased, taking into account that there was a rise in the behavioral despair (similar 

deficit in sociability than F1, increased fear expression, did not inherit the sensorimotor 

gating deficit, by contrast with the F1 offspring that present an absence of behavioral 

despair associated with depressive-like behaviors, the F2 offspring develop signs of 

behavioral despair) and therefore, we obtained a greater number of significant OTUs 

(17 OTUs also mostly from the orders Clostridiales and Bacteroidales ) that present a 

different abundance in the gut microbiota of POL and SAL groups. 
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Figure 27. Phylogenetic tree of the significant OTUs transmitted from the first F1 to the F2 generation. (The 
numbers in each branch are the values of the Bootstrap and the length of the branches the phylogenetic distance) 
Firmicutes phylum: Green / Bacteroidetes phylum: Red / other phyla: black. The bacterial community Gracillibacter of 
significant OTUs (215 and 280 F1, 263 and 246 F2) is being transmitted from the F1 generation to the F2. The set of 
Barnesiella OTUs (42, 283, 69 and 400 F1 with 261 and 180 F2) are also present in the dysbiosis of both generations. 
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6.3 Possible transmission of bacterial communities that are causing microbiota 

dysbiosis between the F1 generation to the F2 generation divided by progenitor 

lineages (POL-Maternal vs. POL-Paternal). 

The third and last objective was to evaluate whether there is a progenitor linage 

(maternal: POL-M or paternal: POL-P) that is preponderant in the transmission of 

bacterial communities from the F1 to the F2 generation. The importance of this analysis 

is that the F2 POL group was separated in two different categories depending on the 

progenitor lineage by which the offspring was generated maternal (POL-M) or paternal 

(POL-P). In the same way as in the previous results, this analysis used a 15,000 

sequences/sample value for normalization. Additional analysis with other normalization 

can be found in Annex2. 

6.3.1 Taxonomy classification. For the taxonomy assignment the three groups 

showed a very similar bacterial composition as shown in Figure 29. No significant 

difference neither in the SAL groups or POL groups between generations was found 

(Chi2). The most abundant bacterial community in each case was a genus of the order 

of Clostridiales with ∼32% (SAL and POL-M) and it seemed to be a little less diversity in 

the POL-P group with 26.0%, the second most abundant community was a genus of the 

S24-7 family of phylum Bacteroidetes with a very similar percentage of abundance in 

the groups with ∼20%, and the third most abundant bacterial community in each case 

was a genus of the family of Lachnospiraceae which showed to have less abundance in 

both POL groups 5.2% (POL-M) and 4.9% (POL-P) with respect 7.5% (SAL). The 

Oscillospira genus with 6.5% (POL-M), 5.6% (POL-P) and 5.8% (SAL) was also present 
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as an abundant bacterial community, the same as a genus of the Rikenellaceae family 

with 3.9% (POL-M) 3.6% (POL-P) and 3.6% (SAL). 

 

Figure 28. Taxonomy assignment for the F2 generation (15,000 sequences/sample normalization value) in the 
three treatment groups (POL-P: poly(I:C) paternal lineage POL-M: poly(I:C) maternal lineage, SAL: control) 
Order of Clostridiales (1) with ∼32% (SAL and POL-M) and 26.0% (POL-P), the S24-7 family (2) with ∼20% in all 
groups, the family of Lachnospiraceae (3) with 5.2% (POL-M), 4.9% (POL-P) and 7.5% (SAL), the Oscillospira genus 
(4) with 6.5% (POL-M), 5.6% (POL-P) and 5.8% (SAL) and the Rikenellaceae family (5) with 3.9% (POL-M) 3.6% 
(POL-P) and 3.6% (SAL). 

6.3.2 Significant OTU selection. A different quantity of significant OTUs was obtained 

by analyzing the SAL group versus each one of the F2 POL groups, 16 for F2 POL-M 

lineage and 23 for F2 POL-P lineage. The complete tables with all the significant OTUs 

could be visualized in Annex3. 

6.3.2.1 POL-P lineage. Most of the significant OTUs found between F2  POL-P and SAL 

groups belong to the Firmicutes and Bacteroidetes phylum and others belong to the 

Tenericutes and Verrucomicrobia phylum, as follows:  

F2 POL-M F2 SAL 

F1 F1 

F2 POL-P 

1 

2 2 2 

1 
1 

3 
3 3 

4 
4 

4 

5 5 5 



 
80 

• Several genus of the order Clostridiales, the Mogibacteriaceae, Lachnospiraceae 

and Ruminococcaceae families, and the Ruminococcus and Lactobacillus genus 

from the Clostridiales order. 

• Four S24-7 families from the Bacteroidales order.  

• The order RF39 and the Anaeroplasmatales order from the Tenericutes phylum. 

• The specie Muciniphila from the Verrucomicrobiales order. 

 

Figure 29. Significant OTUs present between treatment groups (POL: poly(I:C) and SAL: control) in the F2 
generation POL-P lineage. 
The first 14 OTUs A) Lachnospiraceae, B) S24-7, C) Mogibacteriaceae, D) S24-7, E) Lachnospiraceae, F) 
Clostridiales, G) RF39, H) Ruminococcaceae, I) S24-7, J) Ruminococcus, K) Clostridiales, L) Clostridiales, M) 
Clostridiales, and N) S24-7, are less abundant in the POL group, the last 9 OTUs O) Unassigned, P) Clostridiales, Q) 
Ruminococcaceae, R) Anaeroplasma, S) Clostridiales, T) Lactobacillus, U) Ruminococcaceae, V) Clostridiales and 
W) Muciniphila are more abundant in the POL group. 
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The OTUs: 248 Lachnospiraceae (Fig 29-A)), 145 S24-7 (Fig 29-B), 168 S24-7 (Fig 29-

D), 237 Mogibacteriaceae (Fig 29-C), 278 Lachnospiraceae (Fig 29-E), 1 Clostridiales 

(Fig 29-F), 207 RF39 (Fig 29-G), 129 Ruminococcaceae (Fig 29-H), 36 S24-7 (Fig 29-I), 

171 Ruminococcus (Fig 29-J), 71 Clostridiales (Fig 29-K), 34 Clostridiales (Fig 28-L), 

282 S24-7 (Fig 29-N) and 118 Clostridiales (Fig 29-O) showed less significant 

abundance in the POL-P group with respect the SAL group. The OTUs: 127 

Anaeroplasma (Fig 29-R), 247 Clostridiales (Fig 29-S), 201 Lactobacillus (Fig 29-T), 49 

Ruminococcaceae (Fig 29-U), 9 Clostridiales (Fig 29-V), 77 Muciniphila (Fig 29-W), 302 

Unassigned (Fig 29-O), 267 Clostridiales (Fig 29-P) and 217 Ruminococcaceae (Fig 29-

Q) showed more significant abundance in the POL-P group with respect the SAL group 

(Fig 29 A-M). 

6.3.2.2 POL-M lineage. Most of the significant OTUs found between maternal lineage F2 

POL-M and SAL groups belong to the Firmicutes and Bacteroidetes phylum and other 

belong to the Actinobacteria phylum:  

• Several orders of Clostridiales, the Lachnospiraceae and Ruminococcaceae 

families, and the Oscillospira genus from the Firmicutes phylum. 

• S24-7 and Rikenellaceae families from the Bacteroidetes phylum.  

• The Adlercreutzia genus from the Actinobacterias phylum. 

The OTUs: 203 Rikenellaceae (Fig 31-A), 59 Oscillospira (Fig 31-B), 63 Clostridiales 

(Fig 31-C), 118 Rikenellaceae (Fig 31-D), 84 Oscillospira (Fig 31-E), 25 Clostridiales 

(Fig 31-F), 174 S24-7 (Fig 31-G), 82 Lachnospiraceae (Fig 31-H) and 168 Oscillospira 
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(Fig 31-I), showed less significant abundance in the F2 POL-M group with respect the F2 

SAL.  

 

Figure 30. Significant OTUs present between treatment groups (POL: poly(I:C) and SAL: control) in the F2 
generation POL-M lineage. 
The first 9 OTUs: A) Rikenellaceae, B) Oscillospira, C) Clostridiales, D) Rikenellaceae, E) Oscillospira, F) 
Clostridiales, G) S24-7, H) Lachnospiraceae and I) Oscillospira less abundant in the POL group, the last 7 OTUs: J) 
Oscillospira, K) Ruminococcaceae, L) Ruminococcaceae, M) Adlercreutzia, N) Clostridiales, O) Clostridiales, P) 
Lachnospiraceae  are more abundant in the POL group.  
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more significant abundance in the F2 POL-M group with respect the F2 SAL group (Fig 

30 A-I). 

6.3.4 Phylogenetic analysis. The Figure 31 shows a set of Barnesiella species OTUs: 

42, 69 and 400 F1 generation, 36, 145, 168 and 282 F2 POL-P, and 174 F2 POL-M, from 

the Bacteroidetes phylum, showed a direct transmission from the F1 to the F2 generation 

(as already reported in the second objective) specially to the F2 generated by a POL-P. 

When we separated by lineages it can be observed that the association of the 

Barnesiella OTUs followed a direction in abundance (which couldn’t be found in the 

second objective), all of them showed less abundance presence in the POL groups with 

respect the SAL groups in both F1 and F2 generations. Include that 4 of the 5 F2 OTUs 

were generated by a POL-P and only one by a POL-M.  

Therefore we have evidence that document that the paternal lineage is preponderant in 

the shaping of bacterial communities in the gut microbiota of poly(I:C) F2. Interestingly 

linked with the results of the transgenerational effects of prenatal infection17, were their 

data further suggested that the transgenerational effects in behavior of prenatal immune 

activation occur also via the paternal lineage. The authors tempted to speculate that 

prenatal immune activation may induce transgenerational effects via epigenetic 

modifications in male gametes, which might also affect gut microbiota composition 

indirectly. 
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Figure 31 . Phylogenetic tree of the significant OTUs transmitted from the first F1 to the F2 generation taking 
into account the paternal (POL-P) or maternal (POL-M) lineage. (The numbers in each branch are the values of 
the Bootstrap and the length of the branches the phylogenetic distance) Firmicutes phylum: Green / Bacteroidetes 
phylum: red OTUs Barnesiella are transmitted from to first to the F2 generation and show a less abundance 
presence in POL groups with respect the SAL in F1, and in the F2 most of them in POL-P and one of them in POL-M. 
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7. Conclusions 

We proposed that: If the gut microbiota is a relevant factor on the etiology of 

schizophrenia, a microbial dysbiosis will be observed in the mouse model of prenatal 

infection, which might work as a microbial vector that might be also horizontally 

transmitted across generations. Therefore, we demonstrated the presence of a 

microbial dysbiosis in the gut microbiota of the F1 and F2 offspring and its transmission 

from one generation to the other. 

 For our first objective, we demonstrate that there were differences in the presence and 

abundance of bacterial communities in the gut microbiota between the F1 generation 

immune challenged offspring with poly(I:C) and the control offspring, with specific 

bacterial communities of the orders Clostridiales and Bacteroidales. Differences in the 

assignment of specific significant OTUs families or genus were found between platforms 

(IM or IT), as well as the alpha diversity; however, both of them reported the irregularity 

in the gut microbiota considered as a dysbiosis in the F1 generation. 

For the second objective, our data of the F1 generation agree with the previously 

reported by Hsiao35, where they also indicated that changes in the diversity of the gut 

microbiota are specifically in Clostridia and Bacteroidia OTUs, they found as significant 

the bacterial communities of the families: Lachnospiraceae, Ruminococcaceae, 

Erysipelotrichaceae, Alcaligenaceae, Byphyromonadaceae, Prevotellaceae, 

Rikenellaceae and un-classified Bacteroidales, suggesting that specific 

Lachnospiraceae, along with other Bacteroidial species, may play a role in ASD 

pathogenesis, while other taxa may be protective. We found as significant changes on 
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other bacterial communities: Mogibacteriaceae, Bacteroidales S24-7, Clostridiales, 

Prevotella and Distasonis suggesting that Mogibacteriaceae and Distasonis may play a 

role in ASD pathogenesis, while Prevotella and another Clostridiales may be protective 

against the pathogenesis. 

The F2 generation also showed differences in the gut microbiota of immune challenged 

offspring with the orders Clostridiales and Bacteroidales as the primary drivers of the 

dysbiosis. We found that some of the significant OTUs were transmitted from the F1 to 

the F2 generation, more specifically some Gracillibacter species from order Clostridiales 

that presented less abundance in the POL group of both generations and Barnesiella 

species from the order Bacteroidales which don’t clearly show a relationship between 

the transmission of these significant OTUs across generations and their abundance in 

the POL group vs. SAL group. 

However, for the third objective were we separated the POL offspring according to the 

lineage for which they were generated, we demonstrated that the order Bacteroidales 

showed a less abundance presence in the POL groups with respect the SAL groups 

and were transmitted from the F1 to a F2 offspring mainly generated by a paternal 

lineage. 

All our results have a direct relationship with the ones already obtained 

(transgenerational effects of prenatal infection17) in which our research is based. They 

demonstrated that prenatal viral-like immune activation leads to a transmission of 

behavioral phenotypes across generations, showing that reduced sociability and 

increased cued fear expression were similarly present in the first and second-generation 
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offspring of immune-challenged ancestors, that sensorimotor gating impairments were 

confined to the direct descendants of infected mothers, whereas increased behavioral 

despair emerges as a novel phenotype in the second generation, and that the effects 

were mediated via the paternal lineage, demonstrating transgenerational non-genetic 

inheritance of pathological traits following in-utero immune activation. For the F1 

generation, a behavior despaired in the POL group was presented with an impaired 

sociability, increased fear expression and a robust reduction in sensorimotor gating.  

Similarly, we found 10 different significant OTUs mainly of the orders Clostridiales and 

Bacteroidales that differed in abundance and presence of in the POL group in contrast 

to the SAL group. Furthermore, for the F2 generation the responses were increased 

inasmuch as there was a rise in the behavioral despair, showing a similar deficit in 

sociability than F1, an increased fear expression, and by contrast with the F1 offspring 

that present an absence of behavioral despair associated with depressive-like 

behaviors, the F2 offspring developed signs of behavioral despair, we obtained a greater 

number of significant OTUs also from the orders Clostridiales and Bacteroidales, that 

present a different abundance in the of POL and SAL groups creating the dysbiosis in 

the gut microbiota of the immune challenged offspring. 

In conclusion, we demonstrated that the gut microbiota is a relevant factor on the 

etiology of schizophrenia and ASD, inasmuch as a microbial dysbiosis was observed in 

the mouse model of prenatal infection, and was horizontally transmitted across 

generations and that the paternal lineage is a preponderant linage for the transmission 

of bacterial communities from the F1 to the F2 generation. Which positions the gut 

microbiota as a possible vector of transgenerational transfer. However, it is important to 
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mention that our research had some limitations, first of all, we didn’t analyze the gut 

microbiota composition of the ‘generation zero’ F0, given that we assumed that the gut 

microbiota would be equal or equivalent to the control F1. However, our own data 

indicated that the microbiota of the control groups varies between generations (F1 vs. 

F2). Additionally, our experimental design remains at a phenomenological level without 

any intervention to look for causality since it remains at a descriptive status. So that, for 

further research a new experimental design should be raised that includes and takes 

into account these limitations, specially to look for the causality of the already obtained 

results. 
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