+ Casa abierta al tiempo - J

URIVERSIDAD AUTONOMA Qaérpnmtr?m P yTl

- UN'WERS;Dm AUTONOMA METROPOLITANA - IZTAPALAPA
DIVISION DE CIENCIAS BASICAS E INGENIERIA

COMPARING OBJECT-ORIENTED DESIGN BETWEEN
JAVA AND C++ USING CHIDAMBER AND KEMERER
METRICS

Thesis presented:by:
Ramén Urias Morales
To obtain the degree in:

Macter in Scisncac and Infarmatinn Tachnalanios
ERSIer I oences ang Infgrmation Technalogios

AJVISOTS: Dr. Humberio Cervanies Maceda :
Dr. Apostolis Ampatzoglou :

; -
Jury qualifier: /|

President: MSc. Wolfgang Engelen Mora. ;
Secretary: Dr. René MacKinney Romero
Vocal: Dr. Humberto Cervantes Macedp

México, D.F. March 2015

/

Acknowledgements

Special thanks to my advisors Dr. Humberto Cervantes and Dr. Apostolis Ampatzoglou for

their patience, time and all their assistance provided during this thesis project.

Special thanks to Dr. Paris Avgeriou, who was the person that opened me the doors to this
project.

Thanks to my reviewers of thesis M.Sc. Wolfgang Engelen and Dr. René MacKinney for
their time and valuable observations during the last stage of this thesis project.

Thanks to all my schoolfellows of the Master in Sciences and Information Technologies of
the Autonomous Metropolitan University who shared with me a lot of experiences and

knowledge.

Thanks to all my professors of the Autonomous Metropolitan University who shared with

me their valuable knowledge in the field of the information technologies.

Thanks to the National Council of Science and Technology (CONACYT).

Thanks to the Autonomous Metropolitan University (UAM-I).

Thanks to the University of Groningen.

Thanks to my weightlifting couch Oscar Gutiérrez, who always help me and teach me to
be disciplined.

Thanks to all my friends of the weightlifting team from UAM-I.

Special thanks to my mother Hortensia Morales due to all the support given during my

entire academic life.

Abstract

Software quality can be measured using models such as the ones proposed by
McCall, Boehm or ISO. These models decompose quality in a set of quality
attributes that are of interest to the users or to the developers. Among the quality
attributes that are interesting to developers, we find maintainability which is
understood in this thesis as a quality attribute that is associated to making changes
in the system’s source code. Measuring maintainability can be achieved through
the use of design quality metrics such as the Chidamber and Kemerer metrics set.
In this thesis we want to understand if the use of different object oriented
languages (in our case Java and C++) has an impact on maintainability. To answer
this question, we build Maya C++, a tool that calculates Chidamber and Kemerer
metrics set for C++ programs. With the use of this tool we obtained metrics data
from a project sample and this data was then used as a basis for comparison with
data from Java projects. An analysis on the data reveals that there is not a
significant difference in the use of the languages even though the data slightly

favors Java.

Keywords: Software quality, object-oriented design, software metrics.

Resumen

La calidad del software puede medirse utilizando modelos como los propuestos
por McCall, Boehm o ISO. Estos modelos descomponen la calidad en un conjunto
de atributos de calidad que son de interés para los usuarios o para los
desarrolladores. Entre los atributos de calidad que son de interés para los
desarrolladores, encontramos la mantenibilidad, que se entiende en esta tesis
como un atributo de calidad que esta asociado a hacer cambios en el cédigo
fuente de un sistema. La medicion de la Mantenibilidad se puede lograr mediante
el uso de métricas de calidad de disefio, como el conjunto de métricas de
Chidamber y Kemerer. En esta tesis queremos comprender si el uso de diferentes
lenguajes orientados a objetos (en nuestro caso, Java y C ++) tiene un impacto en
la mantenibilidad. Para responder a esta pregunta, desarrollamos Maya C ++, una
herramienta que calcula el conjunto de métricas de Chidamber y Kemerer para los
programas en C ++. Con el uso de esta herramienta se obtuvieron datos de dichas
métricas sobre una muestra de proyectos C++, posteriormente estos datos se
utilizaron como base para la comparacion con datos de proyectos Java. Un
andlisis de los datos revela que no hay una diferencia significativa en el uso de

estos lenguajes, aunque estos datos favorecen ligeramente a Java.

Palabras clave: Calidad de software, disefio orientado a objetos, métricas de
software.

Content

Contents
(@ P o1 =T ol R oY o o {1 ot o o NSRRI 7
L2 INErOTUCKION ..ttt sttt ettt e s bt e s bt e st e st st e e be e b e e sbeesmeesaeeenreenreens 7
A O oYt 1Y PRSP 9
HIC V114 Yo Te [o] Lo -4V SRRt 10
1.4 0Organization Of WOTK........oi i et e e e e tte e e e e bae e e s ebraeeesneaaaeeans 11
(0 F-T o1 oA = 7= Yol €= o1V o [« ISP 12
2.0 INTFrOTUCTION. ..ttt et ettt e s bt e sae e st e st e e be e beesbeesmeesaneenneens 12
2.2 Software Quality and Quality MOEISccoccuiiiiiiiiiiiicee e 12
2.2.1 McCall QUAlity MOGELcciiiiieie e e e e e e e e e sree e e eares 14
2.2.2 Boehm QUAlItY MOGE ...cciiiiiiee et e e s srae e e e e 16
2.2.31S0 9126 .ttt e b et b e b e he e sat e et e et e e nbe e beesaeesarenane 17
2.3 Maintainability related METIICS......cuuii i esrr e e et e e e e eanaeeean 19
2.3.1 Measuring design properties to evaluate maintainabilitycccceeeiiiiiicie e, 20
2.3.2 Chidamber and Kemerer MEtriCScveereeerieeiiieerieeeiee ettt et e e e e e sbeesreeesaree e 21
2.4 Software tools to evaluate SOftware COAEcooiiiiiriiiiiiieee e 29
D 0 R N =Y o Y=Y o T PRSP 30
DN VLU F=1 (@ o o] BI=T o 1T Vo SRS 31
2. 4.3 UNderstand fOr CHt 1.4 ..ottt sttt ettt 31
2.4.4 SOUICEMONITON ..ttt e s s e s s e s s e e s e 32
245 CCCC ..ttt ettt ettt sttt ettt e b e e b e bt st st e bt e bt b e b e s re e sae e e e et e r e r e e saeenaneeane 33
2.4.6 Analysis on the software tools that evaluate software code.........cccecvveveveieeiccciiee e, 34
2.5 SUMIMIATY ettt aan 35
Chapter 3. Maya C++ tool requirements and desSigncccueeeeeiiiieieciiee e e 37
18/ [a1 o Yo [V T o o] o FOU TP TSR PR 37
I YA oY I o Vo I oo o 1TSS 37
R IYo] iV [l =T U= o = oL £ ST 38
R T A o T g TV U LY =] 38
3.3.2 Quality attributes SCENAIIO...cccii i e e e e e e e e e e e e e sannes 40
I TR I 00T 1 o =Y | £ PSPPSR PPPR PRIt 40

Yy (=T 0 T =T = o TSRS 40

S R o4 Tor- | IV Y USRSt 41
3.4.2 DYNAIMIC VIBW 1uuuiiiiiiieiiieisisesesesesese s s s s s s s s s s s s s snsnsnnnn 43
I B W LYY g [=Y o =1 TP USRI 44
3.5 SUMIMIAIY e s 45
(O T o1 =T o B AV | [T 1 4 o o USSP UPR 46
4.1 T d oY [V 4 1] o NP SRR 46
O T @] oY [Tt {1 SRR 46
O A ST ol g e [N T 1 o SRR 46

e What programming language gives projects with better design quality with
respect to Chidamber and Kemerer MEtriCS?ocovevvveeveirieeiereceee e 46
o What MEetriCS FAVOr JAVAT?cceecireeeeiieeeestee ettt sneenne s 46
o What MELrCS FAVOr CHH7 . ettt st 47

e What programming language is more complied with our suggested ranges for the

IMIELIICS? ettt bttt b ettt b et b et bbbt et b et 47
o N e oY =T Y= 0 Y] =TSSR 47
4.2.2 Data collection and aNalySiSccccuiiiiciiee e 47
4.3 RESUIES ..ttt ettt et e st e e st e s bt e s bt e e s abe e e abeesabeesbeeesabeeeneean 48

4.3.1 Results according to percentage of classes whose metrics are outside the suggested

L7511 = 49
4.3.2 Results according to average of values of classes for each metric............ccuueee....... 56

4.4 GENEIAl ANAIYSIS coiietieee i e e st e e e et e e e e e rtaeeeenraaeeaan 64
A5 SUMMIAIY 1eiiiiee s s s s s s s s s s s s aanann 66

(@ T o1 =T ol T o [ol [V 1] oY o RO PP 67
T8/ R [go T [V Tt o o] o FOU TP OO TSRO 67
5.2 CONCIUSIONS. ...ttt b e s h ettt e b e et e sbeesae e satesabe e be e bt enbeesaeeeneesnneans 67
5.3 FULUIE WOTK .ttt st st e s e e b e e s b e e s ae e e sareesreeesaneesaneean 68
2] F=T =T o Lol PP PP P UPROPRP 70

Chapter 1 Introduction

1.1 Introduction

In today’s world, software quality has become increasingly relevant in the
software industry. Software quality appears as a subjective concept that can be
observed from different points of view, so what we consider as being of good
quality can vary depending on the point of view. These different points of view are
categorized in the five perspectives of quality proposed by David Garvin, a
professor of Business Administration at the Harvard Business School: The
transcendental view, the user view, the manufacturing view, the product view and

the value-based view [1].

The perspectives such as the user view and the manufacturing view
examine software quality from an external perspective; however, software quality
seen from the product view is examined from an internal perspective [2]. Users
tend to be more concerned by the external aspects, or quality attributes, such as
performance or usability. On the other hand, developers tend to be more
concerned by the internal aspects or quality attributes such as maintainability or
testability. In this project, our interest is on one of these internal quality attributes:
maintainability. The reason is because higher quality code, anticipating changes,
better tuning to user needs and less code (which are all related to maintainability)
result in less maintenance [3]. Furthermore, talking about total costs of a software
system over its lifetime, maintenance alone consumes 50--75% of these costs [3].

In the context of this thesis, maintainability is understood as a quality
attribute that is associated with making changes in the system’s source code.
Maintainability of software code is important because this attribute is inversely

related to the costs of maintaining the software [4].

The international standard ISO 9126 [5], define sets of quality attributes
(called characteristics), which represent product quality from an external or an

7

internal point of view [6]. Since these attributes are not directly measurable,
authors like McCall and Boehm have proposed hierarchical models [7] that relate
these software attributes to software metrics. Relating software metrics to software
quality attributes allows software quality to be evaluated quantitatively, and thus
transform this apparently subjective concept into something that is objective.
According to some software quality models [7, 8], maintainability is considered as a
high level quality attribute, which is not directly measurable but it can be related to
software metrics that are quantitatively measurable, and evaluate the design of

software source code.

Chidamber and Kemerer metrics are one of the most recognized set of
metrics created to evaluate the quality of design by analyzing source code of object
oriented software [9, 10]. Since good quality design tends to make code more
maintainable, these metrics can be used for measuring maintainability from the

product point of view.

In this project we are interested in using the the Chidamber and Kemerer
metrics set [11] to evaluate code design quality using different object oriented
languages. More specifically, we are interested in understanding if the use of Java
or C++, two popular programming languages, makes a difference with respect to
the Chidamber and Kemerer metrics set. We expect to see projects written in one
of these languages with better design quality than the other one, maybe it could be
Java because it is a more recent language. This knowledge is important for the
developers in the case they are starting a new project where they can choose the

programming language.

We selected the Chidamber and Kemerer metrics set because data for
these metrics is available for a huge number of Java projects in the website
percerons.com [12, 13]. This data provides a starting point for our analysis.
Unfortunately, there is no equivalent for C++ projects, so this data must be

obtained in order to test our hypothesis. Since Chidamber and Kemerer metrics are

calculated by analyzing source code, the manual calculation of this data is not
possible. For this reason, it is necessary to use tools such as “Understand for C++”

[14] or “CKJM” [15] which automates the calculation of these metrics for C++.

An initial analysis of the tools (see section 2.4) revealed that there are no
open source tools that support the complete Chidamber and Kemerer metrics set.
As a consequence, testing our hypothesis requires the development of a tool that

calculates Chidamber and Kemerer metrics on C++ code.

1.2 Objectives

Based on the previous discussion, a general objective for this thesis is the
following:

e To investigate if the use of Java or C++ contributes in the
maintainability of programs as measured using Chidamber and
Kemerer Metrics.

This general objective can be refined into a set of specific objectives which
are the following:

e To understand the general concept of software quality and how the
Chidamber and Kemerer metrics suite can be used to support the
measurement of maintainability.

e To conduct a study of existing software tools that support the
automatic calculation of Chidamber and Kemerer metrics for C++.

e To develop a tool that calculates the Chidamber and Kemerer metrics
for C++ programs.

e To perform an analysis of a sample of Java and C++ programs with

respect to the Chidamber and Kemerer metrics.

1.3 Methodology

To attain the specific and general objectives, the following methodology was
established. First of all, we surveyed the literature and identified several quality
models which were studied and compared. We then studied the Chidamber and

Kemerer metrics suite in more detail.

After that, we conducted a study of available tools to evaluate if any of the
available tools could be used for our study. We were particularly interested in
studying tools that covered the complete Chidamber and Kemerer metrics set and

whose code was available to facilitate their modification, if needed.

Since no tool was found to be suitable, we proceeded to develop our own

tool which we plan to release as open source software in the future.

Once the development of the new tool was finished, we conducted a case
study based on [32]. We used our tool to gather data for C++ programs. This
involved making an extensive search of open source project across different
domains to find a suitable sample. Once the projects were identified, we collected
and analyzed the data. For the collection of data, we used data generated with our
tool and data already available for Java projects, doing a normalized analysis and

non-normalized analysis.

Finally, we proceeded to draw conclusions on the basis of our analysis.

10

1.4 Organization of work

This thesis is divided into 5 chapters. Following this introduction, Chapter 2
discusses general aspects of software quality to introduce the subject. It also
discusses code design metrics and presents details about the Chidamber and
Kemerer set of metrics. In this chapter, we also present a study of existing tools to
calculate Chidamber and Kemerer metrics for C++. Chapter 3 discusses the
requirements and design of the software tool that was developed as part of this
thesis. In Chapter 4, we present the experimentation that was conducted using the
tool that was developed. The data that was gathered is analyzed. Finally in the fifth
and final chapter, we find the conclusions and a brief speculation on future work

from this thesis.

11

Chapter 2 Background

2.1 Introduction

This chapter describes the concepts that are used as background for the
objectives described in this thesis. These concepts include software quality, quality
models and maintainability metrics. This chapter also includes an evaluation of
several tools that are used for analyzing source code with respect to metrics

associated with maintainability.

2.2 Software Quality and Quality Models

There are several definitions of quality, such as:

Quality is defined as the difference between the level or nature of service or
product that the customer expects and the level or nature that the customer

perceives [16].

Another definition for quality is given by the ISO 8402 model, which defines

quality as:

The totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs [9].

Quality can be understood as a subjective term, different people can have
different opinions on the quality of a certain product or service. Their opinion will
depend on what characteristics from the product or service they take into account.
This means that for measuring quality on any product or service we need to figure

out the characteristics that constitute it, and then select metrics that allow each of

12

these characteristics to be measured. The result of this decomposition is a quality
model that is structured as a hierarchy of quality characteristics (or quality
attributes) which are further decomposed into a set of metrics. Quality models
allow turning something that is subjective, which is quality, into something objective

and measurable.

Figure 2.1 shows a simple example of a hierarchical quality model. We will

see concrete examples of such models in the following sections.

| Product quality |

|Eharacteristic 1| | Characteristic 2| Characteristic 3

[\ /

Metric 1 @I |Metric 1| Metric 2 |Metric1 | |MEtfiC2 |

Figure 2.1 Example of a hierarchical model of product quality

David Gamin studied how quality is perceived in various domains and
concluded that “quality is a complex and multifaceted concept” that can be

described from five different perspectives [2]:

e The transcendental view, which sees quality as something that can be
recognized but not defined.

o The user’s view, which sees quality according to the product characteristics
that meet the user needs.

« The manufacturing view, which sees quality according to the manufacturing
approach (ISO 9001 and CMM), focusing on the product quality before the
production and after the delivery, which means that this perspective
advocates conformance to process rather than to the specification.

e« The value-based view, which deals with matters related to money.
Purchasers of the product compare product potential benefits with the

product cost.

13

e The product view, which examines the quality according to some properties
like those proposed by the standard ISO/IEC 9126 (see section 2.2.3).

The initial attempts of development of methods to evaluate software quality
seem to have appeared in 1968, with Rubey and Hartwick [17], who defined a
method consisting of attributes and their metrics. Some examples of attributes they
established include “mathematical operations that are correctly performed”, “the
program is intelligible”, and “the program is easy to modify”. Such attributes were
further analyzed to define attributes capable of being directly measurable in a scale

between 0 and 100.

Several models that link quality attributes and their metrics to evaluate
software quality were defined later. Examples of these models are McCall Quality
Model [18], Boehm Quality Model [18], and ISO 9126 [5]. These models are
discussed in the following sections.

2.2.1 McCall Quality Model

Jim McCall proposed a model in 1977 at the request of the US Air Force,
with the intention of bridging the gap between users and developers, mapping the
user view with the priorities of the developers [7].

The quality model proposed by McCall (Figure 2.2) divides the software
product into 3 perspectives: product operations, product revision, and product
transition [19].

e Product operations perspective groups together quality attributes that have
to do with the degree in which the software fulfills its specifications.
e Product revision perspective groups together quality attributes that have to

do with supporting changes in the product.

14

e Product transition perspective groups together quality attributes that have to

do with influencing the ease of adaptation of the software to new

environments.

These three perspectives in turn are divided into quality attributes, and in the

same way, attributes are divided into metrics (which can be measured). In total

McCall identified 11 quality attributes for the 3 perspectives of the software

product. In this way it is possible to have an overall quality assessment by

evaluating the metrics for each attribute.

Perspectives Attributes Metrics
Correctness —{ Tracea BNty]
Completencss

s Reliability ~{ Comistency]
Product operation e)
Efficiency Error tolerance]
EROCULIon OITRa oty 1

I Storage oificie ne
ategrity hsﬂ = :
- ACCoss audit]
Usability OperaBELy !
! Traming]
2 Maintainability Communicative noss]

Product revision -

mplicity]
]
]

A

Testability Concisonoss
Instrumentation
Flexibility
Fxpandability]
Portability Senoraiy]
Product transition Modularity]
Software system independence |
Reusability .

Communications commonall

/

Interoperability

[Data Tty

Figure 2.2 Jim McCall's quality model

If we match names for levels of this model with names for levels of our

general quality model shown in Figure 2.1, attributes correspond to characteristics

and metrics correspond to the level of the same name.

15

2.2.2 Boehm Quality Model

Another quality model proposed to evaluate the quality of software products
Is one defined by Barry W. Boehm in 1978 [18]. This model, like the McCall model,

is composed by three levels in a hierarchy: primitive constructs (lowest level),

quality factors (middle level), and primary uses (top level).

| Primary uses

As-is Utility | -

General Utility

Maintainability

Quality

factors
Portability """
Reliability f==-7"
“‘»_\\H —
Efficiency
Human

Engineering R

Testability

Understandability

Modifiability f——__

Figure 2.3 Boehm’s quality model

Primitive constructs

Device
Independence

Self Containedness

Accuracy

| Completeness

Robustness/Integrity

Consistency

Accountability

Device Efficiency

Acessibility

Communicativiness

Self Descriptiveness

Structuredness

Conciseness

Legibility

Augmentability

Figure 2.3 shows the Boehm quality model, in which there are a set of

guality factors and primitive constructs to quantitatively evaluate software quality.

Boehm defined three primary uses at the top level of the model (Portability, As-is
utility, Maintainability) and 7 quality factors (Portability, Reliability, Efficiency,
Usability (Human Engineering), Testability, Understability, Flexibility). Furthermore,
these quality factors are divided into 15 metrics [7]. It must be noted that Portability

is considered both a Primary Use and a Quality Factor.

Matching names for levels of this model with our model shown in Figure 2.1,
quality factors correspond to characteristics and primitive constructs correspond to

metrics.

2.2.3 1S0 9126

In 1993, the International Organization for Standardization (ISO) [20]
created a standard for evaluating the quality of software products which is similar
to the models of McCall and Boehm. This standard is composed by 6
characteristics, which in turn are broken down into 27 sub-characteristics (see
Table 2.1). Each sub-characteristic is further divided in entities that can be verified
or measured in the software product (metrics) but are not included in the standard
due to the fact that it considers that they can change between different software

products.

The 1ISO 9126 standard describes a set of software characteristics that allow
software quality to be assessed according to the user view (external quality). Its

quality characteristics are the following:

o Functionality. A set of attributes that bear on the existence of a set of
functions and their specific properties. The functions are those that satisfy
stated or implied needs.

o Reliability. A set of attributes that bear on the capability of software to
maintain its performance level under stated conditions for a stated period of

time.

17

« Efficiency. A set of attributes that bear on the relationship between the

software’s performance and the amount of resources used under stated

conditions.

o Maintainability. A set of attributes that bear on the effort needed to make

specific modifications which may include corrections, improvements, or

adaptations of software to environmental changes, and changes in the

requirements and functional specifications.

« Portability. A set of attributes that bear on the ability of software to be

transferred from one environment to another. This includes the

organizational, hardware or software environment.

Characteristics

Sub-characteristics

Functionality

Suitability, accuracy, interoperability, security, functionality compliance

Reliability Maturity, fault tolerance, recoverability, reliability compliance

Usability Understandability, learnability, operability, attractiveness, usability
compliance

Efficiency Time behavior, resource utilization, efficiency compliance

Maintainability

Analyzability, changeability, stability, testability, maintainability
compliance

Portability

Adaptability, installability, replaceability, coexistence, portability
compliance

Table 2.1 ISO/IEC 9126 Characteristics and Sub-Characteristics

In ISO/IEC 9126, “satisfaction” implies “the capability of the software product

to satisfy users in a specified context of use.” Satisfaction in that sense refers to

the user’s response to his/her interaction with the product [21].

Using any of these quality models previously described for derivation of

system requirements brings clarity to definition of purpose and capability of

operation [5].

18

McCall’'s quality Boehm’s quality model ISO 9126
model
Is divided | Perspectives, Primary uses, quality Characteristics,
into: attributes, metrics factors, primitive subcharacteristics, entities
constructs
Created 1977 1978 1993
in:

Quality Portability, Maintainability, Reliability, Efficiency
attributes
in

common:

Table 2.2 Summary of the 3 quality models

Table 2.2 provides a brief summary of the 3 quality models that were
discussed: McCall's model, Boehm’s model, and ISO 9126. We can observe that
the three models share a similar structure and similar purpose, which is
guantitatively to evaluate the quality of a software product through the breakdown
of quality attributes into quality metrics. The 3 models are composed by a hierarchy
of 3 levels and, at the bottom of the hierarchy all of the models include entities that
can be measured. It is interesting to observe that these 3 models share in common
4 quality attributes: Portability, Maintainability, Reliability and Efficiency.
Maintainability is the quality attribute that is the focus of this thesis so we will now

discuss metrics associated with it.

2.3 Maintainability related metrics

When studying software engineering quality, it is important to consider the
existence of several programming paradigms: structured programming (SP),
component-based programming, service oriented paradigm and object-oriented
paradigm (OOP). These paradigms define a pattern that serves as a “school of
thought” for programming of computers [22] and, as a consequence, each one will
have different measures associated with maintainability. In the context of this

thesis, we are interested in measuring maintainability for object oriented programs.

19

2.3.1 Measuring design properties to evaluate maintainability

OOP is characterized by properties such as inheritance, encapsulation,
class hierarchies, polymorphism, etc [8]. Other important properties in the
approach of OOP are cohesion (degree of consistence between parts of an object)

and coupling (degree of interdependency between parts of an object) [11].

Bansiya and Davis defined a hierarchical model to evaluate software quality
in OOP [8]. This model consists in product properties (that influence the quality of

the product), a set of quality attributes and means to link both elements.

For the design of the model, from top to bottom, the quality attributes of the
model were selected based on the attributes of ISO-9126. The model is also made
of a link between quality attributes and design metrics, composed of object-
oriented design properties. Design properties such as abstraction, encapsulation,
complexity and design size are frequently used to measure design quality both in
the object-oriented and structural paradigms. Design properties such as
messaging, composition, inheritance and polymorphism are new properties

introduced to measure quality in object-oriented design.

The results of this work showed the capability of the model to estimate
overall design quality from design information, i.e., a significant correlation of
estimated assessment by this model and the assessment of overall quality
characteristics of some projects determined by independent evaluators, resulting
an effective way for monitoring software product quality.

In object-oriented design, sets of metrics [11, 23] focusing on evaluating
maintainability have been defined to evaluate this kind of programming paradigm.
These metrics evaluate the design of code taking into account concepts that are
specific to object-oriented design, such as inheritance, object, classes, message

passing, etc.

20

As a consequence, we can conclude that measuring design properties is a
good way to measure quality in terms of maintainability. The Chidamber and
Kemerer set of metrics that is discussed in the following section allows design

properties to be measured.

Its to worth mentioning that we chose this set of metrics because,
according to [10], Chidamber and Kemerer metrics appeared the most frequently in
object-oriented studies and they perform better than other sets of metrics. Two
decades after their initial publication, metrics from the C&K set are still the most

used or investigated object-oriented metrics [10].

2.3.2 Chidamber and Kemerer metrics

There exist at least two sets of well known metrics for measuring design
properties: The Li and Henry set [23] and the Chidamber and Kemerer set [11],
which have some metrics in common (they have some overlap). In the context of
this thesis, we are interested in using the Chidamber and Kemerer set as the data
that will be used for evaluation purposes was collected using that particular set

because data using this set is available for an extensive number of Java projects.

The Chidamber and Kemerer metrics set was established in 1994. This set
of metrics was proposed due to the lack of metrics to support the evaluation of
object-oriented programs [4]. Following Wand and Weber, the theoretical base
chosen for these metrics was the ontology of Bunge [24]. The validation of these
metrics proves that tracking them, these metrics will provide information to the
project managers and developers to help them monitor the evolution of software
developed under the object-oriented design paradigm. The Chidamber and

Kemerer set is composed of six metrics:

« WMC: Weighted Method per Class
o DIT: Depth of Inheritance Tree
e« NOC: Number of Children

21

e CBO: Coupling Between Object classes
« RFC: Response for a Class
e« LCOM: Lack of Cohesion of Methods

In the following sub-sections, we explain how these metrics are calculated.

2.3.2.1 WMC (Weighted Method per Class)

Weighted Method per Class is the metric that makes references to the sum
of complexities of the methods of a class. An arbitrary value can be assigned to
each method of a class, to simplify the calculation of this metric, a value of 1 is
assigned to each method, which means this metric is simply the number of
methods in a class [25].

What is a good WMC? Different limits have been defined. One way is to limit
the number of methods in a class between 20 and 50, considering that classes with
a huge number of methods are harder to modify and maintain. Another way is to
specify that a maximum of 10% of classes can have more than 24 methods. In this
way we could get larger classes, but the other 90% of classes should be small [25].

For our study, we limit the number of methods of a class to 24.

class CERectangle |
int X, ¥r
public:
void set values (int,int);
int area (woid);
} rect;

Figure 2.4 Example class code

Figure 2.4 shows an example of how to calculate this metric. We can
observe two underlined methods, so this metric is simply the count of methods
for the class; the WMC for this small example is 2.

22

2.3.2.2 DIT (Depth of Inheritance Tree)

The Depth of Inheritance Tree metric provides for each class a measure of
the inheritance levels from the top of the object hierarchy [25]. In the Figure 2.5, we
can see an UML diagram that represents the inheritance relationships for the class
“Shape”. To calculate the DIT metric for a class, we count the number of classes
that we have to traverse to get to the leaf in the deepest inheritance branch. For

the class “Square” the DIT metric is 3.

The deeper a class is in the hierarchy, the more methods and variables it is
likely to inherit, making it more complex, which means deeper classes have a
greater complexity design. A recommended DIT is 5 or less. The Visual Studio
.NET documentation recommends a DIT of 5 or less because excessively deep
class hierarchies are complex to develop and thus harder to maintain and modify
[25].

Shape

Triangle Quadrangle

|

Rectangle

T

Square

Figure 2.5 UML diagram for class Shape. DIT for this class is 3.

23

2.3.2.3 NOC (Number of Children)

The Number

of Children metric counts the number

immediate

descendants classes for a base class [25]. Figure 2.6 shows an UML diagram for

the class “Shape”. In this example, the calculation for the NOC metric is 3, since

the class Shape has 3 subclasses.

[25]:

fewer faults [25].

A high NOC, a large number of child classes, can indicate several things

High reuse of the base class since inheritance is a form of reuse.
The base class may require more testing.

Improper abstraction of the base class.

Misuse of sub-classing. In such a case, it may be necessary to group

related classes and introduce another level of inheritance.

The suggested value for NOC is 5 or less. This has been found to indicate

Shape

Triangle

Square

Circle

Figure 2.6 UML diagram for class Shape. NOC for this class is 3.

2.3.2.4 CBO (Coupling Between Object classes)

The CBO metric represents the number of classes coupled to a given class.

This coupling can occur through method calls, attribute accesses, inheritance,

arguments, return types, and exceptions [25].

24

High CBO is undesirable. The more independent a class is, the easier it is to
reuse it in another application. The larger the number of couples, the higher the
sensitivity to changes in other parts of the design of a class, and therefore
maintenance of such class is more difficult. As such, excessive CBO neither is

good for a modular design nor for reuse of code.

A high coupling has been found to indicate software to be faulty. Rigorous
testing is thus needed. According to Sahraoui, Godin & Miceli [25], a CBO>14 is
too high.

class AFND
{
protected:
class State State *Q; class Alphabet
{ Alphabet *E; {
/{Code int nQ; / /Code
//Code int g@; //Cede
/{Caode list<int> *F; //Code
{/Code public: /fCode
¥ AFND() ; b

int getnQ();

int getQe();

bool getEinal(int edo);
Alphabet getE();

bool loadAFND(char *);
vold muestradFND();

b

Figure 2.7 Code example where CBO for class AFND is 2.

Figure 2.7 shows an example of code of class “AFND”. This figure illustrates
how class “AFND” is coupled to two other classes, in this case, we find in class
“AFND” a declaration of attributes of types “State” and “Alphabet” and a declaration
of a method with a return value of type “Alphabet”, which represent a coupling to
these two classes. We note that there are two couplings in class “AFND” to class
“‘Alphabet”, however, multiple couplings to one class are counted as 1. In this small

example, the count of CBO for class “AFND” is 2.

25

2.3.2.5 RFC (Response for a Class)

The metric RFC measures the number of different methods and
constructors that can be invoked as a result of a method invocation on an object.
The methods can be invoked in either the object that receives the message or on

other objects from other classes [25].

A large RFC has been found to indicate more faults. The suggested
maximum value for this metric is 24 [25]. Classes with a high RFC value are more
complex and harder to understand (and thus to modify and maintain). Testing and

debugging is complicated when we have a class with a high RFC [25].

Figure 2.8 shows an example of how we measure RFC: suppose we have a
class called “AFND” and, from another class, we make use of the “AFND” class by
creating an instance of it and invoking methods on this object. As we can see, what
we count is underlined in red, so the count of the RFC metric for this example is 3.
We count invocation to the constructor and to the methods from “AFND” in
response to a call to the method mymethod (). It is worth noting that in this example
we are supposing that the method mymethod() is the only method of
‘“ANOTHERCLASS". If the current class that we are calculating RFC for had more
methods, we would need to keep searching and calculating the number of method
invocations to calculate the overall RFC.

class AFND
1 void ANOTHERCLASS: :mymethod()
public: {
AFND()3 AFND *aux;
int getnQ(); bool error=false;
int getQe(); aux=new AFND();
bool getFinal(int edao); error=aux->loadAFND(filename);
Alfabeto getE(); if{!error)
bool loadAFND(char *j;l 1
vold muestraAFND(); aux->muestralFND() ;
list<int» transicion(char ,int }; }

bs }

Figure 2.8 Example class code and its implementation (Example RFC)

26

2.3.2.6 LCOM (Lack of Cohesion of Methods)

A class's LCOM metric measures the sets of methods in a class that are not
related through the sharing of some of the class's attributes [25]. The lack of
cohesion in methods is then calculated by subtracting the number of method pairs
that share an attribute from the number of method pairs that do not share an

attribute:

P={(i 1) [iNfj=g¢}and Q={{ ;) | i N [;# ¢}—>LCOM = |P| - Q|.

Where P is the number of sets of methods that don’t share an attribute in
common, Q is the number of sets of methods that share at least one attribute of the
class in common, and | are the sets of methods. If the result is negative, LCOM is
0.

Class “Hello” has 3 methods {m1, m2, m3} and the attributes {a, b ,c ,d ,e x,y,z}
m1 uses the attributes {a, b, ¢, d, €}, m2 uses {a, b, c}, m3 uses {x, y, z}

m1 N m2 = Not null, m1 N m3=Null, m2 N m3=Null.

2 Null =1 Not null = 1.LCOM for this class is then 1

Figure 2.9 Example of calculation LCOM

An example of how is calculated this metric is shown in figure 2.9. As we
can see, we suppose we have a class named “Hello”. Suppose this class has 3
methods (method m1(), method m2() and method m3()), and each method uses
some of the class attributes. Method m1() uses the attributes a, b, c, d, e; m2()
uses the attributes a, b, c; m3() uses the attributes x, y, z. We then calculate the
intersections between all possible method combinations. In this example, method
m1() and method m2() are sharing at least one attribute in common, both have the
attributes a, b and c, therefore, this intersection is not null. However, intersection

between method m1() and method m3(), as well as intersection between method

27

m2()and method m3() are null (no attributes in common). In this way we have 2
null intersections (groups or sets of methods that don’t share an attribute in
common) and 1 not null intersection (groups or sets of methods that share at least

one attribute in common). As a result, LCOM for this example is 1.
LCOM = 0 indicates a cohesive class, so this is the recommended value.

LCOM > 0 indicates that the class needs or can be splitted into two or more

classes, since its variables belong to disjoint sets.

Classes with a high LCOM have been found to be fault-prone [25].
Furthermore, high cohesion is an important design directive which is important to

facilitate changes and maintain the source code of the system.

As a summary of the metrics, the 6 metrics and their descriptions are listed
in Table 2.3. The recommended value for each metric is based on [25]. Given that
we didn’t find a threshold for some of the metrics, the threshold indicated was
based on the threshold of a similar metric. For example, threshold for NOC is <5,
as DIT also has to do with inheritance, threshold chosen for DIT is <5. We use
thresholds only as references, as there are not established thresholds, results

obtained in this work could be useful to establish a threshold for each metric.

28

Metric Description Recommended
value

Weighted If all method complexities are considered to be unity, | <=24

Method per | then WMC = the number of methods.

Class (WMCQC)

Depth of | The DIT refers to the maximum length from the root | <=5

Inheritance of the inheritance tree to the leaf in the deepest

Tree (DIT) branch.

Number of | Number of immediate subclasses subordinated to a | <=5

Children (NOC) | class in a class hierarchy.

Coupling CBO for a class is a count of the number of other | <=14

Between Obiject | classes to which it is coupled.

Classes (CBO)

Response for a | The response set of a class is a set of its methods | <=24

Class (RFC) that can potentially be executed in response to a

message received by an object of that class.

Lack of | The LCOM is a count of the number of method pairs | O

Cohesion in | which don’t share a common attribute, minus the

Methods count of method pairs which share at least one

(LCOM) common attribute. The larger the number of similar

methods, the more cohesive the class.

Table 2.3 Summary of Chidamber and Kemerer metrics and their recommended
values.

There exist several tools that automate the calculation of metrics to evaluate
software quality. Some of these tools are commercial and other are open-source.
These tools use some of the metrics proposed by Chidamber and Kemerer, or the
proposed ones by Li and Henry. The following section discusses several of these
tools in terms of their features and their level of support of the Chidamber and
Kemerer metrics (we only mention the name of this set because the approach of

this thesis is on Chidamber and Kemerer set).

2.4 Software tools to evaluate software code

In this section we review 5 different tools that can be used to collect data in
the Chidamber and Kemerer set of metrics for C++.

29

2.4.1 NDepend

NDepend [26] is a proprietary metrics tool for the analysis of .net managed
code, including Managed C++. It provides a friendly user interface and displays
detailed reports about the metrics it calculates. NDepend also provides a summary
of rules that are violated, a treemap metrics review, a dependency graph, and
other visualizations. Furthermore, NDepend shows warnings (suggestions), code
queries and rules to improve the analyzed code. It can also export the code list
elements matched by the code query to documents in HTML, Excel, XML, and
export it to a graph or to a matrix. Besides its visual interface, NDepend also

provides a command line version.

Within the full set of metrics this tool calculates, it supports 5 of the 6
Chidamber and Kemerer metrics and only RFC is not supported. Figure 2.10

shows a screen capture of the NDepend user interface.

0 ol (Terdarsy) Uinives one 71 Soui 300, S G2 e 00000 st fecedt)

Tie Vew Andyue Tock Compew Covenge Mep

WA Bm O- L > 33 330 s SUESTMm B0
Qe wd ey L ety o x B -
Fram s, o tepes adéed Lot wetad e
Ko 2 % Ppen WL 1L O Mets | #ws of code B.0C) 5w = 02T g - -
Fraed N seproducion
: - - . [12 Window A d L
o1l tyses soded efactored shouls be 100% wred my teatae) o Preyect Fie Cllanny
In NathyCode.Tyzes where reproductor Bamiet.VioeOutail oo
siiaces! R orbn - o i P &':mzm
wadaces!] || t.Coommtnanges()) M roles 4 por - [y ——pr—
O § Arayas Date Toan 02 Jun
S F) PR -~
A
Ed ooy 9% 1 4 Q4 @fwermnpna - Sopicaon repeodion
e (T g ey
W type mabched # R evactons T
2 bt of coxde ALCX »a
Lo of comverent
T Degerdercy Grach |) Decendercy Mo | [ewcy |] Pregect Fraoe ses
L e Comate Quary et Quary
. e o Conde Quaries and Bme
J $0 Froms som ot —v‘-h.))ol:v*‘—vl-ﬂ-.‘)
v ¢ Trpea Pat vaed © e 10N covred bt ot aryw
g @0 Fram st o8 boas sddad o retaitinnd shoudd
e
A v e Teomnca o triee p3tet cr rebnctores BhuAd e
¥ 90 Aoroed dmiresneg code cowmeagn by e o hoes o

R Cont Srowser | Ung Quarens o Sing 32 Jonpey) | P Seanh
Mrwtiape Soewie wive
Feat, Apewbies | Neamwipaces 2 Types £ Muthods 68 Fuddhe 75 Lines of coe 118 J

Figure 2.10 Screen capture of NDepend.

30

2.4.2 VisualCppDepend

VisualCppDepend [27] it is a proprietary tool that supports the analysis of
C++ code. It is very similar to NDepend: Its features and the user interface are
almost identical to NDepend. Unlike NDepend, however, VisualCppDepend
provides a calculation for a smaller number of metrics and it also doesn’t provide
code coverage data. Another difference to NDepend is that VisualCppDepend
doesn't provide statistics like Standard Deviation or Average on some metrics.
VisualCppDepend is also called CppDepend (when used in command line mode).

Regarding the Chidamber and Kemerer metrics, the coverage of this tool for
such metrics is the same as NDepend (5 of 6 metrics, except RFC). Figure 2.11
shows a screen capture of the VisualCppDepend user interface.

3
=~
Fiw Vaw Aasyus Tock Compen Melp

LR ™ L T » U3 1 304> S8 I dm X-wa
Global Summary
i Sen X Conen . gt [x]
¢ Nnr N Pogetd

vt £ e L LlageyBlamiet i Qocumermibivn Proec odges
b Ot e O Sy €2 20 vt i

e cator New Proyoct?

S e o Dnsing agae e

Figure 2.11 Screen capture of VisualCppDepend.

2.4.3 Understand for C++ 1.4

Understand for C++ [28] is a proprietary tool that supports the analysis of

C++ code. The user interface of this tool is a bit similar to NDepend and

31

VisualCppDepend but (according to our user experience) it is a little more difficult
to get involved into the tool, maybe this is because it provides a more extensive
menu. Understand for C++ contains a wide range of statistics metrics (average,
max value, count) which, once they have been calculated on a C++ file, can be
exported as a CSV file. Like other tools, Understand for C++ also provides to the
user some graphs and diagrams for presenting the results of the analyzed code,
the tool can even produce UML class diagrams.

Regarding the Chidamber and Kemerer metrics, this tool provides full
coverage. Figure 2.12 shows a screen capture of the Understand for C++ user
interface.

.lﬂn'w Asns bha e § Aol v Lnin et Pl o My Unbar- 2aritFe ogn 13 sl - | vutime sl { (o Dean]
7% TH Tawin Vs Pl Rebt Sene Govte ComCMal Adaees Thes Sndes fes

RO~ [
y clmemive pymtnp 90X,
| RNy Ry Y oy

~ e

P ——— T e L

ORI R

St rewee PY T
Q= O« 0 g~ 7 3me »

S namiimtl] Y A N weaitCimsaPsnnwermegmen wv
o

. Cn 3 o Cotamn
-S4 B Show Fin Lery Nwwen A [Shet ® T
Tolernain Dona
Untrwe
Aridtetrre

sy s - e Seienin P (aen - e Fnitun T ater *ryve
|Genecace Dwtated Metrce | Lagot % NTWL @

v I e s Boee Voo feltwrbeet Lobeety) Lulee

Acatyws Congetes 0O0A01) M Sadipm AW

Figure 2.12 Screen capture of Understand for C++.

2.4.4 SourceMonitor

SourceMonitor [29] is another proprietary tool that supports the analysis of
C++ code. This is a free program; however, it is not open-source and the source
code is not available because it contains proprietary source code files from third

party vendors.

32

Unlike the previous tools, SourceMonitor is a little easier to use as it does
not provide as many functions. The only important functions include calculating a
few metrics like methods per class, average statements per method, average
depth, etc. This tool also provides a Kiviat graph measuring the calculated metrics
and also provides a histogram block comparing the statements in depth. The main
result is shown in a single table; so its interface is somewhat austere. However, as
other similar tools, after calculating the metrics on the different files of a project,
this tool can export the tables with the calculated metrics to a CSV or XML files.

Regarding the Chidamber and Kemerer metrics, this tool only supports three
of the six metrics: DIT, NOC and RFC. Figure 2.13 shows a screen capture of the

SourceMonitor user interface.

B coetonn @ =
P R e e ———

Dieleislil 8ia) x|-| vl 8]
|0c.-o.-u»u_na [Base Dleuctory: T {Vomnt Shucbe 003 Pecqecstice <\] leT@yE)
Dange == Flws pas | Ravasy 13 bt | 2 Oess Twts Mette Caame

B N Summary For Onconpont Tasioal E‘

| | Powete 1 Ve 1- |

| | Pt Ovwcony ey Namtely Documenty' Vel hado X000 Papan'ces) l
[- Tot)

Taserel
danxOam

For Help, potss F3 o

Figure 2.13 Screen capture of SourceMonitor.

2.45CCCC

CCCC [30] is an open source tool that supports the analysis of C++ code. It

was developed by Tim Littlefair, as part of a PhD research project. This tool has no

33

visual user interface; the user can only analyze C++ projects and generate reports
in HTML or XML files from the command line. The generated report shows a
project summary, a procedural metrics summary and a structural metrics summary.
From the set of analyzed tools, CCCC seems to be the tool that has the smallest

functionality.

Regarding the coverage of the Chidamber and Kemerer metrics, CCCC only
supports three out of the six metrics: WMC, DIT and NOC, while it lacks CBO, RFC
and LCOM. Figure 2.14 shows this tool working from the command line and a

report generated by this tool in HTML format.

<« cn 100/ /LI Pamdal i f 0o/ CCce html S oodessgn

Project Summary

Figure 2.14 Command line and HTML report of CCCC.

2.4.6 Analysis on the software tools that evaluate software code

Table 2.4 summarizes the coverage of the previously discussed C++ code
analysis tools in terms of the Chidamber and Kemerer metrics and it also shows

whether the tool is open source or not.

34

WhC (DT INOC |CBO |RFC |LCOM | Open
prdestandforce+ 1 @ |1 @ | @ | @ | @ | @ Q
ceee Q0| & | 0| O (%) V)
VisualCppDepend | @ | @ | @ | @ | © | @ Q
Source Monitor Qo @ 9 | 0 9| o (%
Ndepend @ Q| 0| @ o | @ o

Table 2.4 Comparative Chidamber and Kemerer metrics with software tools

The comparison in Table 2.4 shows that there is only one tool, Understand
for C++, that covers all of the 6 metrics of the Chidamber and Kemerer set,
however, this tool is not open-source, which is a desired characteristic to meet the
objectives pursued in this thesis. The only tool from ones in Table 2.4 that is open-
source is CCCC. However it only covers half of the Chidamber and Kemerer set of

metrics.

2.5 Summary

This chapter started with a discussion on quality and, more specifically, on
software quality. Software quality can be seen as something subjective and a bit
complicated to evaluate directly. Fortunately, a series of models have been created
to establish software quality as something that can be measurable and objective.
These models establish software quality as a hierarchy that defines a series of
characteristics (or quality attributes) which, in turn, are refined into a set of metrics.
Within these characteristics, we find maintainability which is the quality attribute

that is of interest in this thesis.

Metrics that evaluate the design of object oriented systems can be used to

measure maintainability. Among these metrics, the Chidamber and Kemerer set is

35

widely used. To automate the calculation of such metrics on different object
oriented languages like Java, C# or C++, several code analysis tools have been
developed. We performed a comparison of 5 tools which revealed that only one

proprietary tool supported the complete metrics set for C++ programs.

36

Chapter 3. Maya C++ tool requirements
and design

3.1 Introduction

The evaluation of tools that was presented in the previous chapter revealed
that there is a lack of open-source C++ code analysis tools that provide coverage
of the complete Chidamber and Kemerer metrics set. Modifying the CCCC tool was
considered as an option, but we found that its code is not well documented. For
these reasons, we decided to create a new tool which was named Maya C++, in
honor to one of the most important antique civilizations in Mexico. In the following

sections we discuss the requirements and the design of the Maya C++ tool.

3.2 Vision and scope

Figure 3.1 shows a context diagram which is helpful in understanding
the vision for the Maya C++ tool. Maya C++ an interactive tool that receives, as its
input, the location of a project composed of C++ files (that is, files with the “.h” and
“.cpp” extension). The tool analyzes the code from the files and then proceeds to
calculate the Chidamber and Kemerer metrics. The results are displayed visually

and can be also exported to a file using the XML of CSV format.

Project locations

User

- Analysis results
(visual and reports)

Figure 3.1 Context diagram of Maya C++

37

Maya C++ has a relatively limited set of features (high level requirements)
but these features are similar to the tools that we reviewed in the previous chapter
including data analysis and reporting. The features for the tool are presented
considering the three categories that make up architectural drivers: functional

requirements, quality attributes and constraints [31].

Primary functional e Parse project files, calculate metrics and render them
features graphically, and export them in CSV and XML files.
Quality attributes e Performance, the tool should provide fast feedback to

the user even if a large project is used.

Constraints e The development of the tool must be finished in 6
months.
e The software development should be open-source.

For the scope of the project, we only consider features that are necessary in

order to achieve the general objective of this thesis.

3.3 Software requirements

Once the Vision and Scope for Maya C++ has been established, the
features that were discussed previously are refined as requirements in the

following sections.

3.3.1 Primary Use Case

Maya C++ features only one primary use case which is detailed in table 3.1.

38

Template for use case documentation
1. 1D and name
UC-1 Calculate project metrics

2. Description
This use case allows the set of Chidamber and Kemerer metrics to be calculated on
all of the classes of a C++ project. The results are displayed graphically and can be
saved in CSV and XML files.

3. Actors
System User.

4. Pre-conditions
The application has been launched

5. Post-conditions
The system has calculated the metrics for the project and is awaiting user
interaction.

6. Main flow

1. The user presses the “Select Project” button.

2. The system asks the user to select a directory with a C++ project.

3. The user selects a directory

4. The system analyzes the project files and displays a message informing that the
project has been successfully loaded.

5. The User presses the “Extract classes and calculate metrics button”

6. The system then calculates the metrics and displays the results, including the list
of classes.

7. The user selects a particular class from the list

8. The system displays the metrics for the selected class

7. Alternative Flows

AF-1:Instep 7:

1. The user selects the “Save Project” option to export the data in either CSV or

XML form
The system requests the file name and location
The user inputs the requested information
The system generates the file, exports the data and displays a message
The use case continues in step 7

ablhownN

8. Exceptional Flows
EF-1: In step 4, if the selected directory does not contain C++ files
1. The system notifies the user of the problem

Table 3.1 Use case “Calculate the six metrics of Chidamber and Kemerer on
a C++ project.

39

3.3.2 Quality attributes scenario

The main quality attribute for this system concerns Performance. It is
specified in Table 3.2 using the Scenario technique from the book “Software

Architecture and Principles Practice” [32].

Quality attributes Performance / Usability

relevant:

Stimulus: Provides the location of a large project and triggers the calculation of
the metrics

Source of stimulus: A user.

Environment: The system is awaiting the user interaction.

Artefact: The system.

Response: Classes in the selected directory are extracted and the results for one
class are displayed

Measurement of In less than one second

response:

Table 3.2 Quality scenario

Its worth to mentioning that the system can be used to analyze either
complete projects or only a few classes at a time. This scenario focuses on the
latter situation as it is necessary to ensure the user can begin interacting with the
results even if the project is large.

3.3.3 Constraints

Constraints are not refined from what was discussed in the previous section.

3.4 System design

In this section we discuss the design of the Maya C++ tool using software
architecture principles including the concept of documenting its architecture using
(partial) logical and dynamic views. Since this is a standalone system, no physical

view is included.

40

3.4.1 Logical view

The architecture of Maya C++ is based on a Layered architectural style

which is commonly used for interactive systems. Three main layers were defined:

e A presentation layer which contains modules that support user interaction
e A business layer which contains modules that perform the calculations

A data layer which contains modules that perform data input and output.

Figure 3.2 illustrates the layers that compose the architecture and several

modules that are located within the layers. Table 3.2 describes the responsibilities
of the modules located inside the layers.

Presentation layer

Showbialog()

GetFiles(]
[] Sends a path l:l

sends files [.opp/.h)

Business layer

e

[]‘— Calculate()
L1

sends 3 file [.cpp/.h) TSEn::La information

Data layer

— l

Read() T

Symbology

—* gzl

Return

Figure 3.2
Logical view of the architecture of Maya C++

41

Module

Responsibility

Interface and implementation
information

FolderBrowserDialog This module is The method ShowDialog()
responsible of providing | requests the user to select a
a window to select a directory where a project is
directory. located.
This module is obtained from
the System.Windows.Forms
library.
Directory This module is The method GetFiles() obtains

responsible for moving
through directories and
subdirectories.

only the requested files for the
user (.cpp & .h) in a selected
directory.

This module is obtained from
the System.lO library.

ExtractAndCalculateData

This is the core module
which is responsible for
extracting and
processing the data. It
is also responsible for
calculating the metrics
on the data.

The method Calculate() uses
the StreamReader class to
read a file, extracts the
information, and then
calculates the metrics.

StreamReader

This module is
responsible for reading
of the files contained in
a selected directory.

The method Read() reads each
and all of the characters in a
file until the file ends.

This module is obtained from
the System.lO library.

Table 3.3 Responsibilities of the modules

The design decisions relative to the selection of technology are:

e The tool was developed using the Microsoft .NET C# language. This

programming language was chosen because the author was familiar with it.

e The.NET 4.0 Framework was selected because the author has skills with it

and because it provides support for working with a visual editor.

42

e Once the project location is provided, the system loads the list of files but
only performs calculations for one class in order to provide rapid (less than 1
second) feedback to the user and satisfy the performance quality scenario.

3.4.2 Dynamic view

Figure 3.4 presents a UML sequence diagram which illustrates a scenario
for the primary use case where the metrics for a class in the project are calculated

and the results are displayed to the user.

Path of a directory

e
Sends 3 path
—

EetFiles]]

sends .cpp and _h files
" sends 3 file N
* read(]
[+ ——— ———
Calculate()
.‘_

Figure 3.4 Sequence diagram for a scenario of UC-1

The diagram shows that the user gives a path (directory) as input to the
FolderBrowserDialog instance, this instance sends this path to the Directory
instance, which in turn gets all the .cpp and .h files in that directory. The files are
then passed to an instance of the ExtractingAndCalculateData module which
sends each file to a StreamReader instance which reads those files and returns the

characters contained in the files. The ExtractingAndCalculateData instance parses

43

the characters and matches it with respect to a set of tokens and then performs the

metrics calculations.

3.4.3 User interface

Another important aspect of Maya C++ is its user interface which is shown
in Figure 3.5. The interface of Maya C++ allows the user to analyze each class
individually and to export results for the complete project as a file. The interface
also warns the user whether the values of the metrics for a particular class are

within the suggested ranges

Save project About
| CLASSES IN THE PROJECT

ks
|
cov| I

noclt
coofld

Select class to zee the
OPTIMAL calculation of its metrics

Number of classes in the project _

Select Extract classes and
Project calculate metrics

Figure 3.5 Maya C++ user interface

The interaction between user and system starts when the user presses the
“Select Project” button. At that moment the system displays a folder browser dialog
and then the user selects a directory that contains a C++ project. Once this is
done, the system displays a message that the selected project is successfully
loaded; otherwise, the system displays a message that the system could not find
C++ files in the directory. After a project is successfully loaded, the user selects the

44

“Extract classes and calculate metrics”. As a result, the system displays the
classes of the selected project in the list labeled “CLASSES IN THE PROJECT”. At
this point, the user is able to select classes from the list. Once the user selects a
class, the system displays the values of the metrics as humbers and also as a
graph. When the number for a particular metric is outside the suggested range

(see section 2.3.2), it is highlighted in red, otherwise it is shown in green.

When the user selects the option “Save project” and then “As CSV file” or
“‘As XML file”, the system asks for a location and name for the desired file.
Afterwards, the system displays a message that the creation with the full
calculation of the project is in process. At the end, the system displays another

message informing that the creation of the CSV or XML file was successful.

3.5 Summary

This chapter has discussed the requirements and design of the Maya C++
tool. As part of the requirements, we have presented both functional and non-
functional (quality attribute) requirements and, to some extent, the constraints. The
design was presented using architectural concepts including the use of two types
of views: logical and physical. Finally, we have also described the user interface of
the tool. Maya C++ provides simple functionality in comparison to the tools that
were described in section 2.4 but it provides coverage for the 6 Chidamber and

Kemerer metrics.

The next chapter presents the results of the experimentation that was

performed using Maya C++.

45

Chapter 4. Evaluation

4.1 Introduction

To verify that Maya C++ was working correctly, we did some tests by
evaluating some projects taken from the sample projects analyzed in Chapter 4
with our tool, and did the same evaluations with a commercial tool (Understand for
C++). We compared given results by these both tools and observed that the results

were the same.

Once the Maya C++ was tested we had the necessary elements to conduct
a brief case of study according to [33]. The case study includes objectives,
research questions, preparation for data collection (Project sample), collecting
evidence (Data collection and analysis), analysis of collected data (Data collection
and analysis), and reporting (Analysis of the results). This is discussed in this

chapter.

4.1.1 Objectives

e To figure out if C++ projects or Java projects have better results with
respect to Chidamber and Kemerer metrics.

e In case there’s no a clear programming language with better design
quality, to figure out what metrics favor Java and what metrics favor
C++.

e To figure out if C++ or Java complies with all of our suggested ranges

for each metric.

4.1.2 Research questions

¢ What programming language gives projects with better design quality
with respect to Chidamber and Kemerer metrics?

e What metrics favor Java?

46

e What metrics favor C++?
e What programming language is more complied with our suggested

ranges for the metrics?

4.2.1 Project sample

We performed a comparison of 48 object oriented projects written in C++
and Java. This comparison was made with respect to the Chidamber and Kemerer
metrics: WMC, DIT, NOC, CBO, RFC, LCOM. We selected for our case study a
sample of 24 open-source projects in C++ from different domains. The source code
for the projects was obtained from the site of http://sourceforge.net. Projects were
selected randomly, and 3 projects were chosen for each different business domain,
including Business and enterprise, Audio and Video, Communications,
Development, Game, Graphics, Home and Education, Science and Engineering.
The data from these projects was compared with data obtained from 24

evaluations of similar projects in Java available from the site http://percerons.com/.

4.2.2 Data collection and analysis

For the data collection we used two categories of methods: indirect and
independent [33].

The indirect method does not require direct interaction with people and
instead we used “Maya C++”, the tool that we developed, to obtain data for the 24
C++ open-source projects. Results were generated in CSV files. These files were
further loaded into Excel to allow for data manipulation. The independent method
for data collection was used for Java projects as the data was already available in
the site percerons.com. The data was also imported into Excel tables to allow for

data manipulation.

For the analysis, we did a project by project comparison across metrics, in
order to study which projects have a higher percentage of classes whose metrics

are outside the suggested ranges for each one of the Chidamber and Kemerer

47

http://percerons.com/

metrics. Suggested ranges of values for the different metrics were taken from [25]

(see also 2.3.2) and are summarized here:

o WMC: <=24
e DIT: <=5

e NOC: <=5

e CBO:<=14
e RFC:<=24

e LCOM:O

Since we measure how many classes have values outside the suggested

ranges, higher percentages are undesirable while 0 is better.

This first analysis is normalized as it is independent of the project size.
However, we also performed a second analysis to understand how much the actual
metric value averages deviate from the suggested values. This second analysis is
not independent of project size, but it provides additional valuable information in

order to answer our research questions.

4.3 Results

We present the results using graphs and analysis of the data. In each graph
we illustrate the results that were obtained with respect to the percentage of the
total number of classes with non-suggested values for the six Chidamber and
Kemerer metrics. Each graph shows the 48 projects that were evaluated. The 24
Java projects and the 24 C++ projects are separated in the graph by a blank. Java
projects are shown on the left and range from “A Java Library for R. & W. Excel” to
“‘DBMantain”, and C++ projects are shown on the right and range from “Avogadro”
to “VVV”.

48

4.3.1 Results according to percentage of classes whose metrics are outside the suggested ranges

4.3.1.1 Results for WMC (Weighted Method per Class)

Percentage of classes per project with values outside suggested range for WMC
Java C++

50
40
30
20
10

TN WE T >2000 Y LEE000=%%>000d9U c O EC X0 UuBStEERIERS SRS YTTT g ER >
+ o= = — © — —= e U © O O = © [a)]
%52%%“&98%98£Q¥SB;§§E”>N 53 XI5 Z22;]c 0> PPO LN T ROTC =
s SanP o fEE X3 EELSTESSES2E §ESQ3ETEYERS2°83858783827

A C A — o O3 = ©] = —
EFTELENE 2883825788 3 98°BYESC 2553 &4 g QS
c 8 g — o) > 5 m W c < 7} S o
9o T W c 20 s E® T e s 2 <3 & o =0 e o £
= s 2 - < g 5 © >
o w £ (olNe) a

Figure 4.1 WMC results across the projects

The results for the WMC metric are shown in this graphic. The average of the percentage of classes per project with
values outside suggested range for Java projects (shown on the left) is 1.80 while the average for C++ projects (shown on
the right) is 15.58. Furthermore, out of 24 Java projects, 16 of them (66%) had no classes with values outside the
suggested range for WMC compared with only 2 (8.3%) for C++. In conclusion, the results for WMC were better for Java.
There is a marked difference between the projects in the two languages and we can conclude that classes in C++ projects
are more complex (since WMC measures the number of methods). This result may be explained by considering the result
on the analysis in the next metric (DIT): the analysis on DIT seems to favor C++, so possibly the approach in Java is to

design classes with fewer methods and to inherit more methods from other classes.

49

4.3.1.2 Results for DIT (Depth of Inheritance Tree)

Percentage of classes per project with values outside suggested range for DIT
Java C++

12
10

8

6

4

2

0 : d t : :

%] = = = = — [= i~ = O] ~
9L PE SIS0 5SS G EEXESELSE CEGSLYEEER TS ST 8BYESS
d 0= 0 85 B2 o ¥VWE OIS @TOoLZTOQL >5220 -c_g:HS;:uow-cuo;O.w*;;.ﬂf':mNgomm>
e E h PO S ESRB L LTESTSESCRSEEE §ERE=gEE¥ELgT83 58 284
c @28 g o} B U=%s35 = 5 S 5 © 25 3 00 g om =z s >3 o 2 a3 58 =
[~ T E 2 > x © O L o c 00 2o >g52 5SS o a = ~ = © D & 3
© E = o > = m®m Lwn & S a2 > > o c O Z o
> C = O © O ® Vv un 2 s o = w m I < [} S o = A =
58T W g 229583 L8888 S B z g 8 5 g2
5 O TP I<T o @ Sz o 32 € O & S =
5 Soc el 3 TR = € S 5 a2
>-LD_§ Q > © — w 9] el
© a e © £ 0 U > o =
Q 1S]

> [e) = v cC > < >
© %) < s ©
— > £ 8=
< > <

Figure 4.2 DIT results across the projects

The results for the DIT metric are shown in this graphic. The average of the percentage of classes per project with
values outside suggested range for Java projects (shown on the left) is 2.61 while the average for C++ projects (shown on
the right) is 0. Furthermore 17 out of 24 (70%) Java projects have no classes outside the suggested range, compared to
100% with Java. So, we can conclude that DIT is better for C++ projects; this may be explained because C++ allows
multiple inheritance, which means that a class can inherit from more than one class, avoiding the need for creating deeper

inheritance hierarchies.

50

4.3.1.3 Results for NOC (Number of Children)

Percentage of classes per project with values outside suggested range for NOC

Java C++
4
35
3
2.5
2
1.5
1
0.5
0 ; : = : 4 3
S UMe Ox >0 E S 0K OUU= %> 500 C o € 00 0T E £ LEE 2T ER SO0 0T X o>
CEES Y S H2325 95888552255 %ggﬂg:.28’03%2’»°§g°9°m88§%ﬁ'65~gc>
> 2T PSP ESPE I ESTEEORSE8E §ERESTE8¥50228385572¢88°
o C + A = - = o ‘= o © = s [J] = O
c © 1) n Y = = g £ o S @ > © OODQGJ c M =z 'S = o O _—
cx > 8 2 > x © O L v c 99028 >g505S o a i N4 = ®© =2 0 A g 9 9=
Sl Fg=52a R wa23SSsgfus 8 c g Z £ = 0 c O 6] .
= KS) g = o o < v ° -
:gﬂ-I o Eof_jgogﬂg x.gwgga © 8o g S s s 2
(e} c ¥ < T L= = o g O a Q =
® ca ,0 @ o E € = = & 8 S
- >~LD_§ o > - firm]] sl
< [a)] o e QE o > o <
o & <£ 2 = -
= £ =2

Figure 4.3 NOC results across the projects

The results for the NOC metric are shown in this graphic. The average of the percentage of classes per project with
values outside suggested range for Java projects (shown on the left) is 0.25 while the average for C++ projects (shown on
the right) is 0.88. Furthermore, out of 24 Java projects, 21 of them (87%) had no classes with values outside the
suggested range for NOC compared with 14 (58.3%) for C++. In conclusion, the results for NOC were better for Java. This
result may be explained by considering that since C++ supports multiple inheritance, more classes have more children.
This is related with the result we obtained for the DIT metric; given that the DIT metric has a better result in C++ it seems

that C++ programs tend to favor breadth instead of depth in the inheritance hierarchies.

51

4.3.1.4 Results for CBO (Coupling Between Object Classes)

Percentage of classes per project with values outside suggested range for CBO

Java C++

9

8

7

6

5

4

3

2

1

0)) =0 ; :
: 17 - y @ = < P P e R S T e G B U 61 ~ 5
2 PETFE TP LLTsXE G ELSE CERTLYTEED s E RSO O0RBEESZ
s 5 = @ h 2 o WE © > o 09 >538 < 3 S5 ®w3z3T w3 PO 2 v o N 05
s esf8CgBE o8 585085528 S gz ae ol EiEaazgs3
Y =] = o [} c —_ T 2 >
S P EE S35 88E 88 2a2es 25528882 2235 82998 Eiz

© == 0 = S S == LfTunEsl8a < v c O z a0

cgal © QL ®m @B a5 Ec gE® = @ T Y @ <5 [= < e Z o
5 g T w c0 =23 Q- ® x = 93 §o o 2 < o a © .° 2
= O Y <T ° @ “‘2;& Q 2 EO e g =
© S el 2 © g < IS c) A S
3 > s o > © o 9] 2
© a 3 g © £ 0o O > @] =
- S = <92 £ S
< s ;22

Figure 4.4 CBO results across the projects

The results for the CBO metric are shown in this graph. The average of the percentage of classes per project with
values outside suggested range for Java projects (shown on the left) is 1.40 while the average for C++ projects (shown on
the right) is 0.43. Furthermore, out of 24 Java projects, 17 of them (70.83%) had no classes with values outside the
suggestedrange for CBO compared with 19 (79.16%) for C++. In conclusion, the results for CBO were better for C++.
Higher CBO means that there exist more dependencies between classes. One possible explanation for the result is that
Java programs usually make a strong use of the extensive Java API so the higher number dependencies may be the

result of this.

52

4.3.1.5 Results for RFC (Response for a Class)

Percentage of classes per project with values outside suggested range for RFC
Java C++

:LA lﬂL:l/i I = =~ e o :U—‘O—J—ILH—J—J—LJ—JLU ; —:
T PESE528s a8 LESLLET xR gY s CERSI2ILLEEET s HO T oS EDZ
© 5= © P2 oc®WEBIL2c02=200 3] T 3528350l W2 g 12802t aNR OGS
5 0ELPO0RES WIS 5E2TEE 2832 ER¥>3cS8x¥3sgerdz @580 282>
eI TEES 585 .58 2858 S £9°&%8FC 2335 g8°°8 Eis
s T xES 3 - N R I v B) > £ T 5 s 26 zZ a3
S§al "8 <8898 sae@+E2zeEs @ <5 ¢ 2 T @ 2 o
<4 T [(o= © (@] 00 c

s 8 €O 8w x 8 g & =) c o a © =
= n =2 £ o 2 < 5 P g8 © e <
<O © A el A < s > A a o

£ s s) = £ c ey)

a = - - o

Figure 4.5 RFC results across the projects

The results for the RFC metric are shown in this graphic. The average of the percentage of classes per project with
values outside suggested range for Java projects (shown on the left) is 24.93 while the average for C++ projects (shown
on the right) is 35.25. Furthermore, out of 24 Java projects, only 2 of them (8.33%) had no classes with values outside the
suggested range for RFC compared with 0 (0%) for C++. In conclusion, the results for RFC were better for Java. Although
the results for Java were better in comparison to C++, the overall results for RFC are not good for either of the languages
since most projects are outside suggested values and the averages are relatively high. The recommended value for RFC
is at most 24 but maybe this number is difficult to maintain for complex projects, like the ones that are created today.
However, as we mentioned before, the threshold for some metrics was selected based on similar metrics of this set.

Therefore, these results can be used to adjust such thresholds.

53

4.3.1.6 Results for LCOM (Lack of Cohesion of Methods)

Percentage of classes per project with values outside suggested range for LCOM
Java C++

120
100
80
60
40
20

SV ME O >0 90U 4ok £ UY=L >>0090U C o C QO U C Y &+ &%= 2 5 = & s 0 @ T X =
Lt’cg>ub~—tn.g>wguocmm><q—_:5m>'— »Em03>m5twwmmgwmgum-gh.§9§
© = © © h 2 = © L 2 © 0 QO o o] T 3 5 £ =1 T 03z g 1 7Yt © N o @
o 0 = @) o O e v = += S © N a 9 (%) S
28R FofES ILULSESBES 252 $ERG393EYELE2%858557 282
=] A QO L = o 5 [© ©) Fall] S S E o -
] > T g 9 =O» L o g o 2 a o O v = Z = > — @] VU O ©
o' = = o< = < c @ O < © [o o O X o QA
S clag=>ag o _Qmﬂi’>wml-hﬂ>gc % zZ < 2 = %EO [] Z S 32
T 9o T wi = c 50 2o £ E o © 2 (@] T 3 2 = £
o £ a g - = o & o o S © =~
< O © = 3 = ® < 5 < o = g O &]
< c o wv = I = = o o
& = w -8 I}

Figure 4.6 LCOM results across the projects

The results for the LCOM metric are shown in this graphic. The average of the percentage of classes per project
with values outside suggested range for Java projects (shown on the left) is 81.13 while the average for C++ projects
(shown on the right) is 71.75. Furthermore, none of the studied projects both in Java and C++ had classes outside the
suggested range for LCOM. Considering the slightly lower average for C++, the results for LCOM were better for C++.
Although the results for C++ were better in comparison to Java, the overall results for LCOM are not good for either of the
languages since all of the projects are outside suggested values and the averages are high, which means that most of the
classes are outside suggested values. It is difficult to explain this metric in terms of language characteristics so it seems

that this is more a problem that developers introduce when designing their classes.

54

4.3.1.7 Analysis of the results for the first study

In the following tables, we summarize and show the results that were previously
described. The first table summarizes results for Java while the second table
summarizes results for C++. In each table, we highlight in green the best value
compared to the other language and in red the worst language compared to the
other language.

Average percentage of classes per project with values outside suggested ranges
(lower is better)

NOC CBO RFC LCOM

Java

Cr+ | o

Table 4.1 Average percentage of classes per project with values outside suggested

ranges

Percentage of projects with values within suggested ranges

(Higher is better) WMC DIT NOC CBO RFC ‘ LCOM

66% 87% 8.33%
Java

Cr+ |

Table 4.2 Percentage of projects with values within suggested ranges

In terms of the average percentage of classes per project with values
outside suggested range, there is a match, since each language is better than the

other in exactly 3 out of the 6 categories.

In terms of the percentage of projects with values within suggested range,
we can see that there is a direct relationship to the average: metrics with good (i.e.
low) averages also have the highest percentage of projects with values within
suggested range. This is valid for all of the metrics except LCOM where there were

no projects within the suggested values. We see that in the second row of the

55

tables that Java is better in 3 out of the 6 metrics while C++ is better in 2 out the 6

categories.

In general, the difference in the values of the averages is not considerable,
except for WMC. This means that, at least in the studied projects, C++ classes had

considerably more methods than their Java counterparts.

The high average percentages in RFC and LCOM for both Java and C++ and
WMC for C++ show that these are the metrics that are more difficult to maintain

within an appropriate range.

4.3.2 Results according to average of values of classes for each metric

We now perform an analysis of the values of each metric to understand how much

they deviate with respect to the suggested values.

56

4.3.2.1 Results for WMC (Weighted Method per Class)

AVERAGE VALUE FOR WMC PER PROJECT
Java C++

=
U1 O

S e O >0 Y E VW ok £ 0 U=%>+* 00U Cc o £ Q0 0T ERSEE2F SRRSO oo X = >
sE2e25S5c2Lao=sShERcTmoxcelgS < SCERESS2 o5t voagmesgoeocgoxE EOZ
o= 0o 8O0 @0 ¥ dmxg 2 ooz 0oQ 3 T 3 S & S W 3 T w3z g o 2t o N3 95 <
> EE S P0SESRPI L 5ESTT A0S ER¥Sc e oc83 557282
© @ B U= o C L = a 0O I © © 0 g o © ™ S >z o < + —
> 0 £ 9 S0 L O g o 2 a o O o @ zZ = > o] V U ®
s oo x . x 8 = « c @ O T > g 9 S o =) e} P © M A
STEF=52 $55L2L3cmuipg gc 2 2E 9 S 526 3 Z 23
_'80-1 - IEQODOQE‘U x =g S o © 20 z o o % © S
g »n =32 £ e} L 5 <] o £ 0 o S S
> O c 2 o 5 £ = . o (e}
© c [e] © X I c oy 3
- > 0O s =] o o)
< a K >
< <

Figure 4.7 WMC results across the projects (second group of results)

In this graph we can observe average WMC values obtained for Java projects (show on the left) and for C++
projects (shown on the right). The average for the values obtained in Java projects is 6.75 while the average of these
values for C++ projects is 16.27, so there is a considerable difference between the languages. Since the suggested value
range for WMC is <= 24, we see that in general projects are within the range. The difference in the averages between C++
and Java confirms that in general C++ classes are more complex than their Java counterparts in terms of the number of
methods. In general, we can conclude that WMC is a metric that is not so well respected in our C++ project sample, with

many projects having a significant percentage of classes with values outside the ranges.

57

4.3.2.2 Results for DIT (Depth of Inheritance Tree)

AVERAGE VALUE FOR DIT PER PROJECT

Java C++

35

3

2.5

2

1.5

1

0.5

0 H - HE P H H
[E 17 N S) = = S Y Y4 o L Y4 4 = L o O ~ —
cLe PE S5 LfoasRhERSTIsxalBY s CEHSLYTsELtED oMo oaRmooR2ELEDS
- 5= @ © 2 Vs gL 2@ 62200 g © 5 3 F¥LSZ2Zw2cwz: dPosoe N2 oz =2
E‘D-EED%DO‘“EQ%D<:""BE'CU“E':g;EE %'goﬁ262%¥3m:8&03§égm§g§>
c Q X e H U= 05 S L =0 QF = © © o 00 v v F® g™ =z S > =z o < k1l]
s x > 8 E S x 8 =& 9 c © O 28 g ¢ @ s o a & ~ = © 2 D & g 0 ©
o ¢c O - > @ 25 o 9 S S x5 oL wvw c > £ > v c O ° Z o S
Sgax & £8230e32E® kEs5fs & TS & = 32 < sV E

o o @ .
) m‘D’ZE'c a o < s < v 2 £ O = g >
© c o > I c =S 3
- > O s w]
< [a] > o
<

Figure 4.8 DIT results across the projects (second group of results)

In this graph we can observe average DIT values obtained for Java projects (show on the left) and for C++ projects
(shown on the right). The average for the values obtained in Java projects is 1.49 while the average of these values for
C++ projects is 0.75, so there is no so much difference in the average obtained for each one of these languages. Since
the suggested value range for DIT is <= 5, we see that in general projects are within the suggested range even though
C++ fares better. In general, we can conclude that DIT is a metric that is very well complied in our C++ project sample,
with no projects having any class with values outside suggested range. For Java projects, the metric is less well
respected, since a few projects had a small percentage of classes with value outside suggested range but in on average

all projects had values within suggested range.

58

4.3.2.3 Results for NOC (Number of Children)

AVERAGE VALUE FOR NOC PER PROJECT

Java C++

1

0.8

0.6

0.4

0.2

O H HEE HE HEE 1 1 .
> 9 WEC O X >0 UL VW ok g U0 =2%3>>09094 c o € Q0 0 @Y & B s e 25 s s 0 © T X = >
Et‘.gQ>u:5t®£>m§mcmmxu—_'ﬁm>'5 !-EMOE.ECBt%@mmﬁgﬁuﬂjum-56§9>
C o =0 38O 0 o ¥t &< © 6 2 =2 0w 3 T 2 S £ S & 0 8 2 9 ¢ h 2%t © N F 7} <
5855 0C8E8x cE2c2E828532f $Eg3§25838%5i¢°858557 233
=] 5 o =2 &L = o 5 i © S O ¢ o © IV} s > £ o = —
— > 8 £ 9 = un s 2 O o S a o O S = z > S = e} v O ©
[3 = 24 = c 9O O C © [} S us a [© m A
© © = 4 = o 9 = o n e > - o c O Z 9 3
S Sz 9 = © O B2 vz FEOEE 2 E S [e) < S [2 T o e — un £
o T w o 9 = @© o oo c =
o & IS - ®© x S o < [a) X c o o © ©
< O fw=3 £ a < £ < < o £ O 2 s >
= £5 ¢ 7 = - £ 5 3

a = - - O

Figure 4.9 NOC results across the projects (second group of results)

In this graph we can observe average NOC values obtained for Java projects (show on the left) and for C++
projects (shown on the right). The average for the values obtained in Java projects is 0.25 while the average of these
values for C++ projects is 0.15, so there is no so much difference in the average obtained for each one of these
languages. Since the suggested value range for NOC is <= 5, we see that in general projects are within the suggested
range even though C++ fares better. Although more C++ projects had values outside suggested range (see 4.3.1.3), on
average C++ projects have a better NOC value. In general, NOC is a well respected metric in our project sample since the
percentage of total number of classes with values outside suggested value per project did not exceed 4% and the

averages for all projects were within value range.

59

4.3.2.4 Results for CBO (Coupling Between Object Classes)

AVERAGE VALUE FOR CBO PER PROJECT

Java C++

8

7

6

5

4

3

2

1

0 H H HE H H
: : . — o o4 oy o4 2 — L 4 = O ~ >
£ £ 25 S5 22 855 %KLL B LT s xce o £ QL CEHSLYLTEET s HHO oo 8 FTTBTELELZ
L5 = © 52 5 W= © > o 0 ¢ >5 35 & © 3 S 2 w7 T w3 Y 02 L E @ N2 O G 2
S eE L SO0 RESBESIIELTZEESTSEE §E3¥38C82 332085858228 8°%
ceE PRSP 23558 E,382 238228 ¢sC°8°Ese 2233 82996 Egg
- T X £ < & o 8 ”‘Q:m——Im—.EE: S o [a) s T c O =% Z o 0O
C5a 2 78 <2R8g9S§izE@YETcLTa <5 o > 3 3 g 573
5 g T L Eo 8 3 S 8= x £ 02 ¢ A a0 5 S o © .2
= ie} T L < T - o ==z & 9] 8 g O a g =
© c o O = [c £ c = 3 S
> >-LD_§ Q > © — fir]] =
© a o © £ o U >) k=
- [£ -2 0 c > [>
< n <:m§ =

= 2 %

Figure 4.10 CBO results across the projects (second group of results)

In this graph we can observe average CBO values obtained for Java projects (show on the left) and for C++
projects (shown on the right). The average for the values obtained in Java projects is 4.08 while the average of these
values for C++ projects is 2.11, so there is no so much difference in the average obtained for each one of these
languages. Since the suggested value range for CBO is <= 14, we see that in general projects are within the suggested
range even though C++ fares better. In general, CBO is a well respected metric in our project sample since the
percentage of total number of classes with values outside suggested value per project did not exceed 8% and the

averages for all projects were within value range.

60

4.3.2.5 Results for RFC (Response for a Class)

AVERAGE VALUE FOR RFC PER PROJECT
Java C++

120
100
80
60
40
20

= Y= Y Y —_ : _:
L PESE 2L ROKLERETEFIISEYE L EHTLYEEESEEED ERESRTEEDRZ
C 6= O 52 5 Ws 3L 2@ 60 =0T P) 5 3 FL 32 wZT w2z PR 2eE e R B o5z
_Eo.z&%9m&gg°<:m6g:'cgi.:§§§é SEo¥=20c 28X JoegL*rdz@¥ds5s"z2382"
= o a5 0 = C L = a 0O '3 L © © o v © ™ s >z o s =
3 > ©]) v o > o O @ S o z = S = o 0 U ®©
o T E & > x © = & 9 ©c O O T & g ¢ U > = (a)] w >~ T & D o

© c O - > g S5 9 QY 5 s o v c = = v c O Z 2 3
2 oo T 8 2 R85 %50amE® E 3 € & Q < S [= T o e Z o e
© a ED 2 Eﬁm x = o = /=) L - o a] © =
P n = = o0 < 5 <] o £ 0 .© S >
<O © © = +— o

c & o v = = c o) Q

> O s o o Q n

@] > o

[

Figure 4.11 RFC results across the projects (second group of results)

In this graph we can observe average RFC values obtained for Java projects (shown on the left) and for C++
projects (shown on the right). The average for the values obtained in Java projects is 19.35 while the average of these
values for C++ projects is 38.67, so there is a significant difference in the average obtained for each one of these
languages. Since the suggested value range for CBO is <= 24, we see that only Java projects are within the suggested
range. In general, RFC is a not a well complied metric in our C++ project sample since there were no projects with any
classes with values outside the suggested range (see 4.3.1.5) and, furthermore, the average RFC values for C++ is
outside the suggested range. In the case of Java, only 2 projects had no classes with values outside suggested range, but

the rest of the projects had an average within the suggested range.

61

4.3.2.6 Results for LCOM (Lack of Cohesion of Methods)

AVERAGE VALUE FOR LCOM PER PROJECT
Java C++

4500
4000
3500
3000
2500
2000
1500
1000

500

: o u — o e Y Y o e Y= 4 = e o - O _~< ;
€L PSS 22855 3,88 S EFEBELE CEELLLEEEDEESS 8 B8 RTYEQS
= = © 7 2 WE T 3o oL 2 09 >53238 T 35 5 e£ 25 ®WMZ2T W3 g @B 02E N 0T
S AEZ YOS ES P L IELSTEESRLEE §ER¥ST BRI EELLT83¥s53 2848”7
4= m W O =g = o s c = a o5 o = © 20 o © 1) s S =g g =) =2 9
> s $ELEP2 5098 38E3 38282022 28°8°28C 22353 24 9 2 &5
©c S g 9 @© O ® v ou 2 2 2o+ %5 o o I < o] o =

o B = [T] T O —_ U
58 =< &0 EO0OS8 30568 = c 2 92 ¢ o o0 E; o o s = =
= O c VY < T L= = & 9] o £ O a b} =
© CQ-GJO o C o c IS e = o c
o =0 29 o} > © — I o n =
© a 5 £ T E o O > ©] =

- C
3) = = 9 c2 £ s
< s £ g p=

Figure 4.12 LCOM results across the projects (second group of results)

In this graph we can observe average LCOM values obtained for Java projects (shown on the left) and for C++
projects (shown on the right). The average for the values obtained in Java projects is 30.90 while the average of these
values for C++ projects is 332.78, so there is a significant difference in the average obtained for each one of these
languages. This difference can be explained by a few projects with excessively high LCOM values. Since the suggested
value range for LCOM is <= 0, we can see that in our project sample LCOM is respected at all since all projects had a very
important percentage of classes with values outside suggested range (see 4.3.1.6) and the average values of LCOM were

significantly above the suggested range.

62

4.3.2.7 Analysis of the results for the second study

In the following tables, we summarize and show the results that were previously

described. The first table summarizes results for Java while the second table

summarizes results for C++. In each table, we highlight in green the best value

compared to the other language and in red the worst language compared to the other

language. The second row displays if the average is within the suggested range of

values.

Java

General
averages

Suggested range

<=24

<=5

<=5

<=14

<=24

Average as

percentage of

range limit

28.1%

29.8%

5.12%

29.1%

80.6%

Average within the
range of suggested

values?

<

<

Table 4.3 Second general results for Java

C++

General

averages

Suggested range <=24 <=5 <=5 <=14 <=24
67.7% 15% 3% 15.1% 161%

Average as

percentage of

range limit

Average within

the range of
suggested
values?

<

v

Table 4.4 Second general results for C++

63

In terms of average of absolute values of classes per project, there is a match,
since each language is better than the other in exactly 3 out of the 6 categories. It is
interesting to observe that there is not a direct relationship with the results shown in
section 4.3.1.7. For example, for the NOC metric Java obtained better results in terms
of the percentage of projects with values within the suggested ranges and the average
percentage of classes per project with values outside of them, however in terms of the

general average, C++ obtained a better result.

In terms of average per project for each metric, we see in Java that the averages
for 5 out of the 6 metrics maintain a value within the range of suggested values. By
contrast, we have in C++ that the averages for 4 out of the 6 metrics maintain a value

within the range of suggested values.

If we compare these averages as percentages of range limit, we can see that
there are considerable differences in the languages except for NOC. For WMC, DIT,
CBO and RFC, the highest percentage is almost twice the lowest. LCOM cannot be
compared as a percentage and there is a huge difference between C++ and Java. This
difference, however, is due to a few (6) C++ projects that had excessively bad LCOM

values.

4.4 General analysis

Our projects sample shows that both languages seem to favor half of the
Chidamber and Kemerer metrics each. From this perspective, it is difficult to conclude if
any of the two languages is “better” than the other and results in higher quality
programs in terms of maintainability. However, if we take into account the other
evaluations in the tables of the two analysis (“Projects with values within suggested
range” and “Number of general averages for each metric within the suggested values”),
we see that Java has better results than C++, and also if we take into account the
metrics where the differences are considerable (WMC, DIT, CBO, RFC and LCOM), we
realize that Java is favored in more of those metrics (3). Therefore, if we look into detail
on the results, we could say that Java obtains a slightly better result in terms of the

quality in object-oriented design. This probably results in programs that are simpler to

64

maintain and modify. The result we present here is valid for the sample that we
selected; however, a study with a larger sample is necessary in order to conclude with

more certainty.

An interesting result observation is that LCOM is not a well complied metric all of
the projects. As we mentioned previously, we believe this metric has more to do with

class design than language characteristics.

It is worth mentioning that our results are very similar to the results found in [34]
by Michael English and Patrick McCreanor. These authors concluded that classes in
C++ systems tend to have more methods, which coincides with our result that WMC is
higher in C++ systems than their counterpart in Java. With respect to DIT, they found
that average DIT is larger in Java systems than their counterpart in C++ systems, which
also coincides with our result. With respect to NOC, these authors found no-significant
difference for average NOC in C++ systems and their counterpart in Java systems;
however, our result favors this metric in Java (in a normalized way), although of our
result, this metric is the one with a tighter result in its average between Java and C++.
For CBO metric, their result also shows no-significant difference in the average for C++
systems and their counterpart in Java systems; however, our result favors this metric in
C++ (in a normalized way), although of our result, this metric is the one with a tighter
result in its “Percentage of projects with values within suggested range” between Java
and C++. Finally, for RFC and LCOM, the final results of these metrics in the mentioned
work are the same to our results; RFC and LCOM are much higher in C++ systems than

their counterpart in Java systems.

65

4.5 Summary

In this section we have presented our experiment where we used Maya C++ to
gather Chidamber and Kemerer metrics data for a set of C++ projects. The results were
contrasted with data obtained from a previous study. We performed two different
analyses: the first one is independent of the project size while the second is not. We
also presented analysis for the data in each of the studies and a general analysis. The
results slightly favor Java over C++, however there is not enough evidence to declare
that Java is better than C++, we could say that there is a technical draw in terms of
quality of object-oriented design.. The following chapter provides the conclusion to this
thesis.

66

Chapter 5. Conclusion

5.1 Introduction

This chapter presents the threats to validity, the general conclusions with respect
to the objectives that were established in the introduction of this thesis and also

discusses contributions and possible future work.

5.2 Conclusions

The general objective of this project that we presented in the introduction was “to
establish if there is a noticeable difference in terms of maintainability as a consequence
of the use of a particular programming language”. This main objective was refined into a

set of specific objectives for which we now discuss whether they were achieved or not.

The first specific objective was “to understand the general concept of software
guality and how the Chidamber and Kemerer metrics suite can be used to support the
measurement of maintainability”. We can conclude that we met this objective, given that
we conducted a search on papers and websites of interest about quality, software
guality and software quality in object-orientation. With this task we extracted information
to get into the aforementioned concepts and establish a good base to support our
research. We realized how quality (in our case: software quality) can be understood as
a subjective term, but we can evaluate it through the construction of a quality model
composed by attributes and metrics.

The second specific objective was: “to conduct a study of existing software tools
that support the automatic calculation of Chidamber and Kemerer metrics for C++.” This
objective was met and the conclusion was that we found no open-source tool providing

coverage of the 6 Chidamber and Kemerer metrics to evaluate C++ projects.

This third specific objective was “to develop a tool that calculates the Chidamber

and Kemerer for C++ programs”. This objective was met through the development of

67

Maya C++ a tool whose requirements and architectural design were described in

chapter 3.

The fourth specific objective was “to perform an analysis of a sample of Java and
C++ programs with respect to the Chidamber and Kemerer metrics”. This objective was

met successfully.

In summary, we met all of the specific objectives that were established for the
thesis. In the last chapter we also provided a conclusion to our analysis which
established that for the project sample that we used, there seems to be a slight
difference in favor of Java over C++. The main objective was met; however, the sample

that was used needs to be extended to provide a more conclusive answer.

5.3 Future work

As with any research project, new directions appear as the project is performed.

In the context of this thesis, these are some areas that can be explored in the future:

o Extend the project sample. As we mentioned in the previous chapter, the project
sample was limited. Ideally we need a more extensive project sample. In terms of
Java, this is no problem since the percerons website provides an extensive
amount of data. In the case of C++, more work is required in order to find the
potential candidates.

o Release the tool as an open source project. As we saw in the study of tools that
was conducted as part of this project, there are no open source tools that
calculate the whole Chidamber and Kemerer set for C++. Releasing Maya C++
as an open source tool does not require much effort, only selecting a particular
license and hosting site.

e It would be interesting to conduct a similar study using additional metrics, for
example by complementing the Chidamber and Kemerer metrics set with the Li
and Henry set in order to observe the differences. This can be complicated by

68

the fact that the data in the percerons site does not include the Li and Henry
metrics and it would also require modifications to the Maya C++ tool.
It would be interesting to extend the comparison to other object oriented

languages. This, of course, would require more extensive work but would be
interesting nonetheless.

69

References

1: D. Garvin, "What Does "Product Quality" Really Mean?" Sloan Management Review, pp. 25-
45, Fall 1984

2: B. Kitchenham; S. L. Pfleeger, "Software quality: the elusive target", Software, |IEEE
Computer Society, 13 (1), pp.12-21, January 1996

3: Hans van Vliet, Software Engineering: Principles and Practice, (c) Wiley, 2007

4: C. Van Koten and A.R. Gray, “An Application of Bayesian Network for Predicting Object-
Oriented Software Maintainability”, Inform Software Tech, pp. 59—-67, Jan. 2006

5: http://www.sga.net/is09126.html - ISO 9126 Observations - July 2013

6: Ho-Won Jung; Seung-Gweon Kim; Chang-shin Chung, "Measuring software product quality:
a survey of ISO/IEC 9126" Software, IEEE, vol.21, no.5, pp.88-92, Sept.-Oct. 2004

7:www.bth.se/com/besq.nsf/(WebFiles)/CF1C3230DB425EDCC125706900317C44/$FILE/chapt
er_1.pdf - Software Quality Models and Philosophies - June 2013

8: J. Bansiya; C. G. Davis, "A hierarchical model for object-oriented design quality assessment,"”
Software Engineering, IEEE Transactions on, vol.28, no.1, pp.417, Jan 2002

9: B. Kitchenham, What's up with software metrics? — A preliminary mapping study, Journal of
Systems and Software, January 2010

10: R. Jabangwe, J. Borstler, D. Smite and C. Wohlin, "Empirical Evidence on the Link between
Object-Oriented Measures and External Quality Attributes: A Systematic Literature Review”,
Accepted for publication in Empirical Software Engineering: An International Journal, published
online March 8, 2014

11: S.R. Chidamber; C.F.Kemerer, A metrics suite for object oriented design, Journal IEEE
Transactions on Software Engineering, pp. 476-493, 1994

12: A. Ampatzoglou, A. Gortzis, I. Deligiannis and |. Stamelos, "A methodology on extracting
reusable software components from Open Source Games", ACM Proceedings of the 2012
MindTREK Conference (MindTREK 2012), 3-5 October 2012

13: A. Ampatzoglou, O. Michou and I. Stamelos, "Building and Mining a Repository of Design
Pattern Instances: Practical and Research Benefits", Entertanment Computing, Elsevier 2013

14: https://scitools.com/ - Understand for C++ - August 2014
15: http://www.spinellis.gr/sw/ckjm/ - CKJM - August - 2014

16: Bob Glushko, Models and measure of quality, http://courses.ischool.berkeley.edu/i290-
1/f08/lectures/ISSD-20081119.pdf , November 19 2008

70

17: Rubey, R. J.; R. D. Hartwick, "Quantitative Measurement of Program Quality," Proceedings,
ACM National Conference, pp. 671-677, 1968

18:http://www.sga.net/softwarequalityattributes.html - Software Quality Attributes - July 2013

19: J.A. McCall, P.K. Richards and G.F. Walters, "Factors in Software Quality", Nat',| Tech.
Information Service, Springfield, Va., 1977

20: http://www.iso.org/iso/home.html - ISO standards - August 2014

21: Ho-Won Jung; Seung-Gweon Kim; Chang-shin Chung, "Measuring software product quality:
a survey of ISO/IEC 9126," Software, IEEE, pp.88-92, Sept.-Oct. 2004

22: http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigms.html -
Programming Paradigms - July 2014

23: W.Li; S. Henry, Object Oriented Metrics which predict maintainability, Journal of Systems
and Software - Special issue on object-oriented software, pp. 111-122, 1993

24: M. Bunge, Treatise on Basic Philosophy: Ontology |: The Furniture of the World. Boston:
Riedel, 1977

25: http://www.aivosto.com/project/help/pm-oo-ck.html - Chidamber & Kemerer object-oriented
metrics suite - July 2013

26: http://www.ndepend.com - NDepend - July 2013

27: http://www.cppdepend.com - CppDepend - July 2013

28: http://www.scitools.com - scitools Understand - July 2013

29: http://www.campwoodsw.com/sourcemonitor.html - Campwood Software - July 2013
30: http://ccece.sourceforge.net/ - CCCC C and C++ Code Counter - July 2013

31: http://www.sei.cmu.edu/architecture/start/glossary/ - Glossary SEI - March 2015

32: Software Architecture: Principles & Practices - ©2014 Carnegie Mellon University

33: P. Runeson, Martin Host; Guidelines for conducting and reporting case study research in
software engineering; Empir Software Eng (2009) 14:131-164

34: M. English; P. McCreanor, Exploring the Differing Usages of Programming Language
Features in Systems Developed in C++ and Java, Limerick-Ireland, 2009

71

http://www.cmu.edu/

