

UNIDAD IZTAPALAPA

DIVISIÓN DE CIENCIAS SOCIALES Y HUMANIDADES

RENDIMIENTO ESCOLAR Y DESCENTRALIZACIÓN EDUCATIVA EN MÉXICO Y PERÚ. UN ANÁLISIS PARA EL PERIODO 2006 – 2017

TESIS

QUE PARA OBTENER EL GRADO DE DOCTOR EN ESTUDIOS SOCIALES (ECONOMÍA SOCIAL)

PRESENTA

LUIS AMADO SÁNCHEZ ALCALDE

Matrícula: 2163803247 Correo electrónico: luis.sanchezalcalde@gmail.com https://orcid.org/0000-0001-7501-4421

DIRECTOR: Dr. Roberto Gutiérrez Rodríguez SINODALES: Dr. David Arellano Gault Dr. Luis Huesca Reynoso

IZTAPALAPA, CIUDAD DE MÉXICO, 21 de Noviembre del 2022.

ÍNDICE GENERAL

DEDICATORIA		6
AGRADECIMIENTOS		7
RESUMEN		8
ABSTRACT		8
INTRODUCCIÓN		9
I. CAPÍTULO UNO. AN	NTECEDENTES TEÓRICOS Y EMPÍRICOS	14
I.1. Economía del Sector P	úblico	14
I.1.1. Justificación del Secto	r Público en la Economía de Mercado	14
I.1.2. Problemas del Sector I	Público	16
I.1.3. Sector Público y Nuevo	a Economía Institucional	19
I.1.4. Teoría de la Descentra	ılización Fiscal	21
I.2. Economía de la Educa	ción	28
I.2.1. La variable educación	en la teoría económica	28
I.2.2. Organización del Siste	ma Educativo	31
I.2.3. Función de Producció	n de la Educación	33
I.2.4. ¿Cómo se mide el rend	limiento escolar?	36
I.2.5. El rendimiento como n	nedida de calidad escolar	36
I.2.6. Financiamiento de la e	educación	38
I.2.7. Descentralización educ	cativa	41
I.3. Antecedentes Empírico	os	47
I.3.1. Estudios cuantitativos		47
I.3.2. Estudios no cuantitativ	vos	61
II. CAPÍTULO DOS. MA	ARCO TEÓRICO	66
II.1. ¿Qué es el rendimient	to escolar y cómo se produce?	66
II.2. Descentralización edu	ıcativa como insumo del rendimiento escolar	67
II.3. Rendimiento Escolar	y Descentralización educativa desde un enfoque positiv	vo 70
II.3.1. Política y agentes en l	la descentralización educativa	70
II.3.2. Modelo de McNollgas	st aplicado a la descentralización educativa	71
II.3.3. Modelo de Weingast d	aplicado a la descentralización educativa	74
III. CAPÍTULO TRES. M	IETODOLOGÍA	76
III.1. Aspectos generales		76
III.2. Fuentes de informac	ión	76
III.3. Función de Producci	ión de la Educación	76
III.3.1. Variables		78
III.3.2. Limitaciones y supue	estos del modelo	79
III.4. Modelo de Weingast	y McNollgast aplicado a la descentralización educativa	a 82

IV.	CAPÍTULO CUATRO. RESULTADOS8	5
IV.	1. México	5
IV	7.1.1. Análisis de la Función de Producción de la Educación	5
IV	7.1.2. Análisis del modelo de Weingast y McNollgast9	8
IV.	2. Perú	5
IV	7.2.1. Análisis de la Función de Producción de la Educación	5
IV	7.2.2. Análisis del modelo de Weingast y McNollgast	2
V. RECO	CAPÍTULO CINCO. CONCLUSIONES, REFLEXIONES Y OMENDACIONES DE POLÍTICA PÚBLICA130	0
V.1	. Conclusiones	0
V.2	. Reflexiones y discusión	1
V.3	. Recomendaciones de política pública132	2
REFE	RENCIAS BIBLIOGRÁFICAS13	5
ANEX	os14	4
Est	adística Descriptiva14	4
Pru	ebas econométricas y base de datos	1
	CUADROS	
a 1		^
	ro 1. Financiamiento y gestión del sistema educativo	
	ro 2. Resumen de la literatura empírica revisada	J
	ro 3. Tipología de modelos de descentralización de la educación en estudios no	
	itativos	
	ro 4. Entidades federativas de México por división geográfica7	
	ro 5. Departamentos del Perú por región natural73	
	ro 6. México: Correlación entre las variables de interés	
Cuad	ro 7. México: Datos de panel - rendimiento en español (Estimador Within)94	4
Cuad	ro 8. México: Datos de panel - rendimiento en español (Estimador Within) por	
dumm	y de región99	5
Cuad	ro 9. México: Datos de panel - Rendimiento en matemáticas (Estimador Within) 9	5
Cuad	ro 10. México: Datos de panel - Rendimiento en matemáticas (Estimador Within) po	r
dumm	y de región90	6
Cuad	ro 11. México: Modelos para tasa de aprobación primaria (estimador within)9	7
Cuad	ro 12. México: Modelos para tasa de aprobación Primaria (Arellano Bond - System &	ξ
Differ	ence GMM)9'	7
Cuad	ro 13. Perú: Correlación entre las variables de interés	1
Cuad	ro 14. Perú: Modelos para rendimiento en lectura (estimador within)11.	3

Costa
Cuadro 16. Perú: Modelos para rendimiento en matemáticas (estimador within) 116
Cuadro 17. Perú: Modelos para rendimiento en matemáticas (estimador within) con
dummy Costa
CUADRO 18. Perú: Modelo dinámico (Arellano Bond - System & Difference GMM) 120
Cuadro 19. Perú: Modelos para la tasa de aprobación primaria (estimador within) 121
Cuadro 20. Perú: Reglas formales de la descentralización educativa 126
FIGURAS
Figura 1. Países de ALC y su Rendimiento Escolar medio de PISA en Lectura y Matemáticas
(2009 y 2018)
Figura 2. Porcentaje de estudiantes de 15 años que se agrupan en los niveles más bajos de
desempeño, por debajo del nivel 2 (PISA 2018)11
Figura 3. Sistema de gobierno unitario
Figura 4. Sistema de gobierno federal
Figura 5. Representación del Modelo de McNollgast
Figura 6. Secuencia del cambio institucional
Figura 7. La eficiencia asignativa en el caso de los gobiernos locales24
Figura 8. Tipos de transferencias intergubernamentales
Figura 9. Dimensiones del sistema educativo
Figura 10. Proceso educativo
Figura 11. Interrelación de las dimensiones de la calidad educativa38
Figura 12. Categorías de organización y toma de decisiones en los sistemas educativos 42
Figura 13. Modelo del proceso educativo según FPE
Figura 14. Dimensiones de la descentralización educativa (DE)69
Figura 15. Modelo McNollgast aplicado a la Descentralización Educativa73
Figura 16. Secuencia de la falla de la descentralización educativa75
Figura 17. Mapas de México y Perú según regionalización
${\bf Figura~18.~M\'exico:~Evoluci\'en~de~los~indicadores~de~espa\~nol~y~matem\'aticas~seg\'un~EXCALE}$
3er grado, 2006 - 2014
Figura 19. México: Evolución de los resultados escolares (3er grado, puntaje promedio) por
entidad federativa, 2006 - 2014
Figura 20. Distribución regional de los resultados escolares (Inicio y Fin del periodo de
análisis)

Cuadro 15. Perú: Modelos para rendimiento en lectura (estimador within) con dummy

Figura 21. México: Gráfico de caja del puntaje en español, 2006 - 201489
Figura 22. México: Gráfico de caja del puntaje en matemáticas, 2006 - 201489
Figura 23. México: Rango Intercuartílico del rendimiento en español, 2006 - 2014 90
Figura 24. México: Rango Intercuartílico del rendimiento en matemáticas, 2006 - 2014 90
Figura 25. México: Tendencia de DEC a nivel nacional (2006 – 2017)91
$Figura~26.~M\'{e}xico:~DEC~promedio~por~entidades~federativas~(2006-2017)91$
Figura 27. México: Tendencia del DEC por entidades federativas $(2006-2017)$ 92
Figura 28. México: Análisis de dispersión de los rendimientos escolares y DEC según todas
las entidades federativas disponibles
Figura 29. México: Análisis de dispersión de los rendimientos escolares y DEC según
entidades del Norte
Figura 30. México: Análisis de dispersión de los rendimientos escolares y DEC según
entidades del No Norte94
Figura 31. PERÚ: Evolución de los indicadores de lectura y matemáticas según prueba ECE
2do grado, 2007 - 2016
Figura 32. Perú: Evolución de los resultados escolares (rendimiento satisfactorio) por
departamentos, 2007 – 2016
$\textbf{Figura 33. PER\'{U}: Distribuci\'on regional de los resultados escolares (Inicio y Fin del periodo)}$
Figura 34. Perú: Gráfico de caja del rendimiento satisfactorio en lectura, 2007 - 2016 108
Figura 35. Perú: Gráfico de caja del rendimiento satisfactorio en matemáticas, 2007 - 2016
Figura 36. Perú: Rango intercuartílico de los resultados escolares, 2007 - 2016 109
Figura 37. Perú: Tendencia de DEC a nivel nacional (2007 – 2016)
Figura 37. Perú: Tendencia de DEC a nivel nacional (2007 – 2016)
Figura 38. Perú: tendencia del DEC por departamentos (2007 – 2016)110
Figura 38. Perú: tendencia del DEC por departamentos (2007 – 2016)
Figura 38. Perú: tendencia del DEC por departamentos (2007 – 2016)
Figura 38. Perú: tendencia del DEC por departamentos (2007 – 2016)
Figura 38. Perú: tendencia del DEC por departamentos (2007 – 2016)

Dedicatoria

A la memoria de mi padre, Econ. Luis Humberto Sánchez Yactayo (Tito).

A Ana Elena, mi esposa, y a mi hija Luciana.

A mamá, papá Ramiro y familia mexicoperuana.

Agradecimientos

En primer lugar, a Dios, por su misericordia infinita. A México, mi segunda patria. Al Consejo Nacional de Ciencia y Tecnología – CONACYT, por haberme apoyado financieramente con seis años de posgrado y por apoyar a estudiantes de diversas latitudes, cuyas condiciones para realizar estudios de posgrado no siempre son las mejores. A la Universidad Autónoma Metropolitana (UAM), por haberme albergado en su programa de posgrado desde la maestría, y a la planta académica del programa MyDES por haber contribuido de manera tan determinante a mi formación profesional y a una especialización que se inscribe en el centro de los problemas del desarrollo económico y la economía social.

De manera especial a mi director de tesis, Dr. Roberto Gutiérrez, quien se comprometió con la causa desde el inicio. Al Dr. Enrique Minor quien orientó las ideas dispersas a un buen puerto, al Dr. Luis Huesca por su aporte pragmático y deductivo, al Dr. David Arellano por su aporte institucional. No debo dejar de mencionar al Dr. Ignacio Llamas y al Dr. Enrique Hernández por sus consejos académicos. Asimismo, desde la lejanía, gracias al Dr. Leonardo Letelier de la U. de Chile, y al mismo Henry Levin por darse el tiempo de responder mis dudas de principiante.

Finalmente, quiero agradecer a los economistas del mundo que se interesan por la educación. El reto no es fácil, pues entender los fenómenos que contiene esta rama de la ciencia económica significa entender no sólo las bases de la teoría convencional (la importancia del capital humano en el crecimiento económico), sino ahondar cada vez más en ciencias distintas a la economía, como la política. Estoy convencido que esta tesis aportará (incluso desde la crítica) al desarrollo de mejores políticas públicas sobre la educación básica, tanto en México como en Perú, pero también en otros países de la región. El trabajo claramente tiene un enfoque de economía social, pues trata de responder cómo las acciones económicas de los gobiernos dan forma a la educación básica.

Resumen

La presente investigación tuvo por objetivo analizar el rendimiento escolar y su relación con la descentralización educativa en México y Perú, países con sistemas educativos descentralizados, el primero federal y el otro unitario. A través de una estimación econométrica (basada en el marco analítico de la Función de Producción de la Educación) y un análisis teórico (fundamentado en los modelos de Weingast y McNollgast), los resultados de la tesis mostraron por un lado que no existe evidencia estadística suficiente para indicar que la dimensión económico – financiera de la descentralización educativa sea un determinante del rendimiento escolar en dichos países, por lo menos a nivel nacional. Por otro, se mostró que el entorno en donde se aplica el modelo de descentralización, carece de las condiciones institucionales necesarias para alcanzar las metas propuestas. Finalmente, de manera general se recomendó que tanto México como Perú deben poner atención a todas las dimensiones de su descentralización educativa, principalmente a la política y administrativa, las cuales influyen directamente sobre la económico-financiera.

Abstract

The objective of this research was to analyze school achievement and its relationship with educational decentralization in Mexico and Peru, countries with decentralized educational systems, the first federal and the other unitary. Through an econometric estimation (based on the analytical framework of the Education Production Function) and a theoretical analysis (based on the Weingast and McNollgast models), the results of the thesis showed, on the one hand, that there is no statistical evidence enough to indicate that the economic and financial dimension of educational decentralization is a determinant of school achievement in these countries, at least at the national level. On the other hand, it was shown that the environment in which the decentralization model is applied lacks the necessary institutional conditions to achieve the proposed goals. Finally, in a general way, it was recommended that both Mexico and Peru should pay attention to all the dimensions of their educational decentralization, mainly political and administrative, which directly influence the economic-financial one.

Introducción

Los economistas reconocen que la educación es importante para el crecimiento y desarrollo económico de los países (Hanushek, 2013), por lo que han procurado responder qué variables intervienen en su producción (Cameron et al., 2018; Brewer *et al.*, 2015; Hanushek, 2007; Mitch, 2004), y últimamente, cómo se lleva a cabo dicho proceso (Brewer *et al.*, 2015). Hay un consenso académico sobre las variables que determinan el rendimiento escolar, por ejemplo, las características socioeconómicas del alumno y los recursos de las escuelas; sin embargo, otras variables aún se encuentran en debate. En las últimas dos décadas, se ha puesto atención a la descentralización educativa como un potencial determinante, basándose en el supuesto de la teoría de la descentralización fiscal, propuesta por Oates (1977), la cual indica que la asignación del bien público local es mejor cuando esta es realizada por el gobernante local en comparación al central. Es decir, si la educación es asignada por los gobiernos locales en vez del central, entonces se producirá mejor rendimiento escolar.

Como consecuencia de adoptar esta teoría, varios gobiernos del mundo, incluyendo muchos de América Latina, han transferido las responsabilidades educativas del gobierno central hacia el ámbito local, esperando una mejora. La evidencia empírica señala que los resultados de esta política son mixtos, por lo que el efecto que tiene la descentralización sobre los resultados escolares no puede ser interpretado como un hecho estilizado. Por otro lado, las recientes líneas de investigación en la Economía de la Educación han procurado entender lo que acontece al interior del proceso educativo, obteniendo respuestas más allá de un análisis de producción neoclásico. Dado esto, actualmente la teoría de la Agencia y la Economía Neoinstitucional forman parte de los instrumentos teóricos en esta disciplina. La descentralización en este contexto ha sido abordada como una variable institucional, la cual representa diferentes aspectos, entre ellos la democracia en las decisiones educativas, por lo que su análisis también se encuentra en un campo de mayor interés.

De esta manera, analizando los datos internacionales sobre el rendimiento escolar en América Latina, se desprende que dicha región se encuentra rezagada en comparación al promedio de los países que conforman la OCDE. México y Perú no son la excepción, pues según el Programa Internacional de Evaluación de Alumnos (PISA) ambos países se ubicaron en los últimos lugares del *Ranking* Internacional en su versión 2018¹ (tercio

¹ Última versión a momento en que se desarrolla la tesis.

inferior). En esta evaluación, aunque México superó al promedio de la región de América Latina (ALC) en Lectura (420 puntos) y Matemáticas (408.8 puntos), se quedó atrás de Chile, Uruguay y Costa Rica, y por debajo del promedio de la OCDE, organización a la que pertenece (BID, 2020). En el caso peruano, el país se ubicó por abajo del promedio de ALC en Lectura (400.5 puntos), pero por encima en Matemáticas (399.8 puntos) (BID, 2020).

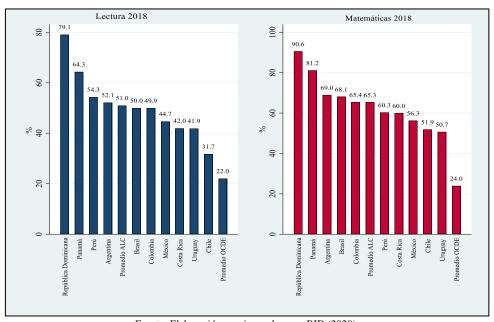
En la figura 1 se puede observar el comportamiento de ambos países en las evaluaciones respectivas para el año 2009 y 2018. En esta se aprecia que Perú, aunque se encuentra por abajo de México, avanza; mientras que este último decrece.

Lectura 2009 Lectura 2018 México Chile México Promedio ALC Trinidad y Tobago Costa Rica Brasil Matemáticas 2009 Matemáticas 2018 400 Chile Costa Rica Promedio ALC República Dominicana Chile Perú medio ALC México Costa Rica Colombia Trinidad y Tobago

FIGURA 1. PAÍSES DE ALC Y SU RENDIMIENTO ESCOLAR MEDIO DE PISA EN LECTURA Y MATEMÁTICAS (2009 Y 2018)

Fuente: Elaboración propia con base en BID (2020).

Ahora bien, según la OECD (2019), en el PISA 2018 sólo el 1% de los estudiantes evaluados en México obtuvo un desempeño en los niveles de competencia más altos (Nivel 5 o 6) en al menos un área, y el 35% no obtuvo un nivel mínimo de competencia (Nivel 2) en las tres áreas evaluadas. Según este reporte en dicho país:


El desempeño promedio se ha mantenido estable en lectura, matemáticas y ciencias, a lo largo de la mayor parte de la participación de México en PISA. Solo el desempeño en PISA 2003 (en lectura y matemática) fue significativamente inferior al desempeño de PISA 2018, y solo en PISA 2009 (en matemáticas) fue

significativamente superior al desempeño en PISA 2018. En todos los otros años y todas las otras áreas el desempeño promedio de México no fue distinto al observado en PISA 2018 (p.2).

En el caso peruano, según el reporte del MINEDU (2020), con base en el PISA 2018, sigue existiendo una mejora en Ciencias y Matemáticas observado desde el 2015 y a nivel de América Latina es el país que ha mostrado el mayor crecimiento en las materias evaluadas; sin embargo, no se puede evidenciar una mejora contundente en Lectura.

En cuanto a los niveles más bajos de desempeño, con base en los resultados del PISA 2018, se pudo observar que México tuvo un 44.7% de estudiantes evaluados en Lectura agrupado en los niveles más bajos, aunque este porcentaje estuvo por debajo de la región, estuvo muy por encima del promedio de la OCDE. En el caso de Matemáticas, el porcentaje fue de 56.3%, también por debajo de la región, pero muy por encima al promedio de la OCDE. El caso peruano es más agudo, pues el porcentaje de alumnos con una calificación por debajo del nivel 2 de desempeño fue del 54.3% en lectura, estando por encima del promedio de la región. En matemáticas, el porcentaje estuvo por abajo del promedio de la región, con 60.3% (ver figura 2).

FIGURA 2. PORCENTAJE DE ESTUDIANTES DE 15 AÑOS QUE SE AGRUPAN EN LOS NIVELES MÁS BAJOS DE DESEMPEÑO, POR DEBAJO DEL NIVEL 2 (PISA 2018)

Por otro lado, las evaluaciones nacionales de ambos países² muestran un rezago en los resultados en Lectura y Matemáticas, donde el nivel Satisfactorio o Básico no supera en promedio el 50% de los casos, complementando lo hallado en PISA.

Esta situación ocurre en un contexto donde tanto en México como en Perú la provisión de la educación pública se encuentra descentralizada como política pública. Esta política de modernización del sector público indica que dicha provisión ha pasado de ser un asunto estrictamente del gobierno central a ser una responsabilidad compartida entre los diferentes niveles de gobierno, cuya justificación se basa en la mejora del bienestar de los alumnos. Sin embargo, la literatura reciente advierte que la descentralización tendrá éxito si es que se tiene en cuenta los aspectos institucionales en su diseño, los cuales escalan más allá de los aspectos económicos y se enmarcan en las dimensiones política y administrativa. Por lo tanto, la interrogante que pretende responder la presente investigación es si la descentralización educativa es un determinante del rendimiento escolar en México y Perú, lo mismo desde su dimensión económico-financiera (enfoque del teorema de Oates) que política y administrativa (enfoque institucional de Weingast).

El teorema de descentralización de Oates señala que, bajo ciertos supuestos, la asignación de un bien público en manos de los gobiernos locales es más eficiente en el sentido de Pareto en comparación a la asignación en manos del gobierno central. Sin embargo, este es un enfoque normativo, y la teoría de la descentralización ha evolucionado hacia uno positivo, en que se indica que es cierto que ésta puede mejorar el bienestar local; no obstante, ello sucederá siempre y cuando se cumplan un conjunto de condiciones, las cuales se han denominado las condiciones institucionales de Weingast. Por lo tanto, las hipótesis que se pretenden falsar³ o comprobar, dada la pregunta de investigación, son las siguientes:

- La descentralización educativa en su dimensión económico-financiera es un determinante del rendimiento escolar en México y Perú, mostrándose así que la ejecución del gasto público local mejora la educación.
- El sistema educativo descentralizado en México y Perú cumple con el conjunto de condiciones de Weingast, evitando de esta manera una falla de gobierno.

² En México se tomó en cuenta las evaluaciones EXCALE y en Perú la prueba ECE.

³ En el sentido de Popper.

Dadas las hipótesis, el objetivo general fue conocer si la descentralización educativa es un determinante del rendimiento escolar en México y Perú en el periodo 2006 – 2017; mientras que de forma específica, se propuso comprobar, con base en el teorema de Oates y la teoría de la Función de Producción de la Educación, si la descentralización educativa en su dimensión económico-financiera tiene un efecto positivo sobre el rendimiento escolar; y con base en una aproximación del modelo institucional de Weingast, examinar si el sistema educativo descentralizado en México y Perú posee las instituciones necesarias para su éxito. Esto último permitió analizar la descentralización educativa desde su dimensión política y administrativa.

A manera de terminar esta sección, la relevancia o justificación de la presente investigación estriba en que, dada la enorme influencia de la educación en el crecimiento y desarrollo de las naciones vía la formación de capital humano, es necesario conocer qué factores determinan la calidad del aprendizaje de los estudiantes. Asimismo, al incluir la variable descentralización, la investigación se ubica en un contexto del campo científico relativamente nuevo y con proyección. Por otro lado, la investigación no sólo está diseñada bajo elementos cuantitativos, sino cualitativos, amalgama que permite entender el proceso educativo descentralizado más allá de los supuestos clásicos.

I. CAPÍTULO UNO. ANTECEDENTES TEÓRICOS Y EMPÍRICOS

En este capítulo se presenta la revisión de los fundamentos teóricos de la Economía del Sector Público y la Economía de la Educación. Asimismo, los trabajos empíricos recientes que anteceden al problema de investigación propuesto.

I.1. Economía del Sector Público

I.1.1. Justificación del Sector Público en la Economía de Mercado

La economía del bienestar tiene dos teoremas fundamentales (Stiglitz, 2000; Urrunaga *et al.*, 2014):

- Todo equilibrio Walrasiano o competitivo lleva a una situación eficiente en el sentido de Pareto.
- Un punto óptimo de Pareto implica la existencia de un equilibrio Walrasiano, es decir un equlibrio competitivo.

Para que exista eficiencia en el sentido de Pareto se requiere que la economía logre eficiencia en el intercambio, en la producción y en la combinación de productos (Stiglitz, 2000). Sin embargo, el mercado no siempre asigna de forma eficiente los recursos, lo que impide alcanzar el óptimo de Pareto, surgiendo así la necesidad de que el Estado defienda el bienestar social, por ejemplo, a través de la asignación de bienes públicos (Stiglitz, 2000). Ahora bien, según McAuley (2003) no existe una definición de Estado universalmente aceptada. Hay y Lister (2006), indican que este es un complejo institucional que reclama soberanía para sí mismo como la autoridad política suprema dentro de un territorio definido de cuyo gobierno es responsable. Otras definiciones indican que el Estado es un orden de convivencia de la sociedad (Serra, 1996), una institución dotada de poder económico y político que influye en la sociedad (Ayala, 2004) y una institución encargada de realizar el derecho en la sociedad civil (Ortegón, 2008). Ahora bien, como se mencionó, el mercado por sí solo no puede realizar todas las funciones económicas, por lo que el Estado se convierte en una institución necesaria para guiar, corregir y complementar al mercado (Musgrave y Musgrave, 1992).

Con base en Musgrave y Musgrave (1992), el Estado deberá hacerse cargo de la política presupuestaria. Esta política se basa en tres funciones principales: asignación (provisión de bienes y servicios públicos), distribución (reparto justo del nivel de la renta) y estabilización (correcto funcionamiento de la economía a nivel macro). Dichas funciones

pueden recaer en manos del gobierno central y los gobiernos locales, siendo algunas exclusivas del centro y otras compartidas (Oates, 1977; Musgrave y Musgrave, 1992; Bailey, 1999).

Dadas estas funciones, el Estado puede ejercer su gobierno de manera centralizada en la forma de un gobierno unitario (figura 3), pero también en la forma de un gobierno federal (figura 4). Mientras que en el gobierno unitario los votantes manifiestan sus preferencias para con el Gobierno Nacional y este a su vez de forma vertical se relaciona con los diferentes gobiernos subnacionales; en el gobierno federal los votantes tienen una relación directa con sus gobernantes subnacionales, pero también con el Gobierno Nacional (Donovan *et al.*, 2013). Sin embargo, como indicara Bailey (1999) un sistema federal no es necesariamente más descentralizado que un gobierno unitario.

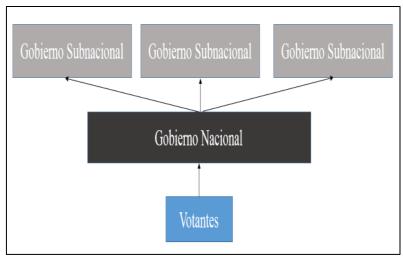


FIGURA 3. SISTEMA DE GOBIERNO UNITARIO

Fuente: Traducido y adaptado de Donovan et al. (2013). Nota: Este esquema teórico puede variar en la práctica dependiendo del sistema de cada país.

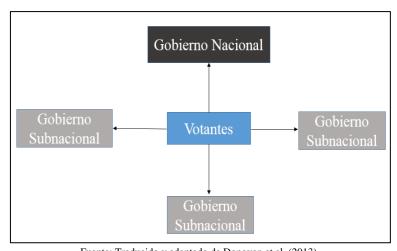


FIGURA 4. SISTEMA DE GOBIERNO FEDERAL

Fuente: Traducido y adaptado de Donovan et al. (2013). Nota: Este esquema teórico puede variar en la práctica dependiendo del sistema de cada país. Según Reyes (2006) un Estado con un modelo de gobierno unitario representa la forma más tradicional y sencilla de organización del poder político, remontándose a la Revolución Francesa, extendiéndose con las reformas napoleónicas y consolidándose en la Europa del siglo XIX. Por otro lado, un gobierno federal es la asociación constitucional de estados miembros no soberanos (Sánchez de la Barquera y Arroyo, 2011) en donde cada una las partes de la federación mantiene cierta autonomía, limitándose así el poder del gobierno central (Serra, 1996). En la actualidad, ambos sistemas de gobierno parecen asemejarse:

"En la realidad política actual, la distinción entre los dos tipos clásicos de Estado, unitario y federal, parece complicada por la aparición de fórmulas parciales e intermedias. Existen Estados unitarios muy descentralizados que se aproximan a los federales, y también existen Estados denominados formalmente federales que están bastante centralizados" (Reyes, 2006, p. 35).

I.1.2. Problemas del Sector Público

Elección Pública

Si bien la literatura considera la necesidad de un sector público en el mercado, también señala que en determinadas ocasiones su presencia no genera mejoras en el bienestar social. Esto es abordado por la teoría de la Elección Pública. Al respecto, Buchanan (2005) indica que "No se puede suponer que las correcciones políticas de los fallos del mercado lograrán los objetivos deseados" (p. 215). Por su parte, Kleiman y Teles (2006) indican que las fallas de gobierno son influyentes o penetrantes, pero no constantes, originándose muchas veces en aspectos intrínsecos al gobierno, pero también en la estructura institucional, cultura política y nivel de desarrollo político y económico. En este sentido, existe una tipología general de las fallas de gobierno relacionadas a sus causas. Para Ayala (2004) las fallas pueden clasificarse en dos tipos: por comisión y por omisión. Las primeras se relacionan a la asignación ineficiente de recursos, la operación ineficiente de las empresas públicas, la sobrerregulación de la economía e implantación de programas de inversión no sustentables. Por el lado de las fallas por omisión se encuentran aquellas fallas relacionadas por falta de información sobre el mantenimiento de la estructura pública, la desatención a la capacitación a la burocracia estatal y la falta de previsión de recursos para la reforma de la administración pública y/o aplicación de nuevas políticas. Sin embargo, como indica Hindmoor (2006) existen docenas de razones de por qué el gobierno falla.

Besley (2005) indica que no hay una sola noción de la falla gubernamental. Para el autor una de las nociones es la que asocia o compara la falla de gobierno con la falla de mercado, es decir, una asignación subóptima en términos paretianos. Sin embargo, según el autor, esta definición puede ser ambigûa y débil criterio. Un aspecto importante son las fallas de política, las cuales son un subconjunto de las fallas de gobierno. Dichas fallas pueden surgir porque las políticas seleccionadas son deficientes o porque los medios para escoger (incluso buenas) políticas son muy costosos. Existen tres fuentes o causas generales de las fallas de gobierno: La ignorancia de los hacedores de políticas, que puede llevar a una política ineficiente en el sentido de Pareto; la influencia de los grupos de poder, donde ocurren los casos de corrupción y la búsqueda de rentas (*rent seeking*) lo que lleva a influir negativamente en el resultado de la política aplicada; y la calidad del liderazgo del hacedor de política.

En el mismo sentido, pero recientemente, Keech y Munger (2015) han elaborado una ineteresante anatomía de las fallas de gobierno. Para los autores, la falla de gobierno como concepto se debe entender como la situación en que el Estado al momento de asignar los recursos simplemente no cumple con el nivel óptimo de Pareto requerido por la economía del Bienestar. Dichas fallas han sido clasificadas en dos tipos: las sustantivas, que comprenden la capacidad o falta de voluntad para mantener el orden, las políticas fiscales y monetarias sólidas y para reducir los riesgos de costos de transacción; y las fallas de procedimiento, que son las insuficiencias de los mecanismos de elección social disponibles, conllevando a decisiones colectivas arbitrarias, caprichosas o manipuladas.

Teoría de la Agencia en el Sector Público

Panda y Leepsa (2017) indican que el problema de la agencia es muy antiguo y persiste desde la evolución de las sociedades anónimas. Dicha teoría, indican los autores, atraviesan diferentes campos de estudio tales como la economía, las finanzas, la ciencia política, la sociología, entre otros. Jensen y Meckling (1976) definen una relación de agencia como un contrato, en donde un principal conviene con un agente para que este último haga servicios en su nombre, lo que implica una delegación de autoridad. Asimismo, los autores indican que si ambas partes son maximizadoras de utilidad entonces existen razones para creer que el agente no siempre actuará a favor de los intereses del principal. El problema radica en la información asimétrica, puesto que el principal no puede observar las acciones del agente. La información asimétrica según Goolsbee *et al.* (2015) es una situación en la que hay un desequilibrio en la información

entre los participantes en una transacción económica. En el problema de agencia esta transacción implica una situación de jerarquía, donde el principal manda al agente (Milgrom y Roberts, 1992).

Generalmente, la literatura indica dos tipos de problemas de información asimétrica en donde se puede observar un problema de agencia: (i) selección adversa y (ii) riesgo moral. La primera se refiere a la situación en las que las características del mercado producen la existencia de muchos bienes de calidad baja y pocos de calidad alta, lo que genera la incertidumbre de una correcta elección. Por otra parte, el riesgo moral es una situación en donde en una transacción económica una de las partes no puede observar el comportamiento de la otra, esto luego de haber firmado un contrato (Goolsbee et al., 2015). El problema de la información asimétrica sustenta el problema de la agencia, el objetivo es minimizar esto. Jensen y Meckling (1976) indican que el principal puede limitar el comportamiento del agente a través de incentivos apropiados. Shepsle (2016) indica por su parte que el principal querrá controlar las acciones del agente a través de dos maneras: (i) antes del contrato, que puede incluir referencias del performance del agente; y (ii) después del contrato, que puede incluir penalidades sobre el desempeño del mismo. El limitar el comportamiento del agente y por ende controlarlo será importante para los beneficios del principal. Este último siempre deseará el máximo esfuerzo del agente, quien representa el componente más importante en el contrato, cuyo desempeño dependerá de su habilidad, motivación y oportunidad perfecta Panda y Leepsa (2017).

En una organización privada, el principal está representado, por ejemplo, por los accionistas de una empresa, mientras que los agentes son los administradores (Hughes, 2003); en el caso del sector público la identificación de estos personajes es difícil de distinguir (Hughes, 2003), aunque de manera general se puede determinar que los políticos gobernantes actuarían como el principal; mientas que los burócratas como los agentes (Shepsle, 2016). Lane (2005) indica por su parte que el principal está personificado por la administración y el agente o agentes por los proveedores y productores de servicios y bienes. Asimismo, Oliveira y Fontes (2017) indican que en el sector público el problema de agencia está relacionado con la teoría de la Elección Pública, en donde el principal está representado por los votantes, mientras que el agente por el Estado. La idea central, indican los autores, es que los burócratas no tienen necesariamente los mismos intereses que los políticos o los ciudadanos.

Por otro lado, Shepsle (2016) menciona el modelo de McNollgast ⁴ como una representación del problema de agencia en el sector público. Dicho modelo indica que cada vez que una ley crea una nueva agencia pública entonces se establece una relación principal – agente, en donde se presenta la llamada Rendición de Cuentas⁵, que en el caso del sector público es más agudo en comparación al privado (Hughes, 2003). El modelo de McNollgast indica que hay un principal representado por una coalición promulgadora, mientras que el agente por la entidad burocrática. El principal quiere que el agente cumpla una determinada política tal como *x*, este último querrá salir del control del principal para cumplir una política tal como *Y* (acorde a sus propios intereses). Dado la existencia de un castigo sobre el agente, estos elegirán una política tal como *x*′, es decir lo más cercano a *Y*. La diferencia entre *x* y *x*′ se conoce como la deriva burocrática, que a su vez forma parte de la llamada desliz de agencias. Para controlar la deriva burocrática se aplicará los llamados controles de procedimiento, es decir, las reglas y reglamentos de cómo los agentes deberán actuar. En la figura 5 se muestra el modelo de McNollgast adaptado de Shepsle (2016).

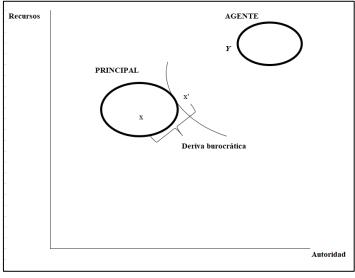


FIGURA 5. REPRESENTACIÓN DEL MODELO DE MCNOLLGAST

Fuente: Adaptado de Shepsle (2016, pág. 351).

I.1.3. Sector Público y Nueva Economía Institucional

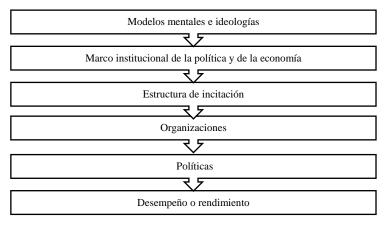
En el sector público se hace preponderante analizar las reglas de juego, es decir, las instituciones. Según López (2016) son tres las escuelas de pensamiento neoinstitucional

19

⁴ Esto referido al trabajo de McCubbis, Noll y Weingast señalado por Shepsle (2016, p. 349).

⁵ El término en inglés es accountability.

más importantes en el ámbito de la Ciencia Política: Neoinstitucionalismo Histórico, Neoinstitucionalismo Sociológico y Neoinstitucionalismo de la Elección Racional, siendo esta última la escuela vinculada con el Neoinstitucionalismo Económico de Douglas C. North. El autor indica que estas escuelas tienen el principal objetivo de aclarar el papel que las instituciones juegan en la determinación de los resultados políticos y sociales. Siguiendo al Neoinstitucionalismo de la elección racional, López (2016) señala que una "buena institución es aquella que produce resultados eficientes o establece un patrón constante de maximización de la utilidad para algún grupo político." (p. 61).


Según Laffont y Martimort (2002) las instituciones son tan importantes en la teoría económica moderna pues se busca saber cómo diseñarlas de forma que provoquen buenos incentivos en los agentes económicos. Existen dos tipos de instituciones, formales e informales, las primeras se refieren a las normas político-legales y las otras son los códigos de conductas tradicionales y cultura política (Brue y Grant, 2009; Mariscal, 2010). Chavance (2018) indica que para North las instituciones formales e informales no están sujetas a las mismas temporalidades de cambio:

Si las primeras cambian de manera relativamente fácil o de un solo golpe, las segundas no se modifican más que progresivamente. Por ello las transformaciones revolucionarias jamás son tan profundas como lo quisieran sus partidarios o porque la transferencia o la imitación de las instituciones formales desde un país a otro no dan los resultados esperados (p. 90).

La interacción entre organizaciones e instituciones es crucial en la idea de North. Según Chavance (2018), North realiza una distinción entre organizaciones e instituciones, donde las primeras y sus empresarios son los jugadores, mientras que las segundas son las reglas de juego. Existen varios tipos de organizaciones: políticas, económicas, sociales y educativas. Por otro lado, López (2016) indica, con base en el pensamiento de North, que la falta de información genera problemas que las instituciones pueden solucionar. La falta de información trae consigo costos de transacción, estos pueden disminuir por la construcción de instituciones que regulen la interacción de los individuos en los mercados económicos y políticos. El mismo autor también señala que la incorporación del análisis institucional en las acciones de gobierno implica el establecimiento de un conjunto de reglas y normas que influyen en las elecciones.

Un aspecto importante en el Neoinstitucionalismo es el cambio institucional que plantea North, es decir, el proceso de cambio que comienza con los modelos mentales y las ideologías, para finalmente causar el desempeño o el rendimiento (ver Figura 6).

FIGURA 6. SECUENCIA DEL CAMBIO INSTITUCIONAL

Fuente: Adaptado de Chavance (2018).

Hodgson (2007) por su parte indica que en el Neoinstitucionalismo incluye convenciones de tránsito, es decir, si la mayoría sigue una regla, entonces todos los agentes la seguirán; de esta manera la convención emergente es reforzada e institucionalizada, dicha institución ejerce la enculturación sobre el individuo y se repite el ciclo.

Un aporte importante del estudio de las instituciones es la aplicación que hacen Acemoglu y Robinson (2012), quienes indican que las instituciones fomentan la prosperidad económica. Con base en una revisión de la historia, la política y la geografía, señalan que las instituciones son incentivos causantes de la riqueza y la pobreza del mundo.

I.1.4. Teoría de la Descentralización Fiscal

Tipos de descentralización

Milgrom y Roberts (1992) indican que la descentralización tiene que ver con la toma de decisiones realizadas por un grupo de individuos, diferente al escenario en donde la decisión la toma un solo individuo o grupo de estos de manera central e impuesta; asimismo, indican es probable que ni la descentralización total ni la centralización completa sean óptimas, por lo que el problema final es determinar qué aspectos de la decisión general deben dejarse a varios individuos, cuáles no deben descentralizarse y qué información usar.

La literatura advierte distintas formas de descentralización. Según Bailey (1999) esta puede ser: (i) económica, (ii) política y (iii) administrativa. El mismo autor indica que la economíca se encuentra en la teoría de descentralización fiscal, la política en el campo de la ciencia política (la cual comprende la devolución de las decisiones políticas del centro hacia los gobiernos locales); mientras que la administrativa en la teoría administrativa y organizacional. Siguiendo a Finot (2001), se debe destacar que esta última tiene a su vez tres formas: (i) desconcentración, (ii) delegación y (iii) devolución y privatización

Según Schneider (2003) existe una confusión conceptual en la investigación de la descentralización, esto producto de la fuerte interrelación de sus dimensiones o formas. En este sentido, los investigadores tienen múltiples conceptualizaciones sobre el tema. Para el mencionado autor, la descentralización se basa o se clasifica en tres dimensiones: (i) federalismo fiscal, (ii) administración pública y (iii) descentralización política. Una dimensión puede llevar a otra, como explica el mencionado autor; por ejemplo, la descentralización fiscal puede generar una mayor descentralización administrativa bajo ciertas condiciones.

Sin embargo, la teoría del federalismo fiscal funge como base teórica de los diferentes tipos de descentralización. Bailey (1999) indica que dicha teoría es una aproximación al estudio de la economía de los gobiernos locales, quienes son los responsables de la asignación del llamado bien público local. Los principios de esta teoría pueden aplicarse no sólo a países con gobiernos federales, sino también en el caso de los unitarios.

Federalismo Fiscal. El enfoque normativo

El federalismo fiscal puede definirse como una política que tiene un concepto bidimensional: "La dimensión uno..., es aquella que apela a la participación de los niveles subnacionales de gobierno en los recursos [ingresos y gastos] del gobierno general...La dimensión dos está referida al rango de competencias y/o atribuciones que los gobiernos subnacionales poseen respecto de esos mismos recursos" (Letelier, 2012, p. 25). Para Piffano (2004) es "la sección de las finanzas públicas que trata sobre la estructura vertical del sector público, compuesto por dos o más "niveles de decisión" (p. 28). Para Stiglitz (2000) es el reparto de las responsabilidades económicas entre la administración central y las regionales y locales, la cual ha sido objeto de un permanente debate.

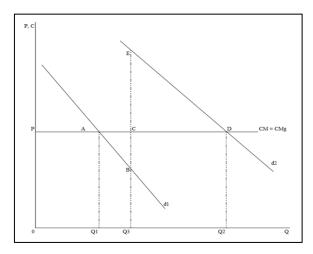
Existen dos tipos de enfoques de esta teoría: Primera y Segunda Generación. Respecto a la primera generación (FFPG por sus siglas en inglés), esta toma en consideración las

funciones del sector público propuestas por la teoría musgraviana⁶, mientras que la segunda generación (FFSG por sus siglas en inglés) tiene un enfoque positivo. La combinación de un gobierno totalmente centralizado y otro descentralizado origina lo que se conoce como el modelo del gobierno federal, cuya definición es la siguiente:

Un sector público con niveles centralizados y descentralizados de toma de decisiones, en el que las elecciones hechas a cada nivel respecto a la provisión de los servicios públicos están determinadas en gran medida por la demanda de estos servicios por los residentes en las respectivas jurisdicciones (y tal vez por otros que desempeñan actividades en ellas) (Oates, 1977, p. 35).

El teorema de descentralización de Oates, que es la base del FFPG, indica lo siguiente:

Para un bien público -cuyo consumo está definido para subconjuntos geográficos del total de la población y cuyos costes de provisión de cada nivel de output del bien en cada jurisdicción son los mismos para el gobierno central o los respectivos gobiernos locales- será siempre más eficiente (o al menos tan eficiente) que los gobiernos locales provean los niveles de output Pareto-eficientes a sus respectivas jurisdicciones que la provisión por el gobierno central de cualquier nivel prefijado y uniforme de output para todas las jurisdicciones (Oates, 1977, p. 59).


Dado esto, la justificación de la provisión del bien o servicio público a nivel local es una cuestión de eficiencia. En la figura 7, con base en Bailey (1999), se muestra que dada las distintas preferencias de la demanda de bienes y servicios en un determinado territorio es mejor que la asignación de los bienes sea dada en distintos niveles. Si el gobierno central ofrece un bien público tal como Q3 pero la cantidad demandada a nivel local están representadas por Q1 y Q2 entonces se producirá una pérdida de bienestar en ambos casos, dado que en el primero la población cuya curva de demanda es d1 se verá obligada a consumir una cantidad tal como Q3 (más que la cantidad de su preferencia); mientras que en el caso de la población del grupo cuya demanda es d2 sólo podrá consumir Q3 (menos que la cantidad de su preferencia). Por lo tanto, será mejor que para cada demanda exista un nivel de gobierno que asigne las cantidades, en este caso dado que existe demandas diferenciadas deben existir dos gobiernos locales⁷.

-

⁶ Referidas a Richard Musgrave quien ya había teorizado para entonces sobre la Hacienda Pública.

⁷ Bailey (1999) define a los gobiernos locales como aquellas autoridades subcentrales que son elegidas democráticamente y cuya responsabilidad es proporcionar servicios públicos a la población de su jurisdicción para que esta mejore su bienestar económico.

FIGURA 7. LA EFICIENCIA ASIGNATIVA EN EL CASO DE LOS GOBIERNOS LOCALES

Fuente: Traducido y adaptado de Bailey (1999, p. 20).

Como indica Bailey (1999), la descentralización facilita el acercamiento de los bienes públicos a las preferencias reduciendo las inherentes ineficiencias de un sistema centralizado. Asimismo, Finot (2001) indica que la descentralización atiende las demandas territorialmente diferenciadas. En este sentido, la descentralización es un proceso complejo. Di Gropello (1999) indica que: "la descentralización promueve una nueva distribución de papeles y poderes entre los actores institucionales preexistentes, de tipo territorial o no territorial, y trae consigo modificaciones profundas en el ámbito político-institucional, financiero, de la participación comunitaria, y otros" (p. 154).

Por otro lado, las medidas clásicas de descentralización se basan según su tipo o forma. Schneider (2003) indica que existen indicadores para medir la descentralización fiscal, administrativa y política. Por ejemplo, la descentralización fiscal, la más sencilla de medir, utiliza distintos ratios financieros. Por ejemplo, en el trabajo de Goel *et al.* (2017) se usó el ratio del gasto local respecto al gasto del gobierno general. Este indicador a su vez se basa en Ivanyna y Shah (2014) quienes lo denominan como un indicador de gasto local autónomo.

Las otras medidas de descentralización son más complejas de medir y se abordarán someramente en los siguientes párrafos.

Federalismo Fiscal de Segunda Generación

Este aspecto teórico del federalismo fiscal se basa en un enfoque positivo de la economía pública, es decir, el federalismo fiscal bajo la influencia de la teoría de la Elección

Pública, la teoría de la Agencia y el Neo-Institucionalismo. Oates (2008) indica que las ideas cambian cuando acontecen crisis, y la teoría de descentralización fiscal no es la excepción.

Según Oates (2005), la nueva teoría de la descentralización fiscal, que tiene un enfoque de economía política, se basa en (i) la teoría de la elección pública y (ii) la teoría involucrada en los problemas de información asimétrica. La primera estudia "las decisiones políticas desde el punto de vista económico" (Urrunaga et al. 2014, p. 100), poniendo atención al comportamiento de los políticos, burócratas y votantes de una manera no idealizada (Buchanan, 2005). Lo segundo forma parte de un conjunto de teorías como el problema de la Agencia. En los párrafos siguientes se explicará estos dos componentes que soportan a la economía política de la descentralización fiscal.

El aporte de la Elección Pública se basa, en términos de Oates (2005), en los cambios que ha generado sobre la teoría tradicional del Estado benevolente. Los gobernantes no son aquellos agentes benevolentes que proponía la visión de Arrow-Musgrave-Samuelson, allá por 1950, sino que estos toman sus decisiones racional y egoístamente (Mueller, 1984), y en este sentido, la perspectiva normativa de la descentralización cambia (Oates, 2005). De forma particular, Brennan y Buchanan (1980), quienes mencionan que el sector público es como un Leviatán, indican que limitar el dominio del gobierno central en la asignación de bienes y servicios es necesario, siendo más eficiente que esta función sea entregada a los gobiernos locales (esto es clave en la teoría de la Elección Pública).

Sobre el otro punto, el problema de información asimétrica, Finot (2001) indica que:

Otro análisis útil para estudiar los procesos de descentralización es el modelo denominado "principal-agente". Este modelo fue desarrollado inicialmente por Daniel Levinthal (1988) para analizar el interrelacionamiento entre dos organizaciones económicas en la que una es agente de la otra y luego fue aplicado por David Heymann (1988) al caso en que los gobiernos entregan márgenes de libertad a las burocracias para que produzcan servicios públicos (p. 31).

Sin embargo, según Hughes (2003), la relación principal—agente no sólo se aplica en la relación entre los diferentes actores que intervienen en la acción gubernamental, sino que también se puede aplicar a la relación que existe entre la ciudadanía y el gobierno, siendo el primero el principal y el otro el agente que ofrece una rendición de cuentas a cerca de las políticas ejecutadas. Con base en Oates (2005) se pueden reconocer dos aplicaciones

del modelo principal-agente en la teoría de descentralización fiscal. La primera es aquella en donde el gobierno central es el principal y los agentes son los gobiernos locales. Esto representa el análisis de la estructura vertical del sector público. La segunda coloca a los ciudadanos como principales y los gobiernos locales como agentes. Esto en el contexto del proceso electoral. En este último caso Oates (2005) indica que la descentralización ofrece una mejor rendición de cuentas dado que no existirá un único agente quien tenga que responder a los ciudadanos, sino que habrá un agente por cada jurisdicción. Asimismo, dado que el problema del modelo principal-agente es la información asimétrica, la solución es la elaboración de un contrato que elimine la deriva burocrática, es decir, que los gobiernos locales utilicen los recursos centrales para la aplicación de la política requerida a través de contratos que eviten conflictos de intereses (Finot, 2001), es decir, al final va a depender del diseño institucional aplicado (Przeworski, 1996 en Arredondo, 2001) que incluye la correcta gestión de la organización pública asegurando así la coordinación (Milgrom y Roberts, 1992).

En el campo de la segunda generación es destacable el trabajo de Barry Weingast, quien indica que el FFSG estudia el problema del federalismo desde la óptica de los incentivos fiscales y políticos que enfrentan los funcionarios locales. El autor indica que no hay una razón natural para creer que los funcionarios locales favorezcan los intereses de los ciudadanos (Qian y Weingast, 1997) y con base en el trabajo de Litvack *et al.* (1998) indica que la descentralización no es buena ni mala para la eficiencia, la equidad o la estabilidad macroeconómica, sino que sus efectos dependen de las instituciones⁸. La pregunta que deriva de esto último es: ¿qué instituciones son necesarias para que los funcionarios se incentiven a mejorar el bienestar social en el contexto de la descentralización fiscal? La respuesta estaría en un conjunto de cinco condiciones (Weingast, 2009):

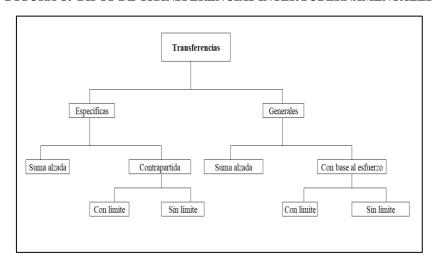
- 1. Jerarquía: La correcta definición de la estructura vertical que existe en la relación entre el gobierno central y los gobiernos locales.
- **2.** Autonomía subnacional: El conocimiento de los gobiernos locales respecto a sus potestades gubernamentales (asignación de bienes y servicios y regulación de la economía local). Sin autonomía local se dificulta la rendición de cuentas.

-

⁸ Esto también se puede relacionar con la propuesta de Prud'homme (1995).

- **3.** Mercado común: La estructura de mercado que propicie la competencia entre las distintas jurisdicciones.
- **4.** Restricción presupuestaria dura: El salvataje de parte del gobierno central no puede ser visto como la "salvación financiera" de los gobiernos locales.
- **5.** Autoridad institucionalizada: Respeto a las reglas dadas, tanto de parte del gobierno central como local.

Al modelo de descentralización que recoge estas cinco condiciones se le conoce como federalismo protector de mercado⁹ e indica que la competencia de los gobiernos locales otorgaría la prosperidad económica local deseada, dado que esta generaría incentivos fiscales que conllevarían a una economía local saludable. Entonces, la ausencia de una o más de las condiciones señaladas implica alguna forma de ineficiencia o patología (Weingast, 2009). Por su parte, Letelier (2012) señala que el análisis de este modelo no es tan intuitivo si se pretende utilizar datos de ingresos y/o gastos públicos (como en el caso del FFPG) puesto que los canales específicos a través de los cuales las instituciones producen incentivos son múltiples y difíciles de cuantificar.


Transferencias intergubernamentales

La descentralización puede conllevar a efectos no deseados, dado que las jurisdicciones no son iguales. Para evitarlos, el gobierno central hace uso de subsidios llamados transferencias intergubernamentales, las cuales representan la financiación de la descentralización y son exclusivas de los gobiernos locales (Letelier, 2012; Bailey, 1999). En términos generales, las trasferencias deben ser usadas para la eficiencia y la equidad, ajustando de esta manera el remanente de fallas de mercado en el ámbito local (Bailey, 1999). Su clasificación según Oates (1999) se divide en dos grandes grupos: (i) condicionadas y (ii) no condicionadas, siendo que las primeras sirven para corregir las externalidades, mientras que las otras para redistribuir la renta (Oates,1977). En la figura 8 se muestra una clasificación con base en Bailey (1999).

_

⁹ De la expresión inglesa "Market-preserving federalism" (Weingast, 2009).

FIGURA 8. TIPOS DE TRANSFERENCIAS INTERGUBERNAMENTALES

Fuente: Traducido y adaptado de Bailey (1999, p. 181).

Las acciones que tienen las transferencias sobre la eficiencia y la equidad también las clasifican bajo un rol activo; por ejemplo, las transferencias condicionadas o específicas se usan para lograr los objetivos de la economía nacional; mientras que las no condicionadas o generales se usan para la equidad interjurisdiccional (Boadway, 2007). La descentralización fiscal inevitablemente hará que los gobiernos subnacionales tengan distintas capacidades financieras para asignar el bien público (Boadway y Shah, 2009), por tal motivo se requiere de las transferencias por su efecto igualador:

Más allá del gasto que financian, estas transferencias crean incentivos y mecanismos de rendición de cuentas que afectan la administración fiscal, la eficiencia y la equidad en la oferta de servicios públicos, y son un mecanismo mediante el cual los ciudadanos evalúan el trabajo del gobierno. (Shah, 2009, p. 1).

I.2. Economía de la Educación

I.2.1. La variable educación en la teoría económica

Lovenheim y Turner (2018) se refieren a la educación como un proceso de entrenamiento y desarrollo de conocimientos de los estudiantes. Levin (1976) por su parte señala que la educación podría ser considerado como el mejor igualador entre los individuos. Llamas (2019) indica que el fin último de la educación es constituir el ser social. Para Paes de Barros *et al.* (2008) la educación es uno de los principales determinantes de los beneficios y el bienestar personal; mientras que para Brewer et al. (2015) la educación formal determina, en parte, el éxito económico de individuos y grupos. La educación básica por su parte "es el ciclo educativo que los estados orientan hacia los niños, niñas y

adolescentes desde la primera infancia hasta finalizar la adolescencia. Abarca desde el nivel inicial hasta el nivel secundario" (Unesco, 2019b; p. 1). Por su parte, López (2005) menciona que la educación básica debe ser capaz de satisfacer las necesidades básicas de aprendizaje de niños, jóvenes y adultos.

Brewer et al. (2015) indica que la Economía de la Educación (EE) utiliza los principios económicos para entender el fenómeno educativo, a la vez que se construye sobre otras ramas de la teoría económica convencional como la Economía Pública, del Empleo, Institucional y del Comportamiento. Los autores señalan que las áreas actuales de esta rama se basan en la gobernanza educativa, la organización educativa, el financiamiento de la educación y su provisión. De igual manera, la literatura actual señala que el incremento del conocimiento es el principal impulsor del crecimiento económico a nivel mundial (OECD, 2007), siendo que las diferencias en el crecimiento de estos se pueden explicar por el nivel educativo de sus habitantes (Lovenheim y Turner, 2018). Razón de esto, los gobiernos del mundo gastan considerables recursos en financiar y operar las escuelas (Lovenheim y Turner, 2018; OECD, 2007). El conocimiento como capital no es nuevo. Llamas (2019) indica que: "En la historia del pensamiento, los economistas han incluido en forma intermitente a los seres humanos, o a sus competencias y habilidades adquiridas, como un componente de capital" (p. 80). Por su parte Hanushek (2013) señala que las habilidades cognitivas aumentan el crecimiento económico, pero a la vez se requiere de un cambio estructural para que esto ocurra.

En este contexto, la EE ha cobrado mayor importancia en las últimas décadas, no sólo entre economistas sino también en otras ciencias sociales. La EE busca entender como la organización de la escuela, junto con los incentivos a los que se enfrentan los alumnos, profesores y padres, afectan el aprendizaje (Lovenheim y Turner, 2018). Para esto, los economistas usan un modelo de insumos y productos denominado Función de Producción de la Educación - FPE (Carnoy, 2006; Lovenheim y Turner, 2018). Por el lado de los insumos, estos se refieren a los profesores, libros, contenido de los programas escolares, características de la escuelas, entre otros; mientras que los productos se relacionan escencialmente con el conocimiento y habilidades adquiridas (Hanushek, 2015; Lovenheim y Turner, 2018).

Un aspecto importante de la EE y su relación con la Economía Pública es la justificación tradicional de porqué el Estado interviene en la provisión de la educación en una

economía de mercado. El esquema neoclásico indica que el mercado fracasa asignando el bien educativo ocasionando una infra-provisión, lo que finalmente conlleva a que el Estado se encargue (Daviet, 2016). Según Llamas (2019), al momento de que el mercado asigna la educación aparecen ciertos aspectos que conllevan a una asignación ineficiente, tal como la información incompleta sobre el valor de la educación o población sin recursos para acceder a dicho servicio. Entonces, la justificación de la intervención pública ocurre por una cuestión de eficiencia; sin embargo, la teoría también indica que existen otras razones de intervención, como las externalidades positivas/beneficios sociales que generan las personas educadas en un país (Stiglitz, 2000; Carnoy, 2006; Rosen, 2008; Brewer *et al.*, 2015), o los criterios de equidad e igualdad (Parodi, 2005). A la luz de la teoría neoclásica, la educación no se ajusta a la definición estándar de bien público (Daviet, 2016; Locatelli, 2018); sin embargo, la educación pública es una de las industrias más importantes en el mundo (Carnoy, 2006).

Respecto a la naturaleza de bien público de la educación, Daviet (2016) indica que la educación pública tiene una noción polisémica, pues con base en la definición estándar que hace la teoría económica la educación no cumpliría con las características de No Rivalidad y No Exclusión (con referencia a las características de un bien público puro), sino que a partir de consideraciones éticas y otras teorías económicas, como el gasto público, la educación adquiere la categoría de bien público basado en un enfoque humanista (dimensión social, cultural y ética), apoyado por organizaciones como la Unesco. Sin embargo, para Daviet (2016), en la actualidad no es suficiente este enfoque, lo que conlleva a que la educación tenga la categoría de bien común que está relacionado con la gobernanza, el enfoque humanista y el holismo. Esta discusión también es abordada por Locatelli (2018) quien indica que "el concepto de educación como bien común puede representar un marco complementario útil para la gobernanza de la educación en este contexto cambiante" (p. 193).

Los argumentos anteriormente mencionados indican que la educación en una economía de mercado se encuentra en la categoría de bien público por la incorporación de cuestiones éticas y otros aspectos de la teoría económica. La cadena lógica actual de la intervención del Estado en la asignación de la educación se basaría, según Daviet (2016), en: (i) Equidad, (ii) Proceso Democrático de Toma de Decisiones, y (iii) Diversidad de Proveedores, siendo el Estado el garante de la equidad. Por lo tanto, existe un mercado de la educación, en donde este servicio se ofrece tanto por el sector privado como por el

Estado (Lovenheim y Turner, 2018). Para muchos autores como Tapia (2009), el Estado debe garantizar la educación.

Llamas (2019) indica que "el papel del Estado es asegurar la viabilidad de la sociedad, y en ésta, la educación juega un papel central" (p. 94). Asimismo, la literatura señala ciertas funciones gubernamentales en el campo de la educación. La función por antonomasia es la financiación, a esta se le agregan la función de regulación y provisión o producción (Daviet, 2016; Lovenheim y Turner, 2018). Por su parte, Brewer *et al.* (2015) también señala que las funciones del gobierno en educación son la regulación, el financiamiento y la operación.

En este sentido, al comparar el sistema privado y público, este último tiene un liderazgo en el sistema educativo, siendo que el privado opera bajo la sombra de los grandes sistemas públicos (Llamas, 2019). Para Carnoy (2006), el papel del Estado en la producción de la educación se da a través de la escolarización y la generación del capital social. La escolarización es un proceso de aprendizaje donde se adquieren destrezas y habilidades productivas, y es una forma de capital humano (Llamas, 2019). Al respecto, el capital social puede representarse como las relaciones sociales familiares y comunitarias que van a determinar el nivel de capital humano (Carnoy, 2006).

I.2.2. Organización del Sistema Educativo

En cuanto a la organización del sistema educativo, Levin (1976) indica que este se encuentra compuesto por diferentes elementos donde la organización de la sociedad con una específica ideología y forma de gobierno (polity)¹⁰ afecta directamente al presupuesto y a los objetivos de la educación estipulados en las leyes del sector (budget and goals), a los recursos educativos como los profesores (educational resources), al proceso en cómo se da la educación (educational process), al resultado educativo(educational outcomes) y finalmente a los resultados sociales, políticos y económicos, (social, political, economic outcomes). Las variables afectadas por polity afectan a su vez una a la otra ilustrando el proceso de cómo distintos factores intervienen en la consecución del resultado educativo. Asimismo, existen factores externos que afectan el proceso. Es importante mencionar que en este modelo todo empieza con la organización de la sociedad y el gobierno que afecta finalmente el resultado social, político y económico, pero a su vez existe una retroalimentación.

¹⁰ En este párrafo se conservan las palabras en inglés por la importancia de los términos en dicho idioma.

Para Pigozzi (2008), la organización y administración de la educación proveen control y equilibrio para la lograr la calidad escolar. Brewer *et al.* (2015) señalan que una eficiente organización generará incentivos correctos, lo que puede mejorar la educación a través de una mejor rendición de cuentas. Pero los incentivos tienen sus causas en las instituciones. Estas son importantes para el sistema educativo, pues mejora el funcionamiento del sistema y el aprendizaje de los estudiantes (Hanushek, 2016; Hanushek y Wößmann, 2007). Algunas de las instituciones del sistema educativo actual son la descentralización, la rendición de cuentas, la calidad docente y la competencia (Hanushek, 2016).

Astudillo y Chévez (2015) señalan que:

El análisis de las cuestiones de educación no puede ser tratado como un asunto trivial, basado únicamente en elementos de contenidos curriculares que debe aprender el estudiantado. Exige una reflexión sobre las relaciones que se desarrollan entre las personas y los graves problemas que aparecen en ella... (p. 163).

Según Fiske (1996) los agentes del sistema educativo son: Líderes políticos y hacedores de política, Burócratas del sistema educativo, Profesorado, Sindicatos de docentes, Universidades, Padres de familia, Comunidades locales y Estudiantes. Sebastián (2018) indica un conjunto de actores que participan en el sistema educativo. El primer nivel es el micro que corresponde al aprendizaje en donde intervienen alumnos y profesores, el segundo nivel es meso que corresponde a la escuela donde intervienen directivos, consejo técnico escolar y padres de familia. El tercer nivel es el exo que corresponde al contexto donde se encuentran organizaciones de padres de familia, autoridades educativas, supervisión y asesoría, y formación docente. El último nivel es el macro que está dado por el sistema compuesto por los organismos internacionales, economía, gobierno, política educativa, marco jurídico, reforma educativa, mercado, sindicatos, ONGs. Estos actores se interrelacionan entre sí (ver figura 9).

FIGURA 9. DIMENSIONES DEL SISTEMA EDUCATIVO

Fuente: Sebastián (2018).

I.2.3. Función de Producción de la Educación

Según la Unesco (2011) los resultados educativos son el conjunto total de información, conocimiento, comprensión, actitudes, valores, habilidades, competencias o comportamientos que se espera que un individuo domine al completar con éxito un programa educativo. Esta es una forma de capital humano, la cual se obtiene en la educación formal (OECD, 2007). Para Lovenheim y Turner (2018) los resultados son las habilidades, conocimiento y capacidades cognitivas que el sistema educativo produce en los estudiantes. Para Cameron *et al.* (2018) los resultados escolares son el aprendizaje obtenido medido en las calificaciones de los estudiantes. Para Pigozzi (2008), los resultados escolares pueden ser de diferentes tipos:

- (i) de conocimiento, como los logros cognitivos esenciales que todos los estudiantes deben alcanzar,
- (ii) de valores, como la solidaridad, equidad de género, compresión mutua, entre otros,
- (iii) de competencias, como la capacidad de trabajo en equipo y convivencia,
- (iv) de comportamiento, que se refiere a poner en práctica lo aprendido.

Como explica Lovenheim y Turner (2018), los resultados son multifacéticos, pues incluyen además de lo cognitivo, la creatividad, las habilidades de trabajo, el compromiso cívico y la autoestima. También los resultados se pueden clasificar dado el periodo de tiempo en que se consiguen. Como indican Sherman y Poirier (2007) estos pueden ser de

corto plazo como las habilidades cognitivas, o de largo plazo como el retorno económico de la educación. Al respecto, Morduchowicz (2006) indica que los resultados pueden ser inmediatos o mediatos. Los primeros se relacionan con la tasa de escolarización, de abandono, la repitencia, el analfabetismo, la satisfacción por la calidad de la enseñanza y la mejora en los resultados en el aprendizaje; mientras que los segundos tienen que ver con mejorar la productividad, mejorar la salud, incrementar los ingresos de las personas.

Los resultados escolares se pueden medir a través del llamado rendimiento educativo representado por las calificaciones del estudiantado (Pascual, 2006). En la actualidad se usa el rendimiento escolar como una medida que expresa la calidad del sistema educativo, dejando atrás el logro escolar medido con los años de escolaridad (Hanushek, 2013).

La EE analiza este proceso a través de un modelo que proviene de la Economía Industrial. Este es la Función de Producción de la Educación - FPE, el cual ha sido el modelo por excelencia usado para explicar qué variables o factores intervienen en la generación de resultados educativos. Dicha función incluye un conjunto de insumos que contribuyen a desarrollar la capacidad cognitiva o el conocimiento de los estudiantes (Lovenheim y Turner, 2018).

Con base en Hanushek (1997) los insumos pueden ser los siguientes:

- Recursos reales → Educación de los maestros, experiencia de los maestros, ratio profesor – alumno.
- Agregados financieros **→** gasto por estudiante, salario de profesores.
- Otros → aspectos administrativos y características especiales.

Según Hanushek (2020), la FPE se usa para evaluar políticas alternativas y juzgar la efectividad y eficiencia de la asignación de la educación. Se debe señalar que la FPE representa una "caja negra", pues no se sabe que ocurre al interior, aunque en los últimos años los economistas han analizado esto desde el punto de vista de la transacción de costos económicos, gobernanza educativa y la relación principal—agente (Brewer *et al.*, 2015).

Según Cameron *et al.* (2018), algunos resultados educativos son insumos de otros. En la figura 10 se muestra la propuesta de estos autores, en donde los insumos principales son el gasto público y privado, así como el capital humano y social de los padres. Estos a la vez producen insumos intermedios como los profesores y las escuelas, que producen resultados como inscripción de estudiantes o completar un grado determinado del sistema educativo. Esto último producen resultados de aprendizaje y calificaciones que

finalmente producen mejores ingresos, mejor salud, entre otras mejoras en el bienestar de los individuos. Es pertinente observar que existen insumos que pueden ser controlados por los hacedores de política, tales como las características de las escuelas, profesores, contenidos; en contraste, el entorno familiar y social no pueden ser controlados (Hanushek, 2015).

Salidas Resultados Insumos Proceso **Últimos resultados** Gasto público Profesores Matrícula Aprendizaje Altos ingresos Facilidades Grado de Calificaciones Gasto privado Mejora en la slaud, entre otros. de la escuela logro/terminación Exposición de los Capital humano alumnos a y social de los padres maestros de calidad

FIGURA 10. PROCESO EDUCATIVO

Fuente: Traducido de Cameron et al. (2018; p. 35).

En términos matemáticos, se presenta la siguiente FPE propuesta por Hanushek (2013):

$$A = f(R, F, Z, \eta)$$
 Ec.1

Donde A es el rendimiento escolar, R los recursos de la escuela, F los aspectos familiares, Z factores externos como el vecindario, los pares o la estructura institucional general, y η un elemento estocástico.

Respecto a los resultados, según Carnoy (2006), en el sector industrial se tiene claro y definido cuál será el producto final, pero esto no aplica necesariamente en el caso de la educación, ya que se tienen múltiples objetivos como el desarrollo académico y las tasas de graduación. En este sentido, se experimentan desafíos para la evaluación ya que por un lado (i) los procesos de producción deben ser diferenciados y por otro (ii) existen múltiples medidas de los objetivos de producción. En cuanto al primero, dado los objetivos se requerirán diferentes insumos, lo que conlleva a que se deberá estimar una FPE diferente para cada resultado. Respeto al segundo desafío, Carnoy (2006) indica que este se encuentra referido a que los resultados, de rendimiento, por ejemplo, tienen medidas distintas, ya que por un lado se puede evaluar el rendimiento en matemáticas y otro en lengua, siendo que los insumos pueden ser diferentes para cada objetivo.

I.2.4. ¿Cómo se mide el rendimiento escolar?

La Unesco (2019a) señala que los indicadores de calidad en los resultados revelan cómo se está desempeñando el sistema educativo en términos cognitivos, de competencias, las tasas de repetición, progresión y finalización, y satisfacción del empleador. Es decir, los indicadores de rendimiento son una medida de la calidad en los resultados escolares.

Morduchowicz (2006) señala que los indicadores educativos se usan para comparar y juzgar el contexto y el funcionamiento de la enseñanza y sus resultados y que aparecen para evaluar y monitorear la educación. Omoeva *et al.* (2018) señala que los indicadores de resultados pueden incluir dos indicadores: (i) rendimiento y (ii) años de escolaridad.

Se debe señalar que, según Paes de Barros (2008), el logro educativo del cuadro anterior es un mejor indicador del capital humano que los años de escolaridad. Según SITEAL, (2019) estos indicadores también se pueden clasificar en (i) resultados de *status* y (ii) consecuencia de impacto. El primero tiene que ver con la meta del sistema educativo, por ejemplo, los años de escolaridad; mientras que el segundo está relacionado con las consecuencias del sistema educativo, en este caso aparecen indicadores como la tasa de repetición o la tasa de abandono. Otra clasificación es la de (i) flujo y (ii) resultados, donde el primero son las tasas de acceso y participación, así como las de terminación. El segundo grupo son los indicadores de logro educativo, es decir, las medidas de calidad educativa. En la siguiente sección se aborda el tema del rendimiento escolar y su medición, siendo que estos son el objeto de estudio que aborda el problema de investigación.

I.2.5. El rendimiento como medida de calidad escolar

Como indica Pascual (2006), no existe la unanimidad del concepto de calidad educativa, aunque se sabe que el adjetivo de calidad se ha traído del sector empresarial, por lo que existe una lógica economicista en el término. Esto no implica que en la educación la calidad tenga las mismas características de las certificaciones empresariales (Álvarez y Topete, 2004). Los mencionados autores señalan que: "la calidad de la educación, sobre todo en los niveles básico y medio, deberá reflejarse en la calidad de vida de los niños, de los jóvenes, de los ciudadanos en general, de las familias y de la propia sociedad" (p. 21). Por su lado, Winkler y Yeo (2007) indican que la calidad representa el reto más importante en los sistemas educativos del mundo. La forma de cómo se mide la calidad educativa es parte del debate actual (Jain y Prasad, 2018). En este contexto se presentan

algunas definiciones de calidad educativa, su medición, y su relación con el rendimiento escolar.

Lacueva, (2015) indica lo siguiente: "No hay una caracterización unívoca de calidad educativa. Lo que se entiende por ella depende del contexto socio-histórico, los valores preponderantes, los intereses que dominan, las posibilidades existentes y las concepciones pedagógicas hegemónicas." (p. 52). Por su parte, la Unesco (2004) propone que una educación de calidad es un derecho humano de todo estudiante, en este sentido, la calidad se relaciona con la democracia y la equidad. En la década de los años 90 la calidad se entendía como pre-requisito de la equidad, años más tarde se entiende la calidad y equidad como un concepto conjunto, siendo esto el centro de la política educativa. Un concepto actual sobre calidad educativa que proporciona la Unesco es que esta se encuentra referida a un conjunto de características deseables en las dimensiones que intervienen dentro del sistema educativo: estudiantes, proceso, contenido curricular y contexto. Con base en Pascual (2006), la calidad puede ser definida como la obtención de metas propuestas en el sector educativo. El Instituto Nacional de Evaluación de la Educación de México -INEE (2006) indica que la noción de calidad educativa está asociada a varias dimensiones, como la pertinencia y relevancia que existe entre la enseñanza y las necesidades de los alumnos y la sociedad; la eficacia que relaciona los objetivos planteados y los esperados; y los insumos y la eficacia de su uso. Asimismo, el INEE (2006), en sintonía con otros autores, también indica que "el concepto de calidad no puede disociarse de la equidad, ya que no puede considerarse buena una educación desigual" (pág. 9).

Cabe mencionar que dentro del trabajo de Pascual (2006) se indica que sin equidad no hay calidad, siendo que esto difiere del enfoque que tenía la Unesco (2004). En este sentido, como indica Pigozzi (2008), puede existir una confusión entre quien precede a quien:

Un malentendido común es que el acceso a la educación debe preceder siempre a la atención a la calidad. No es éste el caso. Existe evidencia respecto de que en ciertos casos, los alumnos no sacan partido de las vacantes escolares incluso cuando se dispone de ellas, y que en otros casos los alumnos abandonan si lo que están aprendiendo no es relevante para sus necesidades actuales o futuras; los estudiantes "votan con sus pies", actualmente resulta claro que el acceso a la educación y la calidad de la educación son conceptos distintos. Ambos conceptos

es tan ligados fuertemente, en especial cuando se considera la oferta y la demanda. Y mientras que es imposible la calidad si no hay acceso, el acceso sin calidad poco significa para aquellos a los que se les posibilita el acceso (p. 3).

La calidad tiene distintas dimensiones. La Unesco (2004) indica que una de estas dimensiones son los resultados, los cuales son descritos como las destrezas en números, en lectoescritura, en valores y las destrezas para la vida cotidiana. En la figura 11 se muestran todas las dimensiones. En el centro se encuentra la enseñanza y el aprendizaje como núcleo de sistema educativo, soportado por los materiales y recursos humanos necesarios para impartir la educación. Las características previas de los educandos influyen en la enseñanza y el aprendizaje, los cuales finalmente van a producir los resultados que deberán evaluarse en el contexto de los objetivos acordados. Todas las dimensiones afectan el contexto, pero a la vez este afecta a las otras (Unesco, 2004).

Aportes Materiales y Humanos

Enseñanza y Aprendizaje

Resultados

Contexto

FIGURA 11. INTERRELACIÓN DE LAS DIMENSIONES DE LA CALIDAD EDUCATIVA

Fuente: Elaboración propia con base en Unesco (2004).

En resumen, la calidad de los resultados educativos se mide generalmente a través de indicadores de rendimiento escolar, como los conocimientos y habilidades (Brewer *et al.*, 2015); además de las tasas de repetición y progreso del estudiante (UNESCO, 2019a).

I.2.6. Financiamiento de la educación

Lovenheim y Turner (2018) indican que son los recursos financieros los que posibilitan la inversión en la educación. Carnoy (2006) por su parte señala que la financiación educativa representa un conjunto de elecciones públicas. Recientemente la OECD (2017) ha señalado que los mecanismos a través de los cuales se rige, distribuyen y supervisa la financiación escolar juegan un papel clave para garantizar que los recursos se dirijan a donde puedan tener un mayor efecto; asimismo, se sabe que los sistemas escolares tienen

recursos limitados para alcanzar sus objetivos y el uso eficiente de estos recursos es clave. Respecto a quién financia la educación en una economía mixta la OECD (2017) indica que en muchos sistemas existe una combinación compleja de asignación de fondos. En el caso específico de América Latina, Cetrángolo y Curcio (2017) indican que los modelos dominantes de financiamiento están relacionados con la oferta, es decir, a través de las administraciones educativas en función de parámetros físicos, organizacionales y/o pedagógicos de cada escuela. Los mismos autores señalan que en cuanto al financiamiento público, las fuentes provienen del presupuesto del gobierno central (o nacional), de los gobiernos intermedios como las provincias o estados o de los gobiernos locales o municipales. Sin embargo, existe un problema impositivo en la región, por la cual existen restricciones al financiamiento público en general. Cetrángolo y Curcio (2017) indican que:

En términos generales los sistemas educativos presentan deficiencias en materia de equidad que requieren la presencia de los gobiernos centrales a través de la provisión de financiamiento compensatorio que atienda a las diferentes capacidades de autofinanciación de los niveles de gobierno. La combinación de sistemas tributarios concentrados en manos de los gobiernos centrales y la tendencia de una cada vez mayor descentralización del gasto público hacia los gobiernos subnacionales de los diferentes países determina diferentes grados de desbalance entre los niveles de gasto y recursos de cada nivel de gobierno. Ello marca la importancia de los sistemas de transferencias intergubernamentales destinadas a cubrir esos desbalances y a asegurar el financiamiento de los gobiernos subnacionales (p. 45).

Los recursos son limitados en el sistema educativo (Lovenheim y Turner, 2018). Sin embargo, ¿son importantes los recursos financieros? Existe la discusión empírica sobre si el dinero importa para lograr una mejora en la educación. Lovenheim y Turner (2018) refieren a la llamada Crítica de Hanushek para poner en discusión si el el gasto en educación mejora la calidad educativa. En 1997, Hanushek publica un artículo donde se reafirma que no existe una fuerte relación entre los recursos escolares y el *performance* de los alumnos¹¹. Señala que no basta un incremento de los recursos *per se* para mejorar la calidad escolar, es decir, los recursos son necesarios pero no suficientes. Con base en un meta-análisis sobre estudios en Estados Unidos, el autor llega a la conclusión de que

_

¹¹ Dicho artículo tiene como antecedente a Hanushek (1986).

los recursos no son significativos en la mayoría de los casos y que no hay una consistente relación entre recursos y performance del estudiante (Hanushek, 1997).

Ante estas conclusiones, se abrió una línea de investigación denominada Does money matter in educatión? (Delpier et al., 2019). Autores como Baker (2016) señalan que debido a las conclusiones de Hanushek tanto en el campo académico como político se mantuvo la idea equivocada de que el gasto en educación no era importante. Los hacedores de políticas y economistas se preguntaron si las escuelas o los recursos en general importaban para la mejora educativa. La importancia del gasto en educación se politizó. El antecedente a la crítica de Hanushek es el informe Coleman, en donde se aplicó la teoría de la FPE (Delpier et al., 2019), y cuyos resultados inciaron la discusión sobre la importancia de los recursos como el gasto por alumno; en contraste se concluyó que el entorno socioeconómico de los alumnos y las características de los maestros resultaron variables que sí tienen relevancia (Baker, 2016). Esta idea se ha refutado. Delpier et al. (2019) señalan que Hanushek no utilizó propiamente un meta-análisis, y que fue muy laxo en sus selección de estudios. Por su parte, Jackson (2018) señala que el problema eran los métodos estadísticos usados el siglo pasado, pues correlación no implica causalidad. Jackson (2018) y Delpier et al. (2019) señalan que los estudios con base en estimaciones de FPE se pueden clasificar en dos tipos: los que muestran sólo correlación, y los que evidencian causalidad. Los primeros son imprecisos. Las conclusiones de una nueva generación de estudios comprueban que el gasto sí tiene una relación significativa con los resultados escolares, algunos de estos estudios utilizaron modelos longitudinales los cuales permitieron un mejor análisis de causalidad (Delpier at al., 2019). Cabe precisar que la relación significativa y positiva en estos nuevos estudios no se cumplen siempre y dependen de los datos usados (Jackson, 2018).

Por otro lado, la financiación y poder de decisión sobre la administración y distribución del dinero público varían entre los modelos de sistemas educativos (Carnoy, 2006). En este sentido, el mencionado autor señala que el financiamiento de la educación dependerá del tipo de imposición, impuestos nacionales y/o impuestos locales. En el cuadro 1 se presenta un modelo de financiamiento de la educación propuesto por este autor.

CUADRO 1. FINANCIAMIENTO Y GESTIÓN DEL SISTEMA EDUCATIVO

	Gestión de la educación
--	-------------------------

Financiamiento de la educación	Local (autoridades de los distritos escolares, Asociación de Madres y Padres de Familia, dirección de la escuela	Central (Ministerio de Educación)		
Local (impuestos sobre la propiedad, impuestos locales sobre las ventas, tasas de matriculación)	Descentralizado	Regulado		
Centralizado (impuestos sobre la renta, cotizaciones sociales, impuestos nacionales sobre las ventas, arbitrios)	Delegado	Centralizado		

Fuente: Carnoy (2006).

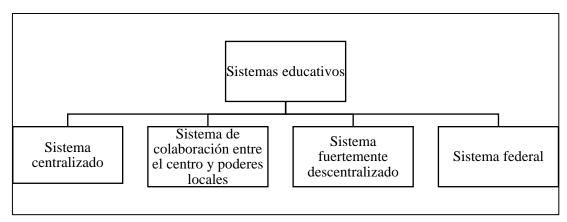
Como se aprecia en el cuadro anterior, el financiamiento de la educación está relacionado con la gestión descentralizada de la misma. A continuación, se aborda la teoría de la descentralización educativa.

I.2.7. Descentralización educativa

Formas de descentralización educativa

Según Parodi (2005), la descentralización educativa puede definirse como el traspaso de la administración de la educación a los gobiernos subnacionales. Fiske (1996) por su lado indica que hay dos tipos de descentralización educativa, la política y la administrativa. La política o democrática implica asignar el poder de toma de decisiones sobre educación a los ciudadanos o representantes en niveles inferiores de gobierno. La administrativa o burocrática según el autor mencionado es una estrategia de gestión, mientras que el poder político se encuentra en la parte superior de la organización, la responsabilidad y la autoridad para planificar, gestionar, financiar y otras actividades, son asignadas a los niveles inferiores de gobierno.

Con base en la descentralización administrativa, la implementación de la descentralización de la educación puede atravesar diferentes momentos o formas (Fiske, 1996; Di Gropello, 1999): **desconcentración, devolución, delegación**. Con base en Winkler y Yeo (2007), la desconcentración es la redistribución de la toma de decisiones dentro de las autoridades administrativas del centro a otros niveles. La devolución


consiste en la transferencia permanente de las responsabilidades en la toma de decisiones a partir del gobierno central descendiendo a provincias, municipalidades o distritos. Por último, la delegación consiste en la transferencia administrativa o legal de las responsabilidades a las autoridades de gobierno escolar elegidas.

Por su lado, Parodi (2005) explica que existen tres dimensiones del sistema educativo que pueden ser descentralizadas:

- (i) **Administrativa**, que incluye la planificación estratégica, políticas y programas, la gestión y la práctica gerencial, la gestión de infraestructura y equipamiento, y la gestión de recursos humanos.
- (ii) **Económico financiera**, que abarca las fuentes de recursos, la administración de los mismos, así como el control de su uso.
- (iii) Pedagógico educativo, que incluye el diseño curricular, el perfeccionamiento y la capacitación del servicio, la elaboración del material didáctico, la generación de proyectos de mejoramiento pedagógico y la supervisión técnico pedagógica.

Fiske (1996) indica que son los planificadores los que deben decidir qué elementos del sistema descentralizar, tales como la generación de recursos, autoridad de gasto, desarrollo de *curriculum*, contrataciones, entre otros; y determinar a qué nivel, regional, distrito, localidad o escuela, se asignará cada uno de estos elementos. Morduchowicz y Arango (2010) mencionan que en la práctica existen cuatro categorías respecto a la organización y toma de decisiones en los sistemas educativos tal y como se muestra en la figura 12.

FIGURA 12. CATEGORÍAS DE ORGANIZACIÓN Y TOMA DE DECISIONES EN LOS SISTEMAS EDUCATIVOS

Fuente: Morduchowicz y Arango (2010).

Los mencionados autores indican que en los sistemas federales se pueden distinguir tres formas:

- (i) Máxima responsabilidad en instancias locales y mínimo rol del gobierno central,
- (ii) Máxima responsabilidad en las regiones/provincias y
- (iii) Cuotas de responsabilidad del gobierno central.

Todas las clasificaciones mostradas de descentralización muestran que no existe una única forma de descentralizar el sistema educativo. Fiske (1996) indica que es seguro que no hay dos países que hayan adoptado exactamente el mismo modelo de descentralización educativa.

Actores de la descentralización educativa

La descentralización educativa se vuelve un balance de poderes. Fiske (1996) indica que tanto en países industrializados como en desarrollo la educación es inherentemente política, y en este sentido, la descentralización altera el balance de poderes dentro de los responsables del sistema educativo de un país, por lo que habrá argumentos a favor y en contra, esto último también mencionado por Radó (2010). Por su lado, Morduchowicz y Arango (2010) señalan que es importante analizar la interacción entre los actores involucrados, en donde también se incluyen a los sindicatos, iglesia, entre otros. Haciendo referencia a un sistema educativo federal, los mencionados autores indican que:

Debe señalarse que si bien es imprescindible tener en cuenta las características que asume el federalismo en el país respectivo a efectos de comprender competencias, relaciones y flujos, su valor como variable explicativa resulta limitado, ya que la dinámica que asume en cada caso no puede aislarse de factores históricos y culturales, del grado de desarrollo alcanzado y de los rasgos estructurales de cada economía (p. 31)

Es decir, más allá de la organización de un sistema educativo, es importante atender la relación que existe entre los actores involucrados. Al respecto, Fiske (1996) presenta un conjunto de actores que intervienen en la descentralización educativa, haciendo énfasis en que estos forman grupos de poder y que se debe entender que la descentralización altera el *status quo* político ya que los involucrados tienden a renunciar al poder que ejercen. Los actores son los siguientes:

- Líderes políticos y hacedores de política.
- Burócratas del sistema educativo.
- Profesorado.
- Sindicatos de docentes.
- Universidades.
- Padres.
- Comunidades locales.
- Estudiantes.

Es importante analizar la relación de estos actores en distintos escenarios. En un contexto centralizado existen diversos problemas que se resumen en que la asignación del bien es distinto a las preferencias de los ciudadanos, esto puede mejorar a través de la rendición de cuentas descentralizada. Al respecto Winkler y Yeo (2007) indican:

La mejora del gobierno y la rendición de cuentas posiblemente generen una mayor eficiencia en el uso de los recursos, lo que contribuye a la mejora del rendimiento escolar. No obstante, no conducen en forma inherente a la modificación de la organización escolar y de las prácticas docentes necesarias para lograr mejoras significativas en el aprendizaje (p. 5).

Dado que la devolución y delgación son formas más avanzadas de descentralización, según Winkler y Yeo (2007) estas tienen la posibilidad de mejorar la rendición de cuentas en el sistema educativo, lo que provee insumos para una mejor asignación de la educación. En ambos casos la dinámica principal ocurre en el ámbito local y los ciudadanos y padres tienen más cercanía a los hacedores de política (a diferencia del modelo centralizado). Para el caso de la devolución, las facultades recaen en los políticos, gobernantes y dirigentes locales. En el caso de la delegación, el poder se encuentra en la espacio de los padres de familia y la escuelas.

Justificación de la descentralización educativa

La descentralización es una política educativa (Rizvi y Lingard, 2013), y por tal su objetivo es mejorar la calidad y ampliar la cobertura (Morduchowicz y Arango, 2010). Bas Adam (2005) indica que casi al finalizar el siglo pasado los países industrializados propusieron descentralizar la educación con base en las críticas del llamado Estado de

Bienestar, dada la mayor exigencia social en la prestación de los bienes y servicios públicos y la mayor participación de la sociedad en la toma de decisiones gubernamentales, entre otras razones. El Banco Mundial (1999) indica que "los fundamentos económicos para descentralizar la educación son el mejorar el bienestar social y la eficiencia técnica" (p. 60); mientras que Carnoy (2006) indica que el principal argumento es que a mayor control de la educación por parte del ámbito local habrá una mayor atención a las necesidades educativas de la población, las escuelas serán más eficientes y las familias se sentirán más involucradas.

McGinn y Welsh (1999) mencionan que la educación se descentraliza para mejorarla *per se* directamente, mejorar la operación del sistema educativo, cambiar las fuentes y cantidad de fondos disponibles para la educación y beneficiar al gobierno central y los gobiernos locales. Carnoy (2006) menciona lo siguiente:

El principal argumento para una descentralización de la educación es que, cuanto más control tengan las comunidades locales sobre los gastos en educación y la gestión de las decisiones escolares, sus decisiones estarán más cerca de las necesidades educativas de los niños y sus familias (p. 301)

Sin embargo, como indican Winkler y Yeo (2007) persiste la interrogante si efectivamente este tipo de política puede afectar positivamente la calidad escolar, mientras que Carnoy (2006) señala que todo depende de la burocracia. Los mencionados autores indican por un lado que un buen diseño e implementación de la descentralización puede mejorar la calidad educativa, por otro lado mencionan que:

La descentralización no necesita ni tiene siempre una influencia positiva sobre la calidad educativa. El grado en el cual se descentraliza el financiamiento de la educación hará que las diferencias en la capacidad impositiva a nivel local posiblemente puedan generar mayores disparidades entre el gasto y los resultados educativos... La descentralización también puede llevar a la confusión sobre la administración de la educación, ocasionando decisiones conflictivas o negativas para cumplir con las funciones correspondientes, con efectos adversos sobre la calidad y la eficiencia. (pp. 1,2)

El impacto real de la descentralización sobre la calidad educativa se basa en el ejercicio de nuevas responsabilidades de los agentes involucrados, los cuales deben estar correctamente capacitados (Winkler y Yeo, 2007). En el contexto de un sistema federal,

Morduchowicz y Arango (2010) señalan que es difícil formular una hipótesis entre el federalismo y los resultados educativos. Winkler y Yeo (2007) indican que la evidencia sugiere que la política de descentralización puede mejorar la educación, pero con riesgo de aumentar la inequidad de resultados.

Por otro lado, una de las desventajas de la descentralización educativa es que al momento en que el gobierno central transfiere las responsabilidades a los gobiernos locales también transfiere las debilidades propias de la jurisdicción y por ende la desigualdad ya existente (Gimeno, 2005; Carnoy, 2006). En este sentido, la crítica de Prud'homme (1995) es relevante al indicar que la descentralización no es buena ni mala sino que los beneficios va a depender de la forma de su implementación. Carnoy (2006) también manifiesta que es importante tener en cuenta que la capacidad administrativa varía según las comunidades locales, particularmente en los países menos desarrollados, y en este sentido, si la capacidad de gestión está distribuida de manera desigual, entonces la descentralización provocaría un incremento de la ineficiencia en las áreas locales en donde vide el alumnado más defavorecido. En este sentido, el autor señala que: "Tampoco hay ninguna garantía de que las comunidades locales sean tan democráticas ni participativas para que la descentralización de la educación produzca un tratamiento más equitativo de todos los grupos de la comunidad" (p. 303).

López (2005: 175) declara que la descentralización es una reforma importante, pero que esta puede profundizar las desigualdades regionales. El mismo autor señala que:

Un análisis en profundidad de los procesos de descentralización implementado y su impacto es una tarea pendiente en el diagnóstico de las políticas educativas de la región, y sería un insumo vital para avanzar en el diseño de políticas más efectivas en términos de calidad y equidad.

Además que es importante la articulación entre lo local y el centro:

Un espacio local sensible a las situaciones específicas en que se desarrollan las prácticas educativas, un centro que fortalece las capacidades locales, provee un abanico de recursos de políticas posibles de ser mixturados en el espacio local según la especificidad de cada escenario, y capaz de garantizar una equidad que trasciende a lo local, y que hace al conjunto de la sociedad. Y uno de los desafíos más complejos de este nuevo modo de articulación de lo local con el centro es el

de crear condiciones de posibilidad para el desarrollo de estrategias intersectoriales de intervención (p. 175).

I.3. Antecedentes Empíricos

En esta sección se presenta la evidencia empírica más reciente sobre la relación que existe entre la descentralización de la educación y la calidad escolar medida a través del rendimiento de los alumnos. Es imperante señalar, como bien indica Letelier (2012), que la evidencia empírica sobre el efecto de la descentralización educativa se encuentra en pleno debate. En términos de evidencia cuantitativa, la literatura más reciente permite agrupar a los estudios en a favor, ninguno o no concluyente. En este sentido, la descentralización no es un hecho estilizado como otros fenómenos económicos. Se revisaron diferentes artículos científicos y trabajos de discusión cuyo objetivo principal fue estimar el efecto de la descentralización educativa sobre la calidad escolar. En la mayoría de los trabajos revisados el marco analítico se basó en la Función de Producción de la Educación, siendo este el marco clásico de referencia según Glewwe y Kremer (2006). Por otro lado, también se revisaron estudios no cuantitativos, los cuales complementan de forma adecuada los primeros.

I.3.1. Estudios cuantitativos

En los países de América Latina la descentralización educativa ha sido y es un tema de importancia tanto para los hacedores de política como para la academia. La literatura pionera se dedicó a describir el proceso en los países de la región, sus aciertos y dificultades; luego aparecieron investigaciones cuyo objetivo fue determinar si la descentralización tiene un efecto positivo sobre los resultados escolares (estos últimos entendidos en el contexto de calidad).

Letelier (2012) señala que, aunque se ha mejorado en las mediciones de la descentralización fiscal en educación, es difícil inferir plenamente sólo sobre datos de ingresos y gastos, y tomar buenas decisiones políticas sobre esto. En la actualidad la descentralización educativa ha sido clasificada como una variable institucional, pues refleja la autonomía escolar que sirve de insumo a la FPE (Hanushek y Woessmann, 2011). Es importante indicar, según Hanushek (2015), que las características comúnmente medidas en los maestros y escuelas no se relacionan consistentemente con los resultados de los estudiantes; a la par, no es claro el vínculo entre el aumento de fondos para la financiación de la educación y la calidad de la educación. Siguiendo el mismo tenor, Blanco (2009) señala que los factores socioculturales son más importantes sobre

los resultados educativos que las escuelas. Tanto Hanushek (2015) como Blanco (2009) respaldan, en parte, las conclusiones de fines del siglo pasado (informe Coleman), en donde las características de las familias y su situación social explican mejor el resultado educativo que la intervención gubernamental (López, 2005).

Uno de los antecedentes más completos que se revisaron fue el trabajo de Heredia (2007), cuyo objetivo fue determinar el impacto de la descentralización educativa sobre resultados escolares. La autora usa una muestra de 62 países, incluyendo América Latina, y realiza un análisis de causalidad, usando estimadores para datos de panel (efectos fijos y variables instrumentales por el problema de endogeneidad de parte de la variable descentralización). La variable con la que se midió la descentralización se dividió en dos, una relacionada al porcentaje de gasto educativo descentralizado (índice de descentralización del gasto educativo), y la otra al porcentaje de toma de decisiones autónomas en educación. Los resultados de su estimación econométrica mostraron que la descentralización educativa puede mejorar significativamente la tasa de repetición, deserción, y finalización; así como los puntajes de exámenes en ciencias en el nivel primario. Con respecto al efecto sobre la tasa neta de matrícula, aunque los coeficientes de regresión resultaron positivos, no se encontró evidencia de significancia estadística. Salinas (2014) realizó un análisis similar tomando los datos de la OCDE. En este caso la variable dependiente fueron las calificaciones de la prueba estandarizada PISA en su versión 2009. La descentralización educativa se midió de diferentes maneras (dimensiones como llama el autor): el gasto educativo descentralizado (índice de descentralización del gasto educativo), gasto condicionado (transferencias), nivel de toma de decisiones, y el porcentaje de ingresos recaudados. Esto sigue, en cierto sentido, la forma de medición de Heredia (2007). Para la estimación econométrica se utilizó la técnica de regresión multinivel con efectos fijos (los datos son de corte transversal). Los resultados indicaron que la autonomía de toma de decisiones a nivel local tiene un efecto positivo significativo en los resultados educativos, aunque esto varía con el grado en que los gobiernos subnacionales rinden cuentas por sus decisiones tributarias. La autora indica que los resultados estadísticos son robustos, teniendo en cuenta la endogeneidad de la variable descentralización, estimando por efectos fijos, por muestras y por regionalización. Asimismo, señala que el uso de diferentes controles como los vectores de las características de la escuela y del contexto socioeconómico del alumno (la familia) fue beneficioso para obtener un estimador de la descentralización adecuado.

Por su parte Diaz-Serrano y Meix-Llop (2019), elaboraron una investigación cuyo objetivo fue estimar el impacto de la descentralización política y fiscal sobre la calidad del servicio público educativo en diferentes países de la OCDE. Los autores mencionan que su análisis es novedoso debido a que exploran dos dimensiones de la descentralización: la fiscal y la política. La variable dependiente que utilizaron fueron las calificaciones de la evaluación PISA (matemáticas, ciencias y lectura) y señalan que esto es una variable proxy de la calidad del servicio público en educación; mientras que las variables de descentralización son el índice de Autoridad Regional (RAI por sus siglas en inglés) y el índice de Descentralización Fiscal del Fondo Monetario Internacional, es decir, así como los autores que anteriores, estos usaron distintas formas de descentralización. Se usó estimadores multinivel, OLS FE y variables instrumentales. Este último, dada la endogeneidad que se encuentra en la variable explicativa de la descentralización. Como instrumentos para controlar la endogeneidad se utilizaron variables relacionadas a la densidad poblacional (ver página 1306 de dicha investigación). Los resultados mostraron que la descentralización fiscal tuvo un impacto positivo sobre la calidad escolar; sin embargo, la descentralización política obtuvo un resultado negativo.

Cordeiro y Lastra-Anadón (2019) indican que a pesar de que la descentralización debería mejorar la capacidad de los ciudadanos de hacer responsables a los políticos y mejorar los resultados del servicio público, esta no ha producido constantemente esas mejoras. Usando una base de datos de países de la OCDE para los años 2000, 2003, 2007, 2012, y para España para el periodo 1980 – 1999, los autores usaron estimadores de datos de panel con efectos fijos (diferencias en diferencias) para mostrar que la descentralización generalmente mejora el acceso de los estudiantes a la educación, pero a la vez crea efectos de congestión que disminuyen la calidad. He aquí el trade-off entre calidad y acceso. Este trabajo es una especie de estudio comparado, ya que por un lado analiza los países de la OCDE y por otro las regiones de España, incluso la especificación de su ecuación empírica es diferente para ambas muestras. Las medidas de descentralización en este caso son diferentes; mientras que para la data del análisis OCDE toma un carácter cuantitativo (el porcentaje de decisiones tomadas por el ámbito subnacional respecto al nacional), para España toma una variable categórica, 1 en un periodo de descentralización y 0 antes de la aplicación de la política. Por el lado de las variables dependientes, en el caso del análisis OCDE, se utilizaron los puntajes en Lectura, Matemáticas y Ciencias (esto para medir la calidad) y la tasa de matrícula del nivel terciario (para medir el acceso); mientras que para España se utilizó el porcentaje de aprobación a la universidad y el porcentaje de graduados de la escuela secundaria (para calidad), así como la tasa de matrícula de educación pre-escolar. Es significativa esta investigación no sólo por mostrar el *trade-off* entre calidad y acceso (siendo esto un problema repetitivo en la economía del sector público), sino también porque manifiesta que medir la descentralización no es una tarea fácil.

Recientemente, un artículo publicado por Kameshwara et al., 2020 ha puesto en debate las bondades que se han atribuido a la descentralización de la educación. Los autores revisan algunos trabajos anteriores en donde se observa que la descentralización tiene efectos positivos sobre los resultados escolares, pero también señalan que esta relación no es siempre clara debido a un problema de causalidad estricta. Por otro lado, indican que la literatura revisada manifiesta que la descentralización es un proceso muy complejo en donde existen diferentes áreas, por lo que no es tan fácil determinar el enlace o la relación entre la descentralización y mejores resultados escolares. Utilizando la base de datos de PISA 2015, en estricto los resultados en matemáticas, los autores estiman un modelo con una estructura multinivel (escuelas y alumnos), obteniendo como resultados que en la gran mayoría de los países analizados la descentralización no es estadísticamente significativa. Por ejemplo, en México y Perú el coeficiente de la variable descentralización resultó no significativa. Del total de países (OCDE y No OCDE), que fueron 65, sólo en nueve se observó una significancia en el estimador de la variable descentralización. Es importante señalar cómo se midió la descentralización educativa en este caso, pues los autores utilizaron las 12 opciones sobre la toma de decisiones que aparecen en la base de datos de la evaluación PISA (página 5 de la investigación). Estas 12 opciones son tareas que pueden ser ejecutadas por distintos agentes: los directores de la escuela, los maestros, el departamento de administración de la educación, la autoridad regional o local y la autoridad nacional. Finalmente, usando un análisis factorial se obtuvo la variable de descentralización utilizada para el análisis. Los autores concluyen que la política de descentralización educativa es nada más que una falsa promesa y una inefectiva prescripción. Esto último se sitúa en el contexto del trabajo de Hanushek et al. (2013), quienes encuentran a través de un análisis de regresión (un panel de 42 países) que la autonomía escolar, medida a través del currículo escolar, el presupuesto y el personal de la escuela, tiene un efecto diferenciado sobre el rendimiento escolar, pues

depende de la institucionalidad presente en los países de la muestra (positivo en los países desarrollados y negativo en los en desarrollo), respondiendo si tiene sentido la autonomía escolar en todas partes. Cabe precisar que dicho estudio también puso atención al problema de endogeneidad, resolviéndose esto observando los componentes que conforman el residuo del modelo empírico y utilizando distintos estimadores como los *country fixed-effects* y variables interactivas donde el PBI per cápita cumplió un papel importante.

Por otro lado, Galiani et al. (2002) evaluan el impacto del programa argentino de descentralización educativa sobre los resultados de los estudiantes del nivel secundario. Un importante aspecto que rescatan los autores es que reconocen que los puntajes de las pruebas estandarizadas no capturan todas las dimensiones de los logros del sistema escolar. Los resultados indican que la descentralización mejora el desempeño de las escuelas públicas, ya que en promedio las pruebas de las escuelas públicas ha mejorado 1.2 desviaciones estándar como resultado del proceso de descentralización. Los autores también indican que la descentralización tiende a diluir sus ventajas cuando las escuelas son administradas por provincias con bajo desempeño fiscal, es decir, a más alto déficit fiscal provincial, menor es el impacto positivo de la descentralización. Es importante aquí señalar que los autores entienden bien el problema de endogeneidad que significa la variable descentralización. Para ello, la metodología utilizada fue un estimador de diferencias en diferencias, siendo la variable utilizada la política de descentralización educativa de la década de los años 90. Otro trabajo es el de Di Gropello (2002) quien evaluó el impacto de la descentralización sobre la calidad de la educación en los municipios chilenos. El análisis se realizó sobre 50 municipalidades chilenas para el periodo 1992 - 96/97, estimando un modelo de regresión por mínimos cuadrados ordinarios usando el método de value-added (modelo usado para educación) con el objetivo de atrapar el efecto causal que tiene la descentralización sobre los resultados escolares (prueba SIMCE, promedio simple del puntaje en Matemáticas y Español). Las medidas de descentralización usadas tuvieron tres áreas: financiero, administrativo y pedagógico. En lo que respecta a lo financiero, se presentó el indicador de Autonomía Financiera: el porcentaje de los fondos de la municipalidad dirigidos a la educación respecto a los fondos totales dirigidos a la educación. Asimismo, en esta área se utilizó un índice llamado involvement index, el cual midió la participación de las escuelas en la toma de decisiones financieras locales. Otra medida de descentralización utilizada fue el

índice de Autonomía Pedagógica y el indicador de Autonomía Administrativa, las otras dos áreas evaluadas. Igualmente, se utilizaron distintas variables de control como el contexto educativo de los alumnos y variables ficticias que atraparon el efecto de la regionalización natural en Chile y el tamaño de los municipios. Los resultados a los que llega la autora son que la descentralización pedagógica y curricular en la escuela así como el nivel de participación de la escuela en las decisiones de financiamiento local tienen un efecto positivo y significativo sobre el rendimiento educativo. Asimismo, el gasto municipal en formación y los incentivos de ingreso también tienen un impacto positivo significativo. Sin embargo, las medidas de autonomía administrativa local y la descentralización financiera local resultaron negativa. Las conclusiones finalmente a la que llega la autora es que el impacto de la descentralización sobre la calidad de la educación no es claro y la forma de descentralización, el entorno institucional y socioeconómico tiene una influencia importante en los resultados.

Por su parte, Faguet y Sánchez (2008) indicaron que la descentralización mejoró las tasas de matrícula en las escuelas públicas en Colombia y la equidad en Bolivia. Estos autores también usan una estructura de datos de panel con estimadores de mínimos cuadrados y variables instrumentales, esto último con el objetivo de controlar la endogeneidad. La forma de medir la descentralización en este caso también se basó en distintas variables. Piñeros (2010) por su parte analiza los factores del proceso de descentralización fiscal y el incremento en las transferencias destinadas a la provisión de la educación pública en Colombia. El autor analiza los principales indicadores del sector educativo, observando un aumento de la cobertura, sin mayores avances en el tema de la calidad. A través de un análisis de eficiencia del tipo DEA se calcularon las eficiencias relativas de los departamentos para los años 2002 y 2009 en la provisión de cobertura y calidad. Los resultados mostraron eficiencia en la cobertura más que en calidad. En el caso del trabajo de Letelier y Ormeño (2018), cuyo análisis se basa en los municipios chilenos, tuvo por objetivo analizar la relación entre la autonomía local y la calidad educativa. La investigación se realizó en el marco de la reforma de des-municipalización de la educación en Chile; a la vez que plantea la hipótesis de que el desempeño escolar depende fundamentalmente de la medida en que los gobiernos locales tengan suficiente discreción para tomar decisiones en los aspectos clave de la gestión escolar. La metodología se basó en una estructura de datos de panel para el periodo 2005 – 2013 y un total de 345 municipalidades. Los autores utilizan una función lineal en donde la variable dependiente es el puntaje obtenido por alumnos en diferentes municipios del país en las materias de matemáticas y lenguaje (calidad escolar); mientras que la variable explicativa se basó en la construcción de un índice de autonomía local, esto para medir si la descentralización fiscal tiene efectos sobre los resultados educativos. La calidad escolar además es explicada por una combinación de variables de control como el ratio entre docentes y no docentes, número de escuelas públicas administradas por el municipio, número de estudiantes de escuelas locales matriculados en escuelas municipales, entre otras. Los métodos que se utilizaron para comprobar las hipótesis fueron estimadores econométricos del tipo de panel estático (efectos fijos) y dinámico (Arellano – Bond), esto último para controlar la endogeneidad del rezago de la variable dependiente; de igual forma se utilizaron instrumentos para controlar la endogeneidad de la variable de descentralización, en este caso los ingresos propios de la municipalidad. Se concluye que la descentralización fiscal tiene un impacto positivo sobre el desempeño de las escuelas públicas en Chile.

Estudios en Asia y África también han evidenciado el efecto positivo de la descentralización sobre los resultados escolares. Autores como Muttagin, et al. (2016) realizaron un estudio sobre el impacto de la descentralización de la educación en Indonesia usando la media de años de escolaridad como indicador de logro educativo. La hipótesis principal de la investigación fue que luego de la descentralización de la educación el logro educativo fue más alto. La técnica estadística utilizada se basó principalmente en un modelo de regresión multinivel con una estructura de datos de panel. Los resultados indicaron que después de la descentralización la duración de la escolarización aumentó ligeramente; asimismo, la variación del nivel de educación entre las provincias disminuyó ligeramente, pero la variación entre los municipios aumentó. Asimismo, se encontró que el grado de desarrollo y urbanización de los municipios tiene un impacto significativamente positivo en la mejora del nivel educativo; sin embargo, la capacidad fiscal y el estatus de municipio nuevo no tienen un efecto significativo en la mejora de la escolarización. Por otro lado, Sanogo (2018), estimó el efecto de la descentralización sobre el acceso a servicios públicos y a la reducción de la pobreza en los municipios de Costa de Marfil. El panel se estructuró en un periodo de once años para más de 100 observaciones. La variable dependiente usada para la parte educativa se basó en el acceso y cobertura: (i) Analfabetismo de adultos, que se refiere a que una persona no puede leer ni escribir una breve declaración simple sobre su vida cotidiana; y (ii) No

acceso a la educación, que se refiere al niño en edad escolar que no asiste a la escuela en los años uno a ocho debido a la lejanía o ausencia de la escuela. La variable explicativa es una medida de descentralización representada por el ratio de ingresos propios de la municipalidad respecto a ingresos totales. El método utilizado fue una técnica econométrica denominada *Grouped Fixed Effect* (GFE), siendo esto lo novedoso de la investigación, acompañado de Mínimos Cuadrados en dos etapas para el control de endogeneidad de la variable de descentralización. Los resultados indicaron que la descentralización fiscal tiene un efecto positivo sobre el acceso público y la reducción de la pobreza, siendo el efecto más pronunciado en el acceso a la educación.

Entre los estudios revisados se pudo observar similitudes en metodología y resultados, comenzando por la medida del resultado escolar, la cual se basó principalmente en el rendimiento, siendo este un paradigma nuevo el cual se aleja de la medición tradicional basada en la cantidad escolar o años de escolaridad. Esto es posible dada la disponibilidad de base de datos a nivel internacional, la evaluación PISA, y en este sentido, lo que buscan estas investigaciones es el efecto causal sobre una medida de calidad escolar. Otro aspecto similar es la medida de descentralización, que en la mayoría de casos se basó en el gasto público en educación, es decir, el índice de descentralización del gasto educativo; sin embargo, autores como Cordeiro y Lastra-Anadón (2019) y Kameshwara et al., (2020) usaron el porcentaje de toma de decisiones de los agentes educativos involucrados que interactúan en el ámbito local y nacional. Asimismo, la endogeneidad, que recae en la variable descentralización, es una cuestión que comparten y tratan casi todos los autores, variando el método de solución; por ejemplo, Heredia (2007), Salinas (2014), Diaz-Serrano y Meix-Llop (2019) y Letelier y Ormeño (2018) usaron instrumentos para controlar dicha endogeneidad. No todos los estudios usaron las mismas técnicas econométricas, ni los mismos controles, pero el objetivo es el mismo: hallar la causalidad de la descentralización sobre los resultados escolares. La base teórica también es similar, pues la base es la Funcion de Producción de la Educación. Mención aparte es el trabajo de Piñeros (2010) quien no usó modelos de regresión sino una técnica no paramétrica; así también, en la revisión destacan los estudios de Faguet y Sánchez (2008) y Cordeiro y Lastra-Anadón (2019) pues en un solo contenido analizan/comparan dos muestras distintas, en el primer caso Bolivia y Colombia, mientras que en el otro un conjunto de países de la OCDE y las regiones de España, respectivamente.

Por otro lado, a manera de tener una visión más completa del fenómeno de la descentralización y su efecto sobre los resultados escolares, se revisaron algunos estudios acerca del efecto del gasto público sobre dichos resultados. La literatura revisada da respuesta a la célebre crítica de Hanushek, sobre si el gasto público es importante en la mejora de los resultados escolares. Un survey importante es el de Leclercq (2005) que muestra que la relación positiva entre el gasto en educación y los resultados educativos no es concluyente, existiendo diferencias entre análisis por corte de varios países o un país específico. En esta revisión el autor señala que la variable dependiente varía en algunos casos es el rendimiento escolar en materias como matemáticas, y en otros alguna tasa de acceso como la matrícula neta escolar. El autor crítica la forma en como se han modelado algunas de las funciones de producción de la educación, por ejemplo, los estudios revisados no pusieron atención al problema de la endogeneidad. Asimismo, el autor señala que otras formas de abordar el problema son posibles, tal es el caso de la aplicación de la Economía del Comportamiento. Por su parte, Moreno (2008) aplica un análisis de eficiencia del tipo Free Disposal Hull (FDH) para medir si el gasto en educación primaria es eficiente en las entidades federativas de México, siendo los resultados variados y no concluyentes. Tam (2008) aplicando técnicas tanto paramétricas como no paramétricas analiza la eficiencia del gasto educativo en las regiones del Perú, encontrando que aún cuando existe una relación positiva entre los recursos financieros o físicos y los resultados educacionales logrados, dicha relación desaparece cuando existe evidencia de ineficiencia técnica. Otros estudios como el de Dauda (2011) y Kharisma y Pirmana (2013) indican para Nigeria e Indonesia respectivamente que el efecto del gasto público en los resultados educativos es positivo. Vásquez (2014) aplica un análisis envolvente de datos (DEA) para estimar la eficiencia del gasto público en educación básica en México. Los resultados que se obtuvieron permitieron concluir que las entidades federativas en las cuales se asigna una mayor cantidad de recursos tanto federales como estatales son las menos eficientes, dado, entre otras características, que el presupuesto no se asigna de manera equitativa. En este estudio, dada su metodología, existieron diferentes productos basados en medidas de acceso y cobertura. Otro estudio es el de Salazar (2014), quien realiza un análisis para países latinoamericanos en el periodo 2000 - 2009, siendo el objetivo evaluar la eficiencia del gasto público sobre los resultados educativos en los niveles primaria y secundaria. El autor toma específicamente los resultados de Colombia y los compara con los resultados más eficientes. La técnica de estimación se basó en los métodos no paramétricos DEA y FDH. Las estimaciones de

dicho análisis mostraron por ejemplo que Argentina, Brasil, Chile y Uruguay logran altos niveles de producción educativa para un nivel medio-alto de gasto público en educación que los hace eficientes (o muy cerca de la frontera) en primaria y secundaria; asimismo, Colombia podría aumentar su producción en la escuela primaria en alrededor del 1% con el mismo gasto público, si fuera tan eficiente como Uruguay y Bolivia (2014, pp. 53, 54). Garriga et al. (2015) también realizaron un análisis de eficiencia, aplicado a los gobiernos locales de Argentina. El objetivo fue analizar la equidad y la eficiencia del gasto público en educación básica, donde la variable dependiente es la inversa de tasa de repetición. Los resultados indicaron que el gasto en educación es progresivo y las jurisdicciones más eficientes tienen mejores indicadores de desarrollo. Asimismo, Vegas y Coffin (2015) realizaron una estimación del efecto del gasto público en educación secundaria sobre los rendimientos escolares en matemática usando una muestra de 50 países. La estimación econométrica fue convencional, usando controles y obteniendo resultados robustos los cuales indicaron que el gasto en educación tiene un efecto sobre los resultados escolares en matemática siempre y cuando no se excedan de un umbral de USD 8000 por estudiante (anual). Por último, Glewwe y Muralidharan (2016) muestran que, para un conjunto de países de la OCDE y otros, existe una relación lineal y positiva entre el PIB per cápita y los resultados de las evaluaciones de la prueba PISA (2012) en matemáticas y lectura.

Estudios cuantitativos para México

El trabajo de Santibañez *et al.* (2014) tiende a asemejarse a la evidencia empírica del problema de investigación. Los autores toman el **Programa de Gestión Basada en la Escuela** (SBM, por sus siglas en inglés) y ponen a prueba si este tiene un efecto en los resultados de los escolares en México. Cabe precisar que el programa es una forma altamente descentralizada de la educación. Utilizando un estimador de diferencias en diferencias (la variable dependiente es un indicador de resultados, como la prueba ENLACE, Tasa de Abandono Escolar y Tasa de Aprobación) y un análisis cualitativo, los autores obtienen resultados que sugieren que dicho programa en México tuvo efectos positivos en los puntajes de las pruebas de español de tercer grado. Los autores declaran que estos efectos positivos sean probablemente el resultado de las transferencias de recursos para satisfacer las necesidades de equipos, materiales e infraestructura, insumos catalogados como apremiantes según las preferencias de las escuelas.

Por su parte, Channa (2014) hace una revisión comparativa del impacto que tiene la descentralización administrativa sobre la educación básica en México. El mencionado

autor presenta tres trabajos, el realizado por Skoufias y Shapiro (2006), el de Murnane *et al.* (2006), y el de Bando (2010). En estos estudios se evalúa el **Programa Escuelas de Calidad (PEC)** que inició en el ciclo escolar 2001 – 2002 y cuyo objetivo general es contribuir a mejorar el logro educativo en los alumnos de las escuelas públicas de educación básica beneficiadas mediante la transformación de la gestión educativa (SEP, 2015). La población objetivo que contempló el programa fueron:

- Escuelas ubicadas en las zonas con índices de media a muy alta marginación.
- Escuelas indígenas y en zonas indígenas.
- Escuelas con alumnos cuyos resultados obtenidos en la Evaluación Nacional del Logro Académico en Centros Escolares (prueba ENLACE) se encuentren en el nivel insuficiente.
- Escuelas con alumnos becarios del Programa Oportunidades.
- Escuelas con alumnos en situación de vulnerabilidad, en complementariedad de las acciones del Programa de Atención Educativa a Población y Escuelas en Situación de Vulnerabilidad (PESIV).
- Escuelas multigrado.
- Centros comunitarios del Consejo Nacional de Fomento Educativo (Conafe) en educación básica.
- Espacios educativos ubicados en los campamentos de jornaleros agrícolas que atiendan a estudiantes migrantes.
- Escuelas que no hayan acumulado más de cinco años de permanencia en el programa;
 en caso contrario, la entidad federativa definirá una estrategia de apoyo.

En el caso de Skoufias y Shapiro (2006), los autores realizan una análisis cuantitativo para el periodo 2000 – 2003 con una estructura de datos del tipo panel y cuyos resultados muestran que los alumnos intervenidos por el PEC mejoran en los indicadores de tasa de abandono, tasa de fracaso y tasa de repetición escolar. Por su parte, Murnane et al. (2006) propusieron evaluar el impacto del PEC tomando datos para el periodo 1998-2004. Las medidas del progreso académico que usaron fueron tres: tasa de abondono escolar, tasa promedio de fracaso escolar y porcentaje de niños que son mayores de edad para el grado en que están matriculados (variables similares a lo analizado por Skoufias y Shapiro (2006)). Estos autores realizaron un corte temporal del programa en PEC 1 y PEC 2, para los resultados del primer y segundo año de la intervención respectivamente. La técnica utilizada fue un modelo de datos de panel para evaluación de impacto, es decir,

incluyendo un contrafactual (escuelas no participantes del programa), que se hizo tanto para PEC1 como para PEC2. Los resultados mostraron que no fue posible determinar el impacto positivo de PEC1 sobre los tres indicadores educativos propuestos, pero sí para PEC2, es decir, el impacto del programa no fue instantáneo. Cada año de participación en el programa resultó en una disminución en la tasa de abandono escolar en aproximadamente 0.11 puntos porcentuales. Después de tres años de participación en el PEC, esta tasa fue de aproximadamente 0.27 puntos porcentuales más bajos de lo que hubiera sido de otra manera. Respecto a los otros indicadores de resultados educativos, tasa promedio de fracaso escolar y porcentaje de niños que son mayores de edad para el grado en que están matriculados, no se encontró significancia estadística.

Por su parte, Bando (2010) toma en cuenta no sólo indicadores de cobertura, sino también de logro educativo. Los resultados sobre el PEC indicaron que, en promedio, la participación no está significativamente relacionada con el rendimiento estudiantil. Sin embargo, las escuelas participantes durante cinco años mostraron aumentos en las puntuaciones de matemáticas y español de 0.09 y 0.07 desviaciones estándar respectivamente; es decir, se necesita tiempo y experiencia con las reformas de la gestión de las escuelas antes de que se obtenga beneficios.

Estudios cuantitativos para Perú

Por otro lado, en el caso peruano, se identificaron dos estudios, el de Holler-Neyra (2013) y el de Manrique *et al.* (2016). El primero se enfoca en la municipalización de la educación, política propuesta por el gobierno peruano, y su relación con los resultados escolares medido por el rendimiento en Lectura. Se analizaron 1750 municipios durante el período 2007-2010. Utilizándose como marco analítico una FPE se estimó un modelo de regresión del tipo panel utilizándose como principal estimador el de efectos fijos. Es notable el trabajo de la autora ya que mide la descentralización a través de un enfoque económico y político. Para medir la descentralización económica utilizó el porcentaje de recursos propios respecto a su presupuesto total (independencia económica local); mientras que la dimensión política se midió por una variable *dummy* interactiva asociada a la participación del programa de municipalización de la educación y la transferencia gubernamental derivada de dicho programa. Con base en estas variables la autora llega a conclusiones mixtas. En primer lugar, las estimaciones sugieren que la descentralización educativa en el contexto de la municipalización tiene un efecto positivo (significativo) sobre el rendimiento escolar. Sin embargo, al estimar el modelo con una muestra de

municipios pobres, la evidencia mostró que la municipalización no produjo un impacto en los resultados de aprendizaje en estas localidades. La autora concluye adicionalmente que, a pesar de los resultados mixtos de la investigación, esto no debiera traducirse en que la descentralización de la educación es necesariamente perjudicial, sino que muestra o sugiere que son importantes las condiciones previas para el éxito de la política.

El segundo tuvo como objetivo determinar si los resultados educativos en ciertos distritos del país están relacionados con recursos públicos descentralizados como las transferencias intergubernamentales, en este caso, el canon. El objeto de estudio fueron las escuelas rurales en donde se quería saber si las transferencias tenían un impacto positivo sobre el rendimiento educativo (total y por género), atraso escolar (total y género), tasa de desaprobación (total y por género), acceso a servicios básicos, tenencia de biblioteca, tenencia de laboratorio de ciencias, tenencia de sala de profesores, tenencia de losas deportivas, tenencia de sala de cómputo, tenencia de aulas para talleres, acceso a internet, inodoros por niño de primaria, computadoras por niño de primaria y porcentaje de aulas en buen estado. La metodología aplicada fue una evaluación de impacto, utilizando la técnica de *Propensity Score Matching*, y una regresión con datos de panel. Los resultados indicaron que la transferencia de recursos públicos sí tiene efectos positivos sobre las variables educativas, pero estos no son constantes, concluyendo que existen otras variables relevantes que podrían estar afectando a las variables educativas, como un mayor gasto y la calidad de las inversiones.

Esta revisión general de los antecedentes empíricos sobre el problema de investigación condujo a dos conclusiones. En primer lugar, que el efecto de la descentralización educativa sobre los resultados escolares no es un hecho estilizado, es decir, se encontraron estudios que concluyen un efecto positivo, otros incierto y otros ninguno. Esto se asemeja a la línea de investigación del gasto público educativo y los resultados escolares, la cual comienza con la crítica de Hanushek realizada a finales del siglo pasado. Dicha situación permitió a reflexionar respecto a que la teoría de descentralización fiscal tiene varias aristas a tratar en el campo educativo. En segundo lugar, una adecuada medida de la descentralización educativa es un reto académico significativo, a la vez que es importante controlar el problema de endogeneidad latente.

En el cuadro 2 se muestra un resumen de los estudios a partir de sus resultados, vinculando estos a la pregunta general de la investigación - ¿ la descentralización educativa es un determinante del rendimiento escolar en México y Perú? - y a la metodología empleada.

CUADRO 2. RESUMEN DE LA LITERATURA EMPÍRICA REVISADA

Estudio	Autor	País	Metodología	Resultados
The impact of education decentralization on education output: A cross-country study	Heredia-Ortiz (2007)	varios	Regresión. Tratamiento de la Endogeneidad. Varias medidas de descentralización.	
The effect of decentralization on educational Outcomes: real autonomy matters!	Salinas (2014)	varios	Regresión.Tratamiento de la Endogeneidad. Varias medidas de descentralización.	
Decentralization and the quality of public services: Cross-country evidence from educational data	Diaz-Serrano y Meix-Llop (2019)	varios	Regresión.Tratamiento de la Endogeneidad. Varias medidas de descentralización.	
Evaluating the impact of school decentralization on educational quality	Galiani et al. (2002)	Argentina	Regresión.Tratamiento de la Endogeneidad. Una medida de descentralización.	
Decentralization's effects on educational outcomes in Bolivia and Colombia	Faguet y Sánchez (2008)	Bolivia y Colombia	Regresión.Tratamiento de la Endogeneidad. Distintas medidas de descentralización. Se comparan 2 países.	Efecto positivo sobre los RE.
Descentralización, gasto público y Sistema educativo oficial Colombiano: un análisis de Eficiencia y calidad	Piñeros (2010)	Colombia	Análisis de Eficiencia	
Education and fiscal decentralization. The case of municipal education in Chile	Letelier y Ormeño (2018)	Chile	Regresión.Tratamiento de la Endogeneidad. Varias medidas de descentralización.	
Does fiscal decentralization enhance citizens' access to public services and reduce poverty? Evidence from Côte d'Ivoire municipalities in a conflict setting	Sanogo (2018)	Costa de Marfil	Regresión.Tratamiento de la Endogeneidad. Una medida de descentralización.	
School based management effects: Resources or governance change? Evidence from Mexico	Santibañez et al. (2014)	México	Regresión y análisis cualitativo	

The quality-access tradeoff in decentralizing public services: Evidence from education in the OECD and Spain	Cordeiro y Lastra-Anadón (2019)	Varios/Esp aña	Regresión.Tratamiento de la Endogeneidad. Varias medidas de descentralización. Análisis comparado de países.	
Does school autonomy make sense everywhere? Panel estimates from PISA	Hanushek, Link y Woessman (2013)	Varios	Regresión.Tratamiento de la Endogeneidad. Varias medidas de descentralización.	Efecto incierto
An Assessment of the Impact of Decentralization on the Quality of Education in Chile	Di Gropello (2002)	Chile	Regresión.Tratamiento de la Endogeneidad. Varias medidas de descentralización.	sobre los RE.
The Impact of Decentralization on Educational Attainment in Indonesia	Muttaqin, et al. (2016)	Indonesia	Regresión	
Evaluating the impact of decentralisation on educational outcomes: the peruvian case.	Holler-Neyra (2013)	Perú	Regresión	
A false promise? Decentralization in education systems across the globe	Kameshwara, S andoval- Hernandez, Shields y Dhanda (2020)	Varios	Regresión. Medida de descentralización multifactorial.	Ningún efecto sobre los RE.

Fuente: Elaboración propia con base en los estudios revisados.

I.3.2. Estudios no cuantitativos

No hay un solo método para abordar el problema, siendo lo deductivo lo más abundante en la literatura. La inclusión de otros métodos forma parte de un abordaje más amplio y su aplicación pueden responder lo que un análisis ortodoxo no puede. Tal es el caso de la aplicación de la teoría de la Agencia. La aplicación de esta teoría al problema de la descentralización educativa representa el conjunto de nuevos métodos para abordar el problema, siendo éste parte de lo que podría denominarse la Nueva Economía de la Educación. Desde fines del siglo pasado aparecieron estudios sobre el proceso descentralizador del sistema educativo de América Latina que tuvieron como objetivo describir su desarrollo, siendo el trabajo de Di Gropello (1999) uno de los pioneros.

La autora describe que Argentina inició tempranamente con la delegación de las responsabilidades educativas al nivel subnacional, traspasando primero la gestión del nivel primario (1978) y luego el secundario (1992) a las provincias del país. Chile hizo lo propio en 1981 delegando la responsabilidad a los municipios; más tarde, en la década de

los noventa, Bolivia, Colombia, México y Nicaragua lo hicieron entregando la responsabilidad a los estados, departamentos y/o municipios. El caso de Nicaragua destaca pues son las escuelas las encargadas de la gestión de la educación, es decir, no es algún nivel subnacional de gobierno sino la unidad básica de enseñanza. Más tarde Navarro (2007) indica que estas reformas han dado como resultado que países como Argentina, Bolivia, Brasil, Chile, Colombia, El Salvador, Nicaragua, Guatemala y México hayan alcanzado en forma y/o fondo un gran avance en la descentralización educativa. Por el contrario, Costa Rica, Ecuador, Honduras, Panamá, Paraguay, Rep. Dominicana, Uruguay, Venezuela y Perú tienen un sistema más centralizado en su fondo, y aunque existe el intento de descentralización en algunos casos este es un proceso revertido o no consolidado (Navarro, 2007, p. 439).

Ahora bien, la descentralización como todo proceso se ha dado en diferentes maneras y grados de avance; por ejemplo, en Argentina la decisión de la administración del personal educativo se hace a nivel provincial, en Chile a nivel municipal, mientras que en El Savador es a nivel de escuela. A la par, es importante destacar que en este proceso el gobierno central no deja de ser un agente interventor (y por ende importante), aún más en el inicio, pues a fin de cuentas este va a tomar la decisión de descentralizar la organización de la instrucción, la administración del personal, planificación y estructuras y/o los recursos (Banco Mundial,1999). Al respecto, Di Gropello (1999) indica que el nivel central interviene a través de directrices sobre la calidad, mandatos de gasto publico mínimo ejecutado por alumno y, lo más importante, las transferencias intergubernamentales para evitar así la inequidad territorial.

Di Gropello (1999) indica que la descentralización en América Latina forma parte de un proceso de reforma de política social que se realiza para hacer más eficiente la provisión de los bienes y servicios y fortalecer los procesos de democratización. Los países tales como Argentina, Bolivia, Brasil, Chile, Colombia, México y Nicaragua (que forma parte del análisis de la autora) tienen modelos de descentralización educativa diversos, pero tienen elementos comunes tales como: "dependencia de los recursos del nivel central para financiar los servicios, y, en muchos casos, subordinación de la escuela a decisiones tomadas a otros niveles" (p. 153). Dicha autora utiliza el modelo del problema de Agencia para describir la relación que existe entre el gobierno central y los gobiernos subnacionales en un contexto de descentralización educativa, aseverando que:

De hecho, el desafío principal que enfrenta el gobierno central es lograr que las unidades a las que entrega nuevas responsabilidades alcancen con la mayor eficiencia posible objetivos congruentes con los intereses nacionales, maximizando así las ventajas esperadas de una reforma descentralizadora sin perder el control sobre los resultados (p. 156).

En este contexto aparece el modelo Principal—Agente como marco analítico que le permite a la autora clasificar la relación que existe entre los diferentes niveles de gobierno. De esta manera, el nivel central es el Principal y los nuevos proveedores de los bienes y servicios locales, los Agentes. Se señala lo siguiente:

Este tipo de modelo permite analizar la naturaleza específica de la relación entre el centro y la periferia, dando cuenta de algunos de los problemas de incentivos que suelen afectar a esta relación, como los de selección adversa y de riesgo moral (p. 156).

De esta manera se tiene tres tipos de modelos de descentralización educativa: (i) P-A de intensidad débil, a lo que se le denominó una "devolución" híbrida. Aquí el nivel central es el principal financiador, pero el nivel subnacional tiene alta autonomía en la provisión; ii) P-A de intensidad media, donde el nivel subnacional tiene una dependencia importante del gobierno central debido a una estructura de financiamiento y vinculación a normas e incentivos; y por último iii) P-A de intensidad fuerte, o sea de desconcentración. Incorporando la participación de la comunidad en la provisión, finalmente la autora tiene una clasificación de cinco modelos:

- 1. Procesos de "devolución" híbrida con poca participación en un nivel territorial principal.
- 2. Procesos de "devolución" híbrida participativa en la unidad de producción, o sea, del tipo principal/ agente entre un agente y dos principales (el nivel central y la comunidad) con una relación leve entre el agente y el nivel central.
- 3. Reformas de tipo principal/agente entre un principal (nivel central) y un agente (nivel intermedio o local) con poca participación.
- 4. Reformas de tipo principal/agente entre un principal (nivel central) y dos agentes (niveles intermedios y locales que funcionan de manera complementaria) y con poca participación.

5. Procesos de desconcentración tendencialmente participativa en la unidad de producción

Este tipo de clasificación permite enmarcar mejor los modelos de descentralización acontecidos en América Latina. Por ejemplo, según la autora, con base en la clasificación anterior México caería en la clasificación de un modelo de descentralización tipo P-A en donde la transferencia de responsabilidades se da en el nivel intermedio, es decir, del gobierno federal a las entidades federativas. Otros países con este modelo son Bolivia, Chile y Colombia; mientras que Argentina, Nicaragua y Brasil tienen un modelo de Devolución, siendo que este último incluye un modelo de desconcentración. En el cuadro 3 se puede observar los resultados finales del análisis de la autora.

CUADRO 3. TIPOLOGÍA DE MODELOS DE DESCENTRALIZACIÓN DE LA EDUCACIÓN EN ESTUDIOS NO CUANTITATIVOS

País	Devolución		Principal/Agente			Desconcentración			Grado de participación de	
	NI	NL	UP	NI	NL	UP	NI	NL	UP	la comunidad
Argentina	МН									Bajo
Bolivia										Incipiente
Brasil	МН	МН								Medio (UP)
Chile									AI	Bajo/En aumento
Colombia									AI	Bajo/En aumento
México										Bajo
Nicaragua			МН							Medio/En aumento

Fuente: Di Gropello (1999).

NI = Nivel intermedio (provincia, estado o departamento).

NL = Nivel local (municipios)

UP = Unidad de producción (escuela)

MH = Modelo híbrido

 $AI = Autonom\'(a\ incipiente$

Asimismo, existen otros estudios cualitativos en América Latina. En el caso mexicano, se deben mencionar además de los casos de estudio de Pardo (1999), otros trabajos que abordan de una manera cualitativa el problema de investigación. Por ejemplo, Fierro *et al.* (2009), y la misma Pardo (1999), a través de un análisis descriptivo cualitativo

concluyen que el federalismo educativo mexicano es una tarea inconclusa. Pardo (1999) indica que el diseño a partir de la Ley General de Educación (LGE) es fallido. Por otro lado, Malgouyres (2014) señala que la descentralización educativa actual en dicho país ha generado desigualdad entre las entidades federativas que lo conforman. Mendoza (2018) por su parte señala que el modelo descentralizador general es ajeno al espíritu del federalismo fiscal, existiendo incentivos perversos en la Ley de Coordinación Fiscal (LCF). Al respecto, Úrzua y Velázquez (2018) y Fierro *et al.* (2009) señalan que la razón de la falla del modelo se encuentra en su diseño. Estos últimos exponen que:

En sentido estricto, ni el ANMEB ni la LGE plantearon una distribución de competencias federación-entidades federativas que remontase la diseñada en la Nueva Ley Orgánica de Educación de 1942 o en la Ley Federal de Educación de 1973. Por el contrario, la LGE actualizó e incrementó la asignación de atribuciones a la Federación (la función compensatoria o la evaluativa, por ejemplo) así como "todas las necesarias para garantizar el carácter nacional de la educación" ... Por su parte, las atribuciones asignadas a las entidades federativas sólo representan un correlato operativo - administrativo de las facultades normativas-directivas de la Federación (p. 5).

Para Ornelas (2010), tal vez el autor más prolijo en cuanto a estudios sobre descentralización de la educación en México, indica que el modelo actual es un fracaso, que tiene consecuencias negativas sobre la calidad y equidad escolar. El mismo autor señala que la descentralización y conflicto político ocurre a través del sindicato de profesores, ya que existe una hostilidad entre la burocracia tecnócrata y los grupos del sindicato (Ornelas, 2003).

En el caso peruano existe cierta literatura cualitativa que aborda el problema de la descentralización educativa, aunque los trabajos más elaborados se encuentran realizados por el mismo Ministerio de Educación (MINEDU), que da cuenta del proceso largo que significa desentralizar las potestades y responsabilidades de los niveles de gobierno en materia educativa. Por ejemplo, el MINEDU indica que en el año 2010 el Consejo Nacional de Educación manifestó que uno de los problemas de la descentralización educativa se encontraba en el traslape de responsabilidades de los niveles de gobierno (MINEDU, 2013). En aquel contexto se preparaba el proyecto de la Ley de Organización y Funciones del MINEDU, el cual definía el rol para el gobierno central y los gobiernos regionales/locales. Un largo proceso ha sido llevado hasta la promulgación reciente de

dicha ley; sin embargo, el informe de la UNESCO (2017) indica que el problema de descentralización de la educación en Perú se centraría en el diseño del modelo de gestión descentralizada, en donde persiste la ausencia de condiciones administrativas, técnicas y humanas en el ámbito local (Unidades de Gestión Educativa Local).

II. CAPÍTULO DOS. MARCO TEÓRICO

II.1. ¿Qué es el rendimiento escolar y cómo se produce?

La Economía de la Educación señala que los resultados inmediatos del proceso educativo están representados por el conjunto de conocimientos y habilidades que el individuo obtiene al completar con éxito un programa escolar (Unesco, 2011, Lovenheim y Turner, 2018). Estos conocimientos se suelen medir a través de indicadores de rendimiento, resultado escolar que es objeto de estudio de la presente investigación. Cabe precisar que esta medida de resultado se basa en el paradigma de la calidad en educación, teniendo como antecedente el logro escolar basado en los años de escolaridad promedio del individuo.

Para producir el aprendizaje se requiere de un proceso complejo en el cual intervienen distintos insumos, marco analítico denominado Función de Producción de la Educación - FPE¹² (Lovenheim y Turner, 2018). En este proceso se sabe, más o menos, qué insumos intervienen y los productos a alcanzar, pero no qué ocurre al interior (Carnoy, 2006). Con base en Cameron *et al.* (2018), en la figura siguiente puede representarse este proceso.

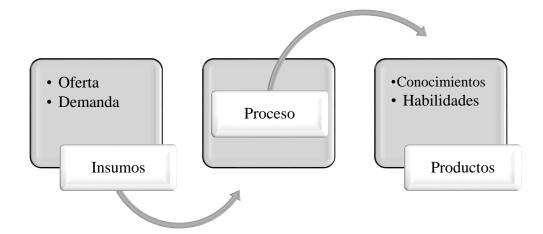


Figura 13. Modelo del proceso educativo según FPE

Fuente: Elaboración propia con base en Cameron et al. (2018).

¹² Esta función cumpliría con todas las características teóricas de una función de producción teórica.

La figura anterior nos muestra que existen **insumos** tanto del lado de la oferta como de la demanda del sistema educativo. El gobierno representa en parte la oferta educativa y puede controlar las características de las escuelas y el currículo; mientras que por el lado de la demanda se encuentran los alumnos y padres de familia. Las características de estos (por ejemplo, los aspectos socioeconómicos) no pueden ser controlados por el gobierno, al menos de forma directa y en el corto plazo (Hanushek, 2015). La literatura empírica reciente señala que ambos lados deben ser tomados en cuenta al momento de analizar la producción de la educación (Delpier et al., 2019; Baker, 2016). Es difícil saber qué insumos pueden intervenir en el proceso de producción del aprendizaje (Lovenheim y Turner, 2018); sin embargo, la literatura reconoce a algunos, como la calidad del docente, el tamaño de clase y los aspectos socioeconómicos de los alumnos (Hanushek, 1997). Cameron et al. (2018) agrupan los insumos iniciales en (i) el gasto público, (ii) el gasto privado y (iii) el capital humano y social de los padres. Es decir, por un lado, no hay un consenso de qué insumos son los que intervienen en la producción de la educación, pero por otro existen ciertas clasificaciones generales. Por lo menos hay una mayor aprobación (que se ha valido de la evidencia empírica a lo largo del tiempo) de que los aspectos socioeconómicos del alumno son un insumo muy importante en el proceso educativo.

En cuanto a los resultados como el aprendizaje, estos se miden a través de indicadores de rendimiento, los cuales revelan cómo se está desempeñando el sistema educativo (Unesco 2019a) y hacia dónde va (Álvarez y Gómez, 2009). El rendimiento está relacionado a la calidad escolar, más que a la cantidad (años de escolaridad que alcanzaba un individuo). Siguiendo a Omoeva et al. (2018) y a la Unesco (2019a), el rendimiento escolar en el nivel básico puede medirse a través de las evaluaciones de lectura y matemáticas, y también a través de la tasa de aprobación.

II.2. Descentralización educativa como insumo del rendimiento escolar

Con base en la teoría de la economía del sector público, el Estado tienen la función de financiar, regular, garantizar y producir la educación (Tapia, 2009; Llamas, 2019). Asimismo, se sabe que la mayor preocupación de los gobiernos es asegurar la educación en su nivel básico, dado que esta representa el ciclo en donde los alumnos reciben un conjunto de conocimientos que le permiten afrontar sus necesidades fundamentales (López, 2005; Unesco, 2019b). Por otro lado, la teoría del federalismo fiscal indica que los gobiernos locales realizan una mejor asignación de los bienes públicos en su jurisdicción dado que al estar más cerca de la población conocen mejor sus preferencias

(Oates, 1977) ¹³. Extrapolando lo anterior al mercado educativo, entonces si las autoridades locales asignaran la educación en cada una de sus jurisdicciones de acuerdo a las preferencias de sus ciudadanos, se obtendría una mayor ganancia del bienestar en la población local. Esto conlleva a proponer que la descentralización de la educación puede ser un insumo del proceso educativo, el cual se consideraría como un insumo del lado de la oferta. La literatura indica que la justificación de descentralizar la educación se basa en la mejora de la calidad educativa (Morduchowicz y Arango, 2010), en la mayor eficiencia en las escuelas (Carnoy, 2006), mejorar la operación del sistema educativo, cambiar las fuentes y cantidad de fondos disponibles para la educación (McGinn y Welsh, 1999).

Según Hanushek y Woessmann (2011), la descentralización educativa es una variable institucional, pues refleja la autonomía escolar. En ese sentido, no es lo mismo descentralizar la educación en un gobierno del tipo federal que en uno del tipo unitario, aunque la literatura indica que ambos sistemas tienden a asemejarse con el paso del tiempo (Reyes, 2006). Asimismo, la descentralización de la educación puede tener distintas fuentes de financiamiento:

- (i) Transferencias intergubernamentales.
- (ii) Ingresos propios de los gobiernos subnacionales o locales.
- (iii) Combinación de transferencias e ingresos propios.

Dado esto, el análisis de la descentralización educativa no sólo pasa por la dimensión económica (teoría del federalismo fiscal), sino también por la administrativa y la política. Bajo un enfoque administrativo, Winkler y Yeo (2007) indican que esta descentralización tiene diferentes grados, siendo la **delegación** el más avanzado, en donde las escuelas asumen la toma de decisiones, aunque algunas se mantienen a nivel central. Un grado que le antecede es la **devolución**, donde los protagonistas son las autoridades locales, como los estados o provincias. Por último, el grado de **desconcentración** es aquel en donde las decisiones aún se encuentran fuertemente centralizadas, y generalmente lo único que se descentraliza es una parte o incluso el total del presupuesto destinado a la educación. La literatura señala que cada grado tiene relación con el tipo de sistema de gobierno en donde se realice la descentralización. Por ejemplo, se asume que un gobierno federal tiene una educación más descentralizada que un gobierno unitario. Esto está relacionado con la

-

¹³ Este teorema se cumple bajo ciertos supuestos, como la ausencia de economías de escala.

descentralización política, pues según Levin (1976) la ideología del gobierno define la política educativa.

Ambas, la descentralización educativa administrativa y política, tienen una medición más compleja, incluso algunos conceptos escapan a la teoría económica convencional. Sin embargo, su análisis puede conllevar a explicar a la vez qué ocurre al interior de la "Caja Negra" que representa la FPE. En la siguiente figura se representa a las tres dimensiones de la descentralización educativa, la económica, la administrativa y la política, las cuales están relacionadas entre sí.

Fiscal

DE

Política

Administrativa

Figura 14. Dimensiones de la descentralización educativa (DE)

Fuente: Elaboración propia con base en Schneider (2003) y Finot (2001).

La descentralización es un fenómeno complejo, y su aplicación a la educación lo hace aún más. La medición de su dimensión económica es la más sencilla. Adaptando a Ivanyna y Shah (2014), el índice de descentralización educativa (DE) relaciona el gasto subnacional educativo respecto al gasto general educativo:

$$DE = \frac{\textit{Gasto Educativo del Gobierno Subnacional (GSN)}}{\textit{Gasto Educativo del Gobierno General (GG)}}$$

Sea **DE** una medida de descentralización *proxy* del concepto complejo de la descentralización, esta se puede incluir en una FPE construida con base en Cameron *et al.* (2018), Hanushek, (1997) y Hanushek (2020), lo cual permite obtener lo siguiente:

$$A_j = f\left(DE, R, H\right)$$

Donde:

- **A** = Rendimiento Escolar.
- **DE** = Descentralización Económica de la Educación.
- \mathbf{R} = Recursos de la escuela.
- **H** = Entorno Socioeconómico del Alumno.

II.3. Rendimiento Escolar y Descentralización educativa desde un enfoque positivo.

El fenómeno de la descentralización es un proceso complejo. Partiendo de esta premisa se sabe que la teoría normativa basada en el teorema de Oates ha evolucionado y ha transitado a un enfoque positivo, incluyendo teorías como la Economía Neo-Institucional, el problema de la Agencia y la Elección Pública. El resultado es un nuevo paradigma teórico denominado federalismo fiscal de segunda generación (FFSG), abarcando así las dimensiones administrativas y políticas de la descentralización. En los párrafos siguientes se propone la aplicación del FFSG a la descentralización educativa, construyéndose un marco teórico que explique el interior de la "Caja Negra" de la FPE.

II.3.1. Política y agentes en la descentralización educativa.

Levin (1976) indica que el sistema educativo inicia por la organización de la sociedad, la cual tiene una ideología específica y forma de gobierno. Esta va a delimitar las metas y el presupuesto que va a dar forma al proceso educativo. La Unesco (2014) señala que el contexto del proceso educativo, representado, entre otras variables, por los criterios nacionales, los factores socioculturales y religiosos, influye sobre la producción de la educación. De lo anterior se infiere que el rendimiento escolar dependerá también del sistema político de un país.

Asimismo, Fiske (1996) señala que el sistema educativo no es un ente abstracto, sino el conjunto de agentes contenidos en él, los cuales son los políticos, los burócratas, los hacedores de política, el profesorado, el sindicato de profesores, los padres, los alumnos y la comunidad local. Con base en una clasificación de oferta y demanda, dichos actores pueden identificarse de la siguiente manera:

Oferta del sistema educativo:

- Políticos
- Hacedores de políticas
- Burócratas

- Profesorado
- Sindicatos de profesores

Demanda del sistema educativo:

- Padres y estudiantes.
- Comunidad local

Estos interactúan, dando dinámica al sistema y en esta se puede establecer distintos niveles o dimensiones. Sebastián (2018) indica que en el nivel Micro se encuentran los alumnos y profesores, en el nivel Meso se encuentran los Burócratas de la Escuela, Padres de Familia y la Comunidad Local, en el Nivel Exo están la organizaciones de padres de familia; y por último, en el nivel Macro se encuentran los políticos, hacedores de política y el sindicato de profesores. Es en este último nivel en donde se toman decisiones determinantes, y en donde se manifiesta la ideología de la sociedad y la forma de gobierno, pues, los bienes públicos se tranzan en el mercado político (esto aludiendo a la Escuela de la Elección Pública).

Entonces, la producción de la educación es afectada por la ideología de la sociedad, la cual se manifiesta en la forma de gobierno que impera en ella. Asimismo, el sistema educativo ocurre por la interacción de agentes, los cuales hacen que se produzca la educación. Aquí es en donde la FPE se queda limitada en su análisis, pues la medición de las interacciones entre los agentes es díficil de realizar. Sin embargo, es necesario estudiar esto a través de la teoría del problema de la Agencia.

II.3.2. Modelo de McNollgast aplicado a la descentralización educativa.

Hughes (2003) indica que la relación Principal-Agente es una relación de jerarquía, en donde este último lleva a cabo tareas en nombre del primero. Sin embargo, los Agentes tienen objetivos distintos al del Principal (Shepsle, 2016). En el contexto de la descentralización, Oates (2005) indica que el Principal puede entenderse como el Gobierno Central y el Agente como los Gobiernos Locales. ¿Por qué en el sector público los Agentes tendrían objetivos distintos al del Principal? La teoría de la Elección Pública señala que los gobernantes son personas con preferencias individuales (Tullock, 2002; Buchanan, 2005), el *homo economicus* y el *homo politicus* son lo mismo indicaría Tullock (2002), lo que lleva a establecer que los Agentes pueden ser considerados como egoístas y racionales en el sentido económico.

Conllevando estos postulados a la descentralización educativa se pueden determinar que cada uno de los Agentes del nivel Macro del Sistema Educativo tienen sus propios intereses, generándose una relación Principal-Agente. Al respecto, Di Gropello (1999)¹⁴ indica que no hay una única relación Principal-Agente en la descentralización educativa, sino que depende de la intensidad: Principal/agente de intensidad débil (Devolución Híbrida), Principal/agente de intensidad media y Principal/agente de intensidad fuerte (Desconcentración).

El modelo de McNollgast es una representación del problema de agencia en el sector público, el cual indica que cada vez que una ley crea una nueva agencia ocurre una situación anómala donde el Principal querrá que el Agente ejecute todo lo que él le ordene, mientras que este último querrá ejecutar todo lo que a él le parezca más conveniente. Este modelo propuesto por Mathew McCubbins, Roger Noll, y Barry Weingast (de ahí el nombre McNollgast) se basa en que el Principal querrá que el Agente cumpla una determinada política, tal como x, pero este último querrá salir del control del Principal para cumplir una política tal como Y (acorde a sus propios intereses). Dada la existencia de un castigo sobre el Agente, este elegirá una política tal como x, es decir lo más cercano a Y. La diferencia entre x y x se denomina deriva burocrática (Shepsle, 2016). Es importante señalar que en esta dinámica existe una relación positiva entre Recursos y Autoridad.

Aplicando esto a la descentralización educativa se identifica que el Nivel Macro del Sistema Educativo puede representarse por las siguientes variables:

- Principal: Gobierno Central (hacedores de política)
- Agentes: Gobiernos Locales (hacedores de política)
- x: Descentralización de la educación propuesta por el gobierno central.
- Y: Descentralización de la educación acorde con las preferencias de los gobiernos locales.
- x': Descentralización de la educación distinta a la deseada por el Gobierno Central y ejecutada por los Gobiernos Locales.
- R: Recursos educativos.
- Z: Autoridad de los niveles de gobierno.

¹⁴ La aplicación de la teoría que hace la autora se realiza para América Latina.

En la figura 15 se muestra que el Gobierno Central (GC) querrá una descentralización del tipo x donde los Gobiernos Locales (GL) tengan unos recursos tales como $\mathbf{R1}$ y una autoridad tal como $\mathbf{A1}$. Mientras que los GL querrán una descentralización tal como \mathbf{Y} con recursos $\mathbf{R2}$ y una autoridad $\mathbf{A2}$. Dada la coerción del GC sobre los GL, estos asumirán la ejecución de la descentralización del tipo x con unos recursos \mathbf{Rd} y una autoridad \mathbf{Ad} .

Recursos
Educativos

Gobierno Local

R2

Gobierno Central

Rd

R1

Deriva burocrática

Al Ad A2

Autoridad

FIGURA 15. MODELO MCNOLLGAST APLICADO A LA DESCENTRALIZACIÓN EDUCATIVA

Fuente: Elaboración propia con base en Shepsle (2016).

Dado esto, si $\mathbf{Z_P}$ es la Autoridad del Gobierno Central y $\mathbf{Z_A}$ es la Autoridad de los Gobiernos Locales, además que $\mathbf{R} = \mathbf{R}\mathbf{p} + \mathbf{R}\mathbf{d} + \mathbf{R}\mathbf{a}$, donde $\mathbf{R}\mathbf{p}$ son los recursos que ejecuta el Gobierno Central, $\mathbf{R}\mathbf{d}$ son los recursos que ejecutan los Gobiernos Locales a través de transferencias y $\mathbf{R}\mathbf{a}$ son los recursos que ejecutan estos mismos con recursos propios. Entonces:

Si
$$Rp > Rd + Ra$$
, \Rightarrow

Según el modelo se cumple que $\mathbf{Z}_{\mathbf{P}} > \mathbf{Z}_{\mathbf{A}}$.

Esto es un problema sobre el diseño de la descentralización educativa que se verá a continuación.

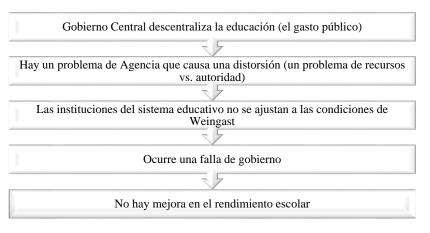
Finalmente, cabe precisar que la deriva burocrática del modelo será solucionada ejecutando un arreglo institucional claro que genere incentivos adecuados sobre el comportamiento del Agente (Shepsle, 2016).

II.3.3. Modelo de Weingast aplicado a la descentralización educativa.

Weingast (2009) señala que un determinado conjunto de instituciones son requisito para que la descentralización funciones. El mismo autor indica que la descentralización no es buena ni mala para la eficiencia o la equidad, sino que depende finalmente de las instituciones. Según el autor, para que la descentralización funcione deben estar presentes las siguientes reglas que sirven de incentivos para que los gobernantes lleven a cabo un correcto diseño y aplicación de la descentralización:

- **Jerarquía**: La correcta definición de la estructura vertical que existe en la relación entre el gobierno central y los gobiernos subnacionales.
- Autonomía Subnacional: El conocimiento de los gobiernos locales respecto a sus potestades gubernamentales (asignación de bienes y servicios y regulación de la economía local). Sin autonomía local se dificulta la rendición de cuentas.
- Mercado Común: La estructura de mercado que propicie la competencia entre las distintas jurisdicciones.
- Restricción Presupuestaria Fuerte: El salvataje de parte del gobierno central no puede ser visto como la "salvación financiera" de los gobiernos locales.
- Autoridad Institucionalizada: Respeto a las reglas dadas, tanto de parte del gobierno central como local. Para ello deben existir reglas explícitas.

La ausencia de una o más de las condiciones señaladas implica alguna forma de ineficiencia o patología, lo que llevaría al fracaso la descentralización (Weingast, 2009), o a una falla de gobierno en términos de la Elección Pública. En el contexto de la descentralización educativa, esta no es buena o mala, pero si es bien implementada tiene el potencial de mejorar la educación (Winkler y Yeo, 2007; Morduchowicz y Arango, 2010; McGinn y Welsh, 1999). Esto respalda a Weingast (2009) y a Prud'homme (1995), en el sentido de que el éxito de la descentralización se basa en el diseño.


Volviendo a la premisa de McNollgast de la sección anterior, si la asignación del gasto educativo en un contexto descentralizado es mayor por parte del Principal que del Agente, entonces el primero tendrá una Autoridad mayor que el segundo. Acto seguido, esta situación podría afectar al menos una de las condiciones de Weingast, la **Autoridad Institucionalizada**, lo que a su vez conlleva a una afectación directa sobre la **Autonomía Subnacional**, puesto que al tener el Principal mayores recursos para el financiamiento de la educación en comparación al Agente, este último queda supeditado a las directrices del

primero. Como consecuencia, se perjudica la **Jerarquía**, en cuanto a la delimitación de funciones entre los diferentes niveles de gobierno.

Dado lo anterior se debe mencionar que Carnoy (2006) señala que el éxito de la descentralizar la educación dependerá de la burocracia y que la capacidad administrativa varía según las comunidades locales lo que podría provocar un incremento de la ineficiencia en las áreas locales en donde vive el alumnado más defavorecido; mientras que Winkler y Yeo (2007) indican que un buen diseño e implementación de la descentralización puede mejorar la calidad educativa, pero también que la descentralización del financiamiento de la educación podría generar mayores disparidades entre el gasto y los resultados educativos. Asimismo, en el contexto de un sistema federal, Morduchowicz y Arango (2010) señalan que es difícil formular una hipótesis entre el federalismo y los resultados educativos.

Finalmente, la figura 16 ilustra la secuencia de cómo la política de descentralización educativa puede fallar si es que no se cumplen las condiciones institucionales de Weingast.

FIGURA 16. SECUENCIA DE LA FALLA DE LA DESCENTRALIZACIÓN EDUCATIVA.

Fuente: Elaboración propia con base en la literatura revisada (2022).

Este análisis positivo podría explicar mejor el proceso de producción del rendimiento escolar que nos ofrece el marco análitico de la FPE, es decir, ver a través de la "Caja Negra". El hecho de que el índice de gasto local autónomo aplicado a la desentralización educativa pueda o no tener un efecto sobre la producción de los resultados escolares, en estricto, el rendimiento de los alumnos, podría explicarse más allá de los datos, como recomienda Letelier (2012), justamente usando la teorías propuestas.

III. CAPÍTULO TRES. METODOLOGÍA

III.1. Aspectos generales

Se analizaron dos países, México y Perú, siendo la unidad de análisis del primero las entidades federativas, mientras que para el segundo sus departamentos. El periodo de estudio comprendió desde 2006 al 2017.

III.2. Fuentes de información

La fuente de la información fue secundaria. En el caso de México se utilizaron los datos de la Secretaría de Educación Pública (SEP) del Instituto Nacional de Evaluación Educativa (INEE) y del Instituto Nacional de Estadística, Geografía e Informática (INEGI). En el caso peruano se utilizó la información del Instituto Nacional de Estadística e Informática (INEI), el Ministerio de Educación (MINEDU) y del Ministerio de Economía y Finanzas (MEF). Asimismo, para complementar el análisis cuantitativo se revisó el marco legal de la descentralización educativa en cada país. Para México, se revisaron la Ley General de Educación (LGE), la Constitución de los Estados Unidos Mexicanos, el Acuerdo Nacional para la Modernización de la Educación Básica (ANMEB) y el Ramo 33 que corresponde al gasto federalizado del Sistema de Coordinación Fiscal (SCF). Para Perú se revisaron la Ley Orgánica de Gobiernos Regionales (LOGR), la Ley de Bases de Descentralización (LBD), la Ley Orgánica de Municipalidad (LOM) y la Ley General de Educación (LGE).

III.3. Función de Producción de la Educación

El primer método aplicado fue deductivo, y se basó en el marco analítico de la Función de Producción de la Educación. Con base en la ecuación $A_j = f(DEC, R, H)$, la cual representa una Función de Producción de la Educación teórica, y la disposición de los datos, se procedió a estructurar la siguiente ecuación empírica:

$$A_{it} = \alpha + \varphi DEC_{it} + \beta R_{it} + \theta H_{it} + \eta_i + \varepsilon_{it}$$

Donde A_{it} son los resultados escolares para el individuo i en el año t; DEC_{it} es la medida de descentralización fiscal en educación o gasto autónomo local en educación; R_{it} es un vector de recursos de la escuela; H_{it} es un vector del contexto socioeconómico del alumno, η_i es la heterogeneidad no observada para el individuo i, la cual no cambia en el tiempo, y ε_{it} es el término de error idiosincrático. Cabe precisar que el trabajo de Hanushek y Woessmann (2011) ayudó a seleccionar las variables de los vectores R y H.

La descripción de cada una de las variables de estos vectores se encuentra en el análisis estadístico.

La ecuación empírica propuesta se estimó siguiendo los métodos apropiados de datos de panel, los cuales se explican más adelante. Antes de ello es importante mencionar que dada la complejidad del proceso que significa la descentralización de la educación, se decidió describir estadísticamente el comportamiento del rendimiento escolar y la descentralización educativa por entidad federativa y departamento respectivamente. Asimismo, se utilizó una regionalización para entender mejor el comportamiento por país. Para México se utilizó la regionalización que sigue Quiroz y Salgado (2016), y para Perú la del INEI (2009) (ver figura 17, cuadro 4 y 5).

MÉXICO

TUGES

T

FIGURA 17. MAPAS DE MÉXICO Y PERÚ SEGÚN REGIONALIZACIÓN

Fuente: Elaboración propia con base en Quiroz y Salgado (2016) e INEI (2009) respecitvamente.

CUADRO 4. ENTIDADES FEDERATIVAS DE MÉXICO POR DIVISIÓN GEOGRÁFICA

Región	Entidad
Noroeste	Baja California Norte, Baja California Sur, Durango, Sinaloa, Chihuahua y Sonora
Noreste	Coahuila, Nuevo León y Tamaulipas
Oeste	Colima, Jalisco, Michoacán y Nayarit
Este	Hidalgo, Puebla, Tlaxcala y Veracruz
Centro Norte	Aguascalientes, Guanajuato, Querétaro, San Luis Potosí y Zacatecas
Centro Sur	Ciudad de México, Estado de México y Morelos

Suroeste	Chiapas, Guerrero y Oaxaca
Sureste	Campeche, Quintana Roo, Tabasco y Yucatán

Fuente: Elaboración propia con base en Quiroz y Salgado (2016).

CUADRO 5. DEPARTAMENTOS DEL PERÚ POR REGIÓN NATURAL

Región Natural	Departamento
	Callao, Ica, La Libertad, Lambayeque, Lima
Costa	Metropolitana, Lima Provincias, Moquegua, Piura,
	Tacna, Tumbes
Sierra	Ancash, Apurímac, Arequipa, Ayacucho, Cajamarca,
Sierra	Huancavelica, Huánuco, Cusco, Junín, Pasco, Puno
Calma	Amazonas, Loreto, Ucayali, San Martín, Madre de
Selva	Dios

Fuente: Elaboración propia con base en INEI (2009).

III.3.1. Variables

Dado que el objeto de estudio fue el rendimiento escolar, se usaron los indicadores de rendimiento en español/lectura y matemáticas, así como la tasa de aprobación primaria como una variable *proxy* de dicho rendimiento. en el caso de la tasa de aprobación primaria, el periodo de estudio para México fue del 2006 al 2017; y para Perú, del 2007 al 2016.

Asimismo, dado la posibilidad de valores atípicos, no se tomó en cuenta la capital de ambos países, es decir, el análisis no incluyó la Ciudad de México (México) ni Lima (Perú).

Variable de rendimiento escolar

En el caso de México se utilizó la información del puntaje promedio en español y matemáticas obtenido por los alumnos del 3° grado de primaria, en cada entidad federativa. Estos datos provinieron de la evaluación EXCALE (Exámenes de la Calidad y el Logro Educativo) ejecutada por el INEE (Instituto Nacional para la Evaluación de la Educación). Cabe precisar que estos datos fueron limitados, dado que la información sólo estuvo disponible para 3 años (periodos escolares 2005-2006, 2009-2010 y 2013-2014). Ver información del INEE (2020).

En el caso peruano se utilizó el porcentaje de alumnos con rendimiento satisfactorio en lectura y matemáticas del 2do grado de primaria. Estos datos provinieron de la prueba ECE (Evaluación Censal de Estudiantes). Ver INEI-SIRTOD (2020).

Variable de descentralización educativa (dimensión económico-financiera)

Con base en Ivanyna y Shah (2014) la descentralización educativa se midió en términos del gasto público educativo a través de un índice al cual se le denominó **DEC**, el cual representa el gasto autónomo educativo. La estructura fue la siguiente:

$$DEC = \frac{Gasto\ educativo\ del\ gobierno\ local_i}{Gasto\ educativo\ del\ gobierno\ general_i}$$

Donde *i* representa una entidad federativa (México) o un departamento (Perú). Este índice revela cuánto del gasto educativo del Gobierno General (la suma de todos los niveles de gobierno) representa el gasto educativo que ejecutan los Gobiernos Locales. El valor del índice va entre 0 y 1; mientras más cercano a 1 entonces la asignación del gasto educativo se encuentra más descentralizada.

Si bien es cierto que este índice mide estrictamente una sola dimensión de la descentralización educativa, la económica, la estrecha relación entre las dimensiones mencionadas en el marco teórico permiten proponerlo como un *proxy* de las otras dos dimensiones, la administrativa y la política.

Para el caso mexicano la información procedió de la SEP (2020) y para Perú la información de MEF (2020).

III.3.2. Limitaciones y supuestos del modelo

Se debe señalar que como cualquier método cuantitativo, la estimación del modelo tuvo ciertas limitaciones. De manera general, es pertinente señalar que para el caso mexicano el número de observaciones fue acotado en el caso donde la variable dependiente fue el rendimiento en español y matemáticas (79 observaciones). Esto se debió a que la prueba EXCALE sólo está disponible para tres años comparativos, además que no se encontró información para las entidades de Chiapas, Michoacán, Oaxaca y Tabasco. Para Perú no se encontró dicho problema, siendo que el número de observaciones finales fue de 236 para el caso en donde la variable dependiente fue el rendimiento en lectura y matemáticas. Cabe precisar que para ambos países no se incluyó la información de la capital, esto para evitar problemas de valores atípicos.

Por otro lado, el problema de hallar la relación correlacional-causal entre la la variable DEC y el rendimiento escolar fue la endogeneidad provocada por la variable explicativa en cuestión, situación sobre la cual se ha discutido en la sección de evidencia empírica.

DEC estaría correlacionada con la heterogeneidad no observable η_i lo que provocaría una stiuación del tipo $E(X_{it}\eta_i)\neq 0$. La expresión anterior indica la presencia de endogeneidad la cual afecta al estimador obtenido en el sentido de la consistencia y sesgadez. Según la literatura revisada la heterogeneidad no observable radicaría en un problema institucional, el cual no cambia en el tiempo. Al respecto, Heredia (2007) señala que la descentralización es una variable no aleatoria pues depende de procesos políticos que acontencen en los diferentes países en donde se ha aplicado la descentralización educativa. La autora soluciona esto usando variables instrumentales y efectos fijos. Por su parte, Hanushek *et al.* (2013) indican que la descentralización está afectada por los factores institucionales propios de cada país, es decir, la idioscincracia de los gobiernos locales. Los autores utilizan modelos de efectos fijos y variables *dummy* para solucionar el problema. Otros autores como Letelier y Ormeño (2018) también señalan un problema de endogeneidad respecto a la variable descentralización, solucionando esto con efectos fijos, variables instrumentales y un modelo de efectos dinámicos.

Dado esto, en la presente tesis se asumió que dicha heterogeneidad no estaría relacionada con choques temporales (algún quiebre estructural), sino a las instituciones presentes en cada unidad de análisis. Es decir, en México cada entidad federativa tiene ciertas instituciones (reglas, idioscincracia, factores culturales, entre otros) que dan forma al comportamiento de la descentralización del gasto público educativo, lo mismo en los departamentos del Perú. Estas instituciones no observables o no medibles por el investigador podrían estar representadas por el esfuerzo fiscal o el interés en la asignación del gasto público de cada entidad federativa o departamento respectivamente. Pero no fue objetivo del modelo indagar cuál era la variable institucional que podría provocar la endogeneidad. Dado esto, fue necesario solucionar el problema de la heterogeneidad no observada eligendo el mejor estimador.

Para ello se reviso el trabajo de Cameron y Trivedi (2009), quienes señalan que en estudios de este tipo es recomendable utilizar estimadores de efectos fijos o de diferencias en diferencias. Este último no fue posible dada la naturaleza de los datos disponibles para ambos países. Por otro lado, el panel de datos a trabajar tiene una estructura corta, donde el número de individuos es mayor al número de periodos $(N > T)^{15}$. Por consiguiente se eligió el estimador de efectos fijos, utilizando el estimador *within* (panel estático) y el

-

¹⁵ A esto la literatura llama panel corto.

método *GMM* (panel dinámico) como auxiliar para comprobar el estimador de DEC. Este último permitió incluir variables explicativas endógenas o predeterminadas.

A pesar de que se realizaron las pruebas de Hausman para elegir entre efectos fijos y aleatorios (ver Anexo Estadístico), la elección del primero se basó además en la bondad del estimador, pues elimina la heterogeneidad no observada que provoca la endogeneidad. Wooldridge (2010), señala que el estimador de efectos fijos within supone que las variables explicativas están correlacionadas con la heterogeneidad no observable, lo que se asemeja al problema que aborda la tesis. Siguiendo al autor, la forma en que se obtiene el estimador de efectos fijos within es la siguiente:

Sea:

$$A_{it} = \varphi DEC_{it} + \beta R_{it} + \theta H_{it} + \eta_i + \varepsilon_{it} ... (a)$$

Obteniéndose el promedio en el tiempo de la ecuación (a) se tiene:

$$\overline{A_i} = \varphi \overline{DEC_i} + \beta \overline{R_i} + \theta \overline{H}_i + \eta_i + \overline{\varepsilon}_i ...(b)$$

Restando la ecuación (b) de (a) se obtiene la siguiente expresión:

$$\ddot{A}_{it} = \varphi D \ddot{E} C_{it} + \beta \ddot{R}_{it} + \theta \ddot{H}_{it} + \ddot{\varepsilon}_{it} \dots (c)$$

En la ecuación (c) se aprecia que la heterogeneidad no observable invariante en el tiempo η_i se elimina; por lo tanto, no existiría este problema específico sobre la endogeneidad.

El uso del estimador de efectos fijos es frecuente en la literatura reciente en el campo de la Economía de la Educación. Por ejemplo, Schwerdt y Woessmann (2020) señalan que además de la técnica de Diferencias en Diferencias (el cual requiere de un efecto tratamiento), la estimación de efectos fijos ha sido útil en el análisis reciente sobre los determinantes de los resultados escolares. Los mismos autores señalan que la bondad del uso de efectos fijos se basaría en el control de la heterogeneidad no observada. Cameron y Trivedi (2009) señalan que si se desea analizar un efecto causal más que una correlación es recomendable el uso de un estimador de efectos fijos. Por último, derivado de todo lo anterior, como indicaría Delpier *et al.* (2019), la utilización de datos de panel puede evitar ciertos sesgos, así como problemas de discusión respecto a la importancia del dinero público en las escuelas.

Por otro lado, la inclusión de estimadores de datos de panel dinámicos se justifició también dado que el aprendizaje tiene un comportamiento acumulativo, es decir

 A_{it} depende a su vez de A_{it-1} (Hanushek, 1997; Letelier y Ormeño, 2018). Debido a que el panel es corto, la técnica elegida fue el Método Generalizado de Momentos (GMM) (Roodman, 2009).

A manera de resumen, se presentan los pasos específicos que se siguieron para el proceso de estimación:

- 1. Análisis de correlación de las variables explicativas.
- 2. Detección de posible multicolinealidad (los vectores **R** y **H** tienden a correlacionarse a nivel de datos agregados, ver en el Anexo Estadístico).
- 3. Selección de las variables explicativas finales.
- 4. Estimación por efectos fijos (*within*) y *difference* & system *GMM*, con estimadores robustos. Según Cameron y Trivedi (2009) en un panel corto es suficiente la corrección de la matriz de varianzas y covarianzas de errores con la inferencia robusta de clústeres. Para el estimador GMM en paneles dinámicos se usó otras formas de obtener errores estándar adecuados.
- 5. Se estimaron distintos modelos dado que la teoría y evidencia empírica señalan que no hay una sola FPE; asimismo, para obtener robustez en los resultados.
- 6. Finalmente se realizó la respectiva inferencia estadística sobre el estimador de DEC (φ). La hipótesis nula (la que se espera rechazar) que se propuso fue la siguiente:
 - El cambio en **A** respecto al cambio en **DEC** es cero:

$$\varphi = \frac{\delta A}{\delta DEC} = 0$$

Mientras que la hipótesis alternativa fue:

• El cambio en *A* respecto al cambio en *DEC* es diferente de cero:

$$\varphi = \frac{\delta A}{\delta DEC} \neq 0$$

III.4. Modelo de Weingast y McNollgast aplicado a la descentralización educativa.

A manera de complementar el método anterior, se propuso un modelo teórico con base en los supuestos de Weingast (2009) y el modelo de McNollgast (Shepsle, 2016). Esto podría justificarse en Letelier (2012), quien señala que la inferencia estadística con base

en datos de gastos e ingresos no es suficiente para concluir y proponer políticas sobre la descentralización educativa.

La inclusión de estos modelos permitió complementar las otras dos dimensiones de la descentralización educativa, la administrativa y política, utilizando la teoría económica Neoinstitucional y el problema de la Agencia, es decir, las teorías que forman parte del Federalismo Fiscal de Segunda Generación y los avances en la Economía de la Educación. Si bien es cierto que en este modelo no se pretende saber si la descentralización administrativa y política tienen un efecto sobre el rendimiento escolar, se hace relevante el análisis dado que permite conocer de forma aproximada porqué la descentralización económica tendría cierto comportamiento sobre el rendimiento, recordando que tal y como se mencionó en el Marco Teórico, las tres dimensiones de la descentralización educativa están entrelazadas. En este sentido, el método se consideró como inductivo.

A continuación, las características del modelo teórico construido a partir de Weingast y McNollgast:

- Nivel donde ocurre el proceso: **Macro**.
- Agentes económicos: Gobierno Central (Principal) y Gobiernos Locales (Agentes).
- **R** → Recursos educativos totales cuya asignación se reparte entre el Principal (**P**) y los Agentes (**A**).
- Z → Autoridad gubernamental que se reparte entre el Principal (P) y los Agentes
 (A).
- **R** se encuentra estrechamente relacionado con **Z**. A más recursos más autoridad.
- Sea R = Rp + Rd + Ra, donde Rp son los recursos que ejecuta el Gobierno
 Central, Rd son los recursos que ejecutan los Gobiernos Locales y Ra son los recursos que ejecutan los Gobiernos Locales con recursos propios.
- Entonces, si:

$$Rp > Rd + Ra$$
, por lo tanto $\longrightarrow ZP > ZA$.

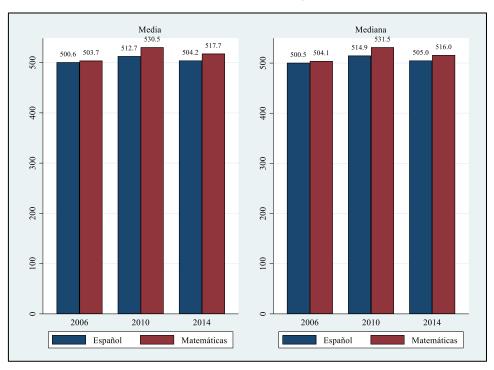
- La expresión anterior indica que, si la asignación del gasto educativo en un contexto descentralizado es mayor por parte del Principal que del Agente, entonces el primero tendrá una Autoridad mayor.
- Esta situación rompe al menos tres de las condiciones de Weingast, pues se pierde:
 - 1. Autoridad Institucionalizada
 - 2. Autonomía Subnacional, y
 - 3. Jerarquía.
- Es necesario recordar que Weingast contempla cinco condiciones, pero en este caso la metodología propuesta se restringe sólo a tres. Al no cumplirse al menos una de las condiciones se dice que el diseño del modelo de descentralización educativa tiene alguna anomalía, y por lo tanto va a fracasar en su intento de mejorar el rendimiento escolar (falla de gobierno).

Para entender bien el nivel Macro en donde ocurre este comportamiento, fue necesario entender el proceso histórico de descentralización educativa, los agentes y las instituciones educativas en ambos países. En este sentido, para México el análisis abarcó desde el año 1992 debido a las reformas de modernización de la educación y el federalismo educativo; mientras que para Perú a partir del año 2002 debido a la modernización del Estado a través de las políticas de descentralización que iniciaron en con el presente siglo.

La secuencia del análisis para saber si las instituciones formales de la descentralización educativa en ambos países cumplen a las condiciones de Weingast fue la siguiente:

- 1. Identificación de agentes del sistema educativo a nivel Macro, sus funciones e interrelación (incluyó una recapitulación histórica).
- Identificación de las instituciones formales del sistema educativo descentralizado (leyes y normas).
- **3.** Contrastaste respecto a las condiciones de Weingast que se relacionan con el modelo de McNollgast.

IV. CAPÍTULO CUATRO. RESULTADOS

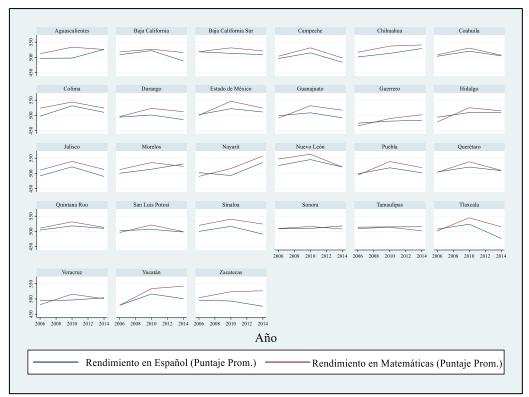

De forma secuencial primero se muestra lo referente a México, luego Perú y finalmente se hace una comparación pertinente de lo hallado.

IV.1. México

IV.1.1. Análisis de la Función de Producción de la Educación

Con base en la prueba EXCALE para 3er grado de primaria, en un horizonte de tiempo desde el 2006 hasta el 2014, se puede observar en la figura 18 que, a nivel nacional en el caso de español, el puntaje promedio pasó de 500.6 en el 2006 a 504,2 en el 2014; mientras que en matemáticas creció de 503,7 a 517.7. Similar situación se observa cuando se analiza la mediana nacional. Como se puede apreciar existió un mayor rendimiento en matemáticas respecto a español.

FIGURA 18. MÉXICO: EVOLUCIÓN DE LOS INDICADORES DE ESPAÑOL Y MATEMÁTICAS SEGÚN EXCALE 3ER GRADO, 2006 - 2014


Fuente: Elaboración propia con base en INEE (2020).

A nivel de entidad federativa, los puntajes promedio en español y matemáticas también crecieron, pero sólo en algunas entidades federativas¹⁶ (ver figura 19).

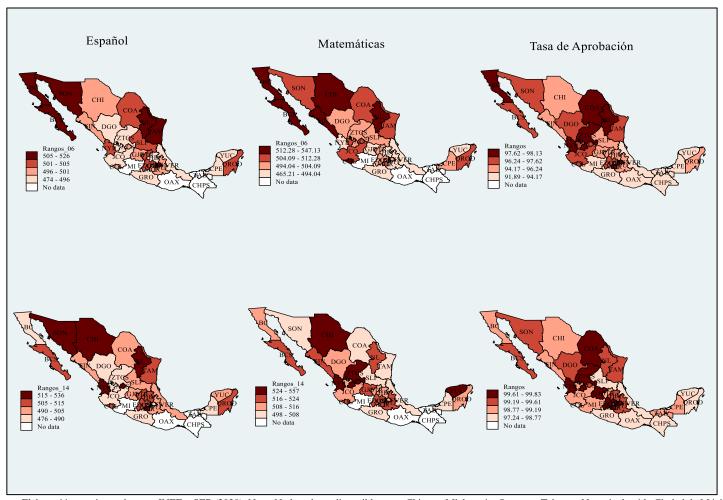
85

¹⁶ Como se ha mencionado, no se contó con información para Chiapas, Michoacán, Oaxaca y Tabasco.

FIGURA 19. MÉXICO: EVOLUCIÓN DE LOS RESULTADOS ESCOLARES (3ER GRADO, PUNTAJE PROMEDIO) POR ENTIDAD FEDERATIVA, 2006 - 2014

Fuente: Elaboración propia con base en INEE (2020).

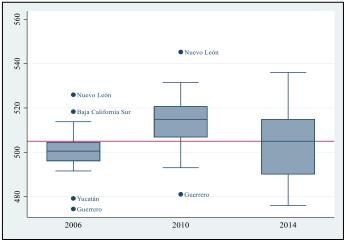
En el caso de español, Nuevo León fue la entidad que en promedio obtuvo el puntaje más alto (530.7); mientras que Guerrero el más bajo (479.8). En el caso de matemáticas, Nuevo León vuelve a ocupar el primer puesto (543.7) y Guerrero el más bajo (485.7). Ver Anexo Estadístico.


Asimismo, al comparar los resultados obtenidos entre los años 2006 y 2014 se pudo observar que en el caso de español un poco más de la mitad de las entidades federativas obtuvieron mejoras; son los casos de Nayarit, Morelos, Aguascalientes, Chihuahua, Yucatán, Hidalgo, Colima, Guerrero, Veracruz, Sonora, Chihuahua, México, Quintana Roo, Querétaro Puebla, Coahuila, Tamaulipas. En el caso de Matemáticas las mejoras fueron para San Luis de Potosí, Veracruz, Guerrero, Querétaro, Durango, Jalisco, Quintana Roo, Hidalgo, Tlaxcala, Guanajuato, Puebla, Baja California Sur, Morelos, Colima, México, Sinaloa, Aguascalientes, Zacatecas, Chihuahua, Yucatán y Nayarit (ver Anexo Estadístico).

Por otro lado, en el caso de la tasa de aprobación para el nivel primaria, ésta mostró un crecimiento promedio nacional del 95.9% en el 2006 a 99.2% en el 2017. Todas las entidades crecieron, teniendo como punto de inflexión el año 2012. En promedio la

entidad con mayor tasa de aprobación fue Tlaxcala, con 99%, mientras que la menor fue Oaxaca con 95.4%. Sin embargo, esta última entidad fue la que más creció (6.2 puntos porcentuales) mientras que Baja California fue la que menos lo hizo (1.1 puntos porcentuales).

Finalmente, en la figura 20 se muestra el comportamiento espacial de los indicadores de rendimiento analizados. Tanto en la primera línea de la figura (año de inicio de análisis) como en la segunda (fin del análisis) se puede observar que existe una concentración espacial con mejores resultados en el norte del país en comparación al sur.


FIGURA 20. DISTRIBUCIÓN REGIONAL DE LOS RESULTADOS ESCOLARES (INICIO Y FIN DEL PERIODO DE ANÁLISIS)

Fuente: Elaboración propia con base en INEE y SEP (2020). Nota: No hay datos disponibles para Chiapas, Michoacán, Oaxaca y Tabasco. No se incluyó la Ciudad de México.

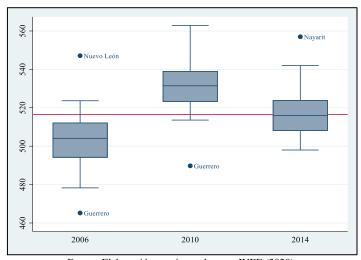
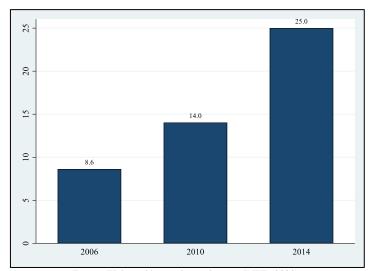

Por otro lado, un breve análisis de dispersión indicó que, en el caso del rendimiento en español, las entidades de Nuevo León, Baja California, Yucatán y Guerrero presentaron valores extremos (ver figura 21). Por el lado de matemáticas, los extremos estuvieron en Nuevo León, Guerrero y Nayarit (ver figura 22).

FIGURA 21. MÉXICO: GRÁFICO DE CAJA DEL PUNTAJE EN ESPAÑOL, 2006 - 2014

Fuente: Elaboración propia con base en INEE (2020).


FIGURA 22. MÉXICO: GRÁFICO DE CAJA DEL PUNTAJE EN MATEMÁTICAS, 2006 - 2014

Fuente: Elaboración propia con base en INEE (2020).

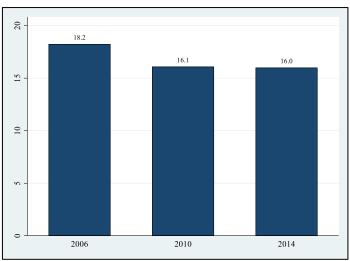

Asimismo, el valor del rango intercuartílico aumentó en el tiempo para el caso de español, lo que indicó una mayor dispersión; mientras que en el caso de matemáticas disminuyó, (ver figura 23 y 24).

FIGURA 23. MÉXICO: RANGO INTERCUARTÍLICO DEL RENDIMIENTO EN ESPAÑOL, 2006 - 2014

Fuente: Elaboración propia con base en INEE (2020).

FIGURA 24. MÉXICO: RANGO INTERCUARTÍLICO DEL RENDIMIENTO EN MATEMÁTICAS, 2006 - 2014

Fuente: Elaboración propia con base en INEE (2020).

En el caso de la tasa de aprobación, los valores extremos aparecen a partir del año 2012, donde Sonora y Oaxaca representaron los extremos inferiores; en el 2014 estos valores son representados por Yucatán, en el 2015 otra vez Sonora y en el 2017 otra vez Yucatán. Asimismo, el rango intercuartílico disminuyó indicando una disminución de la dispersión (ver Anexo Estadístico).

Estos resultados indicaron que, si bien el rendimiento escolar como promedio nacional ha crecido, también se experimenta una desigualdad entre entidades federativas que, al

momento de ubicarlas en el espacio, se puede observar que es regional. Ahora bien, del mismo modo se analizó la variable de descentralización, **DEC**, encontrándose que su tendencia nacional crece entre el 2006 y 2012, pero luego disminuye (ver figura 25). A nivel de entidad federativa, Baja California es aquella que tiene el gasto educativo más descentralizado en toda la república mexicana; mientras que en el último lugar encontramos a Oaxaca. Ninguna entidad llegó a un DEC mayor a 0.5, en promedio, es decir, ninguna entidad asigna un gasto educativo igual o superior al 50% del total que se asigna en su jurisdicción (ver figura 26).

0.221 0.218 0.228 0.228 0.221 0.213 0.217 0.214

Signature of the state of the stat

FIGURA 25. MÉXICO: TENDENCIA DE DEC A NIVEL NACIONAL (2006 – 2017)

Fuente: Elaboración propia con base en SEP (2020).

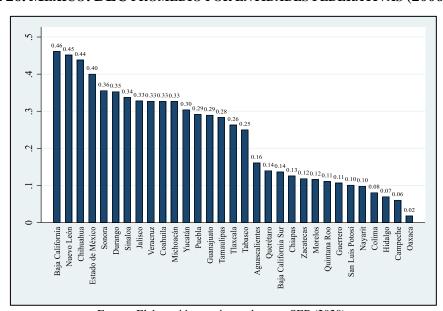


FIGURA 26. MÉXICO: DEC PROMEDIO POR ENTIDADES FEDERATIVAS (2006 – 2017)

Fuente: Elaboración propia con base en SEP (2020).

Al analizar la tendencia de la variable DEC por entidades se puede observar que no es uniforme¹⁷. En algunos casos, como los de Baja California, Chiapas, Puebla y Yucatán, se observó un crecimiento relativo (ver figura 27).

Aguascalientes

Baja California

Baja California Sur

Campeche

Chiapas

Chihuahua

Coahula

Coahula

Coahula

Colima

Durango

Estado de México

Guanajuato

Guerrero

Hidalgo

Jalisco

Michoacán

Morelos

Nayarit

Nuevo León

Oaxaca

Puebla

Querétaro

Quintana Roo

San Luis Potosí

Sinaloa

Sonora

Tabasco

Tamaulipas

Tiaxcala

Veracruz

Yucatán

Zacatocas

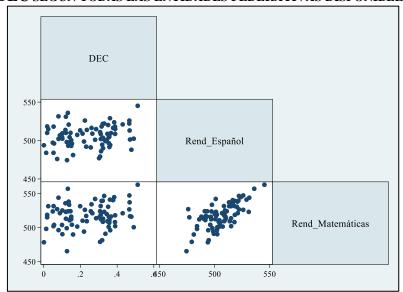
FIGURA 27. MÉXICO: TENDENCIA DEL DEC POR ENTIDADES FEDERATIVAS (2006 – 2017)

Fuente: Elaboración propia con base en SEP (2020).

Años

Una vez descrito el comportamiento de las variables de interés, se realizó un análisis de correlación para conocer de forma preliminar la posible relación que existe entre las variables. Utilizando un nivel de significancia de hasta el 10%, el coeficiente de correlación de Pearson en el caso de español resultó de 0.2013, indicando que un aumento en el índice de descentralización está relacionado a un aumento del rendimiento en esta materia. Para matemáticas el coeficiente fue un tanto menor, siendo este de 0.1915, indicando que un aumento en el índice de descentralización está relacionado a un aumento del rendimiento en esta materia (ver cuadro 6).

CUADRO 6. MÉXICO: CORRELACIÓN ENTRE LAS VARIABLES DE INTERÉS.


	Rend_Español	Rend_Matemáticas	DEC
Rend_Español	1		
Rend_Matemáticas	0.6760* (0.0000)	1	
DEC 0.2013* (0.0716)		0.1915* (0.0867)	1

Fuente: Elaboración propia con base en SEP (2020). (*) Indica significancia estadística hasta el 10%.

¹⁷ Lo que conllevó a usar una técnica de suavizamiento de la serie al momento de la estimación.

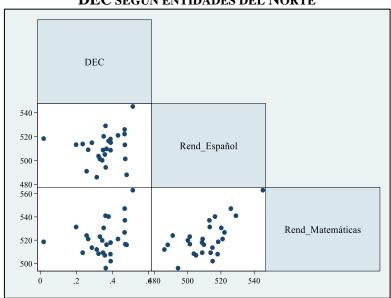

2006 2008 2009 2010 2011 2013 2015 2015 Estos resultados preliminares indicarían que la descentralización sí tiene un efecto sobre el rendimiento escolar; sin embargo, correlación no implica causalidad. De la misma manera se realizó un análisis gráfico de dispersión matricial (esto a la vez para identificar probables *outliers*), dividiendo los resultados entre las entidades que se encuentran en el norte del país, según la regionalización propuesta y las que no. Esto debido a que se encontraron mejores resultados de rendimiento escolar en el norte. Ver las siguientes figuras.

FIGURA 28. MÉXICO: ANÁLISIS DE DISPERSIÓN DE LOS RENDIMIENTOS ESCOLARES Y DEC SEGÚN TODAS LAS ENTIDADES FEDERATIVAS DISPONIBLES

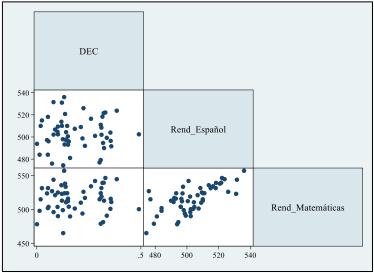

Fuente: Elaboración propia con base en SEP (2020).

FIGURA 29. MÉXICO: ANÁLISIS DE DISPERSIÓN DE LOS RENDIMIENTOS ESCOLARES Y DEC SEGÚN ENTIDADES DEL NORTE

Fuente: Elaboración propia con base en SEP (2020).

FIGURA 30. MÉXICO: ANÁLISIS DE DISPERSIÓN DE LOS RENDIMIENTOS ESCOLARES Y DEC SEGÚN ENTIDADES DEL NO NORTE

Fuente: Elaboración propia con base en SEP (2020).

Dados estos resultados, se estimaron diferentes modelos econométricos con el objetivo de encontrar un efecto causal.

En el cuadro 7 se puede observar que, aunque los controles resultaron significativos y con el signo esperado¹⁸, la variable de interés **DEC** no resultó significativa.

CUADRO 7. MÉXICO: DATOS DE PANEL - RENDIMIENTO EN ESPAÑOL (ESTIMADOR WITHIN)

Variable	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
DEC (log)	-0.0014	0.0009	-0.0039	-0.0013	-0.004
	(0.005)	(0.0044)	(0.0046)	(0.0049)	(0.0048)
RAD	0.0129*	0.0148***		0.0127*	
	(0.0054)	(0.0051)		(0.0055)	
Años_Escol	0.019*				-0.0008
	(0.009)				(0.0097)
Analf.		-0.0088***	-0.0006		
		(0.0026)	(0.0032)		
TMM			-0.0006+		-0.0007*
			(0.0003)		(0.0003)
VAB (log)				0.0269+	
				(0.0141)	
Constante	5.7202*** (0.1915)	5.8925*** (0.1265)	6.2493*** (0.0145)	5.8963*** (0.142)	6.254*** (0.0948)
N	79	79	79	79	79
r2	0.1309	0.172	0.0948	0.1101	0.0944
r2_a	0.0961	0.1389	0.0586	0.0745	0.0582

Nota: + p<0.10, * p<0.05, *** p<0.01. Errores robustos entre paréntesis. Variable dependiente en logaritmos. No se consideraron los valores atípicos de la variable DEC en las estimaciones. El número de variables control estuvo en función de la multicolinealidad potencial.

94

¹⁸ En el Anexo Estadístico se muestra el conjunto de variables de control que conformaron los vectores R y H.

Sin embargo, dado que se sospecha que la relación puede variar cuando se discrimina por región (Norte y No Norte), se estimaron algunos modelos utilizando la variable *dummy* Región. Los resultados vertidos en el cuadro 8 indicaron que realizando estas regresiones tampoco se encontró significancia estadística.

CUADRO 8. MÉXICO: DATOS DE PANEL - RENDIMIENTO EN ESPAÑOL (ESTIMADOR WITHIN)
POR DUMMY DE REGIÓN

Variable	Mod	Modelo 1		Modelo 2		Modelo 3	
	Norte	No Norte	Norte	No Norte	Norte	No Norte	
DEC (1)	-0.00120	0.0000623	-0.000640	-0.00103	-0.000810	0.00200	
DEC (log)	(0.00605)	(0.00740)	(0.00557)	(0.00792)	(0.00567)	(0.00689)	
	0.0121	0.0127+	0.00999	0.0131+	0.0128	0.0152*	
RAD	(0.00782)	(0.00676)	(0.00857)	(0.00679)	(0.00712)	(0.00673)	
Años Escol	0.0102	0.0223+					
Allos_Escol	(0.0185)	(0.0107)					
VAB (log)			0.00728	0.0338 +			
VAD (log)			(0.0311)	(0.0165)			
A 16					-0.00791	-0.00895***	
Analf.					(0.0107)	(0.00271)	
Constante	5.825***	5.699***	5.975***	5.887***	5.926***	5.891***	
Constante	(0.349)	(0.231)	(0.224)	(0.179)	(0.163)	(0.171)	
N	27	52	27	52	27	52	
r2	0.085	0.155	0.067	0.138	0.099	0.196	
r2_a	-0.035	0.103	-0.054	0.084	-0.019	0.146	

Nota: +p < 0.10, *p < 0.05, ***p < 0.01. Errores robustos entre paréntesis. Variable dependiente en logaritmos. No se consideraron los valores atípicos de la variable DEC en las estimaciones. El número de variables control estuvo en función de la multicolinealidad potencial.

En cuanto al rendimiento en matemáticas, los resultados de la regresión fueron similares al caso de español, pues no se encontró evidencia estadística para DEC (ver Cuadro 9).

CUADRO 9. MÉXICO: DATOS DE PANEL - RENDIMIENTO EN MATEMÁTICAS (ESTIMADOR WITHIN)

Variable	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
DEC (log)	-0.0037	0.0024	-0.0011	-0.0054	-0.0037
	(0.0072)	(0.0072)	(0.007)	(0.0066)	(0.0077)
RAD	0.0224***	0.0264***			0.0222***
	(0.0053)	(0.0046)			(0.0064)
Años_Escol	0.053***			0.0326*	
	(0.01)			(0.0132)	
Analf.		-0.0229***	-0.0148***		
		(0.003)	(0.0047)		
TMM			0.000	-0.0002	
			(0.0004)	(0.0004)	
VAB (log)					0.0772***
					(0.0185)
Constante	5.194***	5.6969***	6.3323***	5.9631***	5.6751***

	(0.1878)	(0.1133)	(0.0204)	(0.1295)	(0.1622)
N	79	79	79	79	79
r2	0.375	0.4902	0.2456	0.1917	0.2986
r2 a	0.35	0.4698	0.2155	0.1593	0.2706

Nota: + p<0.10, * p<0.05, *** p<0.01. Errores robustos entre paréntesis. Variable dependiente en logaritmos. No se consideraron los valores atípicos de la variable DEC en las estimaciones. El número de variables control estuvo en función de la multicolinealidad potencial.

Sin embargo, cuando las regresiones se realizaron teniendo en cuenta la variable *dummy* Region, los resultaron cambiaron favorablemente. En el cuadro 10 se puede observar que, en los modelos estimados para las entidades del norte, la variable DEC sí resultó significativa y con signo positivo, indicando que la descentralización del gasto educativo causaría una mejora en el rendimiento en matemáticas. Por ejemplo, el modelo 1 indica que la descentralización del gasto tiene un efecto positivo sobre el rendimiento en matemáticas de 0.009% (al 10% de significancia); mientras que los modelos 2 y 3 muestran que la descentralización tiene un efecto positivo de 0.01% (con un 5% de significancia). Dado estos resultados, en términos generales se pudo establecer que el aumento en 1% de la descentralización del gasto educativo aumenta el puntaje del rendimiento en matemáticas en alrededor 0.01% en las entidades del norte.

CUADRO 10. MÉXICO: DATOS DE PANEL - RENDIMIENTO EN MATEMÁTICAS (ESTIMADOR WITHIN) POR DUMMY DE REGIÓN

X 7	Modelo 1		Mod	lelo 2	Modelo 3	
Variable	Norte	No Norte	Norte	Norte	No Norte	Norte
DEC (log)	0.00991+	-0.00823	0.0116*	-0.0112	0.0114*	-0.00340
DEC (log)	(0.00432)	(0.0136)	(0.00446)	(0.0139)	(0.00431)	(0.0132)
RAD	0.0316*	0.0198***	0.0290*	0.0208*	0.0306*	0.0253***
KAD	(0.0100)	(0.00598)	(0.0120)	(0.00747)	(0.00980)	(0.00523)
Assa Essal	0.0342*	0.0611***				
Años_Escol	(0.0136)	(0.0131)				
Analf.					-0.0206*	-0.0228***
Allall.					(0.00832)	(0.00329)
VAB (log)			0.0421	0.0923***		
VAD (log)			(0.0257)	(0.0240)		
Constante	5.128***	5.194***	5.512***	5.707***	5.537***	5.739***
Constante	(0.360)	(0.223)	(0.310)	(0.191)	(0.236)	(0.137)
N	27	52	27	52	27	52
r2	0.469	0.425	0.378	0.359	0.467	0.507
r2_a	0.400	0.389	0.297	0.319	0.397	0.476

Nota: + p<0.10, * p<0.05, *** p<0.01. Errores robustos entre paréntesis. Variable dependiente en logaritmos. No se consideraron los valores atípicos de la variable DEC en las estimaciones. El número de variables control estuvo en función de la multicolinealidad potencial.

Por otro lado, en el caso de la tasa de aprobación primaria, que se utilizó como una *proxy* de la calidad escolar en los resultados, la variable DEC tampoco resultó significativa tanto en la estimación estática como dinámica (ver Cuadros 11 y 12).

CUADRO 11. MÉXICO: MODELOS PARA TASA DE APROBACIÓN PRIMARIA (ESTIMADOR WITHIN)

Variable	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5	Modelo 6
DEC (log)	0.227	0.238	0.384	0.0966	0.267	0.316
	(0.241)	(0.237)	(0.236)	(0.156)	(0.235)	(0.221)
REZ_EDUC	-0.407***	-0.382***	-0.229*			
	(0.0642)	(0.0698)	(0.104)			
RAD	-0.427+	-0.415+	-0.279	-0.434***	-0.146	-0.187
	(0.221)	(0.205)	(0.179)	(0.145)	(0.147)	(0.142)
HACINA				-0.327***		
				(0.034)		
VAB (log)			2.019*		2.411***	
			(0.737)		(0.417)	
TMI					-0.299***	
					(0.0534)	
TMM		-0.0123				
		(0.00997)				
Años_Escol						2.974***
						(0.281)
Constante	117.4***	117.1***	110.5***	114.0***	106.7***	77.20***
	(4.799)	(4.459)	(4.021)	(3.474)	(3.693)	(5.344)
N	298	298	298	298	355	355
R-sq	0.515	0.522	0.54	0.604	0.643	0.656
adj. R-sq	0.51	0.516	0.534	0.6	0.639	0.653

Nota: + p<0.10, * p<0.05, *** p<0.01. Errores robustos entre paréntesis. Variable dependiente en niveles. Se tomaron en cuenta los valores atípicos de la variable DEC en las estimaciones. El número de variables control estuvo en función de la multicolinealidad potencial.

CUADRO 12. MÉXICO: MODELOS PARA TASA DE APROBACIÓN PRIMARIA (ARELLANO BOND - SYSTEM & DIFFERENCE GMM)

	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
T_A (-1)	0.898***	0.664***	1.019***	0.830***	0.666***
	-0.182	-0.106	-0.159	-0.203	-0.207
T_A (-2)	0.0823	0.169	0.144	0.102	0.141
	(0.188)	(0.117)	(0.142)	(0.171)	(0.214)
DEC (log)		-0.0792	-0.0484	-0.0233	0.0741
		(0.158)	(0.134)	(0.169)	(0.143)
Años_Escol.		0.0563			
		(0.233)			
RAD		0.000873	-0.0369+	-0.0723	-0.0407
		(0.0229)	(0.0205)	(0.073)	(0.0252)
REZ_EDUC			0.00965 (0.0252)		
VAB (log)				-0.0645 (1.336)	

TMI				-0.208*	
				(0.0777)	
HACINA					-0.0452
					(0.0339)
D_2008	-0.103	-0.101	0.431	-0.0344	-0.376
	(0.134)	(0.0835)	(0.402)	(0.103)	(0.432)
D_2009	0.0123		0.514		-0.352
	(0.114)		(0.406)		(0.391)
D_2010		0.00431	0.511	-0.0649	-0.394
		(0.0918)	(0.389)	(0.109)	(0.416)
D_2011	0.453***	0.681***	0.990***	0.289	0.237
	(0.159)	(0.113)	(0.297)	(0.207)	(0.321)
D_2012	1.223***	1.399***	1.700***	0.928***	1.201***
	(0.192)	(0.191)	(0.31)	(0.331)	(0.404)
D_2013	-0.133	0.412+		-0.45	
	(0.488)	(0.242)		(0.6)	
D_2014	-0.285	0.138	-0.333	-0.8	-0.285
	(0.698)	(0.282)	(0.232)	(0.57)	(0.384)
D_2015	-0.328	-0.0175	-0.29	-0.897	-0.318
	(0.619)	(0.304)	(0.252)	(0.65)	(0.502)
D_2016	-0.491	-0.0772	-0.601*	-1.047	-0.511
	(0.745)	(0.378)	(0.249)	(0.854)	(0.347)
D_2017	-0.0982	0.186	-0.065	-0.685	-0.187
	(0.642)	(0.264)	(0.242)	(0.914)	(0.407)
Constante	2.214	15.74	-15.18*	12.04	21.08
	(22.22)	(10.11)	(7.385)	(12.83)	(13.99)
Número de Observaciones	306	298	298	298	298
Número de individuos	31	31	31	31	31
ABOND (1) (z)	-1.62	-2.33**	-1.81*	-2.13**	-1.79*
ABOND (2) (z)	0.01	-0.65	0.02	0.19	-0.24
PRUEBA HANSEN (chi2)	0.147	7.02	3.71	2.75	9.59*
Número de instrumentos	28	20	23	19	20

Nota: + p<0.10, * p<0.05, *** p<0.01. Errores robustos entre paréntesis. Se tomaron en cuenta los valores atípicos de la variable DEC en las estimaciones. El número de variables control estuvo en función de la multicolinealidad potencial. Se usó como instrumentos las diferencias e instrumentos de las variables explicativas con el comando xtabon2 en Stata. En todos los casos el número de instrumentos fue menor que el número de grupos.

En todos los resultados econométricos, las variables de control, que cumplen un papel importante, resultaron significativas y con el signo esperado (mayoría de los casos). Por ejemplo, destacan los años de escolaridad con signo positivo, el rezago educativo con signo negativo o el valor agregado bruto (VAB) con signo positivo.

IV.1.2. Análisis del modelo de Weingast y McNollgast

Siendo que el estimador de la variable DEC resultó no significativo en la mayoría de los casos, fue necesario saber por qué sucede esto, teniendo en cuenta que la

descentralización es un proceso complejo en donde interviene la dimensión económica, política y administrativa. Con el análisis econométrico se pudieron obtener resultados sobre la primera dimensión. A continuación, se presenta una propuesta que permitió responder qué sucede con las otras dos dimensiones y que puede responder la pregunta de por qué la dimensión económica no obtuvo el resultado deseado.

En primer lugar, México tiene un sistema de gobierno federal conformado por 32 entidades federativas (INEGI, 2018) que responden, en gran medida, a un gobierno federal central según el Artículo 40 de la Constitución Política de los Estados Unidos Mexicanos (SEGOB, 2014). En el campo educativo, la Secretaría de Educación Pública (SEP) es el órgano rector y vela por el sistema educativo en conjunto con el Consejo Nacional de Autoridades Educativas (CONAEDU), el Centro Nacional de Evaluación para la Educación Superior (CENEVAL), el Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL) y el Sindicato de Trabajadores de la Educación (SNTE) (OCDE, 2012). La estructura del Sistema Educativo Nacional se constituye en siete niveles, comenzando desde el preescolar (nivel 0) hasta el doctorado (nivel 6). La educación básica la conforma el nivel preescolar, la primaria y la secundaria. Este nivel es obligatorio y se ofrece normalmente a niños de entre seis y 14 años, siendo que la duración es de seis años (OCDE, 2012). Al igual que el nivel preescolar, la educación primaria se ofrece en tres modalidades: general, indígena y cursos comunitarios. Asimismo, la SEP (2018) señala que: "La escuela primaria debe asegurar en primer lugar el dominio de la lectura y la escritura, la formación matemática elemental y la destreza en la selección y el uso de la información" (p. 8).

Siguiendo la metodología propuesta, se puede identificar que a nivel Macro los principales agentes del sistema educativo son la **SEP**, que representa el gobierno federal, (en conjunto con el SNTE) y **los gobiernos estatales**. Estos agentes son los que promocionan la oferta educativa en el país, es decir, dan forma al Sistema Educativo Nacional – SEN (Congreso de los Estados Unidos Mexicanos, 1993)¹⁹. Estos agentes también dan forma al federalismo educativo mexicano moderno, que tiene sus antecedentes en los inicios del siglo XX.

Para entender adecuadamente las instituciones que han dado forma al federalismo educativo mexicano es importante revisar brevemente el proceso histórico de éste. Según

_

¹⁹ La ley tiene fracciones modificadas.

Fierro *et al.* (2009) la descentralización educativa en México se puede dividir en cinco etapas:

- Descentralización y centralización del sistema educativo mexicano, 1824-1921.
- El sistema educativo federal corporativizado, 1921-1946.
- La expansión centralizada y corporativa, 1946-1972.
- El proceso de desconcentración, 1973-1992.
- La descentralización centralizadora, 1992 en adelante.

Los autores señalan que el proyecto liberal fue un gran impulsor de la gratuidad de la educación básica (primaria), considerando a la educación como un asunto gubernamental importante. En el siglo XIX la educación estaba descentralizada en los gobiernos locales, pero hacia finales del siglo el gobierno federal empezó a tener un papel centralizador. Fierro et al. (2009) señalan que la Constitución de 1917 determinó que la educación primaria sea libre, laica y gratuita, y que las entidades federativas tengan una participación significativa. Luego de esta etapa, en 1921 se da un hecho importante, la creación de la SEP y del sindicato de maestros. Este último, según los autores mencionados, se convierte en un co-administrador de la educación pública.

Entre 1946 y 1972 se da la expansión del corporativismo educativo y el centralismo. El Sindicato Nacional de Trabajadores de la Educación (SNTE) siguió teniendo poder y por ende extensa participación en las decisiones de la SEP (Fierro et al., 2009). Entre 1973 y 1992 se da el proceso de desconcentración de la educación a través de la delegación de funciones de la SEP.

Antes de pasar a la última etapa del federalismo educativo mexicano, que forma parte del escenario actual, es importante citar a Llamas (2003) quien en relación al SNTE señala lo siguiente:

En un análisis (Ontiveros 1995) de la eficiencia interna en el uso de los recursos destinados a la educación por parte de la federación y de los estados mexicanos, se plantea que el burocratismo –ávido de mayores presupuestos— de las instituciones de educación pública y la presencia de un sindicato nacional del magisterio (SNTE) –el cual elimina la competencia en el mercado laboral de los docentes— han ocasionado ineficiencias en el uso de los recursos dedicados a la educación pública (p. 72).

A partir de 1992 se da otra etapa, que es la que continúa hasta la actualidad²⁰, dando como producto un sistema educativo descentralizado, cuyas instituciones formales se edifican a partir de la promulgación del Acuerdo Nacional para la Modernización de la Educación Básica - ANMEB y de la Ley General de Educación, en 1993 (Fierro Evans *et al.*, 2009; Malgouyres, 2014; Hernández, 2015).

En la LGE se explican las responsabilidades en materia educativa del gobierno federal y de los gobiernos subnacionales (gobiernos estatales y municipales), siendo que ambos niveles se deberán coordinar a favor de esta función social. En el caso de los gobiernos subnacionales, la ley indica que estos tendrán funciones administrativas y de planificación de la enseñanza (Congreso de los Estados Unidos Mexicanos, 1993). La sección 3 del capítulo II de dicha ley (Del Federalismo Educativo) indica que ambos niveles de gobierno concurrirán al financiamiento de la educación pública y de los servicios, y que los recursos federales que reciban las entidades federativas serán destinados exclusivamente al sector educativo de su jurisdicción, por lo que son intransferibles (Congreso de los Estados Unidos Mexicanos, 1993). En la misma sección, el artículo 28 indica que los diferentes niveles de gobierno involucrados deberán fomentar la autonomía de gestión de las escuelas. Asimismo, se indica que la SEP señalará los lineamientos para que los gobiernos subnacionales puedan usar de forma eficiente los recursos otorgados.

En este punto cabe precisar que para el manejo de las finanzas públicas se utilizan los llamados instrumentos del federalismo fiscal, siendo el gasto federalizado el más importante, cuya base legal se encuentra en la Ley de Coordinación Fiscal, la Ley de Ingresos de la Federación, el Presupuesto de Egresos de la Federación, la Ley Federal de Presupuesto y Responsabilidad Hacendaria y otras normas relacionadas (Cámara de Diputados, 2018; Herrera, 2018). Este gasto se compone de participaciones federales (ramo 28) y aportaciones, convenios y provisiones federales (ramo 33), siendo que ambos representan los recursos que los gobiernos de las entidades federativas y municipios disponen para ejecutar sus funciones (Herrera, 2018). La Recaudación Federal Participable origina el gasto federalizado y esta a su vez proviene de los ingresos de la federación.

Interpretando la Ley de Coordinación Fiscal, el ramo 33 representa una transferencia de tipo condicionada. Estas son las aportaciones federales que se realiza a las entidades

²⁰ Hasta el año en que se realizó esta investigación.

federativas y municipios para que ejecuten el gasto en educación, salud, infraestructura básica, fortalecimiento financiero y seguridad pública, programas alimenticios y de asistencia social e infraestructura educativa (SHCP, 2018). Los fondos de este ramo actualmente son los siguientes: Nómina Educativa y Gasto Operativo (FONE), Aportaciones para los Servicios de Salud (FASSA), Fortalecimiento de los Municipios (FORTAMUNDF), Infraestructura Social (FAIS), Seguridad Pública (FASP), Fortalecimiento de las Entidades Federativas (FAFEF), Educación Tecnológica y de Adultos (FAETA) y las Aportaciones Múltiples (FAM).

Por lo tanto, parte del financiamiento del SEN está referido al Ramo 33, pues representa las aportaciones federales que se realiza a las entidades federativas y municipios para que ejecuten el gasto en educación (SHCP, 2018). Al respecto, y según Úrzua y Velázquez (2018), el gasto educativo descentralizado ha atravesado cuatro etapas de diseño en menos de 30 años:

- 1. Firma del Acuerdo Nacional para la Modernización de la Educación Básica y de los convenios de descentralización de la educación básica (1925–1997).
- Creación del Fondo de Aportaciones para la Educación Básica (FAEB) (1998– 2007).
- 3. Fórmulas para la asignación de los recursos del FAEB (2008–2014).
- 4. Desaparición del FAEB y creación del Fondo de Aportaciones para la Nómina Educativa y Gasto Operativo (FONE) con cuatro sub-fondos (2015 en adelante).

Según los autores, en la tercera etapa se evidencian imprecisiones y errores en la inclusión de las fórmulas para la distribución de los recursos a las entidades, lo que conlleva a distorsiones en la transferencia del FAEB. Ésta desaparece hacia la cuarta etapa, y es sustituida por el Fondo de Aportaciones para la Nómina Educativa y Gasto Operativo (FONE), el cual no tiene una fórmula de distribución y está conformado por cuatro fondos: (i) Nómina del sector educativo, (ii) gastos de operación, (iii) gasto de compensación y (iv) otros gastos corrientes. Siguiendo la interpretación de los autores, esta nueva etapa dista del espíritu del federalismo, pues en la modificación²¹ hecha a la Ley de Coordinación Fiscal (LCF), en que se indica que la SEP establecerá un sistema de administración de nómina, es decir, el gasto estará centralizado (Urzúa y Velázquez, 2018). En virtud de esto, con mayor razón, Fierro *et al.* (2009) nombra a la última etapa

²¹ Modificación en el contexto de FONE.

del federalismo educativo como una descentralización centralizadora, ya que en la práctica las instituciones fuerzan a que el control esté en manos del gobierno federal.

De lo anteriormente descrito podría deducirse que la etapa actual de la descentralización educativa en México es un *oxímoron*, pues se experimenta un federalismo centralizado. Esta es la regla o la institución imperante, y al respecto, tal y como se indicó en el marco teórico, se sabe que en la actualidad los sistemas federales a nivel global son cada vez más centralizados. Asimismo, tanto la Ley General de Educación (LGE) como la LCF, son las instituciones más importantes que desde la oferta dan forma al federalismo educativo mexicano.

Con base en la descripción del proceso del federalismo educativo en México, se presentan a continuación los resultados del análisis institucional con base en las condiciones de Weingast y los supuestos de McNollgast.

Por un lado, la LGE indica la concurrencia en el financiamiento y la coordinación entre la SEP y las entidades federativas para la producción de la educación (como se describió párrafos arriba). Esto indica la existencia de una oferta en el sistema educativo que está descentralizada. Sin embargo, la LCF pareciera ir en contra de esto, ya que el financiamiento/provisión de la educación se encuentra centralizado (como se describió párrafos arriba), donde es el gobierno federal quien tiene la mayor toma de decisiones. Esto se pudo comprobar al observar que la mayor parte del gasto educativo ejecutado en las entidades federativas corresponde al gobierno federal, más del 50%. Entonces, tomando como referencia el modelo de McNollgast, el gobierno federal representa al **Principal (P)** y las entidades federativas al **Agente (A)**. Cada uno de ellos tiene cierta autoridad (**Z**) y cierta asignación de recursos (**R**). Dado que la LCF actual da forma a la LGE; es decir, el gasto educativo se encuentra centralizado. Entonces, se cumple que el gasto ejecutado por el gobierno federal es mayor que aquel que ejecutan los gobiernos estatales (con recursos propios o sin ellos). La expresión matemática sería la siguiente (tal y como se mostró en la Metodología):

$$Rp > Rd + Ra$$

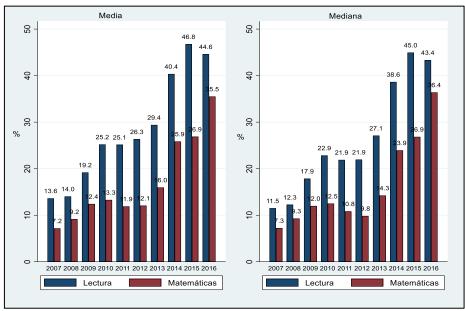
Esto origina, según el modelo de McNollgast, que el gobierno central tenga una mayor autoridad y que ésta pueda estar por encima de la autoridad que se ostenta a nivel local. La expresión matemática sería la siguiente (tal y como se mostró en la Metodología):

Esta situación, trasladada al modelo de Weingast, da como resultado que se pierdan al menos una de las condiciones para que el modelo de descentralización aplicado funcione. Dentro de las cinco condiciones propuestas por el mencionado autor, el análisis sobre México permitió indicar que no se cumplen las siguientes tres:

- Autoridad Institucionalizada → Dos reglas formales (LGE y LCF) no son del todo compatibles, o no son lo suficientemente claras, entonces la autoridad para cada nivel de gobierno, en particular para las entidades federativas, no goza del soporte institucional correspondiente.
- Autonomía Subnacional → Si el centro toma las decisiones con mayor preponderancia que el ámbito local, por ejemplo, los mayores recursos invertidos en educación provienen del gobierno federal y no de las entidades federativas, entonces estos últimos perderán autonomía, pues dependerán del centro.
- Jerarquía → Si la autoridad no es una regla bien establecida y la autonomía es débil, entonces esto afectará la correcta jerarquía entre los niveles de gobierno involucrados.

Dado esto, se puede concluir que el modelo de descentralización educativa en México es un modelo con fallas en el diseño. Esto secunda lo indicado por autores como Pardo (1999) o Urzúa y Velázquez (2018).

Entonces, consolidando los resultados para México, en primer lugar, se observó que la dimensión económica-financiera de la descentralización, medida a través del indicador de gasto autónomo, DEC, no tuvo ninguna relación de causalidad sobre el rendimiento escolar, a excepción del caso en Matemáticas para las entidades del Norte del país. Con relación a esto último, aunque se obtuvieron resultados favorables a la descentralización, el hecho de que esto ocurra sólo en el norte no prueba que la descentralización como política nacional tenga un efecto para todo el país. Como se mencionó en la metodología, este efecto causal encontrado puede estar estrechamente relacionado con la heterogeneidad no observada entre las distintas entidades federativas. En segundo lugar, como se acaba de describir, al ser la descentralización un proceso complejo con distintas dimensiones, no basta sólo con analizar la económica, sino también la política y la administrativa. En este sentido, el modelo de federalismo educativo se ha puesto a prueba bajo las condiciones de Weingast y los supuestos de McNollgast. Como resultado de este

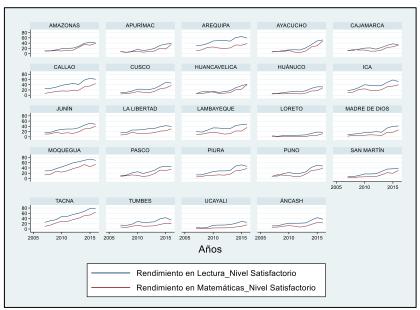

análisis cualitativo, se ha indicado que dicho modelo tiene fallas en el diseño, tendiendo a centralizar los recursos públicos y la función del gasto. Esto último, tiene relación directa sobre el indicador de gasto autónomo utilizado en los modelos de regresión, puesto que, al centralizarse el gasto con mayor incidencia en algunas entidades, no se puede encontrar el efecto causal deseado.

IV.2. Perú

IV.2.1. Análisis de la Función de Producción de la Educación

Los indicadores de rendimiento escolar en el Perú mejoraron a nivel nacional y departamental, tal y como se puede apreciar en la figura 31, en donde los resultados satisfactorios en lectura y matemáticas crecen en su media y mediana, aunque el porcentaje no superó el 50%. Esto indica un rezago del rendimiento escolar nacional significativo.

FIGURA 31. PERÚ: EVOLUCIÓN DE LOS INDICADORES DE LECTURA Y MATEMÁTICAS SEGÚN PRUEBA ECE 2DO GRADO, 2007 - 2016

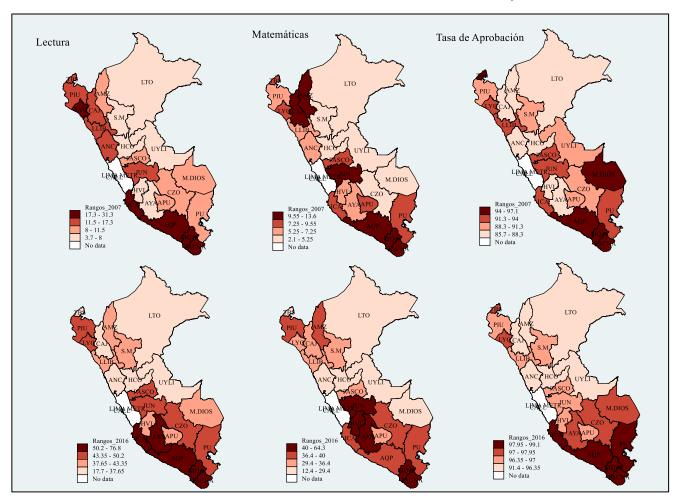

Fuente: Elaboración propia con base en INEI-SIRTOD (2020).

De igual manera, la tasa de aprobación primaria también se incrementó en su media y mediana (ver Anexo Estadístico).

Volviendo al análisis del rendimiento, para el caso de lectura, Tacna fue el departamento que obtuvo el valor más alto a nivel nacional, con el 52.6%, mientras que Loreto el más bajo con 8.4%. Para el caso de Matemáticas los escenarios se repiten con 35.3% y 3.3% respectivamente (ver Anexo Estadístico). Asimismo, la tendencia del rendimiento en

lectura y matemáticas por departamentos es creciente, aunque lectura lleva ventaja (ver figura 32).

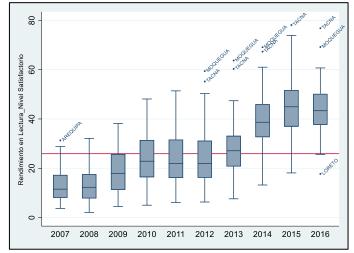
FIGURA 32. PERÚ: EVOLUCIÓN DE LOS RESULTADOS ESCOLARES (RENDIMIENTO SATISFACTORIO) POR DEPARTAMENTOS, 2007 – 2016



Fuente: Elaboración propia con base en INEI-SIRTOD (2020).

Una comparación simple del crecimiento de los indicadores entre los años 2007 y 2016 señala que en el caso de Lectura el departamento de Tacna fue el de mayor crecimiento con 51.2 puntos porcentuales, siguiéndole Ayacucho (44.3) y Moquegua (40.4). Para Matemáticas, sucedió lo similar, siendo Tacna el que más creció con 54.1 puntos porcentuales, siguiéndole Ayacucho y Moquegua con 42.4 y 40.1 respectivamente. En ambos casos, tanto en Lectura como Matemáticas el departamento de Loreto fue el que menos creció. En el caso de la Tasa de Aprobación, al comparar los resultados del 2006 y 2017, se observó que todos los departamentos crecen, siendo que primero Ayacucho con 9.4 puntos porcentuales, siguiéndole Huánuco con 8.5 (ver Anexo Estadístico).

En cuanto a la distribución espacial de los indicadores, se puede apreciar en la figura 33 que estos se distribuyen con mejores resultados en la Costa y hacia el Sur.


FIGURA 33. PERÚ: DISTRIBUCIÓN REGIONAL DE LOS RESULTADOS ESCOLARES (INICIO Y FIN DEL PERIODO)

Fuente: Elaboración propia con base en INEI-SIRTOD (2020). No incluye Lima.

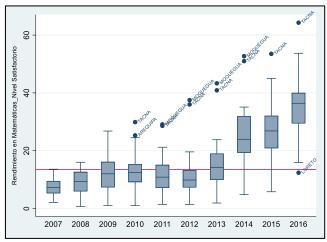
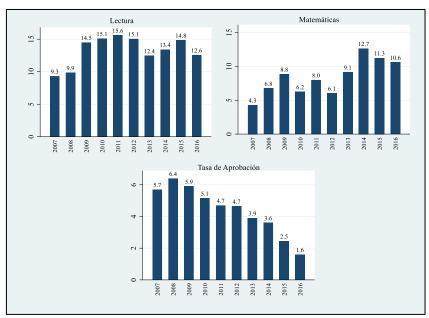

Por otro lado, un breve análisis de dispersión de los indicadores mostró que en el caso de Lectura los valores atípicos se presentaron en los departamentos de Tacna, Moquegua, Arequipa y Loreto, siendo muy similar para el caso de Matemáticas (ver figura 34 y figura 35).

FIGURA 34. PERÚ: GRÁFICO DE CAJA DEL RENDIMIENTO SATISFACTORIO EN LECTURA, 2007 - 2016

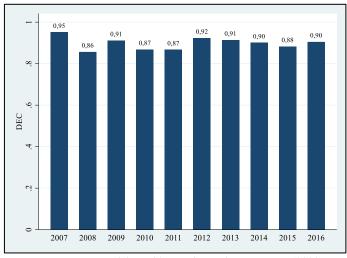
Fuente: Elaboración propia con base en INEI–SIRTOD (2020).


FIGURA 35. PERÚ: GRÁFICO DE CAJA DEL RENDIMIENTO SATISFACTORIO EN MATEMÁTICAS, 2007 - 2016

Fuente: Elaboración propia con base en INEI–SIRTOD (2020).

Asimismo, la aplicación del rango intercuartílico mostró que tanto en lectura como matemáticas la dispersión aumentó en el tiempo, no ocurriendo esto en el caso de la tasa de aprobación (ver figura 36).

Figura 36. PERÚ: RANGO INTERCUARTÍLICO DE LOS RESULTADOS ESCOLARES, 2007 - 2016



Fuente: Elaboración propia con base en INEI-SIRTOD (2020).

Estos resultados indicaron que, si bien el rendimiento escolar como promedio nacional ha crecido, también se experimenta una desigualdad entre los departamentos que, al momento de ubicarlas en el espacio, se puede observar que es del tipo regional.

Por otro lado, así como se abordó la descripción de la variable dependiente, se hizo lo propio respecto a la variable explicativa **DEC**. Ésta osciló entre 0.86 y 0.95, siendo que, bajo el periodo de estudio, su valor cae como promedio nacional (ver figura 37). Asimismo, la tendencia por departamentos resultó bastante heterogénea (ver figura 38).

FIGURA 37. PERÚ: TENDENCIA DE DEC A NIVEL NACIONAL (2007 – 2016)

Fuente: Elaboración propia con base en MEF (2020).

Figura 38. Perú: tendencia del DEC por departamentos (2007 – 2016)

Fuente: Elaboración propia con base en MEF (2020).

En lo relativo a qué departamento se encuentra más descentralizado, en la figura 39 se puede observar que Tacna (Costa- Sur) fue el que obtuvo el mayor DEC promedio; mientras que el menor fue para Madre de Dios (Selva). Se debe precisar que la magnitud de DEC en el caso peruano es cercana a la unidad, ya que el gasto educativo se encuentra regionalizado a través de las unidades de gestión regional y local (DRE y UGEL). Sin embargo, este gasto no necesariamente se financia con ingresos propios generados por los gobiernos regionales, acorde con el modelo de gobierno unitario del Perú.

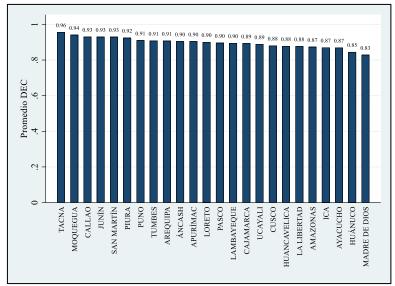
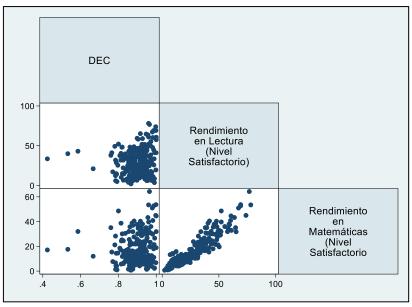


FIGURA 39. PERÚ: DEC PROMEDIO POR DEPARTAMENTOS (2007 – 2016)

Fuente: Elaboración propia con base en MEF (2020).

Una vez descrito el comportamiento de las variables de interés, se realizó un análisis de correlación para conocer de forma preliminar la posible relación que existe entre las

variables. Utilizando un nivel de significancia de hasta el 10%, el coeficiente de correlación de Pearson en el caso de lectura resultó de 0.1181, indicando que un aumento en el índice de descentralización está relacionado a un aumento del rendimiento en esta materia. Para matemáticas el coeficiente no fue significativo (ver cuadro 13).


CUADRO 13. PERÚ: CORRELACIÓN ENTRE LAS VARIABLES DE INTERÉS.

	Rend_Lectura	Rend_Matemáticas	DEC
Rend_Lectura	1		
Rend_Matemáticas	0.9184* (0.0000)	1	
DEC	0.1181* (0.0677)	0.1021 (0.1148)	1

Fuente: Elaboración propia con base en INEI-SIRTOD (2020). (*) Indica significancia estadística hasta el 10%.

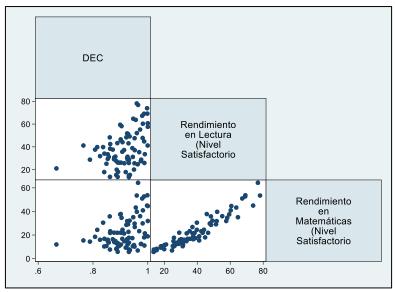

Estos resultados preliminares indicarían que la descentralización sí tiene un efecto sobre el rendimiento escolar; sin embargo, correlación no implica causalidad. De la misma manera se realizó un análisis gráfico de dispersión matricial (esto a la vez para identificar probables *outliers*). Al analizar la relación entre el rendimiento escolar y la variable DEC se pudo observar que, al separar los departamentos que se encuentran en la costa y los que no, la relación de dispersión cambia sustancialmente, de no observarse relación alguna a una del tipo positiva (ver figuras 40, 41 y 42).

FIGURA 40. PERÚ: ANÁLISIS DE DISPERSIÓN DE LOS RENDIMIENTOS ESCOLARES Y DEC SEGÚN TODOS LOS DEPARTAMENTOS DISPONIBLES

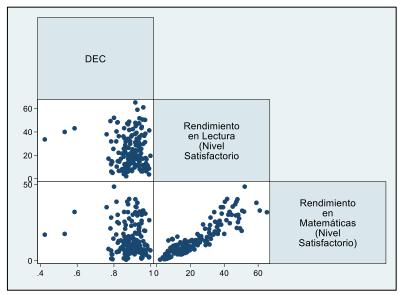

Fuente: Elaboración propia con base en MEF (2020).

FIGURA 41. PERÚ: ANÁLISIS DE DISPERSIÓN DE LOS RENDIMIENTOS ESCOLARES Y DEC SEGÚN DEPARTAMENTOS DE LA COSTA

Fuente: Elaboración propia con base en MEF (2020).

FIGURA 42. ANÁLISIS DE DISPERSIÓN DE LOS RENDIMIENTOS ESCOLARES Y DEC SEGÚN DEPARTAMENTOS DE NO COSTA

Fuente: Elaboración propia con base en MEF (2020).

Dados estos resultados, se estimaron diferentes modelos econométricos con el objetivo de encontrar un efecto causal. En el cuadro 14 se puede observar que, aunque los controles resultaron significativos y con el signo esperado²², la variable de interés DEC no resultó significativa, a excepción del Modelo 4.

112

²² En el Anexo Estadístico se muestra el conjunto de variables de control que conformaron los vectores R y H.

CUADRO 14. PERÚ: MODELOS PARA RENDIMIENTO EN LECTURA (ESTIMADOR WITHIN)

Variable	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5	Modelo 6
DEC (log)	9.483	13.45	11.18	16.40+	8.799	14.65
	(15.2)	(10.83)	(10.89)	(10.61)	(13.2)	(11.76)
NO_ESCUELA	-6.692***					-2.746**
	(1.71)					(0.987)
DEP_ECON	-3.177+					
	(1.684)					
SP_ESCUELA		0.836***				
_		(0.136)				
RAD		-1.534***		-3.270***		-1.939***
		(0.462)		(0.352)		(0.581)
TIT_PRIM.		0.313			0.761***	0.519***
		(0.192)			(0.206)	(0.183)
ING (log)			39.08***			
			(10.6)			
VIV_INADEC				-2.047***		
_				(0.562)		
ESCOLARIDAD				2.73		
				(2.67)		
HACINA					-2.491***	-0.867**
					(0.262)	(0.331)
ANALF.						-1.242+
AIVALIT.						(0.654)

Constante	41.05***	-5.38	-236.0***	77.77***	-7.746	40.28**
	(3.12)	(21.04)	(71.69)	(25.51)	(18.81)	(18.62)
Observaciones	236	236	236	236	236	236
R-Cuadrado	0.174	0.644	0.466	0.585	0.417	0.575
R-Cuadrado Ajustado	0.163	0.638	0.461	0.578	0.41	0.564

Nota: + p<0.10, ** p<0.05, *** p<0.01. Errores estándar robustos entre paréntesis. La variable dependiente en niveles. Se detectó la multicolinealidad previa, por lo que se tuvo cuidado en no incluir todas las variables de los vectores en un solo modelo.

Sin embargo, dado que se sospecha que la relación puede variar cuando se discrimina por región, se estimaron algunos modelos utilizando la variable *dummy* Costa. Los resultados vertidos en el cuadro 15 indicaron que realizando estas regresiones se encontró significancia estadística. Tal fue el caso del Modelo 1 y Modelo 4 en donde por cada aumento del 1% de la descentralización del gasto educativo, el rendimiento en lectura aumenta en 0.76 y 0.42 puntos porcentuales respectivamente, pero sólo en los departamentos de la costa.

CUADRO 15. PERÚ: MODELOS PARA RENDIMIENTO EN LECTURA (ESTIMADOR WITHIN) CON DUMMY COSTA

Variable	Mod	lelo 1	Mod	lelo 2	Mo	delo 3	Mo	delo 4	Mod	delo 5	Mod	delo 6
Variable	Costa	No Costa	Costa	No Costa	Costa	No Costa	Costa	No Costa	Costa	No Costa	Costa	No Costa
DEC (log)	76.27*	-12.44	35.78	2.923	-3.449	0.695	42.88+	3.047	26.69	-2.055	43.77	1.526
	(24.81)	(15.73)	(25.45)	(10.92)	(19.57)	(14.33)	(19.4)	(10.29)	(28.18)	(12.63)	(27.77)	(11.32)
NO_ESCUELA	-14.79***	-5.703***									-6.224	-1.924*
	(3.287)	(1.485)									3.488	0.846
DEP_ECON	3.718	-4.053+										
	(3.248)	(2.112)										
SP_ESCUELA			1.003***	0.462*								

			(0.155)	(0.213)								
RAD			-1.314	-2.389***			-4.543*	-3.363***			-3.448	-2.807***
			(1.563)	(0.604)			(1.493)	(0.331)			(1.99)	(0.53)
TIT_PRIM.			0.294	0.139					0.695*	0.728+	0.522*	0.207
			(0.284)	(0.162)					(0.273)	(0.35)	(0.217)	(0.184)
ING (log)					70.33***	31.09*						
_					(7.778)	(11.2)						
VIV_INADEC							-3.666***	-0.855				
							(0.956)	(0.522)				
ESCOLARIDAD							1.876	2.79				
							(4.284)	(3.153)				
HACINA									-3.232***	-2.329***	-2.383***	-0.343
									(0.718)	(0.24)	(0.462)	(0.342)
ANALF											-0.634	-0.256
											(2.459)	(0.475)
Constante	52.87***	35.05***	-19.63	37.17	-451.2***	-185.3*	118.0*	65.12*	2.983	-8.015	71.98+	62.48***
	(2.95)	(3.614)	(44.37)	(21.56)	(53.47)	(74.41)	(38.07)	(29.65)	(25.99)	(31.44)	(31.72)	(17.78)
Observaciones	79	157	79	157	79	157	79	157	79	157	79	157
R- Cuadrado	0.314	0.2	0.615	0.696	0.764	0.389	0.577	0.691	0.34	0.484	0.548	0.694

R- Cuadrado Ajusta	do 0.287	0.185	0.595	0.688	0.757	0.381	0.554	0.683	0.314	0.474	0.51	0.681
Nota: + p<0.10, ** p<0.05	5, *** p<0.01. Er	rores estándar rob	ustos entre paré	ntesis. La varial	ble dependiente	en niveles. Se	detectó la multic	olinealidad prev	ia, por lo que s	e tuvo cuidado e	n no incluir to	das las variables
de los vectores en un solo	modelo.											

En cuanto al rendimiento en matemáticas, no se encontró evidencia estadística para DEC (ver Cuadro 16).

CUADRO 16. PERÚ: MODELOS PARA RENDIMIENTO EN MATEMÁTICAS (ESTIMADOR WITHIN)

Variable	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5	Modelo 6
DEC (log)	3.331	7.674	5.227	4.254	9.667	8.889
	(14.5)	(11.4)	(11.56)	(13.39)	(10.93)	(12.46)
NO_ESCUELA	-4.934***					-2.268**
	(1.381)					(0.911)
DEP_ECON	-1.021					
	(1.152)					
SP_ESCUELA		0.601***				
		(0.14)				
RAD		-1.007**			-2.308***	-1.665***
		(0.415)			(0.291)	(0.534)
TIT_PRIM.		0.136		0.469**		0.350+
		(0.188)		(0.199)		(0.201)
ING (log)			24.67***			
-			(8.567)			
VIV_INADEC					-1.343**	
					(0.505)	
ESCOLARIDAD					4.145	
					(2.595)	

HACINA				-1.681***		-0.515+
				(0.212)		(0.267)
ANALF.						-0.135
						(0.634)
Constante	24.25***	-1.439	-150.1**	-3.751	30.15	24.2
	(2.385)	(20.11)	(57.88)	(18.56)	(24.32)	(20.21)
Observaciones	236	236	236	236	236	236
R-Cuadrado	0.127	0.455	0.278	0.276	0.413	0.397
R-Cuadrado Ajustado	0.116	0.446	0.272	0.267	0.403	0.381

Nota: + p<0.10, ** p<0.05, *** p<0.01. Errores estándar robustos entre paréntesis. La variable dependiente en niveles. Se detectó la multicolinealidad previa, por lo que se tuvo cuidado en no incluir todas las variables de los vectores en un solo modelo.

De la misma manera que en lectura, para matemáticas también se realizaron regresiones con muestras para los departamentos que están en la costa y los que no. Los resultados vertidos en el cuadro 17 indicaron que realizando estas regresiones se encontró significancia estadística. Tal fue el caso del Modelo 1 y Modelo 5 en donde por cada aumento del 1% de la descentralización del gasto educativo, el rendimiento en lectura aumenta en 0.69 y 0.41 puntos porcentuales respectivamente, pero sólo en los departamentos de la costa (nótese valores parecidos al caso de lectura).

CUADRO 17. PERÚ: MODELOS PARA RENDIMIENTO EN MATEMÁTICAS (ESTIMADOR WITHIN) CON DUMMY COSTA

Variable	Mod	lelo 1	Mod	delo 2	Mod	delo 3	Mod	delo 4	Mod	delo 5	Mod	delo 6
	Costa	No Costa	Costa	No Costa	Costa	No Costa	Costa	No Costa	Costa	No Costa	Costa	No Costa
DEC (log)	69.43*	-20.01	39.22	-6.856	7.675	-11.71	32.23	-11.54	41.57+	-6.424	46.68	-9.461
	(26.16)	(13.73)	(23.82)	(11.25)	(19.03)	(13.93)	(26.66)	(12.93)	(18.76)	(10.01)	(26.9)	(11.5)
NO_ESCUELA	-10.88***	-4.292***									-4.468	-1.810*
	(2.629)	(1.195)									(3.7)	(0.821)

DEP_ECON	5.012+	-1.749										
_	(2.469)	(1.331)										
SP_ESCUELA			0.742***	0.253								
			(0.196)	(0.175)								
RAD			-0.931	-1.784***					-3.369*	-2.364***	-3.040+	-2.498***
			(1.434)	(0.5)					(1.199)	(0.261)	(1.491)	(0.547)
TIT_PRIM.			0.106	0.0216			0.202	0.422			0.200	0.110
III_FKINI.			0.106	-0.0216			0.382	0.433			0.299	0.118
			(0.286)	(0.191)			(0.276)	(0.309)			(0.262)	(0.196)
ING (log)					52.76***	16.83+						
					(7.799)	(8.419)						
VIV_INADEC							-2.500***	-1.484***			-2.038***	0.0698
VIV_IIVADEC							(0.633)	(0.187)			(0.473)	(0.261)
							(0.033)	(0.167)			(0.473)	(0.201)
ESCOLARIDAD									-2.701*	-0.329		
									(0.983)	(0.432)		
HACINA									4.481	3.517		
michui									(4.836)	(2.764)		
									(4.630)	(2.704)		
ANALF											0.531	0.751
											(2.2)	(0.511)
Constante	31.71***	20.14***	10.97	37.46	244 0***	00.07	9 650	4 104	50.66	26.07	5 0 01 .	29.50
	31./1	۷0,14	-10.87	37.40	-344.0***	-99.97+	8.652	-4.104	50.66	26.07	58.81+	38.50+

	(2.864)	(2.409)	(41.09)	(22.57)	(53.28)	(56.02)	(25.07)	(28.72)	(44.32)	(25.95)	(30.43)	(19.36)
Observaciones	79	157	79	157	79	157	79	157	79	157	79	157
R- Cuadrado	0.279	0.165	0.483	0.494	0.639	0.192	0.283	0.313	0.479	0.495	0.435	0.511
R- Cuadrado Ajustado	0.25	0.149	0.455	0.481	0.629	0.181	0.255	0.299	0.45	0.481	0.388	0.491

Nota: + p<0.10, ** p<0.05, *** p<0.01. Errores estándar robustos entre paréntesis. La variable dependiente en niveles. Se detectó la multicolinealidad previa, por lo que se tuvo cuidado en no incluir todas las variables de los vectores en un solo modelo.

Al igual que en México, en el caso peruano los controles mostraron resultados relevantes, tanto para lectura como para matemáticas (ver Anexo Estadístico).

Por otro lado, dado que en el caso peruano se dispuso de un mayor número de observaciones, se pudo estimar modelos de datos de panel dinámicos, dando como resultado que no se encontró significancia en la variable DEC (ver Cuadro 18).

CUADRO 18. Perú: Modelo dinámico	Arellano Bond - System	& Difference GMM)
Combine 10:1 cras modern amanine	The character of the system.	

CUADRO 18. Perú: M	odelo diná	mico (Arel	lano Bond	l - System d	& Differenc	ce GMM)
	$\mathbf{A}_{\mathbf{L}}$	A_M	T_A	A_L	A_M	T_A
DEC (log)				13.07	32.8	0.15
				(21.16)	(24.74)	(1.488)
NO_ESCUELA				1.1	0.924	0.0549
				(1.075)	(2.233)	(0.362)
RAD				-1.619***	-0.925+	-0.114
				(0.535)	(0.532)	(0.559)
ANALFA				-0.108	0.543	-0.103
ANALIA				(0.549)	(0.497)	(0.275)
Constants	2.626	1 126	17 70***			
Constante	2.626	-1.126	17.78***	45.75**	13.87	34.56
	(2.462)	(1.147)	(5.802)	(19.03)	(11.61)	(101.1)
A_L (-1)	0.839***			0.856***		
	(0.277)			(0.224)		
A_L (-2)	0.16			-1.504		
	(0.367)			(1.381)		
A_L (-3)	-0.178			1.102		
	(0.199)			(1.45)		
A_M (-1)		0.968***			0.896***	
		(0.329)			(0.3)	
A_M (-2)		0.0947			-2.414	
		(0.356)			(1.67)	
A_M (-3)		0.00672			2.46	
11_111 (-3)		(0.103)			(1.854)	
		(0.100)			(1100 1)	
T_A (-1)			0.442			0.68
			(0.343)			(1.196)
T. A. (A)			0.256			0.274
T_A (-2)			0.256			-0.274
			(0.317)			(1.004)
T_A (-3)			0.121			0.263
			(0.088)			(0.787)
D_2010	6.586***	0.94	-0.397**	-2.366	7.43	-0.235
D_2010	(1.111)	(1.516)	(0.178)	-2.366 (6.768)	(5.456)	-0.235 (0.494)
	` '		· · · · /			` - /
D_2011		-0.937		-1.751	7.377	

		(1.133)		(2.167)	(6.861)	
D_2012	1.287		0.192			-0.00605
	(2.284)		(0.176)			(0.285)
D_2013	5.422***	4.761***	-0.208	-5.411	-1.159	-0.396
	(1.93)	(0.789)	(0.28)	(9.16)	(4.917)	(0.256)
D_2014	12.96***	10.67***	0.0706	3.807	8.303***	-0.0199
	(1.8)	(1.637)	(0.176)	(7.354)	(2.02)	(0.433)
D_2015	10.13***	1.839	0.899**	5.706	10.93	0.683
	(2.78)	(3.346)	(0.416)	(3.763)	(8.378)	(0.983)
D_2016	1.26	7.848***	0.537	9.544	31.58+	0.356
	(2.285)	(0.857)	(0.547)	(8.685)	(15.9)	(1.612)
Observaciones	165	165	165	165	165	165
A-Bond (z) (-1)	-1.13	-1.46	-0.66	-1.21	-1.55	-0.43
A-Bond (z) (-2)	-1.06	0.66	-1.01	0.95	1.28	0.14
Hansen (chi2)	9.03	8.80	13.66	2.19	2.86	4.87 +
Número de instrumentos	(2.284) (0.176) (0.285) 5.422*** 4.761*** -0.208 -5.411 -1.159 -0.396 (1.93) (0.789) (0.28) (9.16) (4.917) (0.256) 12.96*** 10.67*** 0.0706 3.807 8.303*** -0.0199 (1.8) (1.637) (0.176) (7.354) (2.02) (0.433) 10.13*** 1.839 0.899** 5.706 10.93 0.683 (2.78) (3.346) (0.416) (3.763) (8.378) (0.983) 1.26 7.848*** 0.537 9.544 31.58+ 0.356 (2.285) (0.857) (0.547) (8.685) (15.9) (1.612) 8 165 165 165 165 165 9.) -1.13 -1.46 -0.66 -1.21 -1.55 -0.43 9.03 8.80 13.66 2.19 2.86 4.87+				16	

Nota: + p<0.10, ** p<0.05, *** p<0.01. Variable dependiente en niveles. A_L = Rendimiento en Lectura, A_M = Rendimiento en Matemáticas, T_A = Tasa de Aprobación Primaria. Errores estándar robustos entre paréntesis. Se detectó la multicolinealidad previa, por lo que se tuvo cuidado en no incluir todas las variables de los vectores en un solo modelo. En todos los casos, el número de instrumentos fue inferior al número de observaciones. Cada modelo se estimó a través del comando XTABOND2 en el software STATA.

Por otro lado, para los modelos en que la variable dependiente es la tasa de aprobación del nivel primaria, se obtuvieron resultados similares, pues la variable DEC tampoco resultó significativa (ver cuadro 19). Las variables de control utilizadas fueron las mismas que en los casos de lectura y matemáticas, y los signos e inferencia estadística fueron también similares.

Cuadro 19. Perú: Modelos para la tasa de aprobación primaria (estimador within)

Variables	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5	Modelo 6
DEC (log)	-2.774	-1.424	-2.662	-3.11	-0.62	-1.517
	(2.672)	(1.371)	(1.969)	(2.136)	(1.462)	(1.376)
NO_ESCUELA	-1.093***					-0.337***
	(0.245)					(0.0604)
DEP_ECON	-0.715**					
	(0.283)					
SP_ESCUELA		0.0760***				
		(0.0147)				
RAD		-0.508***			-0.686***	-0.492***
		(0.0537)			(0.047)	(0.0572)
TIT_PRIMARIA		0.0636***		0.137***		0.0769***
		(0.0206)		(0.046)		(0.0199)
ING (log)			6.472***			

			(1.742)			
HACINA.				-0.424***		-0.0585+
				(0.0389)		(0.0379)
VIV_INADEC					-0.138***	
					(0.049)	
ESCOLARIDAD					-0.0153	
					(0.354)	
ANALF.						-0.252***
						(0.0891)
Constante	95.96***	93.63***	49.84***	86.85***	106.5***	98.46***
	(0.442)	(2.178)	(11.82)	(3.915)	(3.53)	(1.885)
Observaciones	236	236	236	236	236	236
R-Cuadrado	0.216	0.823	0.524	0.505	0.777	0.813
VIV_INADEC -0.1 (0) ESCOLARIDAD -0. (0) ANALF. Constante 95.96*** 93.63*** 49.84*** 86.85*** 106 (0.442) (2.178) (11.82) (3.915) (3.9			0.773	0.808		

Nota: + p<0.10, ** p<0.05, *** p<0.01. Variable dependiente en niveles. Errores estándar robustos entre paréntesis. Se detectó la multicolinealidad previa, por lo que se tuvo cuidado en no incluir todas las variables de los vectores en un solo modelo.

IV.2.2. Análisis del modelo de Weingast y McNollgast

Dados los resultados econométricos, que responde parte de la pregunta general de investigación, fue necesario saber por qué sucede esto para el caso peruano. Teniendo en cuenta que la descentralización es un proceso complejo en donde intervienen las dimensiones económica, política y administrativa, se complementó el análisis cuantitativo con uno del tipo cualitativo, apelando a los modelos de Weingast y McNollgast.

En primer lugar, Perú tiene un gobierno del tipo unitario pero descentralizado (CRP, 1993), el cual está conformado por 24 departamentos y una provincia constitucional. Por su parte, el sistema educativo peruano, en el nivel Macro (según la clasificación del Marco Teórico), tiene como sus principales actores, desde el punto de vista de la oferta, al gobierno central y los gobiernos locales. El primero está representado por el Ministerio de Educación – MINEDU (como órgano del Estado forma parte del llamado Gobierno Nacional o Gobierno Central); mientras que el segundo por los gobiernos regionales (y de forma auxiliar por los gobiernos municipales). Estos niveles comparten funciones y responsabilidades en la asignación de la educación que se explican en la Constitución Política del Estado y la Ley General de Educación – LGE (INEI, 2013).

El MINEDU, creado en 1837, es el órgano rector de las políticas educativas nacionales y ejerce su rectoría a través de una coordinación y articulación intergubernamental con los Gobiernos Regionales y las Municipalidades (MINEDU, 2020). Las funciones generales de este órgano son definir, dirigir, regular y evaluar, en coordinación con los Gobiernos

Regionales, la política educativa y pedagógica nacional y establecer políticas específicas de equidad. Además, formula, aprueba, ejecuta y evalúa, de manera concertada, el Proyecto Educativo Nacional. Asimismo, sus funciones se encuentran vinculadas a los diseños curriculares básicos de los niveles y modalidades del sistema educativo, programas nacionales dirigidos a estudiantes, directores y docentes, políticas relacionadas con el otorgamiento de becas y créditos educativos y los procesos de medición y evaluación de logros de aprendizaje (MINEDU, 2020).

Por otro lado, los Gobiernos Regionales nacen con la reforma del Estado en cuanto la descentralización y regionalización (2003) y empezaron a recibir ciertas funciones en pro de una mejora en el bienestar local. La ley que delimita sus funciones es la Ley 27867 en donde se indica en parte sus responsabilidades en el sector educativo, las cuales se detallan posteriormente.

De manera complementaria, se debe mencionar que en el Perú el sindicalismo del sector educativo está representado por el Sindicato Único de Trabajadores de la Educación del Perú – SUTEP, cuya fundación se remonta a la década de los años setenta del siglo pasado. Según la revisión de Quinto (2007), el SUTEP históricamente atravesó diferentes etapas:

- Periodo heroico y de movilización social (1972 1983)
- Periodo institucional (1984 1990)
- Periodo de Reflujo (1990 2001)
- Periodo de reinstitucionalización (2002 actualidad)

Ahora bien, los antecedentes de la descentralización educativa en Perú se encuentran en la reforma del Estado peruano que se dio a comienzos del presente siglo (2002). En aquel momento se promulgaron diferentes leyes a favor de la descentralización del Estado peruano. Entre las más importantes se tiene a la Ley de Bases de Descentralización - LBD (CRP, 2001) y la Ley Orgánica de los Gobiernos Regionales - LOGR (CRP, 2002), las cuales respaldan la participación de los Gobiernos Regionales en la asignación de la educación.

Asimismo, está presente la Ley Nº 28044, Ley General de Educación - LGE, promulgada en el año 2003 (CRP, 2003), la cual señala las responsabilidades que asume el Estado en materia educativa en los niveles básico y superior. Dicha ley indica que la educación es un proceso de aprendizaje y enseñanza con efectos sobre la persona y la sociedad; es un

derecho, es gratuita (cuando la provee el Estado) y es libre. El Estado garantiza el acceso y la universalización de la educación básica regular (EBR), la gratuidad en todos sus niveles y modalidades, y la libertad de la enseñanza de toda persona natural o jurídica, bajo supervisión y regulación (CRP, 2003).

Tanto en la LBD y la LOGR, se indica la coordinación que debe existir entre el MINEDU, como órgano del Gobierno Central, y los gobiernos regionales como co-planificador de la política educativa en el país. La LBD indica que uno de los objetivos de la descentralización es la educación (CRP, 2001). El artículo 35 de dicha ley indica que es competencia de los gobiernos regionales la gestión de servicios educativos y que ésta debe ser compartida con las municipalidades. Así también, la LOGR indica que dicha gestión se realiza a través de las respectivas gerencias de desarrollo Social de cada región. En esta ley existen 21 funciones específicas en materia educativa para el nivel básico y la educación superior no universitaria (CRP, 2002).

Sin embargo, esto no ha sido suficiente. En el año 2010, el Consejo Nacional de Educación – CNE señaló en un informe sobre descentralización educativa que:

El inicio del proceso de descentralización ha revelado que el diseño establecido para la educación en las leyes orgánicas de cada nivel de gobierno y la ley general de educación es insuficiente. Los roles de cada nivel de gobierno están claros y consensuados; sin embargo, se ejercen de manera contradictoria porque no se han definido las competencias y funciones de cada nivel de gobierno. Así, existen superposiciones o contradicciones entre las responsabilidades de cada nivel de gobierno para definir, por ejemplo, ¿cuándo se inician las clases? o ¿quién es responsable del logro de aprendizajes de los estudiantes? (CNE, 2010, p. 7).

Un aspecto importante en dicho informe fue la preocupación por el tema del financiamiento educativo, indicando que la gestión descentralizada del gasto público es urgente. Al respecto se señala que:

... el presupuesto, financiamiento y los recursos para el funcionamiento del Estado en general y de la educación en particular, a nivel central, regional y local, es un tema en el que la descentralización aún no resuelve, es más, esta deficiencia es resuelta con el aporte de las familias y, en muchos casos, de los mismos estudiantes que trabajan (CNE, 2010, p. 34)

Es decir, hay necesidades locales que no se están financiando adecuadamente. Al mismo tiempo:

En consecuencia, el modelo de gestión educativa descentralizada no ha favorecido mayormente al incremento de los presupuestos de las instancias regionales y locales, sólo son administradoras del gasto corriente, fundamentalmente planillas, en la medida que las instancias de gestión educativa descentralizada (DRE y UGEL) se organizan en unidades ejecutoras que pertenecen al pliego del gobierno regional respectivo. En consecuencia, el gasto corriente es descentralizado y el gasto de capital es centralizado. (CNE, 2010, p. 34)

Por lo tanto, aunque se evidencian deficiencias, la LBD, LOGR y LGE pueden considerarse como las instituciones formales de la descentralización educativa en el Perú. Adicionalmente debe mencionarse a la Ley de Organización y Funciones del MINEDU (CRP, 2021), la cual ha tenido un proceso largo desde su propuesta hasta su publicación. En esta ley se define que el gobierno central tendría el rol rector, los gobiernos regionales tendrían la función de gestionar la educación y los gobiernos locales (municipalidades) la de la articulación territorial del servicio educativo. En el nivel regional, se precisa la necesidad de que las unidades ejecutoras (UGEL y DRE) se asuman como parte de la administración de los gobiernos regionales.

Estas instituciones o reglas formales han atravesado un largo proceso de adecuación, por lo que es imperante dar una revisión a esto. Según el MINEDU (2013) al año 2008 recién se hicieron efectivas las transferencias de responsabilidades establecidas en la LOGR; asimismo, para el 2012 se firmó un pacto de compromiso entre esta institución y la municipalidad Metropolitana de Lima (capital del Perú), en donde se concentra la mayor población en edad escolar. El informe de balance del proceso de descentralización educativa del MINEDU señaló en aquel momento que la transferencia de competencias y funciones no ha contado con los recursos necesarios, además que estas parecen traslaparse unas con otras, dando como resultado una actividad subnacional inerte (MINEDU, 2013).

En el año 2014, el MINEDU aprobó con los gobiernos regionales y municipalidades un instrumento para mejorar la gestión educativa descentralizada. Dicho instrumento se basó en una matriz cuyo objetivo fue evitar el traslape de funciones (MINEDU, 2014). En un escenario más actual (2021), luego de casi 10 años, recientemente promulgó la Ley

N° 31224, Ley de Organización y Funciones del Ministerio de Educación. Un aspecto a resaltar en dicha ley es el artículo 10, en donde se señala que el gobierno central a través del MINEDU tendrá la función de aprobar y supervisar la ejecución del presupuesto, en coordinación con los gobiernos regionales. En este sentido, los gobiernos regionales tendrán la función compartida de dar seguimiento a la ejecución del gasto educativo a nivel local. Sin embargo, el artículo 7 donde se indica las funciones conjuntas que desempeñan el Gobierno Central y los gobiernos regionales se basa ampliamente en las instituciones ya mencionadas (LBD, LGE, LOGR), por lo que esta ley funge como un resumen de las leyes anteriores, con algunas especificaciones.

Por lo tanto, estas reglas o instituciones de la descentralización educativa en el Perú indican que existe un problema de definición adecuada de las responsabilidades y funciones de los diferentes niveles de gobierno; y por otro, que los recursos del financiamiento educativo a nivel local provienen del gobierno central, quien es el que toma las decisiones como un gobierno unitario pero desconcentrado (ver resumen en el Cuadro 20).

Cuadro 20. Perú: Reglas formales de la descentralización educativa

Función	Ley General de Educación	Ley de Bases de Descentralización	Ley Orgánica de Gobiernos Regionales	Ley de Organización y Funciones del Minedu
Calidad Escolar	Función compartida entre el Gobierno Central y Gobiernos Regionales (artículo 13b; artículo 33, artículo 74, artículo 77	Función compartida entre Gobierno Central y Gobiernos Regionales (artículo 36).	Función compartida entre Gobierno Central y Gobiernos Regionales (artículo 47).	"El Ministerio de Educación ejerce funciones de competencia compartida con los gobiernos regionales y locales en aquellas funciones que han sido transferidas en materia de educación," (Art. 7)
Regulación/Gestión	Función compartida entre Gobierno Central y Gobiernos Regionales (artículo 80).	Función compartida entre Gobierno Central y Gobiernos Regionales (artículo 36).	Función compartida entre Gobierno Central y Gobiernos Regionales (artículo 9, 10, 47).	"El Ministerio de Educación ejerce funciones de competencia compartida con los gobiernos regionales y locales en aquellas funciones que han sido transferidas en materia de educación," (Art. 7)

	1	T	
	-La Unidad de Gestión		
	Educativa Local, que		
	pertenece en mayor grado		
	al gobierno central tiene la		
	función de "Formular,		
	ejecutar y evaluar su		
	presupuesto en atención a		El Gobierno Central a
	las necesidades de los		través del Minedu
	centros y programas		tiene la función de
	educativos y gestionar su		"Aprobar la
	financiamiento local,		propuesta de
Financiamiento	regional y nacional" (Art.		presupuesto de las
rmanciamiento	741).		 entidades de su
	-La Dirección Regional de		sector, y supervisar
	Educación tiene como		su ejecución, en
	función "Identificar		coordinación con los
	prioridades de inversión		gobiernos
	que propendan a un		regionales." (Art. 10)
	desarrollo armónico y		
	equitativo de la		
	infraestructura educativa		
	en su ámbito, y gestionar		
	su financiamiento" (Art.		
	77d)		

Fuente: Elaboración propia con base en leyes revisadas.

Las instituciones de la descentralización educativa en el Perú sientan el hecho de que la parte administrativa y curricular es responsabilidad del gobierno central, pero son coordinadas con otros niveles. Los Gobiernos Regionales por su parte tienen una responsabilidad de provisión a través de sus unidades ejecutoras (UGEL y DRE), la cual es financiada, mayor y principalmente, por recursos ordinarios del MINEDU, el gobierno central. Al respecto, según la información del gasto educativo del Ministerio de Economía y Finanzas (MEF, 2020) se puede observar que el gasto educativo en el Perú se encuentra regionalizado; es decir, se realiza a través de las Unidades Ejecutoras, Unidad de Gestión Educativa Local - UGEL y la Dirección Regional de Educación - DRE, que pertenecen al Gobierno Regional; sin embargo, el financiamiento tiene su origen mayor y principalmente en recursos ordinarios. Esto quiere decir que son recursos transferidos del MINEDU, por lo tanto, no son los gobiernos regionales los que financian la educación, sino el centro. Otras fuentes de financiamiento de los gobiernos regionales son recursos directamente recaudados, recursos por operaciones oficiales de crédito, donaciones y transferencias, contribuciones a fondos, fondo de compensación municipal, impuestos municipales y canon y sobrecanon, regalías, renta de aduanas y participaciones (MEF, 2020).

Con base en lo anterior, además del traslape de funciones, los recursos con los que los gobiernos regionales financian la provisión de la educación en sus jurisdicciones provienen en su mayoría del Gobierno Central (Principal), siendo que este último tendrá

más autoridad que los gobiernos regionales (Agente), con base en las características del modelo de McNollgast. Por lo tanto, el modelo de descentralización educativa en Perú se encontrará ante un escenario del tipo:

$$Rp > Rd + Ra$$

 $\therefore Z_P > Z_A.$

Es decir, los recursos del Principal son mayores que el de los Agentes, por lo tanto, la autoridad del primero será mayor que la del segundo. Esto conlleva a que se rompan las siguientes condiciones de Weingast, según lo propuesto en el Marco Teórico:

- Autoridad Institucionalizada → Si los gobiernos regionales dependen en gran
 medida del Gobierno Central como principal financiador para llevar a cabo la
 asignación de la educación, y a la vez las funciones de cada nivel de gobierno se
 encuentran traslapadas, entonces la autoridad de los gobiernos regionales queda
 supeditada a los mandatos del gobierno central.
- Autonomía Subnacional → Los gobiernos regionales a través de la UGEL y
 DRE no son autónomos dado que financian la educación en sus jurisdicciones con
 recursos ordinarios, es decir, transferencias del gobierno central; por lo tanto, la
 autonomía subnacional en este contexto también queda supeditada a los mandatos
 del Gobierno Central.
- Jerarquía → Además de que por efecto de la afectación de la Autoridad Institucionalizada y la Autonomía Subnacional se afecte también la Jerarquía, se debe agregar lo siguiente: La descentralización educativa en el Perú tiene un marco legal constituido a través de diferentes leyes, como es el caso de la Ley N° 31224, de publicación reciente, en donde se indica las funciones de los actores del sector; sin embargo, esta no termina de definir los límites de las responsabilidades de los Gobiernos Regionales, quedando estos relegados como auxiliares de la ejecución del gasto público en educación, según el artículo 10 de dicha ley.

Entonces, al no cumplirse estas condiciones, se indica que, según Weingast (2009), el diseño de la descentralización educativa en el Perú tiene una falla o patología.

Este análisis complementario posibilita indicar que la dimensión económica de la descentralización educativa analizada bajo los modelos econométricos, no sería un determinante de los resultados escolares debido a que el gasto educativo descentralizado

en el Perú sólo está desconcentrado (una de las primeras etapas de la descentralización), tal y como se puede evidenciar en las leyes referidas. Esta característica exhibe por un lado que la autoridad del Gobierno Central es mayor que la de los gobiernos locales, la cual no representaría un problema si es que las funciones de cada nivel de gobierno estuvieran correcta y concretamente delimitadas. En este sentido, la descentralización administrativa de la educación en el Perú tiene un problema de definición de funciones y responsabilidades de los diferentes niveles de gobierno, lo cual, aunque no es propio, sí tiene relación con la ideología política del Gobierno General; es decir, Perú es un país unitario y por lo tanto depende del centro como institución principal.

V. CAPÍTULO CINCO. CONCLUSIONES, REFLEXIONES Y RECOMENDACIONES DE POLÍTICA PÚBLICA

V.1. Conclusiones

La respuesta a la pregunta de investigación y la comprobación de las hipótesis se llevó a cabo a partir de dos aproximaciones, una cuantitativa de carácter paramétrico, basada en una estimación econométrica de la Función de Producción de la Educación que se aplicó de manera diferenciada para México y Perú; y una teórica o inductiva, que involucra elementos del modelo Principal-Agente en el sector público (modelo de McNollgast) y las condiciones institucionales del federalismo según Weingast. Cabe recordar que las hipótesis formuladas apostaron por la teoría de la descentralización bajo sus respectivos enfoques normativo y positivo. Por un lado, se partió de la conjetura de que la descentralización en su dimensión económico-financiera tiene un efecto positivo sobre el rendimiento escolar; por otro, que tanto México como Perú tienen las condiciones institucionales necesarias para que dicha descentralización funcione. Sin embargo, desde el punto de vista pragmático, por diferentes razones el modelo cuantitativo no llegó a los resultados esperados (como ha sucedido también en otros países); es decir, no pudo demostrarse fehacientemente que la descentralización del gasto educativo, medida a través del índice DEC, ha mejorado los resultados de la educación básica: a lo sumo, se logró parcialmente en algunas regiones de ambos países y en ciertas materias. Dado esto, se pudo concluir que no se encontró suficiente evidencia estadística para rechazar la hipótesis nula de que el estimador del índice DEC sea igual a cero. Es decir, el modelo cuantitativo arroja resultados que en cierto modo dejan los resultados esperados en terreno de indefinición (al igual que investigaciones recientes para otros países).

Con base en lo anterior, se acrecentó la necesidad de encontrar explicaciones en los modelos cualitativos, apelando así a las dimensiones política y administrativa de la descentralización. Para que el principio de la descentralización opere adecuadamente es necesario que se cumplan ciertas condiciones de diseño (reglas subnacionales que no se contrapongan a las federales-centrales), de jerarquía y de asignación de funciones. Se trata de requisitos indispensables. De la misma manera, los gobiernos deben operar de manera eficiente, sin incurrir en evidentes fallas de gobierno, y los estímulos que mueven generalmente al Agente y al Principal estar claramente definidos. En la práctica, esto no sucede en los países analizados, es decir, la descentralización política y administrativa de la educación pública no es viable (lo que a su vez se refleja en la falla de la

descentralización económica) debido al conflicto político y carencias administrativas de sus actores.

Los dos tipos de análisis se complementan y responden de una manera integral que la descentralización educativa en su estado actual (su diseño) no es un determinante del rendimiento escolar en México y Perú, sin que ello quiera decir que dicha opción no es el camino para mejorar los resultados de la educación. Debemos insistir en ella, porque los gobiernos locales son los que más conocen los problemas educativos de sus regiones y la forma de enfrentarlos. Asimismo, debemos recordar que no es lo mismo desconcentrar el gasto educativo que descentralizar la educación. Desconcentrar es una condición necesaria, pero no suficiente.

V.2. Reflexiones y discusión

Con base en estas conclusiones, de ninguna manera debe entenderse que la tesis se contrapone al teorema de descentralización fiscal de Oates. Si bien es cierto que la primera hipótesis parte del teorema, ésta se enmarca en un bien y lugar específico (la educación básica en México y Perú). El teorema de Oates es claro, la provisión local es más eficiente que la del gobierno central, pero teniendo en cuenta ciertos supuestos, como la ausencia de economías de escala. Entonces, es probable, además del problema de diseño planteado, que los supuestos del teorema no se podrían estar cumpliendo para México y Perú, lo que amerita futuras investigaciones. Por otro lado, aunque el teorema de Oates es la base de la teoría de descentralización económica, dicho conjunto teórico no abarca aspectos institucionales como los de Weingast. Es en este último en donde los resultados de la tesis se apoyan para poder indicar que se ha diseñado un modelo de descentralización educativa sobre instituciones centralizadas y débiles, lo que a la vez sería la causa de que el efecto positivo de la descentralización económica no se evidencie de la forma esperada.

Asimismo, como parte de futuras investigaciones debe reflexionarse sobre la heterogeneidad no observada propuesta en el modelo econométrico, la cual se supuso que está representada por los arreglos institucionales procedentes de las leyes, las capacidades gubernamentales, entre otros. Aquí vale la pena discutir sobre la causa de la significancia estadística hallada cuando se estimaron modelos por región, ¿por qué el índice DEC resultó significativo en el norte (México) y en la costa (Perú)? De forma preliminar, la respuesta más acertada es justamente esta heterogeneidad no observada en las distintas unidades de análisis. De igual forma, será preponderante establecer en el futuro el tipo de

relación Principal-Agente (P-A) que existe entre el gobierno federal/central y los distintos gobiernos locales o subnacionales. Seguramente para México la relación P-A que existe entre el gobierno federal y el gobierno de Oaxaca no es la misma en el caso de Nuevo León; así como en Perú no es la misma entre el gobierno central y el gobierno regional de Arequipa en comparación al gobierno regional de Tumbes.

V.3. Recomendaciones de política pública

Para finalizar, en los siguientes párrafos se muestran recomendaciones generales y específicas para cada país, enfocándose en su principal diferencia, sus sistemas de gobierno. Se espera que las recomendaciones sean tomadas en cuenta no sólo por la comunidad académica sino por los agentes involucrados en la toma de decisiones a nivel sectorial.

En primer lugar, y de manera general, ambos países deben poner atención en aspectos comunes:

- Reformas: Ambos países tienen a la descentralización como parte de la reforma educativa. Producto de ésta, se ha creado un ordenamiento legal similar en cada país, la Ley General de Educación, con el que se han acercado ambos países, a pesar de que México le lleva a Perú 10 años de diferencia en su instrumentación.
- Agentes: En ambos países los principales actores son el gobierno central y los gobiernos locales, pero en el caso mexicano el sindicato tiene una participación significativa. Asimismo, se supone que los padres de familia deben tener una participación representativa, pero ninguno de los dos países ha llegado a una forma de descentralización del tipo delegación o una autonomía escolar más preponderante.
- La centralidad como institución: El principal problema de ambos países son las instituciones. Las reglas representadas en las leyes de cada país no son claras en cuanto a la responsabilidad exacta de cada nivel de gobierno. En el caso mexicano, la LGE no indica más que una responsabilidad compartida, lo mismo en las leyes de descentralización y LGE de Perú. Al no haber exactitud y claridad de las responsabilidades, se propicia el traslape de estas, lo que tiene consecuencias más en México que en Perú, ya que finalmente este último es un país unitario, pero México es un país federal, en que según la teoría debe haber niveles más altos de descentralización, como la devolución.

De forma específica, para México:

- El sistema educativo de dicho país debe conservar el espíritu federalista en la provisión de la educación en el largo plazo. Para ello se debe:
 - O Reexaminar la Ley de Coordinación Fiscal y el capítulo II de la Ley General de Educación en que se explica el federalismo educativo. Ambas leyes deben coincidir en el contexto de un sistema de gobierno federal. Si estas coexisten en armonía entonces es probable que se coincida con las condiciones de Weingast.
 - Pasar a una quinta etapa del gasto educativo federalizado, es decir, modificar el FONE. Este genera incentivos para que el DEC no supere en promedio el 50% tal y como se mostró en los resultados de la tesis.
 - o Fortalecer las capacidades de asignación del gasto educativo en las entidades federativas cuyo DEC es más bajo (el caso de las entidades del sur). A una mayor participación del gasto se subsanaría la ausencia de las tres condiciones de Weingast no cumplidas.
 - O Asumiendo que las capacidades federalistas del sur son en general menores que las del norte, la federación debe focalizar los esfuerzos en el sistema educativo, el cual personifica la inversión en capital humano en el país, más allá de transferir recursos.
- En el corto plazo pueden existir distorsiones como un federalismo educativo centralizado; sin embargo, se puede pensar que en el largo plazo esto debe ser subsanado acompañado de políticas micro y macroeconómicas propias de un Estado federal.

Para Perú:

- Replantear el objetivo de la reforma del Estado en materia educativa, siendo el país uno del tipo unitario. Lo que actualmente se experimenta como descentralización es sólo una desconcentración de responsabilidades en donde las unidades ejecutoras de gasto público (UGELs) no concilian necesariamente con las responsabilidades de los gobiernos regionales. Los gobiernos regionales no proveen la educación con sus propios recursos, pues no están listos para ello.
- Agregar a la Ley Orgánica de Funciones del MINEDU una participación efectiva y clara de los gobiernos regionales en la asignación de gasto educativo. En su

estado actual, sigue sin especificar la delimitación de las funciones de los distintos niveles de gobierno. Para ello, se requerirá fortalecer las capacidades decisorias de los gobernantes regionales para que se pueda cumplir en parte el artículo 10 de dicha ley.

- De acuerdo a lo anterior, una manera de empujar a que los gobiernos regionales tomen una mayor participación en las decisiones de la asignación del gasto educativo es aplicar a las transferencias intergubernamentales condicionadas, como el canon, un porcentaje específico y estricto que sea destinado a educación básica regular. de esta manera se creará una relación de sostenibilidad y responsabilidad fiscal de los recursos asignados y podría empujar a un mayor incentivo de recaudación tributaria que incremente los recursos propios de los gobiernos regionales. aunque el canon no es ingreso recaudado por los gobiernos regionales este tipo de renta representa un costo de oportunidad en el campo de la sostenibilidad.
- A una mayor recaudación o participación del gasto, se subsanaría la ausencia de las tres condiciones de Weingast no cumplidas.

Es innegable que estas recomendaciones no se harán efectivas en el corto plazo, sino requieren de un tiempo mayor. En términos institucionales, la enculturación toma su tiempo. Sin embargo, en el corto plazo las reglas formales pueden cambiar y finalmente servir de incentivos (en términos económicos) para que los agentes involucrados tomen decisiones encausadas en la mejora de la calidad de los resultados escolares.

Finalmente, la contribución de la investigación apunta sobre dos ejes: (i) evidencia cuantitativa acerca de los efectos que tiene la descentralización educativa sobre el rendimiento escolar en dos países de América Latina con modelos de gobierno distintos, lo que significa un aporte sobre la evidencia empírica reciente a nivel internacional; y (ii) aplicación de un modelo de descentralización correspondiente a la teoría actual (federalismo fiscal de segunda generación) sobre el problema de la descentralización educativa, el cual explica más allá de la función de producción de la educación y porqué no funcionaría la descentralización en México y Perú. Sin embargo, es pertinente mencionar que, como toda investigación, los resultados aquí presentados deben fungir de nuevas líneas de investigación en el futuro. Por ende, se invita a las siguientes generaciones de académicos a seguir evaluando con mejores métodos cuantitativos y cualitativos el efecto de la descentralización sobre el rendimiento escolar.

Referencias Bibliográficas

- Acemoglu, D., y Robinson, J. (2012). Por qué fracasan los países. Los orígenes del poder, la prosperidad y la pobreza. Barcelona: Deusto.
- Álvarez García, I., y Topete Barrera, C. (2004). Búsqueda de la calidad en la educación básica. Conceptos básicos, criterios de evaluación y estrategia de gestión. Revista Latinoamericana de Estudios Educativos, XXXIV (3), 11 36.
- Arredondo Salinas, C. D. (2001). La descentralización en Chile: Una Mirada desde la Economía Política y el Neoinstitucionalismo. Santiago de Chile: Universidad de Chile. Facultad de ciencias físicas y matemáticas. Departamento de Ingeniería Ambiental.
- Astudillo Torres, M. P., y Chévez Ponce, F. (2015). Agentes e instituciones de la educación: una reflexión desde las desigualdades sociales. CIENCIA ergo-sum, 161 -166.
- Ayala, J. (2004). Mercado, elección pública e instituciones. Una revisión de las teorías modernas del Estado (Segunda ed.). Ciudad de México: Miguel Ángel de Porrúa.
- Bailey, S. J. (1999). Local Government Economics. Principles and Practice. London: Macmillan Press Ltd.
- Baker, B. (2016). Does Money Matter in Education? Washington D.C.: Albert Shanker Institute.
- Banco Mundial. (1999). Más allá del centro: la descentralización del Estado. Washington, D.C.: Banco Internacional de Reconstrucción y Fomento.
- Bando, R. (2010). The Effect of School Based Management on Parent Behavior and the Quality of Education in Mexico. Berkeley: University of California.
- Bas Adam, J. M. (2005). La descentralización territorial de la educación. En J. Gairín, La descentralización educativa ¿Una soulción o un problema? (págs. 137 176). Madrid: CISSPRAXIS, S.A.
- Besley, T. (2005). Principled Agents? The Political Economy of Good Government. London: London School of Economics and Political Science.
- BID. (11 de septiembre de 2020). CIMA. Obtenido de Centro de Información para la mejora de aprendizajes: https://cima.iadb.org/es/regional-overview/learning/PISA
- Blanco Bosco, E. (2009). La desigualdad de resultados educativos. Aportes a la teoría desde la investigación sobre eficacia escolar. Revista Mexicana de Investigación Educativa, 14(43), 1019-1049.
- Boadway, R. (2007). Grants in a Federal Economy: A conceptual perspective. En R. Boadway, & A. Shah (Edits.), Intergovernmental Fiscal Transfers. Principles and Practice (pp. 55 74). Wshington D.C.: The International Bank for Reconstruction and Development / The World Bank.
- Boadway, R., y Shah, A. (2009). Transferencias fiscales intergubernamentales. Principios y prácticas. Colombia: Banco Mundial. Mayol Ediciones S.A.
- Brennan, G., y Buchanan, J. M. (1980). The Power to Tax: Analytical Foundations of a Fiscal Constitution. Cambridge: Cambridge University Press.
- Brewer, D. J., Hentschke, G. C., Eide, E. R., Hardaway, T., y Le, T. (2015). The Role of Economics in Education Policy Research. En H. F. Ladd, & M. E. Goertz, Handbook of Research in Education Finance and Policy (pp. 33 - 49). New York: Routledge.
- Brue, S. L., y Grant, R. R. (2009). Historia del pensamiento económico (Séptima ed.).
 Ciudad de México: Cengage Learning Editores, S.A. de C.V., una Compañía de Cengage Learning, Inc.
- Buchanan, J. M. (2005). Elección pública: génesis y desarrollo de un programa de investigación. Revista Asturiana de Economía (33), 203 221.

- Cámara de Diputados. (30 de Enero de 2018). Ley de Coordinación Fiscal. Obtenido de Cámara de Diputados del H. Congreso de la Unión: http://www.diputados.gob.mx/LeyesBiblio/pdf/31_300118.pdf
- Cameron, A. C., y Trivedi, P. K. (2009). Microeconometrics Using Stata. Washington, DC: Stata Press.
- Cameron, S., Daga, R., y Outhred, R. (2018). Setting out a conceptual framework for measuring equity in learning. En Unesco, Handbook on Measuring Equity in Education (pp. 16 - 45). Quebec: UNESCO Institute for Statistics.
- Carnoy, M. (2006). Economía de la Educación. Barcelona, España: Editorial UOC.
- Cetrángolo, O., Y Curcio, J. (2017). Financiamiento y gasto educativo en América Latina.
 Santiago: Naciones Unidas.
- Channa, A. (2014). Decentralization and the Quality of Education. Paper commissioned for the EFA Global Monitoring Report 2015. UNESCO.
- Chavance, B. (2018). La economía institucional (Primera Edición en Español ed.). Ciudad de México: Fondo de Cultura Económica.
- CNE. (2010). Balance y Propuestas para avanzar en la Descentralización Educativa. Mesa Interinstitucional de Gestión y Descentralización. Lima: Consejo Nacional de Educación.
- Congreso de los Estados Unidos Mexicanos. (13 de Julio de 1993). Secretaría de Educación Pública: https://www.sep.gob.mx/work/models/sep1/Resource/558c2c24-0b12-4676-ad90-8ab78086b184/ley_general_educacion.pdf
- Cordeiro Guerra, S., y Lastra-Anadón, C. X. (2019). The quality-access tradeoff in decentralizing public services: Evidence from education in the OECD and Spain. Journal of Comparative Economics(47), 295-316.
- CRP. (1993). Constitución del Perú. Título II. Del Estado y Nación: http://www4.congreso.gob.pe/comisiones/1996/constitucion/cons_t2.htm
- CRP. (2001). Ley de Bases de la Descentralización. Lima: Congreso de la República del Perú:
 http://www2.congreso.gob.pe/sicr/cendocbib/con4_uibd.nsf/B24C5FDB311A9EAF05257B8300648EAF/\$FILE/27783.pdf
- CRP. (2002). Ley Nº 27867 Ley Orgánica de los Gobiernos Regionales. Lima: Congreso de la República del Perú.
- CRP. (14 de diciembre de 2003). Ley N°27972 Ley Orgánica de Municipalidades. Lima: Congreso de la República del Perú.
- CRP. (2004). Ley N° 28411. Ley General del Sistema Nacional de Presupuesto: https://www.mef.gob.pe/es/normatividad-sp-9867/por-instrumento/leyes/7148-ley-n-28411-2/file
- CRP. (2021). Obtenido de https://busquedas.elperuano.pe/normaslegales/ley-de-organizacion-y-funciones-del-ministerio-de-educacion-ley-n-31224-1964885-1/
- Dauda, R. (2011). Effect of Public Educational Spending and Macroeconomic Uncertainty on Schooling Outcomes: Evidence from Nigeria. Journal of Economics, Finance and Administrative Science, 7 - 21.
- Daviet, B. (2016). Revisar el principio de la educación como bien público. Documentos de Investigación y Prospectiva en Educación. Paris: UNESCO: http://www.unesco.org/new/es/education/
- Delpier, T., Nagel, J., Stec, K., Gilzene, A., y Arsen, D. (2019). Does Money Matter in Education? Reconsidering an Old Question with Reference to Michigan. Michigan: Michigan State University.
- Di Gropello, E. (1999). Los modelos de descentralización educativa en América Latina. CEPAL (68), 153 170.

- Di Gropello, E. (2002). An Assessment of the Impact of Decentralization on the Quality of Education in Chile. World Bank Economists' Forum, 2, 117 154.
- Diaz-Serrano, L., y Meix-Llop, E. (2019). Decentralization and the quality of public services: Cross-country evidence from educational data. Politics and Space, 1296–1316.
- Donovan, T., Smith, D., Osborn, T., & Mooney, C. (2013). State and Local Politics. Institutions and Reform (Fourth Edition ed.). Stamford, CT: Cengage Learning.
- Faguet, J.-P., y Sánchez, F. (2008). Decentralization's Effects on Educational Outcomes in Bolivia and Colombia. World Development, 36(7), 1294–1316.
- Fierro Evans, C., Tapia García, G., & Rojo Pons, F. (2009). Descentralización educativa en México. Un recuento analítico. OCDE.
- Finot, I. (2001). Descentralización en América Latina: teoría y práctica. Santiago de Chile: Instituto Latinoamericano y del Caribe de Planificación Económica y Social -ILPES - CEPAL.
- Fiske, E. B. (1996). Decentralization of Education. Politics and Consensus. Washington: The World Bank.
- Galiani, S., Schargrodsky, E., Hanushek, E. A., & Tommasi, M. (2002). Evaluating the Impact of School Decentralization on Educational Quality. Economía, 2(2), 275-314.
- Garriga, P., Puig, J. P., y Salinardi, L. H. (2015). Eficiencia y equidad del gasto público en educación como clave para el desarrollo de las provincias argentinas. La Plata: UNLP.
- Gimeno Sacristán, J. (2005). ¿Qué se puede ganar descentralizando la educación? ¿Es posible diferenciarse sin desigualdad? En J. Gairín, & J. Gairín Sallán (Ed.), La descentralización educativa ¿Una solución o un problema? (págs. 85 134). Madrid: CISSPRAXIS, S.A.
- Glewwe, P., y Muralidharan, K. (2016). Improving Education Outcomes in Developing Countries: Evidence, Knowledge Gaps, and Policy Implications. En E. Hanushek, S. Machin, & L. Woessmann, Handbook of the Economics of Education, Volume 5 (págs. 653 - 743). Elsevier B.V.
- Goel, R. K., Mazhar, U., Nelson, M. A., y Ram, R. (2017). Different forms of decentralization and their impact on government performance: Micro-level evidence from 113 countries. Economic Modelling (62), 171 183.
- Goolsbee, A., Levitt, S., y Syverson, C. (2015). Microeconomía. Madrid: Editorial Reverté.
- Hanushek, A., E., y Wößmann, L. (2007). Education Quality and Economic Growth. Washington, DC: The World Bank.
- Hanushek, E.A. (1997). Assessing the Effects of School Resources on Student Performance: An update. Educational Evaluation and Policy Analysis Summer, 19(2), 141 164.
- Hanushek, E.A. (2016). Chapter 8. Education and Nations's Future. En G. P. Shults, Blue Print for America (pp. 89 - 108). NY: Board of Trustees of the Leland Stanford Junior University.
- Hanushek, E. A. (2013). Economic growth in developing countries: The role of human capital. Economics of Education Review, 204 212.
- Hanushek, E. A. (2015). Economics of education. En J. D. Wrigh, International Encyclopedia of the Social & Behavioral Sciences (págs. 149 - 157). Florida: Elsevier Ltd.
- Hanushek, E. A., y Woessmann, L. (2011). The Economics of International Differences in Educational Achievement. En E. A. Hanushek, S. Machin, & L. Woessmann, Handbooks in Economics (pp. 89 200). Elsevier B.V.
- Hanushek, E. A., Link, S., & Woessmann, L. (2013). Does school autonomy make sense everywhere? Panel estimates from PISA. Journal of Development Economics, 212 232.

- Hanushek, E. A. (2020). Education production functions. En S. Bradley & C. Green (Eds.), The Economics of Education (pp. 161–170). Elsevier. https://doi.org/10.1016/B978-0-12-815391-8.00013-6
- Hay, C., & Lister, M. (2006). Introduction: Theories of the State. En C. Hay, M. Lister, & D. Marsh, The State. Theories and Issues (pp. 1 20). New York: Palgrave.
- Heredia-Ortiz, E. (2007). The Impact of Education Decentralization on Education Output: A Cross-Country Study. Girogia: Georgia State University.
- Hernández, F. (2015). Federalismo ambiental en América Latina: una revisión. Santiago de Chile: Unidad de Cambio Climático de la División. Comisión Económica para América Latina y el Caribe - Unión Europea.
- Herrera, V. (Octubre de 2018). Instrumentos del Federalismo Fiscal Mexicano. Ciudad de México, Ciudad de México, México: Instituto Belisario Dominguez. Foro sobre Pacto Federal.
- Hindmoor, A. (2006). Public choice. En C. Hay, M. Lister, & D. Marsh, The State. Theories and issues (pp. 79 97). New York: Palgrave Macmillan.
- Hodgson, G. M. (2007). Economía institucional y evolutiva contemporánea (Primera ed.). Ciudad de México: Universidad Autónoma Metropolitana.
- Holler-Neyra, S. (2013). Evaluating the Impact of Decentralisation on Educational Outcomes: The Peruvian Case. London: Development Studies Institute - London School of Economics and Political Science.
- Hughes, O. E. (2003). Public managment & administration. An introduction. New York: Palgrave Macmillan.
- INEE. (2006). La Calidad de la Educación Básica Ayer, Hoy y Mañana. Ciudad de México: Instituto Nacional de Evaluación de la Educación.
- INEE (2020). Evaluación EXCALE. Disponible en: https://historico.mejoredu.gob.mx/evaluaciones/planea/excale/
- INEGI. (2018). Cuéntame. División territorial de México. Recuperado el 13 de Octubre de 2018, de http://cuentame.inegi.org.mx/territorio/division/default.aspx?tema=T
- INEGI. (15 de Agosto de 2018). Encuesta Nacional de Ocupación y Empleo. Indicadores estratégicos:
 http://www.inegi.org.mx/sistemas/BIE/CuadrosEstadisticos/GeneraCuadro.aspx?s=est&
 - nttp://www.inegi.org.mx/sistemas/BIE/CuadrosEstadisticos/GeneraCuadro.aspx?s=est&nc=597&c=25586
- INEI. (2009). Perú: Estimaciones y Proyecciones de Población por Departamento, Sexo y Grupos Quinquenales de Edad, 1995-2025. Perú: http://proyectos.inei.gob.pe/web/biblioineipub/bancopub/Est/Lib0846/libro.pdf
- INEI SIRTOD (2020). Calidad Escolar: https://systems.inei.gob.pe/SIRTOD/app/consulta
- Ivanyna, M., y Shah, A. (2014). How close is your government to its people? Worldwide Indicators on Localization and Decentralization. Economics, 8, 1 61. http://dx.doi.org/10.5018/economics-ejournal.ja.2014-3
- Jackson, K. (2018). Does school spending matter? The new literature on an old question. National bureau of economic research, 1 17.
- Jain, C., y Prasad, N. (2018). Quality of Secondary Education in India. Concepts, Indicators, and Measurement. Singapore: Springer Nature Singapore Pte Ltd.
- Jensen, M. C., y Meckling, W. H. (1976). Theory of the firm: Managerial Behavior, Agency Costs and Ownership Structure. Journal of Financial Economics(3), 305 360.
- Kameshwara, K. K., Sandoval-Hernandez, A., Shields, R., y Dhanda, K. R. (2020). A false promise? Decentralization in education systems across the globe. International Journal of Educational Research, 104(101669), 101669. https://doi.org/10.1016/j.ijer.2020.101669

- Keech, W. R., y Munger, M. C. (2015). The anatomy of government failure. Public Choice, 1 42.
- Kharisma, B., & Pirmana, V. (2013). The Role of Government on Education Quality and its Provision: The Case of Public Junior Secondary School among Provinces in Indonesia. European Journal of Social Sciences, 259-270.
- Kleiman, M. A., & Teles, S. M. (2006). Market and Non-Market Failures. En M. Moran, M. Rein, & R. E. Goodin, The Oxford Handbook of Public Policy (pp. 624 - 650). New York: Oxford University Press.
- Lacueva, A. (2015). Evaluación de la calidad educativa: democrática y para avanzar. Revista de Pedagogía, 36(99), 51 67.
- Laffont, J.-J., y Martimort, D. (2002). The theory of incentives. the principal-agent model. Woodstock: Princeton University Press.
- Lane, J.-E. (2005). Public Administration And Public Management: The Principal-Agent Perspective. New York: Routledge.
- Leclercq, F. (2005). The Relationship between educational expenditures and outcomes. Paris: DIAL IRD GAFD.
- Letelier, L. (2012). Teoría y práctica de la descentralización fiscal (Primera ed.). Santiago: CIP Pontificia Universidad Católica de Chile.
- Letelier, L., y Ormeño, H. (2018). Education and fiscal decentralization. The case of municipal education in Chile. Environment and Planning C: Politics and Space, 36(8), 1499–1521.
- Levin, H. M. (1976). Educational reform: its menaning? En M. Carnoy, & H. M. Levin, The Limits of Educational Reform (pp. 23 51). New York: David McKay Co.
- Litvack, J., Ahmad, J., y Bird, R. (1998). Rethinking Decentralization in Developing Countries. Washington, D.C.: The World Bank Sector Studies Series.
- Llamas, I. (2003). Equidad en la asignación de recursos en educación. En A. Morduchowicz, Equidad y financiamiento de la educación en América Latina (págs. 59 - 88). Buenos Aires: IIPE - UNESCO.
- Llamas, I. (2019). Educación y dinámica socioeconómica en México. Ciudad de México: GEDISA - UAM.
- Locatelli, R. (2018). La educación como bien público y común. Reformular la gobernanza de la educación en un contexto cambiante. Perfiles Educativos, XL (162), 178 196.
- López Sandoval, I. M. (2016). Elección pública y análisis institucional de la acción gubernamental. Economía Informa (396), 49 66. http://www.economia.unam.mx/assets/pdfs/econinfo/396/03LopezSandoval.pdf
- López, N. (2005). Equidad educativa y desigualdad social. Desafíos de la educación en el nuevo escenario latinoamericano. Buenos Aires: Instituto Internacional de Planeamiento de la Educación Unesco.
- Lovenheim, M., y Turner, S. (2018). Economics of Education. New York: Worth Publishers.
- Malgouyres, F. (2014). Descentralización y recentralización educativa en una perspectiva comparada de tres países federales latinoamericanos. TRACE (65), 69 80.
- Manrique, G., Contreras, Á., & Guerrero, N. (2016). Evaluación del efecto de transferencias de canon minero en los resultados educativos: análisis a nivel de instituciones educativas de las regiones de Arequipa, Moquegua y Tacna. Lima: Consorcio de Investigación Económica y Social - Apoyo Consultoría.
- Mariscal, J. (2010). Nuevo institucionalismo y regulación. En M. Merino, y G. M. Cejudo (Edits.), Problemas, decisiones y soluciones. Enfoques de política pública (pp. 179 - 206). Ciudad de México: CIDE - FCE.

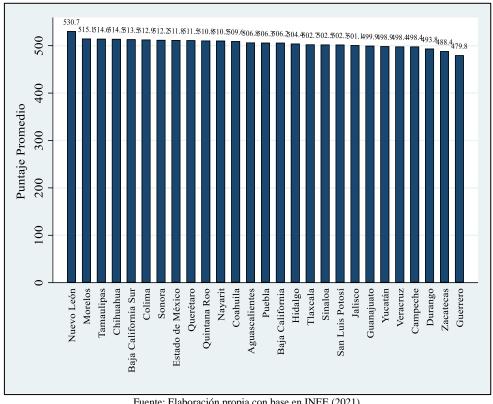
- McAuley, J. W. (2003). An Introduction to Politics, State and Society. London: SAGE Publications.
- McGinn, N. F., y Welsh, T. (1999). Decentralization of education: why, when, what and how? Paris: International Institute for Educational Planning UNESCO.
- MEF. (2020). Clasificador de fuentes de financiamiento y rubros para el año fiscal 2020
 Anexo
 https://www.mef.gob.pe/contenidos/presu_publ/anexos/Clasificador_de_Fuentes_y_Rubros_2020.pdf
- MEF. (2020). Consulta Amigable (Mensual) Consulta de Ejecución del Gasto: https://apps5.mineco.gob.pe/transparencia/mensual/default.aspx?y=2020&ap=ActProy
- Mendoza, A. (2018). Los incentivos perversos del federalismo fiscal mexicano. La necesidad de un nuevo modelo. Ciudad de México: Fondo de Cultura Económica.
- Milgrom, P., y Roberts, J. (1992). Economics, organizations, and management. New Jersey: Prentice-Hall, Inc.
- MINEDU. (2013). Balance y desafíos de la descentralización educativa. Serie: Cuaderno de trabajo para la gestión descentralizada de la educación. Lima: Ministerio de Educación del Perú.
- MINEDU. (2013). La gestión descentralizada de la educación. Lima: Ministerio de Educación.
- MINEDU. (2014). Matriz de Gestión Descentralizada: https://www2.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/CA090D3BADA114E405
 https://www2.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/CA090D3BADA114E405
 https://www2.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/CA090D3BADA114E405
 https://www2.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/CA090D3BADA114E405
 https://www.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/CA090D3BADA114E405
 https://www.c
- MINEDU. (24 de Junio de 2020). Ministerio de Educación: http://www.minedu.gob.pe/p/ministerio-funciones.php
- MINEDU. (11 de septiembre de 2020). Resultados de Evaluación Internacional PISA 2018. http://umc.minedu.gob.pe/resultadospisa2018/
- Mitch, D. (2004). School finance. En G. Johnes, y J. Johnes, International Handbook on the Economics of Education (pp. 260 - 297). Great Britain: Edward Elgar Publishing Limited.
- Morduchowicz, A. (2006). Los indicadores educativos y las dimensiones que los integran. Buenos Aires: Unesco: https://eco.mdp.edu.ar/cendocu/repositorio/01132.pdf
- Morduchowicz, A., y Arango, A. (2010). Diseño institucional y articulación del federalismo educativo. Buenos Aires: Instituto Internacional de Planeamiento de la Educación. Sede Regional - UNESCO.
- Moreno Moreno, L. R. (2008). Evaluación de la eficiencia del gasto gubernamental en México. El caso de la educación primaria. Región y Sociedad, XX (41), 7 - 32.
- Mueller, D. C. (1984). Elección Pública. Madrid: Alianza Editorial S.A.
- Murnane, R. J., Willett, J. B., & Cardenas, S. (2006). Did Participation of Schools In Programa Escuelas de Calidad (PEC) Influence Student Outcomes?
- Musgrave, R., y Musgrave, P. (1992). Hacienda pública: Teórica y aplicada (Quinta ed.).
 Madrid: Mc Graw Hill.
- Muttaqin, T., van Duijn, M., Heyse, L., & Wittek, R. (2016). The Impact of Decentralization on Educational Attainment in Indonesia. En R. Holzhacker, R. Wittek, & J. Woltjer, Decentralization and Governance in Indonesia (págs. 79 103). Springer International Publishing Switzerland.
- Oates, W. (1999). "An essay on Fiscal Federalism". Journal of Economic Literature, 37(3), 1120 1140. https://www.jstor.org/stable/2564874
- Oates, W. E. (1977). Federalismo Fiscal. Madrid: Instituto de Estudios de Administración Local.

- Oates, W. E. (2005). Toward A Second-Generation Theory of Fiscal Federalism. International Tax and Public Finance(12), 349 – 373. https://doi.org/10.1007/s10797-005-1619-9
- Oates, W. E. (2008). On the evolution of Fiscal Federalism: Theory and Institutions. National Tax Journal, LXI (2), 313 334: https://www.jstor.org/stable/41790447
- OCDE. (2016). PISA 2015. Resultados clave. OCDE.
- OCDE, et al. (2018). Estadísticas tributarias en América Latina y el Caribe 2018. París: OECD Publishing://dx.doi.org/10.1787/rev lat car-2018-en-fr
- OECD. (2007). Human Capital: How what you know shapes your life. Summary in Spanish. Washington DC: OECD.
- OECD. (2017). The Funding of School Education: Connecting Resources and Learning. Paris: OECD Publishing.
- OECD. (2019). Programa para la Evaluación Internacional de Alumnos PISA 2018 -Resultados. Nota País: México. https://www.oecd.org/pisa/publications/PISA2018_CN_MEX_Spanish.pdf
- Oliveira, C. B., y Fontes Filho, J. R. (2017). Agency problems in the public sector: the role of mediators between central administration of city hall and executive bodies. Revista de Administração Pública, 51(4), 596 615.
- Omoeva, c., Moussa, W., y Hatch, R. (2018). Proposed operationalisation of equity measurement. En UNESCO, Handbook on Measuring Equity in Education (pp. 46 79). Quebec: UNESCO Institute for Statistics.
- Ornelas, C. (2003). Las bases del federalismo y la descentralización en educación. Revista Electrónica de Investigación Educativa, V (1), 1 18.
- Ornelas, C. (2010). Política, poder y pupitres. Crítica al nuevo federalismo educativo. Ciudad de México: Siglo XXI.
- Ortegón Quiñones, E. (2008). Guía sobre diseño y gestión de la política pública. Bogotá:
 Organización del Convenio Andrés Bello Instituto Colombiano para el Desarrollo de la
 Ciencia y la Tecnología "Francisco José de Caldas" Instituto de Estudios
 Latinoamericanos de la Universidad de Alcalá.
- Paes de Barros, R., H.G. Ferreira, F., y Molinas Vega, J. R. (2008). Midiendo la Desigualdad de Oportunidades en América Latina y el Caribe. Washington, DC: Banco Mundial.
- Panda, B., y Leepsa, N. M. (2017). Agency theory: Review of Theory and Evidence on Problems and Perspectives. Indian Journal of Corporate Governance, 10(1), 74 95.
- Pardo, M. (1999). Federalización e innovación educativa en México (Primera ed.). Ciudad de México: Centro de Estudios Internacionales, El Colegio de México.
- Parodi, C. (2005). Economía de las políticas sociales (Primera ed.). Lima: CIUP.
- Pascual, B. (2006). Calidad, equidad e indicadores en el sistema educativo español. Pulso (29), 43 - 58.
- Piffano, H. L. (2004). Notas sobre federalismo fiscal. Enfoque positivos y normativos. La Plata: UNLP, PrEBi/SeDiCI. http://sedici.unlp.edu.ar/handle/10915/15911
- Pigozzi, M. (2008). Las 10 dimensiones de la calidad en educación. Unesco: http://www.iiep.unesco.org/fileadmin/user_upload/CapDev_Networking/pdf/2008/pigozzi I WGE GlenCoveJune2008.pdf
- Piñeros Acevedo, J. (2010). Descentralización, gasto público y sistema educativo oficial colombiano: Un análisis de eficiencia y calidad. Bogotá: Universidad Nacional de Colombia.
- Prud'homme, R. (1995). "The Dangers of Descentralization". The World Bank Research Observer, 10(2), 201 220.

- Qian, Y., y Weingast, B. R. (1997). Federalism as a commitment to preserving market incentives. Journal of Economic Perspectives, 11(4), 83 92. DOI: 10.1257/jep.11.4.83
- Quiroz Cuenca, S., y Salgado Vega, M. (2016). La desigualdad en México por entidad federativa. Un análisis del índice de Gini: 1990 - 2014. Tiempo Económico, XI (32), 57 - 80.
- Radó, P. (2010). Governing Decentralized Education Systems. Systemic Change in South Eastern Europe. Budapest: Open Society Foundations.
- Reyes, E. S. (2006). Federalismo, sociedad y globalidad: los retos del porvenir. Política y Cultura (25), 27 45.
- Rizvi, F., y Lingard, B. (2013). Políticas educativas en un mundo globalizado. Madrid: Morata.
- Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal, 9(1), 86 –136.
- Rosen, H. (2008). Hacienda Pública (Séptima ed.). Madrid: Mc Graw Hill.
- Salazar Cuéllar, A. F. (2014). The Efficiency of Education Expenditure in Latin America and Lessons for Colombia. Desarrollo y Sociedad, 19-67.
- Salinas, P. (2014). The effect of decentralization on educational outcomes: Real Autonomy matters! Barcelona Institute of Economics, 1 32.
- Sánchez de la Barquera y Arroyo, H. (2011). La federalización de la política cultural en México: ¿Alemania como modelo? Ciudad de México: Instituto de Investigaciones Jurídicas - Universidad Nacional Autónoma de México.
- Sanogo, T. (2018). Does fiscal decentralization enhance citizens' access to public services and reduce poverty? Evidence from Côte d'Ivoire municipalities in aconflict setting. World Development, 204–221.
- Santibañez, L., Abreu-Lastra, R., y L.O'Donoghue, J. (2014). School based management effects: Resources or governance change? Evidence from Mexico. Economics of Education Review, 39, 97-109.
- Schneider, A. (2003). Decentralization: Conceptualization and Measurement. Studies in Comparative International Development, 38(3), 32 - 56. https://doi.org/10.1007/BF02686198
- Schwerdt, G., & Woesssmann, L. (2020). Empirical methods in the economics of education. En S. Bradley, & C. Green, The Economics of Education. A comprehensive overview (págs. 3 17). London: Elsevier.
- Sebastián Arragán, A. (2018). La educación: una responsabilidad compartida. En INEE,
 RED (pp. 34 49). Ciudad de México: Instituto Nacional para la Evaluación de la Educación.
- SEGOB. (2014). Constitución Política de los Estados Unidos Mexicanos. Ciudad de México: Secretaría de Gobernación.
- SEP. (26 de Abril de 2015). Secretaría de Educación Pública. Acciones y Programas: https://www.gob.mx/sep/acciones-y-programas/programas-escuelas-de-calidad
- SEP (2020). Cuestionario sobre Financiamiento Educativo Estatal (CFEE): https://www.planeacion.sep.gob.mx/cfee/
- Serra Rojas, A. (1996). Teoría del Estado. Ciudad de México: Editorial Porrúa S.A.
- SHCP. (2018). Secretaría de Hacienda y Crédito Público. Obtenido de https://www.ppef.hacienda.gob.mx/
- Shepsle, K. (2016). Analizar la política. Comportamiento, instituciones y racionalidad. Edición Español (Segunda ed.). Ciudad de México: CIDE.
- Sherman, J. D., y Poirier, J. M. (2007). Educational equity and public policy: comparing results from 16 countries. Montreal: Unesco Institute for Statistics.
- SITEAL. (2019). Medidas de desigualdad para variables educativas. IIEP- UNESCO.

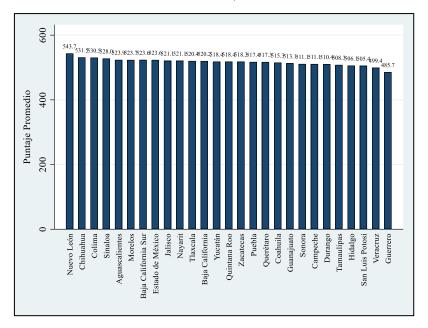
- Stiglitz, J. (2000). La economía del sector público (Tercera ed.). Barcelona: Atnoni Bosch Editor.
- Tam Maldonado, M. Y. (2008). Una aproximación a la eficiencia técnica del Gasto Público en Educación en las regiones del Perú. Lima: CIES.
- Tapia García, G. (2009). Más allá de la calidad, la equidad en la educación básica. Paideia, 5(5), 115-123.
- Tullock, G. (2002). People Are People: The Elements of Public Choice. En G. Tullock,
 A. Seldon, & G. L. Brady, Government Failure (págs. 3 16). Washington, D.C.: Cato Institute.
- UNESCO. (2004). Education for All: The Quality Imperative. Paris: the United Nations Educational, Scientific and Cultural Organization.
- UNESCO. (2011): http://uis.unesco.org/en/glossary-term/learning-outcomes
- UNESCO. (2017). Revisión de las políticas públicas del sector de educación en Perú. París: UNESCO.
- UNESCO. (14 de Noviembre de 2019a). Learning Portal. Indicadores de calidad y aprendizaje: https://learningportal.iiep.unesco.org/es/fichas-praticas/monitorear-el-aprendizaje/indicadores-de-calidad-y-aprendizaje
- UNESCO. (2019b). Educación básica. Unesco IIEP: https://siteal.iiep.unesco.org/sites/default/files/sit_informe_pdfs/siteal_educacion_basica_20190521.pdf#:~:text=La%20educaci%C3%B3n%20b%C3%A1sica%20es%20el,inicial%20hasta%20el%20nivel%20secundario.
- Urrunaga, R., Hiraoka, T., y Risso, A. (2014). Fundamentos de Economía Pública. Lima, Perú: Universidad del Pacífico.
- Úrzua, C., y Velázquez, A. (2018). Errores fiscales en el ámbito federal. En M. Velázquez, Los incentivos perversos del federalismo mexicano. La necesidad de un nuevo modelo (págs. 43 63). México: Fondo de Cultura Económica.
- Vásquez Sánchez, R. (2014). Eficiencia del gasto público en educación básica; Un análisis a nivel estatal. Jalisco: Universidad de Guadalajara.
- Vegas, E., y Coffin, C. (2015). When Education Expenditure Matters: An Empirical Analysis of Recent International Data. Comparative Education Review, 59(2), 289 304.
- Weingast, B. (2009). Second generation fiscal federalism: The implications of fiscal incentives. Journal of Urban Economics (65), 279 293. https://doi.org/10.1016/j.jue.2008.12.005
- Winkler, D., y Yeo, B. (2007). Identifying the Impact of Education Decentralization. Documento de trabajo de la Agencia de Estados Unidos.
- Wooldridge. (2010). Introducción a la econometría. Un enfoque moderno. Ciudad de México: Cengage Learning Editores, S.A. de C.V.

Anexos Estadística descriptiva

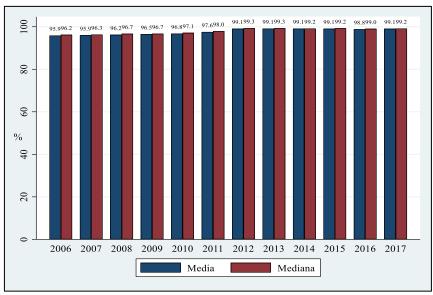

 $\underline{\text{M\'exico}}$ Estadísticos descriptivos de los datos del modelo y relación esperada

		•		•		
Variable	Obs	Media	Desv.Están	Min	Máx	Relación Estadística
Variable dependiente Ait	•		-			
Puntaje promedio Español (3° grado primaria)	81	505.84	14.35	474.43	545.24	
Puntaje promedio Matemáticas (3° grado primaria)	81	517.29	18.26	465.21	562.89	
Tasa de Aprobación Nivel Primaria (T_A) Vector R _{it}	372	97.77	1.84	91.78	99.86	
vector R _{it}						
Ratio Alumnos - Docente del Nivel Primaria (RAD)	372	25.72	3.04	18.39	31.67	N
Gasto Educativo por Alumno ejecutado por el Gobierno General (RGG)	372	14.13	4.02	6.28	26.92	P
Gasto Educativo por Alumnos ejecutado por el Gobierno Estatal (GE)	372	3.33	2.34	0.00	12.72	P
Escuelas Multigrado	341	40.28	14.07	8.08	69.86	N
Vector H _{it}						
Carencia -Vivienda (H1)	310	21.89	15.96	2.29	61.98	N
Carencia -Social (H2)	310	28.68	5.64	13.02	44.56	N
Carencia - Alimentación (H3)	310	23.17	6.15	10.76	46.03	N
Carencia - vivienda (H4)	310	13.99	7.80	3.31	44.68	N
Pobreza (H5)	310	44.41	13.64	14.25	78.48	N
Rezago_Educ (H6)	310	19.47	5.23	10.40	37.97	N
Ingreso de Población Ocupada (H7)	372.00	3776.11	660.64	2287.815	6337.86	P
Años de Escolaridad Pob. 15 a más (H8)	372	8.70	0.85	6.19	10.45	P
No Remunerados (H9)	372	28.89	9.39	15.45	57.37	N
VAB (H10)	372	1.11	1.01	0.24	7.36	P
Médicos (H11)	372	1.60	0.33	0.80	2.43	P
Desocupación (H12)	279	4.37	1.53	1.24	8.41	N
TMI-1(H13)	372	14.69	3.69	8.42	26.59	N
Informalidad (H14)	372	61.92	14.68	32.66	88.14	N
Mortalidad Materna (H15)	372	40.80	15.24	0.00	106.3	N

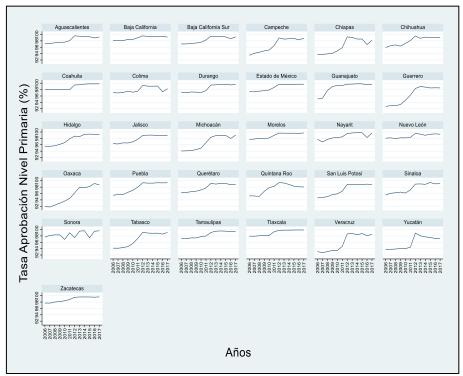
TMI-2(H16)	372	17.14	4.08	10.02	30.11	N
Asalariado (H17)	372	62.63	9.26	36.22	78.74	P
Analfabetismo (H18)	372	6.26	4.04	1.10	20.1	N
Seguro de Salud (H19)	310	21.30	9.13	9.02	56.02	P
IRAS (H20)	372	17.97	12.05	1.55	75.86	N
EDAS (H21)	372	9.36	8.87	0.00	66.37	N
Norte	372	0.29	0.45	0.00	1	P
DECit						
Índice de Descentralización del Gasto Educativo (DEC)	372	0.23	0.14	0.00	0.57	Р


Fuente: Elaboración propia con base en información secundaria, 2021. P = Relación positiva; N = Relación negativa

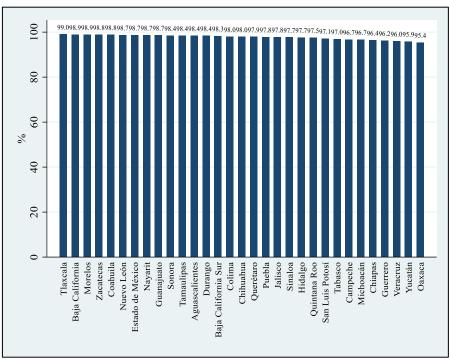
VALORES PROMEDIO DEL RENDIMIENTO EN ESPAÑOL POR ENTIDAD (2006, 2010 Y 2014)


Fuente: Elaboración propia con base en INEE (2021).

VALORES PROMEDIO DEL RENDIMIENTO EN MATEMÁTICAS POR ENTIDAD (2006, 2010 Y 2014)


Fuente: Elaboración propia con base en INEE (2021).

EVOLUCIÓN DE LA TASA DE APROBACIÓN (MEDIA Y MEDIANA)


Fuente: Elaboración propia con base en SEP (2021).

EVOLUCIÓN DE LA TASA DE APROBACIÓN POR ENTIDAD FEDERATIVA (2006 – 2017)

Fuente: Elaboración propia con base en SEP (2021).

VALOR MEDIO DE LA TASA DE APROBACIÓN (2006 – 2017)

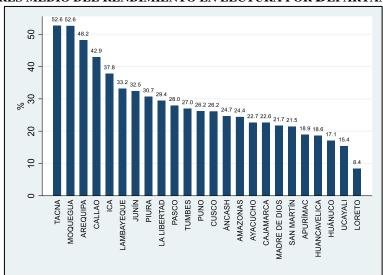
Fuente: Elaboración propia con base en SEP (2021).

Resumen del efecto de los controles (vector H y R)

Control	Rendimiento en Español	Rendimiento en Matemáticas
RAD ²³	Relación positiva (el efecto es alrededor del 1%).	Relación positiva (el efecto es alrededor del 2%).
Años_Escol	Relación positiva (el efecto es alrededor del 1.9%).	Relación positiva (el efecto es entre el 3% y 5%).
Analf.	Relación negativa (el efecto es alrededor del 0.8%).	Relación negativa (el efecto es entre 1% y 2%).
TMM	Relación negativa (el efecto es muy cercano al 0%).	No es significativo
VAB	Relación positiva (el efecto es del 2.69%).	Relación positiva (el efecto es del 7.7%).

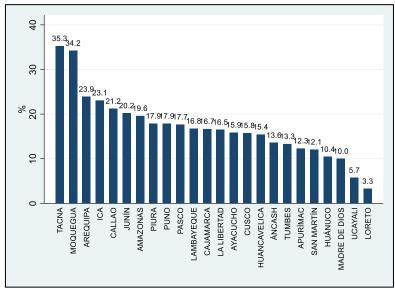
Fuente: Elaboración propia.

 $\underline{\text{PER\'{U}}}$ Estadísticos descriptivos de los datos del modelo

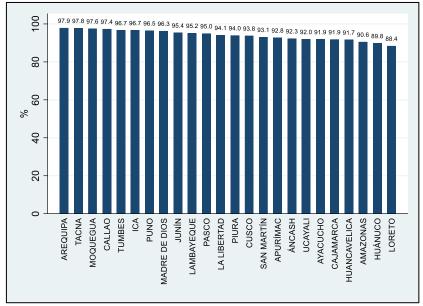

Variables	Prom.	Desv. Est.	Min	Máx	Relación estadística
Dependientes					
Rendimiento Satisfactorio en Lectura (A_L)	28.47	16.33	2.1	78.1	
Rendimiento Satisfactorio en Matemáticas (A_M)	17.03	12	0.7	64.3	
Tasa de Aprobación Nivel Primaria (T_A)	94.12	3.23	85.7	99.1	
Costa	0.33	0.47	0	1	
Explicativas Vector R					
Servicios Públicos de la Escuela (agua, luz y desagüe)	39.43	19.63	4.21	84.11	P
Aulas en Buen Estado de la Escuela	23.97	9	5.8	47.4	P
Sillas suficientes de la Escuela	82.04	8.86	53.2	99.9	P
Pizarras suficientes de la Escuela	67.09	13.85	39.3	99.9	P
Ratio Alumnos- Docente Nivel Primaria	16	3.97	7.54	25.59	N
Profesores con título en educación - Nivel Primaria	85.38	7.51	57.34	95.85	P
Gasto Educativo General (por número de matriculados)	1360.15	615.94	484.82	3466.09	P
Gasto Educativo Regional (por número de matriculados)	1207.398	509.1959	435.343	2966.131	P
Vector H					
Población con algún tipo de Seguro de Salud	65.22	14.02	31.9	94.5	P
Población en Pobreza No Monetaria	29.98	14.51	7	69	N
Población en Alta Dependencia Económica	1.28	0.78	0	3.6	N
Hogares donde los niños no van a la escuela	1.13	1.1	0	7.4	N
Población en viviendas inadecuadas	10.13	9.48	0.2	39.1	N
Población en viviendas con hacinamiento	11.26	6.33	2.1	29.8	N
Población en viviendas sin servicios públicos	15.49	12.05	1	59.6	N
Hogares con por lo menos un miembro con celular	70.3	18.78	4.6	94.5	P
Hogares con por lo menos un miembro con radio	79.76	7.6	54.5	93.1	P
Hogares con por lo menos una TV	74.46	14.34	38.5	97.2	P
Hogares con por lo menos una computadora	20.74	9.91	3.9	49.3	P
Hogares con conexión a internet	10.25	9.02	0.1	45.5	P
Hogares con conexión a servicio de cable	20.69	13.79	0.5	57.7	P
Hogares con conexión a servicio de telf.	16.53	11.57	1.3	58.4	P
Desnutrición Infantil	22.29	12.22	2.1	56.6	N
Población hábil para votar (por número de matriculados)	5.03	1.4	1.3	7.81	P
Ingresos laborales promedio	945.69	311.82	199	1936.4	P
VAB (por número de matriculados)	101.32	93.49	14.05	502.59	P
Ingresos Fiscales de los Gobiernos Subnacionales (por número de matriculados)	1.17	2.29	0.07	23.82	P
Nivel Educativo Alcanzado - Universitario (Mujeres)	12.04	4.18	3.8	22	P
Años de Escolaridad de población de 25 años a más.	9.24	1.17	6.7	11.6	P
Nivel Educativo Alcanzado - Universitario (Totales)	12.91	4.03	5.5	23.1	P
Población Analfabeta (%)	8.61	4.48	1.9	19.9	N
Variable DEC					

-

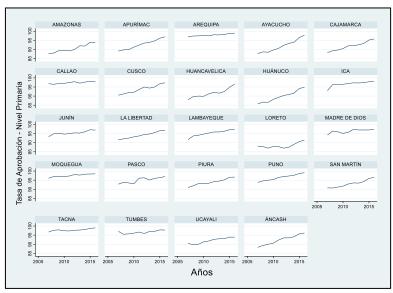
 $^{^{23}\} En\ el\ trabajo\ de\ Hanushek\ y\ Woessmann\ (2011)\ se\ explica\ que\ la\ evidencia\ emp\'irica\ arroja\ distintos\ resultados\ sobre\ este\ estimador.$


Fuente: Elaboración propia con base en información secundaria, 2021. P = Relación positiva, N = Relación negativa

VALORES MEDIO DEL RENDIMIENTO EN LECTURA POR DEPARTAMENTO


Fuente: Elaboración propia con base en INEI – MINEDU (2020).

PERÚ: VALORES MEDIO DEL RENDIMIENTO EN MATEMÁTICAS POR DEPARTAMENTO


Fuente: Elaboración propia con base en INEI - MINEDU, 2020.

VALORES MEDIO DE LA TASA DE APROBACIÓN POR DEPARTAMENTO

Fuente: Elaboración propia con base en INEI - MINEDU (2020).

TENDENCIA DE LA TASA DE APROBACIÓN POR DEPARTAMENTOS (%)

Fuente: Elaboración propia con base en MINEDU (2021).

Análisis de los controles (vector H y R)

Control	Rendimiento en Lectura	Rendimiento en Matemáticas
NO_ESCUELA	Relación negativa (disminuye entre el 2.7 y 6.6 puntos porcentuales)	Relación negativa (disminuye entre 2.2 y 4.9 puntos porcentuales)
DEP_ECON	Relación negativa (disminuye en 3.1 puntos porcentuales)	No significancia
SP_ESCUELA	Relación positiva (aumenta en 0.8 puntos porcentuales)	Relación positiva (aumenta en 0.6 puntos porcentuales)

RAD	Relación negativa (disminuye entre 1.5 y 3.2 puntos porcentuales)	Relación negativa (disminuye entre 1 y 2.3 puntos porcentuales)
TIT_PRIM	Relación positiva (aumenta en 0.7 puntos porcentuales)	Relación positiva (aumenta entre 0.35 y 0.46 puntos porcentuales)
ING (log)	Relación positiva (el aumento de 1% aumenta en 0.39 puntos porcentuales).	Relación positiva (el aumento de 1% aumenta en 0.24 puntos porcentuales).
VIC_INADEC	Relación negativa (disminuye en 2 puntos porcentuales	Relación negativa (disminuye en 1.3 puntos porcentuales
HACINA	Relación negativa (disminuye entre 0.8 y 2.4 puntos porcentuales)	Relación negativa (disminuye entre 0.5 y 1.6 puntos porcentuales)
ANALF	Relación negativa (disminuye en 1.2 puntos porcentuales).	No significativa

Fuente: Elaboración propia.

Pruebas econométricas y base de datos.

Prueba de Hausman:

MÉXICO

	mber of obs = 79 mber of groups = 27
R-sq: Obs within = 0.1309 between = 0.3685 overall = 0.2171	<pre>s per group: min =</pre>
	3,49) = 2.46 ob > F = 0.0738
log_ESPAÑOL Coef. Std. Err.	t P> t [95% Conf. Interval]
log_DEC 001376 .0077594 -0 ratio_alumnos_docente .0129327 .0051955 2 H8_Años_escolaridad .0190073 .0090584 2cons 5.720203 .1864906 30	0.18
sigma_u .03338146 sigma_e .02411966 rho .6569984 (fraction of v	
F test that all u_i=0: F(26, 49) = 0.96	Prob > F = 0.5379
. estimates store FE	
. xtreg log_ESPAÑOL log_DEC ratio_alumnos_docente F	H8_Años_escolaridad if log_DEC > -4, re
	mber of obs = 79 mber of groups = 27
within = 0.0425 between = 0.5973 overall = 0.3053	s per group: min = 2 avg = 2.9 max = 3 ld chi2(3) = 32.96

corr(u_i, X)	= 0 (assu	ımed)		Prob > c	chi2	=	0.0000)
		Coef.						
ratio_alumnos_ H8_Años_esco		0025136 .0021312 .0182183 6.008105						
	sigma_u sigma e	0 .02411966 0						
. estimates st	tore RE							
. hausman FE F	RE							
		oefficients (B R)) E Di	(b-B)	sqrt(d:	iag(V_b S.E.	-V_B))	
log_DEC ratio_alum~e H8_Años_es~d	0013 .01293 .01900	376002 327 .002	5136 1312	.0011376 .0108015 .000789	. (. (0068236 0050826 0080535		
В	= inconsis	b = cons:	istent unde Ha, efficier				-	
Test: Ho:	: differer	nce in coeff:	icients not	systemati	.c			
	chi2(3	3) = (b-B)'[-1)](b-B)				
	Prob>chi	= 0.0						
. xtreg log_ES	SPAÑOL log_	_DEC ratio_a	lumnos_docer	nte log_VA	AB if log	DEC >	-4, fe	
		regression			of obs of groups		79 27	
Fixed-effects Group variable R-sq: within	e: ID	regression		Number o	of groups group:	=	27	
Group variable	e: ID = 0.1101 = 0.3239	regression		Number o	of groups group: min avo	= n =		
Group variable R-sq: within = between = overall =	= 0.1101 = 0.3239 = 0.1928			Number o	of groups group: min avo	= = = = = = = = = = = = = = = = = = =	27 2 2.9	2
<pre>Group variable R-sq: within = between = overall = corr(u_i, Xb)</pre>	=: ID = 0.1101 = 0.3239 = 0.1928 = -0.851	7 	Std. Err.	Number of Obs per F(3,49) Prob > F	of groups group: min av max P> t	= = = = = = = = = = = = = = = = = = =	2.9 2.9 3 2.02 0.1233	Interval
Group variable R-sq: within = between = overall = corr(u_i, Xb)	=: ID = 0.1101 = 0.3239 = 0.1928 = -0.8517 	7 Coef.	Std. Err. 	Number c Obs per F(3,49) Prob > F	of groups group: min ave ma: P> t 0.864	=	2.92 2.93 3 2.02 0.1233	Interval]
Group variable R-sq: within = between = overall = corr(u_i, Xb) log ratio_alumnos	= 0.1101 = 0.3239 = 0.1928 = -0.8517 = -0.8517 	Coef0013488 .0127145 .0269331 5.896266 .03218361 .0244066	Std. Err. .0078541 .0053939 .015164 .1401391	Number of Obs per F(3,49) Prob > F t -0.17 2.36 1.78 42.07	pf groups group: min ave max P> t 0.864 0.022 0.082 0.000	= g = g = = = = = = = = = = = = = = = =	27 2.9 3 2.02 0.1233 	Interval]0144346 .023554 .0574064 6.177886
Group variable R-sq: within = between = overall = corr(u_i, Xb) log_ ratio_alumnos_	= 0.1101 = 0.3239 = 0.1928 = -0.8517 = -0.8517 	Coef0013488 .0127145 .0269331 5.89626603218361 .0244066 .63487947	Std. Err. .0078541 .0053939 .015164 .1401391	Number of Obs per F(3,49) Prob > F t -0.17 2.36 1.78 42.07 of varian	pf groups group: min avg max P> t 0.864 0.022 0.082 0.000	= g = g = g = g = g = g = g = g = g = g	27 2 2.9 3 2.02 0.1233 	.0144346 .023554 .0574064
Group variable R-sq: within = between = overall = corr(u_i, Xb) log ratio_alumnos	= 0.1101 = 0.3239 = 0.1928 = -0.8517 ESPAÑOL 	Coef0013488 .0127145 .0269331 5.89626603218361 .0244066 .63487947	Std. Err. .0078541 .0053939 .015164 .1401391	Number of Obs per F(3,49) Prob > F t -0.17 2.36 1.78 42.07 of varian	pf groups group: min avg max P> t 0.864 0.022 0.082 0.000	= g = g = g = g = g = g = g = g = g = g	27 2.9 3 2.02 0.1233 	.0144346 .023554 .0574064
Group variable R-sq: within = between = overall = corr(u_i, Xb) log ratio_alumnos F test that al	= 0.1101 = 0.3239 = 0.1928 = -0.8517 = -0.8517 	Coef0013488 .0127145 .0269331 5.896266 .03218361 .0244066 .63487947	Std. Err0078541 .0053939 .015164 .1401391 (fraction	Number of Obs per F(3,49) Prob > F t -0.17 2.36 1.78 42.07	P> t	= g = g =	27 2 2.9 3 2.02 0.1233 	.0144346 .023554 .0574064
Group variable R-sq: within = between = overall = corr(u_i, Xb) log_ ratio_alumnos_ F test that al estimates st xtreg log_Es Random-effects	= 0.1101 = 0.3239 = 0.1928 = -0.8517 = -0.8517 = -0.8517 Cons Cons	Coef0013488 .0127145 .0269331 5.896266 .03218361 .0244066 .63487947 F(26, 49) = 1	Std. Err0078541 .0053939 .015164 .1401391 (fraction	Obs per F(3,49) Prob > F -0.17 2.36 1.78 42.07 of varian	P> t	=	27 2 2.9 3 2.02 0.1233 	Interval] .0144346 .023554 .0574064
Group variable R-sq: within = between = overall = corr(u_i, Xb) log_ ratio_alumnos_ F test that al estimates st xtreq log_ES Random-effects Group variable R-sq:	= 0.1101 = 0.3239 = 0.1928 = -0.851 = -0.851 	Coef0013488 .0127145 .0269331 5.896266 .03218361 .0244066 .63487947 F(26, 49) = 1	Std. Err0078541 .0053939 .015164 .1401391 (fraction	Obs per F(3,49) Prob > F -0.17 2.36 1.78 42.07 of varian	proups group: min avg max P> t 0.864 0.022 0.082 0.000 cee due tr Proi	=	27 2.9 3 2.02 0.1233 	Interval]0144346 .023554 .0574064 6.177886
Group variable R-sq: within = between = overall = corr(u_i, Xb) log ratio_alumnos F test that al . estimates st . xtreg log_ES Random-effects Group variable	=: ID = 0.1101 = 0.3239 = 0.1928 = -0.8517 = -0.8517 ESPAÑOL	Coef0013488 .0127145 .0269331 5.896266 .03218361 .0244066 .63487947 F(26, 49) = 1	Std. Err0078541 .0053939 .015164 .1401391 (fraction	Number of Obs per F(3,49) Prob > F t -0.17 2.36 1.78 42.07 of varian of varian Number of Number of	groups group: min avg max P> t 0.864 0.022 0.082 0.000 Prol ace due to Prol as if log of obs of groups group: min avg	=	27 2.9 3 2.02 0.1233 	Interval] .0144346 .023554 .0574064

log	_ESPAÑOL	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
ratio_alumnos	log_DEC _docente	.001523	.0040596	0.38 2.75 2.76	0.708 0.006	0064336 .0009252	.0094797
	_cons	.016471 6.147335	.0330494	186.00	0.000	6.08256	6.212111
	sigma_e	.00749524					
	rho	.08618189	(fraction	of variar	nce due to	u_i)	
. estimates s	tore KE						
. hausman FE	RE						
		Coefficients -		(h D)		ag(V_b-V_B);	
	(b)	(B)			sqrt (ar)
log DEC	+	3488 001	523	 0028718	 0	067236	
log_DEC ratio_alum~e	.012	7145 .0032	2331	.0094814	.0	052638	
log_VAB	.0269	9331 .016	5471 	.0104622	.0.	139436	
.	•					ed from xtre	-
В	= incons	istent under B	ia, efficiei	nt under E	Ho; obtain	ed from xtre	∍g
Test: Ho	: differe	ence in coeffi	cients not	systemati	ic		
	chi2	(3) = (b-B)'[(V_b-V_B) ^ (-	-1)](b-B)			
	Prob>cl	= 3 ni2 = 0.2					
. xtreg log_E	SPAÑOL lo	g_DEC ratio_al	lumnos_doce	nte Z9_Ana	alfabetism	o if log_DEG	C > -4, fe
Fixed-effects Group variable		regression			of obs		79 27
R-sq:				Obs per	group:		
within				[min	=	
between overall						= 2	3
				E(3 (0)		= 3.3	3.0
corr(u_i, Xb)	= -0.938	39		Prob > 1		= 0.02	
log	_ESPAÑOL	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
ratio_alumnos	log_DEC	.0009292	.007587	0.12	0.903	0143175	.0161759
ratio_alumnos	_docente	.0147744	.0051898	2.85	0.006	.0043452	.0252037
23_111.011	_cons	0087891 5.892541	.1269062	46.43	0.000	5.637514	6.147569
		.04883369					
	sigma e	.02354197					
	rho	.81142118	(fraction	of variar 	nce due to 	u_i) 	
F test that a	ll u_i=0:	F(26, 49) = 1	.34		Prob	> F = 0.18	74
. estimates s	tore FE						
. xtreg log_E	SPAÑOL lo	g_DEC ratio_al	lumnos_doce	nte Z9_Ana	alfabetism	o if log_DEG	C > -4, re
Random-effect Group variable	_	ression			of obs		79 27
R-sq:				Obs per	group:		
within				-		= 2	2
between overall							3
				Wald at	:2(3)	= 22.2	23
corr(u_i, X)	= 0 (ass	sumed)		Prob > 0	chi2	= 22.2	01
log	_ESPAÑOL	Coef.					. Interval]
		0032903					

Z9_Analfal	docente betismo _cons	.0024605 0032704 6.176088	.0011904 .0009877 .034406	2.07 -3.31 179.51	0.039 0.001 0.000	.0001272 0052063 6.108654	.0047937 0013345 6.243523
:	sigma_u sigma_e	.00655545 .02354197 .07195926	(fraction				
estimates st	ore RE						
hausman FE R							
	(Coefficients					
 		(B)	(b-B) ifference	sqrt(di	ag(V_b-V_B)) S.E.	-
log_DEC atio_alum~e	.0009	9292003	2903	.0042195		0064028 0050514	
atio_alum~e 9_Analfab~o				.012314		0031579	
		istent under	Ha, efficie	nt under B	Ho; obtair	ned from xtre	-
Test: HO:		ence in coeff			LC		
		(3) = (b-B)'[-1)](b-B)			
		ni2 = 0.					
xtreg log_MA	(within)	_	10_alumnos_d	Number o	of obs	= 7	9
roup variable	: 1D			Number o	of groups	= 2	/
-sq: within =	0.3750			Obs per	group:	n =	2
between =	0.3230				avç	g = 2.	9
overall =	0.1980				max	=	3
	0 949	12				= 9.8	
orr(u_i, Xb)	0.940	33		Prob > I	· ·	= 0.000	
	MATICAS	Coef.	Std. Err.	t	P> t	[95% Conf.	
log_MATEI	MATICAS	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
log_MATEI	MATICAS	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
log_MATEI	MATICAS	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
log_MATE	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho	Coef0037495 .0224464 .0529855 5.19399607076075 .02729677 .8704645	Std. Err0087815 .0058799 .0102516 .2110556	-0.43 3.82 5.17 24.61	P> t 0.671 0.000 0.000 0.000	[95% Conf. 0213966 .0106303 .0323842 4.769864	Interval]
log_MATE	MATICAS log_DEC docente laridad _cons - sigma_u sigma_e rho	Coef0037495 .0224464 .0529855 5.193996	Std. Err0087815 .0058799 .0102516 .2110556	-0.43 3.82 5.17 24.61	P> t 	[95% Conf. 0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128
log_MATEI atio_alumnos_o H8_Años_esco	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho	Coef0037495 .0224464 .0529855 5.193996	Std. Err0087815 .0058799 .0102516 .2110556	-0.43 3.82 5.17 24.61	P> t 	[95% Conf. 0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128
atio_alumnos_c H8_Años_esco:	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho l u_i=0: ore FE	Coef0037495 .0224464 .0529855 5.193996 .07076075 .02729677 .8704645 F(26, 49) =	Std. Err0087815 .0058799 .0102516 .2110556 (fraction	-0.43 3.82 5.17 24.61	P> t 0.671 0.000 0.000 0.000	[95% Conf. 0213966 .0106303 .0323842 4.769864 	Interval]0138976 .0342624 .0735869 5.618128
log_MATER atio_alumnos_c H8_Años_esco:	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho	Coef0037495 .0224464 .0529855 5.19399607076075 .02729677 .8704645	Std. Err0087815 .0058799 .0102516 .2110556 (fraction	t	P> t 0.671 0.000 0.000 0.000	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.6181286
log_MATEI atio_alumnos_ H8_Años_esco test that al estimates sto xtreg log_MAf andom-effects roup variable -sq:	MATICAS log_DEC docente laridad _cons _sigma_u sigma_e rho l u_i=0: ore FE TEMATICAS	Coef0037495 .0224464 .0529855 5.19399607076075 .02729677 .8704645	Std. Err0087815 .0058799 .0102516 .2110556 (fraction	t -0.43 3.82 5.17 24.61 of varian	P> t 0.671 0.000 0.000 0.000 Prok	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128 6
log_MATE atio_alumnos_ H8_Años_esco test that al estimates sto xtreg log_MA andom-effects coup variable sq: within =	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho lu_i=0: ore FE TEMATICAS	Coef0037495 .0224464 .0529855 5.19399607076075 .02729677 .8704645	Std. Err0087815 .0058799 .0102516 .2110556 (fraction	t -0.43 3.82 5.17 24.61 of varian	P> t	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128 6 log_DEC > -4,
log_MATEI atio_alumnos_ H8_Años_esco test that al estimates sto xtreg log_MA andom-effects coup variable	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho lu_i=0: OTE FE TEMATICAS GLS regulation 0.2285 0.4421	Coef0037495 .0224464 .0529855 5.19399607076075 .02729677 .8704645	Std. Err0087815 .0058799 .0102516 .2110556 (fraction	t -0.43 3.82 5.17 24.61 of varian	P> t 0.671 0.000 0.000 0.000 Prob 8_Años_esc of obs of groups group: mir avg	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128 6 log_DEC > -4,
log_MATER atio_alumnos_o H8_Años_esco test that al estimates sto xtreg log_MA andom-effects roup variable -sq: within = between = overall =	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho l u_i=0: ore FE TEMATICAS GLS regi: ID 0.2285 0.4421 0.2802	Coef0037495 .0224464 .0529855 5.193996	Std. Err0087815 .0058799 .0102516 .2110556	t -0.43 3.82 5.17 24.61 of varian docente H8 Number of Number of Obs per	P> t	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128 6 log_DEC > -4, 9 7 2 9 3 0 0
test that all estimates sto xtreg log_MAr andom-effects roup variable -sq: within = between = overall = orr(u_i, X) log_MATEI	MATICAS log_DEC docente laridad _cons sigma_u sigma_e rho u_i=0: OTE FE TEMATICAS GLS regn : ID 0.2285 0.4421 0.2802 = 0 (ass	Coef0037495 .0224464 .0529855 5.19399607076075 .02729677 .8704645 F(26, 49) = S log_DEC rat ression sumed) Coef.	Std. Err0087815 .0058799 .0102516 .2110556 (fraction 1.57 io_alumnos_c	t -0.43 3.82 5.17 24.61 of varian docente H8 Number of Number of Obs per	P> t	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128 6 log_DEC > -4, 9 7 2 9 3 0 0 Interval]
log_MATE atio_alumnos_ H8_Años_esco test that al estimates st xtreg log_MAf andom-effects roup variable -sq: within = between = overall = orr(u_i, X)	MATICAS log_DEC docente laridad _cons _sigma_u sigma_e rho lu_i=0: OTE FE TEMATICAS GLS regn : ID 0.2285 0.4421 0.2802 = 0 (ass	Coef0037495 .0224464 .0529855 5.19399607076075 .02729677 .8704645 F(26, 49) = S log_DEC rat. ression	Std. Err0087815 .0058799 .0102516 .2110556 (fraction 1.57 io_alumnos_c	t -0.43 3.82 5.17 24.61	P> t	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128 6 log_DEC > -4, 9 7 2 9 3 0 0 Interval]
log_MATE atio_alumnos_o H8_Años_esco test that al estimates sto xtreg log_MA andom-effects roup variable -sq: within = between = overall = Drr(u_i, X) log_MATE	MATICAS log_DEC docente laridad _cons _cons sigma_u sigma_e rho Lu_i=0: OTE FE TEMATICAS GLS regulation 1 0.2285 0.4421 0.2802 = 0 (ass MATICAS log_DEC docente	Coef0037495 .0224464 .0529855 5.193996	Std. Err0087815 .0058799 .0102516 .2110556 (fraction 1.57 io_alumnos_c Std. Err0046927	-0.43 3.82 5.17 24.61 of variar Number (Number (Number (Number ()	P> t	[95% Conf0213966 .0106303 .0323842 4.769864	Interval]0138976 .0342624 .0735869 5.618128 6 log_DEC > -4, 9 7 2 9 3 0 0 Interval]0059911 .0042635

. estimates store RE

. hausman FE RE

---- Coefficients ----(b) (B) (b-B) sqrt(diag(V_b-V_B))
FE RE Difference S.E.
 log_DEC |
 -.0037495
 -.0032064
 -.0005431
 .0074225

 ratio_alum~e |
 .0224464
 .0015622
 .0208842
 .0057161

 H8_Años_es~d |
 .0529855
 .0239309
 .0290546
 .0087973

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

 $chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B)$ = Prob>chi2 = 15 34 0.0015

. xtreg log MATEMATICAS log DEC ratio alumnos docente log VAB if log DEC > -4, fe

Fixed-effects (within) regression Number of obs 27 Number of groups = Group variable: ID Obs per group: R-sq: min = within = 0.2986 between = 0.2330avg = overall = 0.1478max = 3 = 6.95 = 0.0005 F(3,49) $corr(u_i, Xb) = -0.9440$ Prob > F

log_MATEMATICAS	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
log_DEC ratio_alumnos_docente log_VAB _cons	0037323 .0222172 .0772029 5.675145	.0093057 .0063909 .0179667 .1660402	-0.40 3.48 4.30 34.18	0.690 0.001 0.000 0.000	0224329 .0093743 .0410975 5.341474	.0149683 .0350602 .1133083 6.008815
sigma_u sigma_e rho	.06971146 .02891753 .85318878	(fraction	of varia	nce due t	oui)	

F test that all $u_i=0$: F(26, 49) = 1.70 Prob > F = 0.0540

. estimates store FE

. xtreg log_MATEMATICAS log_DEC ratio_alumnos_docente log_VAB if log_DEC > -4, re

Random-effects GLS regression 27 Number of groups = Group variable: ID Obs per group: min = within = 0.22012 between = 0.2357 overall = 0.1616 avg = max = Wald chi2(3) = 13.31 Prob > chi2 = 0.0040 corr(u i, X) = 0 (assumed)

log_MATEMATICAS	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
log_DEC ratio_alumnos_docente log_VAB _cons	.0020571 .0030049 .0205316 6.177626	.0052012 .001513 .0076361 .0424477	0.40 1.99 2.69 145.54	0.692 0.047 0.007 0.000	0081371 .0000395 .0055652 6.094431	.0122512 .0059704 .0354981 6.260822
	0000001					

sigma_u | .0093991 sigma_e | .02891753

rho | .09555072 (fraction of variance due to u_i)

Number of obs

79

```
. estimates store RE
```

. hausman FE RE						
-	Coeffic		(I: D)		(TZ 1- TZ D))	
	(b) FE	(B) RE	Difference	sqrt(di ce	ag(V_b-V_B)) S.E.	
log_DEC - ratio_alum~e	.0037323	.0020571	005789	94 .0	077165 062092	-
ratio_alum~e log_VAB	.0222172	.0030049	.019212	.0	062092 162632	_
B = in		= consistent under Ha, eff				•
Test: Ho: di	fference in	coefficients	not systema	atic		
		b-B)	B)^(-1)](b-E	3)		
Pr	= ob>chi2 =	14.17 0.0027				
. xtreg log_MATEMA	TICAS log_D	EC ratio_alum	nos_docente	Z9_Analfabe	tismo if log_	_DEC > -4, f
Fixed-effects (wit	hin) regres	sion	Number	of obs	= 79	9
Group variable: ID			Number	of groups	= 2	7
R-sq: within = 0.4	902		Obs pe	er group:	= 2)
between = 0.4	055				= 2.9	
overall = 0.2	298			max	= 3	3
corr(u_i, Xb) = -	0.9772		F(3,49 Prob >		= 15.70 = 0.0000	
log MATEMATI		Coef. Std.		D>1+1		Intervall
	+					
log_ ratio alumnos doce	DEC .00 nte .02	24038 .0079 63571 .005	456 0.30 435 4.85	0.764	0135634 .0154349	.018371
ratio_alumnos_doce Z9_Analfabeti _c	smo 0 ons 5.6	22936 .0034 96884 .1329	651 -6.62 034 42.86	0.000	0298994 5.429805	0159725 5.963963
	+ a u .111					
sigm	a_e .024		tion of wari	ance due to	11 i)	
F test that all u_	1=0: F(26,	49) = 2.38		Prob	> F = 0.0045	
. estimates store	FE					
. xtreg log_MATEMA	TICAS log_D	EC ratio_alum	nos_docente	Z9_Analfabe	tismo if log_	_DEC > -4, r
Random-effects GLS Group variable: ID				of obs		
-				-		
R-sq: within $= 0.2$	883		ODS Pe	er group: min	= 2	2
between = 0.4 overall = 0.2					= 2.9	
0.0000			W-1-1			
corr(u_i, X) = 0	(assumed)		Prob >	chi2(3) > chi2	= 26.43	
log_MATEMATI	 CAS	Coef. Std.	Err. z	P> z	[95% Conf.	Interval]
log	DEC 00	51741 .0049	399 -1.05	0.295	0148561	.0045079
ratio_alumnos_doce Z9_Analfabeti	nte .00 smo 00	15757 .0014 52563 .0011	454 1.09 992 -4.38	0.276 0.000	0012573 0076066	.0044087
_c	ons 6.2	52563 .0011 30586 .0417 	743 149.15	0.000	6.14871	6.312462
	+ a_u .006					
sigm	a_e .024	65449	tion of	ango due to	,, i)	
		35872 (frac			u_±)	

[.] estimates store RE

. hausman FE RE

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
+				
log DEC	.0024038	0051741	.0075779	.0062233
ratio alum~e	.0263571	.0015757	.0247814	.0052393
Z9_Analfab~o	022936	0052563	0176797	.003251

 $\mbox{$b$ = consistent under Ho and Ha; obtained from xtreg} \\ \mbox{B = inconsistent under Ha, efficient under Ho; obtained from xtreg} \\$

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 33.27 Prob>chi2 = 0.0000

<u>Perú</u>

Se usaron modelos representativos en lectura y matemáticas.							
. xtreg A_L lIDE	C SP_ESCUELA_R	1 RAD_PRIMAF	RIA_R9	rit_primar	IA_Z2 if lIDE	C >-0.4, fe	
Fixed-effects (within) regression Group variable: ID					obs = groups =	236 24	
within = 0.6438 between = 0.6885 overall = 0.5977				Prob > F	min = avg = max =	8 9.8 10 94.00 0.0000	
A_L	Coef.	Std. Err.	t	P> t		Interval]	
lIDEC SP_ESCUELA_R1 RAD_PRIMARIA_R9 TIT_PRIMARIA_Z2	-5.379898	9.194047 .0989033 .3228066 .1822036 17.47157	1.46 8.45 -4.75 1.72 -0.31	0.145 0.000 0.000 0.088 0.758	-39.82396	31.57509 1.030879 8979677 .6717947 29.06417	
sigma_e	11.616552 7.4586214 .70808899		of varia	ance due t	o u_i)		
<pre>. estimates store . xtreg A_L lIDE(</pre>	= FE		RIA_R9 :	IIT_PRIMAR	Prob > F = IA_Z2 if lIDE		
Random-effects Gl Group variable:	-			Number of obs = 236 Number of groups = 24			
R-sq: within = 0 between = 0 overall = 0	.6790			Obs per gr	min = avg = max =	8 9.8 10	
corr(u_i, X) =]	Wald chi2(Prob > chi	2 =	343.01 0.0000	
A_L	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
lIDEC SP_ESCUELA_R1 RAD_PRIMARIA_R9 TIT_PRIMARIA_Z2cons	13.89207	9.633356 .0732276 .3048028 .1393261 16.04317	1.44 8.22 -5.09 1.80 0.59	0.149 0.000 0.000 0.072	-4.988958 4580628	32.7731 .7451097 9554781 .5239315	
sigma_u sigma_e	5.4881177 7.4586214 .35124515			ance due t	o u_i)		

- . estimates store RE
- . hausman FE RE, sigmamore

	Coeffi	cients		
1	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
lidec	13.44962	13.89207	4424484	2.456262
SP_ESCUELA~1	.8358973	.6015863	.234311	.0779415
RAD PRIMAR~9	-1.53436	-1.552881	.0185208	.1700964
TIT_PRIMAR~2	.3125922	.2508575	.0617348	.139299
	b	= consistent	under Ho and Ha	; obtained from xtreg
В =	inconsistent	under Ha, eft	ficient under Ho	; obtained from xtreg
	11.66			

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(v_b-v_B)^(-1)](b-B) = 36.82 Prob>chi2 = 0.0000

. xtreg A_L lIDEC VIV_INADEC F5 AÑOS_ESCOLARIDAD_Z13 RAD_PRIMARIA_R9 if lIDEC >-0.4, fe

Fixed-effects (within) regression	Number of obs =	236
Group variable: ID	Number of groups =	24
R-sq:	Obs per group:	
within $= 0.5851$	min =	8
between = 0.4082	avg =	9.8
overall = 0.3506	max =	10
	F(4,208) =	73.34
$corr(u_i, Xb) = -0.8743$	Prob > F =	0.0000

A_L	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lIDEC VIV_INADEC_F5 AÑOS_ESCOLARIDAD_Z13 RAD_PRIMARIA_R9 cons	16.40359 -2.047032 2.729567 -3.27033 77.77426	9.76844 .3192136 2.530265 .2617192 22.83574	1.68 -6.41 1.08 -12.50 3.41	0.095 0.000 0.282 0.000 0.001	-2.854246 -2.676341 -2.258685 -3.786292 32.75509	35.66143 -1.417724 7.717819 -2.754367 122.7934
sigma_u sigma_e rho	22.72873 8.0499184 .88854215	(fraction	of varia	nce due t	o u_i)	

Prob > F = 0.0000

F test that all $u_i=0$: F(23, 208) = 10.30

. estimates store FE

Random-effects GLS regression

. xtreg A_L lIDEC VIV_INADEC_F5 AÑOS_ESCOLARIDAD_Z13 RAD_PRIMARIA_R9 if lIDEC >-0.4, re

Number of obs = 236

Group variable: ID	Number of groups = 24
R-sq:	Obs per group:
within $= 0.5219$	min = 8
between = 0.6072	avg = 9.8
overal1 = 0.5207	max = 10
	Wald chi2(4) = 227.39
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2 = 0.0000

A_L	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lidec	22.57834	10.75305	2.10	0.036	1.502754	43.65392
VIV INADEC F5	2120817	.1460307	-1.45	0.146	4982966	.0741332
AÑOS_ESCOLARIDAD_Z13	2.585666	1.121253	2.31	0.021	.3880507	4.783281
RAD_PRIMARIA_R9	-3.0831	.2439685	-12.64	0.000	-3.561269	-2.60493
_cons	58.32116	11.82993	4.93	0.000	35.13492	81.50741
+-						
sigma_u	5.300903					
sigma e	8.0499184					

rho | .30246871 (fraction of variance due to u_i)

158

- . estimates store RE
- . hausman FE RE, sigmamore

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
I.	FE	RE	Difference	S.E.
lidec	16.40359	22.57834	-6.174742	2.729291
VIV_INADEC~5	-2.047032	2120817	-1.834951	.3318185
AÑOS_ESCO~13	2.729567	2.585666	.1439014	2.645842
RAD_PRIMAR~9	-3.27033	-3.0831	18723	.1697869

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 55.13 Prob>chi2 = 0.0000

. xtreg A_M lIDEC SP_ESCUELA_R1 RAD_PRIMARIA_R9 TIT_PRIMARIA_Z2 if lIDEC >-0.4, fe

Fixed-effects (within) regression Group variable: ID	Number of obs Number of groups		236 24
R-sq: within = 0.4551 between = 0.6153 overall = 0.4364	Obs per group: min avg max	=	8 9.8 10
corr(u_i, Xb) = -0.7756	F(4,208) Prob > F	= =	43.43

A_M	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lIDEC SP_ESCUELA_R1 RAD_PRIMARIA_R9 TIT_PRIMARIA_Z2 cons	7.674425 .6012483 -1.007091 .1357862 -1.43901	9.279457 .0998221 .3258053 .1838962 17.63388	0.83 6.02 -3.09 0.74 -0.08	0.409 0.000 0.002 0.461 0.935	-10.61942 .4044556 -1.649395 2267532 -36.20305	25.96827 .798041 3647872 .4983256 33.32503
sigma_u sigma_e rho	9.0825932 7.5279096 .59278361	(fraction	of variar	nce due t	o u_i)	

. estimates store ${\tt FE}$

Random-effects GLS regression

. xtreg A_M lIDEC SP_ESCUELA_R1 RAD_PRIMARIA_R9 TIT_PRIMARIA_Z2 if lIDEC >-0.4, re

Number of obs = 236

Group variable: ID	Number of groups = 24	
R-sq:	Obs per group:	
within = 0.4466	min = 8	
between = 0.6161	avg = 9.8	
overall = 0.4516	max = 10	
	Wald chi2(4) = 168.04	
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2 = 0.0000	

A_M	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lIDEC SP ESCUELA R1	7.414287	9.308381	0.80 5.16	0.426	-10.8298 .2045647	25.65838 .4551965
RAD_PRIMARIA_R9	-1.096689	.2809437	-3.90	0.000	-1.647329	5460496
TIT_PRIMARIA_Z2 _cons	.2209564 3.414494	.1220055 14.61816	1.81	0.070 0.815	0181699 -25.23658	.4600828 32.06557
sigma_u	3.9697247					

sigma_e | 7.5279096 rho | .21757724 (fraction of variance due to u_i)

. estimates store RE

. hausman FE RE, sigmamore

1		efficients ()	3)	(h=P)	000+	(diag(W b=W T	8))
	(b) FE	[]	RE	Difference	sqrt	(diag(V_b-V_E S.E.	>))
lidec P_ESCUELA~1 AD_PRIMAR~9 IT_PRIMAR~2	7.67442	25 7.4	 14287	.2601381		2.919112	
P_ESCUELA~1	.601248	33 .32	98806	.2713677		.0832147	
AD_PRIMAR~9	-1.00709	91 -1.0	96689	.089598		.195926	
IT_PRIMAR~2	.13578	52 .22	09564 	0851703		.1499674	
В =	= inconsist					ained from xt ained from xt	-
Test: Ho:				not systemat	ic		
) = (b-B) ' = : 2 = 0	25.66	^(-1)](b-B)			
xtreg A_M lII	DEC VIV_I	NADEC_F5 A	ÑOS_ESCOL <i>i</i>	ARIDAD_Z13 R	AD_PRIM	ARIA_R9 if lI	DEC >-0.4,
ixed-effects roup variable		gression				= ps =	236 24
-sq:				Obs per	group:		
within =							8
between = overall =						avg = max =	9.8
orr(u_i, Xb)	= -0.9016			F(4,208 Prob > 1) F	= 36	5.66 0000
	A_M	Coef.	Std. Eri	. t	P> t	[95% Conf	
						-9.01689	
VTV TNAI	DEC ES I -	-1 342836	3097006	5 -4 34	0.309	-1 953391	- 732281
VIV_INAI ÑOS_ESCOLARIDA	AD 713 I	4.144684	2.45486	1.69	0.093	6949109	8.9842
RAD PRIMA	RIA R9 -	-2.308199	.2539196	-9.09	0.000	-2.808785	-1.80761
_	_cons	30.15489	22.1552	1.36	0.175	-13.52264	
	igma_u i igma_e rho	7.8100202		on of varian	ce due	to u_i)	
test that all	l u_i=0: F	(23, 208)	= 5.48		 P	rob > F = 0.0	0000
estimates sto	ore FE						
xtreg A_M lII	DEC VIV_I	NADEC_F5 A	ÑOS_ESCOL#	ARIDAD_Z13 R.	AD_PRIM	ARIA_R9 if lI	DEC >-0.4,
andom-effects roup variable		ssion		Number Number			236 24
-sq:				Obs per	group:		
within =				-	-	min =	8
between =						-	9.8
overall =	0.3999					max =	10
						= 129 = 0.0	
orr(u_i, X)	= 0 (assur	med)					
	A_M	Coef.	Std. Er	. z	P> z		. Interval
_ 	A_M +	Coef.	Std. Ern 9.740411	z	P> z 	[95% Conf	33.3845
_ 	A_M +	Coef.	Std. Ern 9.740411	z	P> z 	[95% Conf	33.3845
_ 	A_M +	Coef.	Std. Ern 9.740411	z	P> z 	[95% Conf	33.3845
VIV_INAI ÑOS_ESCOLARIDA RAD_PRIMAI	A_M + 1IDEC DEC_F5 - AD_Z13 RIA_R9 -	Coef. 14.293691163063 .6091822 -2.044514	9.740411 .1137516 .8786565 .2127693	z 1.47 5 -1.02 6 0.69 8 -9.61	P> z 0.142 0.307 0.488 0.000	[95% Confi 	33.3845 .106642 2.33131 -1.62749
VIV_INAI MOS_ESCOLARIDA RAD_PRIMAI	A_M 	Coef. 14.293691163063 .6091822 -2.044514 46.74568	9.740411 .1137516 .8786565 .2127693	z 1.47 5 -1.02 6 0.69 8 -9.61	P> z 0.142 0.307 0.488 0.000	[95% Conf	33.3845 .106642 2.33131 -1.62749
VIV_INAI ÑOS_ESCOLARIDI RAD_PRIMAI	A_M lIDEC DEC_F5 - AD_Z13 RIA_R9 - _Cons	Coef. 14.29369 1163063 .6091822 -2.044514 46.74568	9.740411 .1137516 .8786565 .2127693	z 1.47 5 -1.02 6 0.69 8 -9.61	P> z 0.142 0.307 0.488 0.000	[95% Confi 	33.3845 .106642 2.33131 -1.62749
VIV_INAI ÑOS_ESCOLARIDA RAD_PRIMAI	A_M 	Coef. 14.293691163063 .6091822 -2.044514 46.74568	9.740411 .1137516 .8786565 .2127693	z 1.47 5 -1.02 6 0.69 8 -9.61	P> z 0.142 0.307 0.488 0.000	[95% Confi 	33.3845 .106642 2.33131 -1.62749

[.] estimates store RE

. hausman FE RE, sigmamore

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
1	FE	RE	Difference	S.E.
3.555	0 665041	14 00000	4 606645	0 705007
lidec	9.667041	14.29369	-4.626645	2.785937
VIV_INADEC~5	-1.342836	1163063	-1.22653	.3109053
AÑOS_ESCO~13	4.144684	.6091822	3.535502	2.472703
RAD_PRIMAR~9	-2.308199	-2.044514	2636851	.168538

 $\mbox{b = consistent under Ho and Ha; obtained from xtreg} \mbox{ B = inconsistent under Ha, efficient under Ho; obtained from xtreg}$

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 32.58 Prob>chi2 = 0.0000

Bases de datos (variable dependiente y explicativa):

<u>México</u>

Año	ENTIDAD	ESPAÑOL	MATEMATICAS	DEC
2006	Aguascalientes	496.9	512.11	0.14390609
2010	Aguascalientes	497.54221	533.4487	0.13839141
2014	Aguascalientes	526	526	0.22425341
2006	Baja California	508.61	517.93	0.38906553
2010	Baja California	522.13316	526.65455	0.46638683
2014	Baja California	488	516	0.47783406
2006	Baja California Sur	518.35	518.61	0.01869358
2010	Baja California Sur	513.24862	531.33866	0.19843531
2014	Baja California Sur	509	521	0.26503903
2006	Campeche	496.12	503.83	0.05630564
2010	Campeche	514.93149	531.37122	0.02462732
2014	Campeche	484	498	0.01331536
2006	Chihuahua	501.33	516.57	0.47036623
2010	Chihuahua	513.07915	537.04625	0.46801759
2014	Chihuahua	529	541	0.36099899
2006	Coahuila	503.68	508.41	0.32228747
2010	Coahuila	520.22466	530.55236	0.35080681
2014	Coahuila	505	507	0.35747129
2006	Colima	497.21	523.66	0.04909595
2010	Colima	531.48964	543.83344	0.0802197
2014	Colima	510	524	0.1458866
2006	Durango	494.18	495.99	0.36230337
2010	Durango	501.24375	523.06005	0.32993515
2014	Durango	486	512	0.31239789
2006	Estado de México	502.42	500.44	0.49058371
2010	Estado de México	522.11071	546.41621	0.32942143
2014	Estado de México	511	524	0.30715848
2006	Guanajuato	499.24	490.84	0.33622778
2010	Guanajuato	508.46235	531.58376	0.31039598

2014	Guanajuato	492	517	0.23132518
2006	Guerrero	474.43	465.21	0.12674962
2010	Guerrero	481.07248	489.76041	0.15974169
2014	Guerrero	484	502	0.0530683
2006	Hidalgo	493.82	478.28	0.00089804
2010	Hidalgo	509.42869	525.07438	0.10136488
2014	Hidalgo	510	515	0.01844643
2006	Jalisco	491.59	510.95	0.3579685
2010	Jalisco	521.59223	539.37014	0.32144395
2014	Jalisco	490	513	0.32313406
2006	Morelos	500.54	512.28	0.1496603
2010	Morelos	513.75308	535.72826	0.11815948
2014	Morelos	531	523	0.12064942
2006	Nayarit	502.4	490.19	0.10160484
2010	Nayarit	493.04306	516.00075	0.15005666
2014	Nayarit	536	557	0.13136971
2006	Nuevo León	525.97	547.13	0.46680886
2010	Nuevo León	545.24111	562.89337	0.5120538
2014	Nuevo León	521	521	0.43009052
2006	Puebla	498.71	494.04	0.21942949
2010	Puebla	518.32636	539.15248	0.31543417
2014	Puebla	502	519	0.31094017
2006	Querétaro	504.66	503.77	0.09955381
2010	Querétaro	520.76871	538.07986	0.13578029
2014	Querétaro	509	510	0.2115787
2006	Quintana Roo	504.38	510.65	0.14062382
2010	Quintana Roo	518.13452	531.45644	0.05358342
2014	Quintana Roo	510	513	0.12089458
2006	San Luis Potosí	502.14	496.17	0.08048302
2010	San Luis Potosí	506.73575	521.11159	0.08800639
2014	San Luis Potosí	498	499	0.12514496
2006	Sinaloa	500.13	519.8	0.34314353
2010	Sinaloa	516.40176	540.28491	0.37811653
2014	Sinaloa	491	524	0.25645911
2006	Sonora	508.73	509.26	0.34719625
2010	Sonora	509.72796	516.13576	0.36663103
2014	Sonora	518	508	0.38838384
2006	Tamaulipas	513.8	509.24	0.23474703
2010	Tamaulipas	514.8876	513.59981	0.28545301
2014	Tamaulipas	515	502	0.3894586
2006	Tlaxcala	507.37	501.4	0.18255558
2010	Tlaxcala	523.73576	544.65321	0.38418566
2014	Tlaxcala	477	515	0.30156651
2006	Veracruz	494.6	481.35	0.31836904
2010	Veracruz	496.48813	515.70636	0.35497819
2014	Veracruz	504	501	0.35368404

2006	Yucatán	479.19	478.99	0.30712937
2010	Yucatán	516.43839	534.15992	0.26041083
2014	Yucatán	501	542	0.27992391
2006	Zacatecas	496.03	504.09	0.15366807
2010	Zacatecas	493.24037	523.88913	0.13333573
2014	Zacatecas	476	527	0.07311263

AÑO	ENTIDAD	T_A	DEC
2006	Aguascalientes	97.20172	0.14390609
2007	Aguascalientes	97.180589	0.13150797
2008	Aguascalientes	97.386724	0.14111017
2009	Aguascalientes	97.551718	0.13098996
2010	Aguascalientes	97.594108	0.13839141
2011	Aguascalientes	98.069039	0.27922663
2012	Aguascalientes	99.587239	0.16586442
2013	Aguascalientes	99.443058	0.18463908
2014	Aguascalientes	99.402233	0.22425341
2015	Aguascalientes	99.282491	0.13606056
2016	Aguascalientes	98.90385	0.14916098
2017	Aguascalientes	99.226023	0.11111366
2006	Baja California	98.125441	0.38906553
2007	Baja California	98.157118	0.4233773
2008	Baja California	98.060125	0.46207396
2009	Baja California	98.451259	0.44482027
2010	Baja California	98.460321	0.46638683
2011	Baja California	98.992086	0.4656052
2012	Baja California	99.55827	0.50930567
2013	Baja California	99.412336	0.47211282
2014	Baja California	99.421933	0.47783406
2015	Baja California	99.3865	0.44595387
2016	Baja California	99.385998	0.49763746
2017	Baja California	99.192601	0.48349901
2006	Baja California Sur	97.048091	0.01869358
2007	Baja California Sur	97.019986	0.02724799
2008	Baja California Sur	97.196394	0.03517067
2009	Baja California Sur	97.315683	0.17451148
2010	Baja California Sur	97.542957	0.19843531
2011	Baja California Sur	98.286794	0.20671498
2012	Baja California Sur	99.442561	0.23745801
2013	Baja California Sur	99.348866	0.23342805
2014	Baja California Sur	99.35825	0.26503903
2015	Baja California Sur	99.235862	0.07786914
2016	Baja California Sur	98.655914	0.08270046
2017	Baja California Sur	99.267055	0.08516117
2006	Campeche	93.457118	0.05630564

2007	Campeche	94.106488	0.05225778
2008	Campeche	94.435321	0.04735953
2009	Campeche	94.845077	0.06277479
2010	Campeche	95.126999	0.02462732
2011	Campeche	96.48475	0.13497574
2012	Campeche	98.924886	0.17384777
2013	Campeche	98.544106	0.16593682
2014	Campeche	98.663214	0.01331536
2015	Campeche	98.761797	0.00051484
2016	Campeche	98.312837	0
2017	Campeche	98.832399	0
2006	Chiapas	93.793103	0.0135127
2007	Chiapas	93.774451	0.01266829
2008	Chiapas	93.900977	0.04460254
2009	Chiapas	94.117755	0.02638991
2010	Chiapas	94.819459	0.20889594
2011	Chiapas	95.855855	0.17288696
2012	Chiapas	99.246981	0.13940472
2013	Chiapas	99.0682	0.16826604
2014	Chiapas	98.562903	0.22056046
2015	Chiapas	98.57271	0.20438232
2016	Chiapas	96.828923	0.20204442
2017	Chiapas	98.18071	0.10049075
2006	Chihuahua	95.888088	0.47036623
2007	Chihuahua	96.510915	0.42292211
2008	Chihuahua	96.711555	0.42414473
2009	Chihuahua	96.375034	0.44299751
2010	Chihuahua	97.203303	0.46801759
2011	Chihuahua	98.091069	0.47111918
2012	Chihuahua	99.524673	0.43642255
2013	Chihuahua	98.804088	0.47334254
2014	Chihuahua	99.166352	0.36099899
2015	Chihuahua	99.124089	0.45975093
2016	Chihuahua	99.076899	0.42956819
2017	Chihuahua	99.003666	0.4017212
2006	Coahuila	97.982305	0.32228747
2007	Coahuila	97.966194	0.30286693
2008	Coahuila	98.015301	0.31236749
2009	Coahuila	98.01579	0.32643196
2010	Coahuila	97.984404	0.35080681
2011	Coahuila	97.992804	0.32341573
2012	Coahuila	99.46692	0.34124525
2013	Coahuila	99.509442	0.36321429
2014	Coahuila	99.73874	0.35747129
2015	Coahuila	99.809055	0.31567954
2016	Coahuila	99.791947	0.30101197

2017	Coahuila	99.810748	0.31146033
2006	Colima	97.090391	0.04909595
2007	Colima	96.949823	0.06922478
2008	Colima	97.092336	0.06393723
2009	Colima	97.532893	0.0784328
2010	Colima	97.19088	0.0802197
2011	Colima	97.513698	0
2012	Colima	99.304923	0.10793052
2013	Colima	99.09828	0.10261772
2014	Colima	99.063978	0.1458866
2015	Colima	99.136294	0.07825603
2016	Colima	97.318845	0.10037561
2017	Colima	98.289071	0.09752929
2006	Durango	97.180512	0.36230337
2007	Durango	97.022233	0.36286589
2008	Durango	97.254284	0.3602875
2009	Durango	97.213292	0.35703245
2010	Durango	97.109656	0.32993515
2011	Durango	97.672096	0.40512837
2012	Durango	99.43393	0.38303931
2013	Durango	99.494681	0.41838405
2014	Durango	99.632363	0.31239789
2015	Durango	99.611485	0.30733168
2016	Durango	99.475728	0.35418085
2017	Durango	99.575643	0.28517129
2006	Estado de México	97.35223	0.49058371
2007	Estado de México	97.309291	0.57861512
2008	Estado de México	97.519758	0.57861511
2009	Estado de México	97.656836	0.26829606
2010	Estado de México	97.884091	0.32942143
2011	Estado de México	98.689159	0.35725146
2012	Estado de México	99.691045	0.37941752
2013	Estado de México	99.650263	0.37535579
2014	Estado de México	99.640597	0.30715848
2015	Estado de México	99.68451	0.35277394
2016	Estado de México	99.694387	0.38160679
2017	Estado de México	99.69701	0.40894947
2006	Guanajuato	95.045058	0.33622778
2007	Guanajuato	95.286276	0.31304784
2008	Guanajuato	97.713967	0.31955035
2009	Guanajuato	98.962675	0.30363931
2010	Guanajuato	99.298654	0.31039598
2011	Guanajuato	99.285929	0.31010504
2012	Guanajuato	99.698111	0.28628224
2013	Guanajuato	99.734088	0.26164849
2014	Guanajuato	99.81436	0.23132518

2015	Guanajuato	99.794922	0.2654845
2016	Guanajuato	99.546754	0.26419317
2017	Guanajuato	99.663815	0.28018384
2006	Guerrero	92.743388	0.12674962
2007	Guerrero	92.957861	0.09230895
2008	Guerrero	92.950446	0.15735244
2009	Guerrero	93.329906	0.12534487
2010	Guerrero	94.676385	0.15974169
2011	Guerrero	96.271692	0.11764653
2012	Guerrero	98.354797	0.05148608
2013	Guerrero	98.974929	0.03856429
2014	Guerrero	98.790594	0.0530683
2015	Guerrero	98.521751	0.06899767
2016	Guerrero	98.571822	0.15303429
2017	Guerrero	98.529885	0.14077057
2006	Hidalgo	95.545088	0.00089804
2007	Hidalgo	95.524476	0.03280176
2008	Hidalgo	95.673121	0.05240577
2009	Hidalgo	96.139492	0.04752957
2010	Hidalgo	96.674249	0.10136488
2011	Hidalgo	97.860208	0.13469345
2012	Hidalgo	98.713106	0.19628197
2013	Hidalgo	98.558456	0.18594988
2014	Hidalgo	99.303569	0.01844643
2015	Hidalgo	99.330793	0.00823199
2016	Hidalgo	99.284832	0.03766335
2017	Hidalgo	99.247183	0.02633743
2006	Jalisco	96.370673	0.3579685
2007	Jalisco	96.24588	0.32156924
2008	Jalisco	96.597397	0.34268544
2009	Jalisco	96.557399	0.33745661
2010	Jalisco	96.92934	0.32144395
2011	Jalisco	97.696743	0.31775321
2012	Jalisco	98.930933	0.30578092
2013	Jalisco	99.020749	0.29782355
2014	Jalisco	99.024804	0.32313406
2015	Jalisco	98.872013	0.33380977
2016	Jalisco	98.891847	0.33356165
2017	Jalisco	98.8454	0.34857949
2006	Michoacán	94.041593	0.26644232
2007	Michoacán	94.090293	0.30853548
2008	Michoacán	94.170238	0.30418128
2009	Michoacán	94.484632	0.35181934
2010	Michoacán	94.963083	0.35560084
2011	Michoacán	96.653097	0.40097787
2012	Michoacán	98.353077	0.39778148

2013	Michoacán	98.873901	0.43799389
2014	Michoacán	98.872218	0.28254838
2015	Michoacán	98.905384	0.26880599
2016	Michoacán	97.985367	0.3304129
2017	Michoacán	99.020033	0.21499128
2006	Morelos	97.697017	0.1496603
2007	Morelos	97.793161	0.11176187
2008	Morelos	98.002302	0.1102196
2009	Morelos	97.881669	0.09352852
2010	Morelos	98.150067	0.11815948
2011	Morelos	98.956658	0.11879015
2012	Morelos	99.654355	0.12170076
2013	Morelos	99.632324	0.16770372
2014	Morelos	99.612943	0.12064942
2015	Morelos	99.628154	0.10063267
2016	Morelos	99.569542	0.09561304
2017	Morelos	99.703094	0.0910224
2006	Nayarit	97.722802	0.10160484
2007	Nayarit	96.866567	0.09361999
2008	Nayarit	97.695096	0.09964615
2009	Nayarit	98.139841	0.14116876
2010	Nayarit	98.239673	0.15005666
2011	Nayarit	98.490432	0.13600595
2012	Nayarit	99.52863	0.06110351
2013	Nayarit	99.703087	0.05851546
2014	Nayarit	99.773433	0.13136971
2015	Nayarit	99.759068	0.08064024
2016	Nayarit	98.272497	0.0403733
2017	Nayarit	99.676153	0.08982489
2006	Nuevo León	98.056068	0.46680886
2007	Nuevo León	98.165742	0.45063659
2008	Nuevo León	97.946851	0.43138308
2009	Nuevo León	98.170573	0.40418207
2010	Nuevo León	98.150265	0.5120538
2011	Nuevo León	98.296892	0.50288877
2012	Nuevo León	99.569275	0.45473506
2013	Nuevo León	99.321861	0.46874477
2014	Nuevo León	98.975626	0.43009052
2015	Nuevo León	99.28668	0.42427022
2016	Nuevo León	99.410754	0.45504554
2017	Nuevo León	99.323832	0.42208059
2006	Oaxaca	91.890469	0
2007	Oaxaca	91.782254	0
2008	Oaxaca	92.352773	0
2009	Oaxaca	92.970601	0
2010	Oaxaca	93.632138	0

-			
2011	Oaxaca	94.483151	0.04026127
2012	Oaxaca	96.187724	0.05675622
2013	Oaxaca	97.950637	0.0663708
2014	Oaxaca	97.806488	0
2015	Oaxaca	98.196522	0
2016	Oaxaca	99.137639	0.03401548
2017	Oaxaca	98.69685	0.02393851
2006	Puebla	95.466984	0.21942949
2007	Puebla	95.662973	0.25109165
2008	Puebla	95.670424	0.27470505
2009	Puebla	96.378361	0.26523956
2010	Puebla	97.020434	0.31543417
2011	Puebla	98.021429	0.31200571
2012	Puebla	99.367909	0.30376736
2013	Puebla	99.266792	0.30119271
2014	Puebla	99.257446	0.31094017
2015	Puebla	99.368578	0.29468411
2016	Puebla	99.33632	0.28711852
2017	Puebla	99.369048	0.3715081
2006	Querétaro	96.239099	0.09955381
2007	Querétaro	96.336849	0.14154413
2008	Querétaro	96.562602	0.11968107
2009	Querétaro	96.723436	0.15774394
2010	Querétaro	97.116244	0.13578029
2011	Querétaro	97.762051	0.13775708
2012	Querétaro	99.190083	0.17806554
2013	Querétaro	98.953616	0.16643948
2014	Querétaro	99.19483	0.2115787
2015	Querétaro	99.145378	0.08410183
2016	Querétaro	98.763813	0.11251286
2017	Querétaro	98.846493	0.13764267
2006	Quintana Roo	95.281649	0.14062382
2007	Quintana Roo	95.230414	0.08211079
2008	Quintana Roo	95.09913	0.07392631
2009	Quintana Roo	96.675921	0.06743845
2010	Quintana Roo	97.843095	0.05358342
2011	Quintana Roo	98.251887	0.1133011
2012	Quintana Roo	99.422433	0.30510215
2013	Quintana Roo	99.287488	0.20999324
2014	Quintana Roo	98.851622	0.12089458
2015	Quintana Roo	98.314466	0.05432767
2016	Quintana Roo	98.090504	0.0620479
2017	Quintana Roo	98.062383	0.05698292
2006	San Luis Potosí	94.615103	0.08048302
2007	San Luis Potosí	94.779547	0.08041273
2008	San Luis Potosí	95.004608	0.08732818

2009	San Luis Potosí	95.640055	0.09359702
2010	San Luis Potosí	95.896955	0.08800639
2011	San Luis Potosí	96.725128	0.09970974
2012	San Luis Potosí	98.863315	0.13045828
2013	San Luis Potosí	98.807591	0.11985897
2014	San Luis Potosí	98.875656	0.12514496
2015	San Luis Potosí	98.810563	0.10033996
2016	San Luis Potosí	98.942381	0.09502591
2017	San Luis Potosí	98.770199	0.11815025
2006	Sinaloa	95.509629	0.34314353
2007	Sinaloa	96.079894	0.36199401
2008	Sinaloa	96.224668	0.36877935
2009	Sinaloa	96.45363	0.37013969
2010	Sinaloa	96.134145	0.37811653
2011	Sinaloa	97.155597	0.37293848
2012	Sinaloa	98.957062	0.42042304
2013	Sinaloa	99.009521	0.34485002
2014	Sinaloa	98.885364	0.25645911
2015	Sinaloa	99.44801	0.31552592
2016	Sinaloa	99.029114	0.29389104
2017	Sinaloa	99.071946	0.22560404
2006	Sonora	97.621362	0.34719625
2007	Sonora	98.161233	0.31244787
2008	Sonora	98.326184	0.33560816
2009	Sonora	98.318297	0.31943145
2010	Sonora	96.911374	0.36663103
2011	Sonora	98.986304	0.34863251
2012	Sonora	97.468901	0.39169395
2013	Sonora	99.509494	0.40248541
2014	Sonora	99.597376	0.38838384
2015	Sonora	97.380089	0.35587957
2016	Sonora	99.44223	0.32005634
2017	Sonora	99.604829	0.38474704
2006	Tabasco	94.168579	0.29890254
2007	Tabasco	94.14448	0.34400768
2008	Tabasco	94.321566	0.27147261
2009	Tabasco	94.662485	0.20191202
2010	Tabasco	95.618458	0.17482258
2011	Tabasco	97.224733	0.12819309
2012	Tabasco	99.118389	0.22876895
2013	Tabasco	98.89222	0.2487377
2014	Tabasco	98.836572	0.26518716
2015	Tabasco	98.856878	0.2435855
2016	Tabasco	98.562184	0.25413776
2017	Tabasco	99.069259	0.34537282
2006	Tamaulipas	97.280306	0.23474703

2007	Tamaulipas	97.161576	0.22305301
2008	Tamaulipas	97.371501	0.28530151
2009	Tamaulipas	97.364579	0.31997559
2010	Tamaulipas	97.768123	0.28545301
2011	Tamaulipas	97.970786	0.36239138
2012	Tamaulipas	99.075689	0.38782702
2013	Tamaulipas	99.474024	0.39992248
2014	Tamaulipas	99.545646	0.3894586
2015	Tamaulipas	99.48383	0.28002364
2016	Tamaulipas	99.341076	0.00014607
2017	Tamaulipas	99.382758	0.23488625
2006	Tlaxcala	97.920494	0.18255558
2007	Tlaxcala	97.900448	0.18255558
2008	Tlaxcala	98.0237	0.28281279
2009	Tlaxcala	98.171827	0.35148293
2010	Tlaxcala	98.158934	0.38418566
2011	Tlaxcala	99.29138	0.3667813
2012	Tlaxcala	99.729174	0.3072637
2013	Tlaxcala	99.809643	0.25689461
2014	Tlaxcala	99.806081	0.30156651
2015	Tlaxcala	99.839081	0.2364038
2016	Tlaxcala	99.863629	0.26159386
2017	Tlaxcala	99.832824	0.04581531
2006	Veracruz	93.092399	0.31836904
2007	Veracruz	92.71506	0.32285588
2008	Veracruz	93.094933	0.37171886
2009	Veracruz	93.425382	0.34393619
2010	Veracruz	93.410345	0.35497819
2011	Veracruz	94.709472	0.34479293
2012	Veracruz	98.606579	0.29298066
2013	Veracruz	98.753272	0.36535495
2014	Veracruz	98.382039	0.35368404
2015	Veracruz	98.737784	0.24077035
2016	Veracruz	98.082975	0.32124427
2017	Veracruz	98.477889	0.29910958
2006	Yucatán	93.703808	0.30712937
2007	Yucatán	93.785839	0.24266299
2008	Yucatán	93.887246	0.25890199
2009	Yucatán	94.010275	0.29439039
2010	Yucatán	94.027375	0.26041083
2011	Yucatán	94.454705	0.29121152
2012	Yucatán	98.88785	0.3082136
2013	Yucatán	98.027009	0.28874424
2014	Yucatán	97.684385	0.27992391
2015	Yucatán	97.522252	0.37418774
2016	Yucatán	97.193035	0.36398444

2017	Yucatán	97.240152	0.38071294
2006	Zacatecas	97.695274	0.15366807
2007	Zacatecas	97.668183	0.1141054
2008	Zacatecas	98.006972	0.1892962
2009	Zacatecas	98.162471	0.1548444
2010	Zacatecas	98.404096	0.13333573
2011	Zacatecas	98.789327	0.1558832
2012	Zacatecas	99.492742	0.06736319
2013	Zacatecas	99.588261	0.0464689
2014	Zacatecas	99.599528	0.07311263
2015	Zacatecas	99.589188	0.10118422
2016	Zacatecas	99.523553	0.12844126
2017	Zacatecas	99.626732	0.11011801

<u>PERÚ</u>

ID	time	DEPARTAMENTO	A_L	A_M	T_A	IDEC
1	2007	AMAZONAS	9.9	9.8	87.6	0.98100027
1	2008	AMAZONAS	10.7	10	88.1	0.8661679
1	2009	AMAZONAS	14.1	11.3	89.4	0.90400814
1	2010	AMAZONAS	18.6	9.8	89.6	0.88911907
1	2011	AMAZONAS	19.7	12.7	89.2	0.92773507
1	2012	AMAZONAS	21.1	12.9	90	0.91212712
1	2013	AMAZONAS	27.5	23.8	92	0.93424458
1	2014	AMAZONAS	39.3	35.1	91.9	0.9221564
1	2015	AMAZONAS	43.1	32	94	0.58582943
1	2016	AMAZONAS	40.4	38.7	93.9	0.81386945
2	2007	ÁNCASH	12	6.9	88.3	0.93264928
2	2008	ÁNCASH	12.2	7.3	89.3	0.87390723
2	2009	ÁNCASH	17.8	10.7	90	0.90084263
2	2010	ÁNCASH	22.2	12.9	90.6	0.82523582
2	2011	ÁNCASH	22.1	11	92.3	0.86244161
2	2012	ÁNCASH	22.4	7.4	93.5	0.9108439
2	2013	ÁNCASH	23.5	10.9	93.5	0.92005252
2	2014	ÁNCASH	34	17.8	94.1	0.92328906
2	2015	ÁNCASH	43.3	24.6	95.7	0.94924946
2	2016	ÁNCASH	37.3	26.2	96.2	0.95029433
3	2007	APURÍMAC	8.2	7.3	89.1	0.96099238
3	2008	APURÍMAC	5.1	4.4	89.8	0.85840672
3	2009	APURÍMAC	8.2	6.9	89.9	0.93991663
3	2010	APURÍMAC	16.4	8.5	91.3	0.9055318
3	2011	APURÍMAC	11.6	5.4	92.4	0.95660103
3	2012	APURÍMAC	14.5	7.7	93.5	0.93755633
3	2013	APURÍMAC	19.6	9.5	93.9	0.94063185
3	2014	APURÍMAC	31.1	20.8	94.7	0.93450822

3	2015	APURÍMAC	36.2	17.6	96.2	0.85135259
3	2016	APURÍMAC	38	35.1	97	0.76001991
4	2007	AREQUIPA	31.3	10.7	96.9	0.96877795
4	2008	AREQUIPA	32.1	14.4	97.4	0.88796213
4	2009	AREQUIPA	38.2	23.7	97.5	0.91509589
4	2010	AREQUIPA	48.1	25.3	97.6	0.81855266
4	2011	AREQUIPA	49.3	21.2	97.5	0.78097063
4	2012	AREQUIPA	50.3	19.6	98.1	0.96911807
4	2013	AREQUIPA	47.4	21.5	98	0.93690255
4	2014	AREQUIPA	61	32.9	98.3	0.95962192
4	2015	AREQUIPA	65.2	31.8	98.8	0.91630491
4	2016	AREQUIPA	59	38	99	0.92748484
5	2007	AYACUCHO	7.8	6.2	87.7	0.89775955
5	2008	AYACUCHO	8.2836	8.6	88.7	0.84516109
5	2009	AYACUCHO	11.315398	7.7	88.5	0.92506608
5	2010	AYACUCHO	14.05825	12.1	89.7	0.88251822
5	2011	AYACUCHO	14.592463	5.5	90.6	0.93897201
5	2012	AYACUCHO	13.7	4.3	92.3	0.87546264
5	2013	AYACUCHO	21.8	10.1	93.3	0.85158731
5	2014	AYACUCHO	34.6	25.6	94	0.85731101
5	2015	AYACUCHO	48.3	30.1	96.6	0.8202375
5	2016	AYACUCHO	52.1	48.6	97.8	0.80026816
6	2007	CAJAMARCA	11.6	10.3	88.3	0.96712089
6	2008	CAJAMARCA	12.3192	15.8	89.3	0.85741437
6	2009	CAJAMARCA	16.828027	13.5	89.7	0.92339625
6	2010	CAJAMARCA	20.907141	13.6	90.5	0.91099648
6	2011	CAJAMARCA	21.701612	9.3	92	0.89477333
6	2012	CAJAMARCA	17	9.5	92.1	0.88010129
6	2013	CAJAMARCA	23.3	13.5	92.6	0.86086967
6	2014	CAJAMARCA	31.6	23.4	93.3	0.86393755
6	2015	CAJAMARCA	37.1	26	95.2	0.8973
6	2016	CAJAMARCA	34.1	31.9	95.8	0.87609754
7	2007	CALLAO	24.7	6.9	96.8	0.96322947
7	2008	CALLAO	26.2	10.7	96.5	0.89577784
7	2009	CALLAO	30.7	14.1	96.9	0.87744796
7	2010	CALLAO	37.6	16.4	97	0.87220606
7	2011	CALLAO	41.2	15.4	97.5	0.76507672
7	2012	CALLAO	44.8	18	97.9	0.98665224
7	2013	CALLAO	41.2	18.9	97.1	0.99946283
7	2014	CALLAO	57.6	31.9	97.7	1
7	2015	CALLAO	64.7	35.1	98.1	0.9470239
7	2016	CALLAO	60.7	44.6	98.1	1
8	2007	CUSCO	10.6	4.8	90.5	0.96144698
8	2008	CUSCO	10.9	6.4	91.2	0.8638574
8	2009	CUSCO	15.4	8.8	91.9	0.93707246
8	2009	CUSCO	23.1	13.5	92.1	0.90933524
o	2010	CUSCO	43.1	13.3	74.1	0.70733324

8	2011	CUSCO	22.9	11.5	93.6	0.91120433
8	2012	CUSCO	21.5	8.9	95	0.8443776
8	2013	CUSCO	25.5	14.5	94.4	0.79694029
8	2014	CUSCO	36.4	24.5	95	0.82622397
8	2015	CUSCO	48.8	27.7	96.8	0.88245761
8	2016	CUSCO	46.5	37	97.3	0.87685627
9	2007	HUANCAVELICA	6.6	6.4	88	0.897949
9	2008	HUANCAVELICA	7.0092	13.3	89.7	0.83785655
9	2009	HUANCAVELICA	9.5745672	14	90	0.91208402
9	2010	HUANCAVELICA	15	11.8	89.9	0.82092469
9	2011	HUANCAVELICA	10.8	6.9	91.2	0.87873374
9	2012	HUANCAVELICA	13.6	7.9	92.1	0.90601463
9	2013	HUANCAVELICA	17.3	9.7	91.6	0.89041161
9	2014	HUANCAVELICA	28.7	21	92.5	0.86084217
9	2015	HUANCAVELICA	36.1	22.9	94.9	0.89428443
9	2016	HUANCAVELICA	41.7	40.5	96.6	0.88304961
10	2007	HUÁNUCO	6.6	4.8	85.7	0.94884985
10	2008	HUÁNUCO	6.7	6	86.7	0.82615357
10	2009	HUÁNUCO	10.1	5.2	86.6	0.86220041
10	2010	HUÁNUCO	12.4	6.7	88.2	0.78464193
10	2011	HUÁNUCO	14.6	6.8	89.3	0.82919314
10	2012	HUÁNUCO	12.9	4.9	90.3	0.88959829
10	2013	HUÁNUCO	17	8.4	90.9	0.83706395
10	2014	HUÁNUCO	26.4	16	91.6	0.87903071
10	2015	HUÁNUCO	31.9	17.2	94.2	0.81253929
10	2016	HUÁNUCO	31.9	28.3	94.8	0.78482457
11	2007	ICA	17.9	9.3	93	0.91937498
11	2008	ICA	21.1	12	96.3	0.66660094
11	2009	ICA	29.1	22	96.2	0.87686705
11	2010	ICA	39.8	24.4	96.5	0.81559371
11	2011	ICA	37.6	18.5	96.9	0.80769015
11	2012	ICA	35.7	16.8	97.3	0.90703021
11	2013	ICA	37.2	21.3	97.2	0.91347507
11	2014	ICA	49.2	32.2	97.4	0.93359458
11	2015	ICA	58.2	34.6	97.9	0.90424959
11	2016	ICA	52.1	39.7	98.1	0.95998463
12	2007	JUNÍN	16.7	10.3	93.3	0.9767118
12	2008	JUNÍN	17.1	11.2	94.9	0.87702696
12	2009	JUNÍN	24.2	17.5	95.2	0.93752251
12	2010	JUNÍN	28.6	13	94.7	0.91916657
12	2011	JUNÍN	29.8	15.5	95	0.88806479
12	2012	JUNÍN	29.8	12.8	95.4	0.95918604
12	2013	JUNÍN	34.4	19.2	95.3	0.93730077
12	2014	JUNÍN	44.4	30.1	96	0.95126376
12	2015	JUNÍN	51.7	32.2	97.1	0.93878415
12	2016	JUNÍN	47.8	40.3	96.9	0.91650494

13	2007	LA LIBERTAD	15.4	7.2	91.6	0.93474807
13	2008	LA LIBERTAD	15.4	8.3	92.1	0.88480415
13	2009	LA LIBERTAD	25.9	17.7	92.5	0.9309435
13	2010	LA LIBERTAD	26.3	13.2	93.2	0.89016602
13	2011	LA LIBERTAD	27.6	13.3	93.7	0.88484114
13	2012	LA LIBERTAD	31.2	13.7	94.5	0.85773756
13	2013	LA LIBERTAD	31.9	16	94.8	0.82579581
13	2014	LA LIBERTAD	38.4	21.8	95.5	0.86248487
13	2015	LA LIBERTAD	42.5	23.2	96.6	0.86298346
13	2016	LA LIBERTAD	39.8	30.5	96.7	0.8370109
14	2007	LAMBAYEQUE	20	8	91.7	0.88651378
14	2008	LAMBAYEQUE	18.1	10.5	93.7	0.8915265
14	2009	LAMBAYEQUE	25.6	14.8	94.1	0.91410535
14	2010	LAMBAYEQUE	34.1	16.8	94.7	0.84169193
14	2011	LAMBAYEQUE	33.5	14.8	95.3	0.85403374
14	2012	LAMBAYEQUE	31.2	10.5	95.9	0.9454148
14	2013	LAMBAYEQUE	31.4	11.8	95.9	0.92606648
14	2014	LAMBAYEQUE	43.1	22.7	96.3	0.92953231
14	2015	LAMBAYEQUE	46.6	21.9	97.1	0.90108563
14	2016	LAMBAYEQUE	48.3	35.8	97.4	0.8611719
15	2007	LORETO	3.7	2.2	88.1	0.99051683
15	2008	LORETO	2.1	0.7	87.9	0.86667325
15	2009	LORETO	4.5	1.1	87	0.86170892
15	2010	LORETO	5	1	87.9	0.79252164
15	2011	LORETO	6.1	1.4	87.8	0.78524467
15	2012	LORETO	6.3	1.4	87	0.94964826
15	2013	LORETO	7.6	1.9	87.5	0.94795371
15	2014	LORETO	13.2	4.8	89.1	0.97387658
15	2015	LORETO	18.1	5.8	90.6	0.92733421
15	2016	LORETO	17.7	12.4	91.4	0.91597812
16	2007	MADRE DE DIOS	8.7	2.6	94.2	0.99084996
16	2008	MADRE DE DIOS	10.4	5.7	96.4	0.81500742
16	2009	MADRE DE DIOS	12.4	4.2	96	0.91210653
16	2010	MADRE DE DIOS	16.3	6.2	95.1	0.88362365
16	2011	MADRE DE DIOS	17.2	7.7	95.7	0.77031399
16	2012	MADRE DE DIOS	19.6	6.8	97.3	0.99818815
16	2013	MADRE DE DIOS	17.7	5.4	97	0.97191151
16	2014	MADRE DE DIOS	33.6	17.1	97	0.42412218
16	2015	MADRE DE DIOS	40	17.6	97	0.53224447
16	2016	MADRE DE DIOS	41.3	26.6	97.4	0.99190516
17	2007	MOQUEGUA	28.8	13.6	96.1	0.93124582
17	2008	MOQUEGUA	29.5	16	97	0.85398277
17	2009	MOQUEGUA	37.1	26.8	97.2	0.95234747
17	2010	MOQUEGUA	44.1	24.5	97	0.90783097
17	2011	MOQUEGUA	51.4	29.1	97.3	0.92790621
17	2012	MOQUEGUA	59.4	37.5	98.1	0.89928942

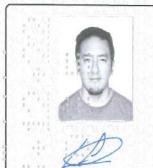
17	2013	MOQUEGUA	63.7	43.3	97.8	0.95610887
17	2014	MOQUEGUA	69.1	52.7	98.3	0.98645958
17	2015	MOQUEGUA	73.9	45	98.4	0.99736467
17	2016	MOQUEGUA	69.2	53.7	98.5	0.99856235
18	2007	PASCO	11.4	7.9	92.8	0.9829423
18	2008	PASCO	12.5	10.4	93.8	0.85882412
18	2009	PASCO	20.8	13.4	93.5	0.88167462
18	2010	PASCO	25.6	12	93	0.85345502
18	2011	PASCO	18.8	7.3	96.1	0.85274397
18	2012	PASCO	24.3	10.2	96.3	0.91833621
18	2013	PASCO	31.1	18.4	95.1	0.91543667
18	2014	PASCO	43.2	32	96	0.85528081
18	2015	PASCO	46.9	29.7	96.4	0.92698082
18	2016	PASCO	45	35.5	97	0.91797037
19	2007	PIURA	13.5	5.7	91	0.93097066
19	2008	PIURA	13.7	7.7	91.9	0.86199369
19	2009	PIURA	20.1	11.5	93.1	0.94963318
19	2010	PIURA	26.2	11.9	93.3	0.9020309
19	2011	PIURA	28.8	13.8	93.3	0.92647359
19	2012	PIURA	28.8	12.5	94.2	0.97593007
19	2013	PIURA	30.3	16.5	94.5	0.92457861
19	2014	PIURA	47.6	29.7	95.2	0.95182995
19	2015	PIURA	51.8	31.8	96.6	0.924669
19	2016	PIURA	45.8	37.8	96.7	0.9012436
20	2007	PUNO	8.7	7.7	93.8	0.98384385
20	2008	PUNO	9.2394	14.3	94.6	0.87749775
20	2009	PUNO	18.2	12.5	95	0.93603111
20	2010	PUNO	22.61168	10.9	95.3	0.8951999
20	2011	PUNO	18.5	7.5	96.5	0.89932195
20	2012	PUNO	19.5	7.6	97	0.87796781
20	2013	PUNO	25.2	16.3	97.3	0.90085402
20	2014	PUNO	42.4	30.2	97.7	0.90207482
20	2015	PUNO	50.6	32.8	98.7	0.95558073
20	2016	PUNO	47.2	38.8	99.1	0.87227611
21	2007	SAN MARTÍN	6.4	3.8	90.8	0.97591659
21	2008	SAN MARTÍN	7.2	3.6	90.7	0.8667929
21	2009	SAN MARTÍN	11.2	5.7	91.2	0.93508009
21	2010	SAN MARTÍN	17.2	6.2	91.7	0.95674031
21	2011	SAN MARTÍN	17.1	7.5	92.9	0.90684604
21	2012	SAN MARTÍN	17.9	7.1	93.5	0.91546576
21	2013	SAN MARTÍN	26.7	14	93.4	0.86767992
21	2014	SAN MARTÍN	35.7	22.1	94.2	0.93784238
21	2015	SAN MARTÍN	36.7	19.8	96	0.96471032
21	2016	SAN MARTÍN	38.5	30.9	96.5	0.97085726
22	2007	TACNA	25.6	10.2	96.7	0.9513725
22	2008	TACNA	31.5	14.9	97.7	0.88170168

22	2009	TACNA	35.4	23.3	97.9	0.96862763
22	2010	TACNA	47.8	29.9	97.4	0.9811486
22	2011	TACNA	48.4	28.6	97.3	0.92176576
22	2012	TACNA	55.2	36	97.7	0.9719165
22	2013	TACNA	60.3	40.9	97.8	0.98213518
22	2014	TACNA	67.3	51	98.1	0.97960898
22	2015	TACNA	78.1	53.5	98.7	0.95963758
22	2016	TACNA	76.8	64.3	99	0.96447078
23	2007	TUMBES	14.9	7.8	97.1	0.93133561
23	2008	TUMBES	13.7	5.8	95.5	0.8900299
23	2009	TUMBES	17.9	10.3	95.7	0.84094167
23	2010	TUMBES	28.8	14.4	96.1	0.78890461
23	2011	TUMBES	25.2	10.7	96.7	0.84915979
23	2012	TUMBES	25.9	11.1	95.9	0.98756833
23	2013	TUMBES	27.5	12.4	97	0.97462807
23	2014	TUMBES	38.9	17.4	97.1	0.94371642
23	2015	TUMBES	43.3	21.9	97.9	0.88885052
23	2016	TUMBES	33.6	21.4	97.8	0.98921193
24	2007	UCAYALI	6.3	2.1	90.5	0.95505184
24	2008	UCAYALI	4	1.6	89.7	0.85316741
24	2009	UCAYALI	6.1	1.6	90	0.87641009
24	2010	UCAYALI	14.4	4.1	91.3	0.79054646
24	2011	UCAYALI	15	4.3	91.8	0.78745455
24	2012	UCAYALI	15.3	4.4	92.7	0.88047223
24	2013	UCAYALI	16.8	5.1	93	0.91206163
24	2014	UCAYALI	21.8	7.8	93.1	0.94724333
24	2015	UCAYALI	29	10.3	93.9	0.93948004
24	2016	UCAYALI	25.6	15.9	93.9	0.94845155

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

ACTA DE DISERTACIÓN PÚBLICA

No. 00163 Matrícula: 2163803247


RENDIMIENTO ESCOLAR Y DESCENTRALIZACIÓN EDUCATIVA EN MÉXICO Y PERÚ. UN ANÁLISIS PARA EL PERIODO 2006-2017.

En la Ciudad de México, se presentaron a las 12:00 horas del dia 21 del mes de noviembre del año 2022 en la Unidad Iztapalapa de la Universidad Autónoma Metropolitana, los suscritos miembros del jurado:

DR. DAVID ARELLANO GAULT

DR. LUIS HUESCA REYNOSO

DR. ROBERTO GUTIERREZ RODRIGUEZ

LUIS AMADO SANCHEZ ALCALDE ALUMNO

REVISÓ

MTRA. ROSALIA SERRANO DE LA PAZ DIRECTORA DE SISTEMAS ESCOLARES Bajo la Presidencia del primero y con carácter de Secretario el último, se reunieron a la presentación de la Disertación Pública cuya denominación aparece al margen, para la obtención del grado de:

DOCTOR EN ESTUDIOS SOCIALES (ECONOMIA SOCIAL)

DE: LUIS AMADO SANCHEZ ALCALDE

y de acuerdo con el artículo 78 fracción IV del Reglamento de Estudios Superiores de la Universidad Autónoma Metropolitana, los miembros del jurado resolvieron:

aprobar

Acto continuo, el presidente del jurado comunicó al interesado el resultado de la evaluación y, en caso aprobatorio, le fue tomada la protesta.

DIRECTOR DE LA DIVISIÓN DE CSH-

MTRO. JOSE REGULO MORALES CALDERON

VOCAL

DR. LUIS HUESCA REYNOSO

PRESIDENTE

DR. DAVID ARELLANO GAULT

SECRETARIO

DR. ROBERTO GUTIERREZ RODRIGUEZ