

División de Ciencias Básicas e Ingeniería Departamento de Matemáticas

"Análisis de bifurcación de un modelo de población de

mosquitos con una tasa de liberación saturada

de mosquitos estériles"

Tesis que presenta

Roberto Albarrán García

Matrícula: 2183802424

Para obtener el grado de Maestro en Ciencias (Matemáticas)

Director: Dr. José Antonio García Rodríguez

Jurados Dr. Gamaliel Blé González Dra. Martha Álvarez Ramírez Dr. Baltazar Aguirre Hernández Iztapalapa, Ciudad de México, marzo 2021.

A la memoria de mi madre

En primer lugar deseo expresar mi agradecimiento al director de esta tesis, Dr. José Antonio García Rodríguez. Su disponibilidad para guiarme a lo largo de este trabajo, así como las largas horas dedicadas a discutir y aclarar mis dudas, redundaron benéficamente en la calidad de los resultados obtenidos.

Asimismo, agradezco a la Dra. Martha Álvarez Ramírez y el M. en C. Marco Polo García Rivera su participación activa y apoyo que me brindaron en el desarrollo de esta tesis.

Quiero extender un sincero agradecimiento a los doctores Martha Alvarez Ramírez, Baltazar Aguirre Hernández y Gamaliel Blé González, por haber aceptado ser evaluadores de este trabajo de tesis.

Y por supuesto, el agradecimiento más profundo y sentido va para mi esposa, mis hijos y nietos, por su comprensión y solidaridad con este proyecto, por el tiempo que me han concedido, un tiempo robado a ellos.

Este proyecto de tesis fue llevado a cabo con el apoyo de la beca de CONACyT con número 924692.

Índice general

In	Introducción					
1.	. Bifurcaciones					
	1.1.	Sistemas de ecuaciones diferenciales en \mathbb{R}^2 con dos valores propios cero $\ldots \ldots \ldots$	6			
	1.2.	Resultante	10			
2.	2. Modelo de población de mosquitos silvestres y estériles con tasa de liberación saturada					
	2.1.	Ecuaciones de movimiento	13			
	2.2.	Puntos de equilibrio	14			
	2.3.	Estudio de la estabilidad de los puntos de equilibrio	25			
3.	3. Bifurcación de Hopf					
	3.1.	Análisis de la bifurcación de Hopf	39			
4.	. Bifurcación de Takens-Bogdanov					
	4.1.	Condiciones necesarias para bifurcación de Takens-Bogdanov	47			
	4.2.	Bifurcación de cúspide	51			
	4.3.	Despliegue de la bifurcación de Takens-Bogdanov para $(w^*, g^*) = (1, 1) \dots $	59			

5. Conclusiones

Apéndices					
Apéndice A. Coeficientes de Liapunov	77				
Apéndice B. Teorema de Hartman-Grobman	80				
Apéndice C. Variedad central y forma normal: ciclos límite	81				
Apéndice D. Coeficientes del sistema de ecuaciones	82				
Apéndice E. Expresiones de los $\delta_6, \ldots, \delta_{14}$	83				
Bibliografía	91				

75

Bibliografía

Índice de figuras

1.1.	Flujo en un entorno del punto tipo cúspide.	9
1.2.	Diagrama de bifurcación y retratos fase de (1.10) . Figura tomada de $[12]$	10
2.1.	El flujo del sistema (2.2) es positivamente invariante en Ω	15
2.2.	Gráfica de $F_1(N)$ con $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos en el eje N son las raíces N_1 y N_2 del polinomio $G_1(N)$.	21
2.3.	Gráfica de $F_2(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos azules en el eje N son las raíces N_1 y N_2 de $G_1(N)$	22
2.4.	Gráfica de $F_3(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos de color azul en el eje N son las raíces N_1 y N_2 del polinomio $G_1(N)$	24
2.5.	Gráfica de $F_1(N)F_3(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos de color azul en el eje N son las raíces N_1 y N_2 del polinomio $G_1(N)$.	25
2.6.	Retratos fase del sistema (2.5) con $\mu_1 = \frac{1}{45}$, $\xi_1 = \frac{7}{45}$, $\mu_2 = \frac{1}{30}$, $\xi_2 = \frac{1}{90}$. (a) No hay puntos de equilibrio positivos cuando $b = \frac{2}{15}$. (b) Existe un único punto de equilibrio el cual es una cúspide cuando $b = \frac{1}{9}$. (c) Existen dos puntos de equilibrio positivos cuando $b = \frac{11}{100}$ son: E_1^* el cual es una silla, mientras que E_2^* es un nodo estable.	36
3.1.	Tres ciclos límite donde los ciclos límite más internos y externos (curvas azules punteadas) son inestables y el ciclo del límite medio (curva roja continua) es estable. Las flechas indican las direcciones	

46

en espiral de las trayectorias hacia el ciclo límite estable y el foco estable (en color rojo). Figura tomada de [24].

4.1.	Gráfica del polinomio $P(w^*)$, donde el punto azul en el eje w^* es la raíz $w^* = 0.26679924$	55
4.2.	Punto cúspide para $w^* = g^* = 1 \operatorname{con} b = 7/45$. Figura tomada de [24].	59
4.3.	Diagrama de bifurcación y su correspondiente retrato de fase del sistema (2.5). El origen es el punto de bifurcación Takens-Bogdanov (TB), y las curva de bifurcación SN se refiere a silla-nodo, H a Hopf y HL a lazo homoclínico.	60
4.4.	Gráfica de la función $\frac{-405b^2+72b-8}{324(9b+4)}$, la cual es negativa en el intervalo $\frac{4}{45} < b < \frac{2}{9}$.	67
4.5.	Gráfica de la función $\frac{2187b^3 - 81b^2 + 36b - 64}{243b(9b+4)}$, la cual es negativa en el intervalo $\frac{4}{45} < b < \frac{2}{9}$	68

Introducción

Existen muchas enfermedades transmitidas por mosquitos como chikungunya, dengue, malaria, fiebre amarilla, el zika, etc., las cuales se transmiten a los seres humanos por las picaduras de los mosquitos que se alimentan de sangre. En áreas tropicales y subtropicales estas enfermedades siguen en ascenso y se están volviendo un problema de salud pública. Hasta ahora no hay vacunas disponibles para muchos de estos virus, que constituyen una amenaza significativa para la salud mundial. Por lo que el control y la reducción de las poblaciones de mosquitos adultos, y el control de las poblaciones de larvas son medidas importantes para prevenir las enfermedades transmitidas por estos insectos.

El uso de insecticidas en grandes cantidades inevitablemente da lugar a la resistencia de los mosquitos, además de que algunos químicos de estos insecticidas afectan la salud humana ([7, 29]). Por lo que se han propuesto otras estrategias para reducir el número de mosquitos silvestres y controlar las transmisiones de enfermedades producidas por los mosquitos.

En los últimos años se ha demostrado que la técnica del insecto estéril es útil y efectiva para reducir o erradicar a los mosquitos [1, 8, 13, 18, 29, 31]. Éste es un método de control biológico de insectos [15, 25], donde una masa de mosquitos machos es expuesta a radiación y, por lo tanto, se vuelven sexualmente estériles, posteriormente estos insectos estériles son liberados en la naturaleza. Como consecuencia, los machos estériles compiten con los machos silvestres para aparearse con las hembras, de tal forma que las hembras que se aparean con machos estéries no tienen descendencia, lo que reduce su tasa de reproducción. En este proceso, la elección del número de mosquitos estériles y la estrategia de liberación adecuada son particularmente importantes. Esta técnica ha logrado cierto éxito en el control de varias plagas de insectos, incluyendo la del gusano barrenador, la de la mosca mediterránea de la fruta y la de la mosca tsetse [27, 6].

Los modelos matemáticos se han utilizado ampliamente en la investigación y evaluación del impacto de la liberación de mosquitos estériles, y el desarrollo de modelos matemáticos apropiados puede responder potencialmente a importantes problemas ecológicos, epidemiológicos y de control de plagas en general. Ver [3, 4, 16, 31] y sus referencias.

En esta tesis estudiamos un modelo de población de mosquitos con una tasa de liberación de mosquitos estériles saturada no lineal, como fue propuesto por Cai et. al [10, 30]. Este sistema dinámico es descrito por un sistema de dos ecuaciones diferenciales ordinarias, en las variables w y g, que representan a los mosquitos estériles y salvajes, respectivamente, y que depende de cuatro parámetros $\mu_1, \mu_2,$ ξ_1 y ξ_2 . Además, este modelo considera que ambas poblaciones tienen la misma tasa de mortalidad. En particular estamos interesados en analizar la dinámica y las bifurcaciones del modelo.

Los resultados presentados en esta tesis han estado inspirados en el artículo de Huang et al. [24]. La organización de esta tesis es la siguiente. Para hacer el trabajo autocontenido y uniformizar la notación, en el capítulo 1 damos información básica necesaria sobre bifurcaciones, los cuales nos permiten concluir algunos de los resultados en los capítulos posteriores. En el capítulo 2 introducimos el modelo que describe la dinámica de los mosquitos estériles y salvajes, y continuamos con el estudio de la existencia de puntos de equilibrio. Demostramos que el origen es siempre punto de equilibrio, y que hay a lo más otros dos puntos de equilibrio con coordenadas positivas, los cuales dependen de los valores de los parámetros. Como consecuencia, un cambio en los valores de los parámetros se traduce en un cambio en el comportamiento dinámico del sistema, así como en la ubicación y estabilidad de los puntos de equilibrio del sistema. El estudio del comportamiento del sistema cerca de los puntos de equilibrio, nos permite demostrar que el origen es localmente asintóticamente estable, y en el caso de que exista un único punto de equilibrio positivo E^* , este es un silla-nodo o una cúspide. Mientras que en el caso de existir dos puntos de equilibrio positivos, entonces uno de ellos, llamado E_1^* , es un punto silla, mientras que el otro, nombrado E_2^* , es un foco o nodo (estable o inestable), o bien un centro lineal.

El estudio de la estabilidad lineal nos sugiere que este modelo tiene algunos fenómenos de bifurcación complejos como la bifurcación de Hopf en E_2^* , y la cúspide nilpotente y la bifurcación Takens-Bogdanov en E^* . Sin embargo, para determinar la posición de los puntos de equilibrio positivos, debemos trabajar con los ceros de un polinomio de grado cinco, lo cual hace difícil el análisis completo de la bifurcación. Con el fin de obtener información, nos limitaremos al caso donde las coordenadas cumplen $w^* = g^*$. Biológicamente esto significa que la población de mosquitos estériles y salvajes está balanceada en el punto de equilibrio.

Los cambios de signo en la parte real de los valores propios complejos de la matriz de linealización en un entorno de E_2^* , dan origen a valores propios imaginarios puros, esto sugiere la existencia de una bifurcación de Hopf, la cual es analizada en el capítulo 3. Demostramos que hay una bifurcación de Hopf de codimensión 3, de la que emergen tres ciclos límite, siendo el exterior inestable. En términos del modelo esto significa que el coeficiente de la tasa de liberación de mosquitos estériles es el parámetro más importante y sensible para afectar la dinámica no lineal del modelo y para determinar el éxito del programa de liberación de mosquitos estériles. Existe un coeficiente crítico de tasa de liberación de mosquitos estériles, por debajo del cual los mosquitos salvajes y estériles que interactúan coexistirán en forma de múltiples oscilaciones periódicas y estados estacionarios.

En el capítulo 4 demostramos que bajo ciertas condiciones, el equilibrio E^* es una cúspide de codimensión 2 ó 3. Tomando en cuenta esto, elegimos los parámetros, ξ_1 y μ_1 , como parámetros de bifurcación para el sistema y mostramos la existencia de la bifurcación de Takens-Bogdanov de codimensión 2 en un entorno del punto E^* con $w^* = g^* = 1$. Finalmente mostramos el diagrama de bifurcación global y todos los posibles retratos fase en un entorno pequeño del punto cúspide. Por último, damos la interpretación de las regiones de este diagrama en términos de la dinámica de la población de mosquitos.

Todos los cálculos tediosos, pero necesarios para obtener los resultados presentados en esta tesis, así como las gráficas, fueron realizados con los programas *Mathematica* y *Maple*.

Capítulo 1

Bifurcaciones

Una ecuación diferencial ordinaria con coeficientes reales se dice que es *estruc*turalmente estable (para definiciones precisas, véase [21, 34]), cuando un pequeño cambio en los coeficientes produce una ecuación diferencial perturbada, cuya familia de curvas solución son cualitativamente las mismas que las de la ecuación diferencial original.

Una bifurcación es un cambio en la estructura cualitativa del diagrama de fase de una ecuación diferencial

$$x' = f(x, \lambda) \tag{1.1}$$

donde $x \in \mathbb{R}^m$, la cual depende de un parámetro $\lambda \in \mathbb{R}^n$ en una vecindad de un valor crítico λ_0 . La *codimensión* de una bifurcación es el número de parámetros que deben variar para que la bifurcación ocurra, este número es igual o menor a n. Generalmente se hace un proceso de normalización para encontrar esta codimensión.

Por otro lado, dado un campo vectorial V definido por (1.1), en λ_0 se puede buscar una familia de campos vectoriales que contengan V y que satisfaga un criterio de *estabilidad estructural*. Esta familia se llama una *deformación versal* (o *desdoblamiento universal*) de V (ver [21]).

Una de las bifurcaciones más estudiadas es la bifurcación de Hopf. A continuación daremos su estructura. En este caso $x \in \mathbb{R}^2$ y $\lambda \in \mathbb{R}$. Luego para cada valor del parámetro λ existe un punto de equilibrio x_{λ} y $D_x f(x_{\lambda}, 0)$ tiene valores propios

$$\mu_{\lambda} = \alpha_{\lambda} \pm \beta_{\lambda} i,$$

donde x_{λ} y μ_{λ} son suaves con respecto a λ .

Para $\lambda = 0$ se supone que $\alpha_{\lambda} = 0$, $\beta_{\lambda} \neq 0$, y que el primer coeficiente de Liapunov σ es distinto de cero en este punto, entonces tenemos el siguiente resultado

Teorema 1 (La bifurcación de Hopf). Si $\sigma < 0$, entonces para cada $\lambda > 0$ existe una única órbita periódica asintóticamente estable que se bifurca del punto de equilibrio x_0 . Si $\sigma > 0$, entonces para cada $\lambda < 0$ existe una única órbita periódica inestable que se bifurca del punto de equilibrio x_0 .

Definición 1. El caso $\sigma < 0$ se llama una bifurcación de Hopf supercrítica, y $\sigma > 0$ es una bifurcación de Hopf subcrítica.

La bifurcación de Hopf tiene codimensión uno. Para mayores detalles ver [33].

1.1. Sistemas de ecuaciones diferenciales en \mathbb{R}^2 con dos valores propios cero

En esta sección vamos a dar condiciones suficientes para que de algunos sistemas de ecuaciones diferenciales en el plano tipo Takens-Bogdanov, sean topológicamente equivalente a su deformación versal (o desdoblamiento universal).

Las bifurcaciones de Takens-Bogdanov de diferentes codimensiones juegan un papel importante en el análisis del comportamiento de un sistema dinámico, ya que implican la aparición de órbitas homoclínicas en puntos de equilibrio silla cerca de los valores críticos de los parámetros. Supongamos que el sistema en el plano está definido por

$$\begin{aligned} \dot{x} &= P(x, y), \\ \dot{y} &= Q(x, y), \end{aligned} \tag{1.2}$$

donde el punto denota la derivada con respecto de t, y las funciones P, Q son analíticas en un entorno del origen (0,0) y éste es un punto de equilibrio aislado. Sea A = Df(0) la matriz de la parte lineal.

En el caso de que A tenga un único valor propio cero, es decir, det A = 0, pero tr $A \neq 0$, en el libro de Adronov et al. [2], pág. 338, se demuestra que el sistema (1.2) puede ser escrito en la forma

$$\dot{x} = p_2(x, y), \tag{1.3}$$

$$\dot{x} = y + q_2(x, y),$$
 (1.4)

donde $p_1 ext{ y } p_2$ son analíticas en un entorno del origen y tienen expansión que inicia con términos de segundo grado en $x ext{ y } y$. El siguiente teorema está demostrado en la sección 12.1, pág. 340 del libro de Andronov et al. [2]. **Teorema 2.** Sea el origen un punto de equilibrio aislado del sistema analítico (1.3). Sea $y = \phi(x)$ una solución de la ecuación $y + q_2(x, y) = 0$ en un entorno del origen, y la expansión de la función $\psi(x) = p_2(x, \phi(x))$ en un entorno de x = 0tiene la forma $\psi(x) = a_m x^m + \ldots$, donde $m \ge 2$ y $a_m \ne 0$. Entonces

- 1. para m es impar y $a_m > 0$, el origen es un nodo inestable
- 2. para m impar y $a_m < 0$, el origen es (topológicamente) una silla
- 3. para m par, el origen es una silla-nodo.

En el caso de que la matriz A tenga dos valores propios cero, es decir, det A = 0y trA = 0, el sistema (1.2) puede ser escrito en la forma normal

$$\dot{x} = y
\dot{y} = a_k x^k [1 + h(x)] + b_n x^n y [1 + g(x)] + y^2 R(x, y)$$
(1.5)

donde h(x), g(x) y R(x, y) son analíticas en un entorno del origen, h(0) = g(0) = 0, $k \ge 2$, $a_k \ne 0$ y $n \ge 1$. Ver los detalles en [2], pág. 356. Esta forma normal nos permite caracterizar la naturaleza del punto de equilibrio, lo cual se ve reflejado en el siguiente resultado.

Teorema 3. Sea $k = 2m \text{ con } m \ge 1 \text{ en } (1.5)$. Entonces el origen en (1.2) es:

- 1. una cúspide si $b_n = 0$ y también si $b_n \neq 0$ y $n \ge m$,
- 2. un punto silla-nodo si $b_n \neq 0$ y n < m.

La demostración de este teorema se puede consultar en [2] páginas 357-362.

Denotemos f(x, y) = (P(x, y), Q(x, y)), y supongamos

$$A = Df(0,0) = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right),$$

esta matriz está en su forma de Jordan y tiene dos valores propios cero, en este contexto ocurre la *bifurcación de Takens-Bogdanov*.

Ahora consideremos la familia de campos vectoriales

$$\begin{aligned} \dot{x} &= f(x, y, \mu), \\ \dot{y} &= g(x, y, \mu), \end{aligned} \tag{1.6}$$

donde $x, y \in \mathbb{R}, \mu \in \mathbb{R}^m, m \ge 2, y f, g \in C^{\infty}(x, y, \mu).$

Supongamos que en $\mu = 0$ el sistema (1.6) tiene un punto de equilibrio en x = y = 0, con parte lineal similar al bloque de Jordan

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

Entonces, la forma normal de (1.6) para $\mu = 0$ es

$$\dot{x} = y,$$

 $\dot{y} = ax^2 + bxy + \mathcal{O}(|(x,y)|^3).$
(1.7)

Supongamos además que $ab \neq 0$ en (1.7). Bajo esta condición, haciendo el siguiente cambio de variables y tiempo

$$x \to \frac{a}{b^2}x, \qquad y \to \frac{a^2}{b^3}y, \qquad t \to \frac{b}{a}t,$$

la ecuación (1.7) toma la forma

$$\dot{x} = y,$$

 $\dot{y} = x^2 + xy + \mathcal{O}(|(x, y)|^3).$
(1.8)

Notemos que si ab < 0, entonces la dirección del tiempo se invierte. Si uno quiere mantener la dirección del movimiento, entonces (1.7) debe ser transformado en la ecuación que tiene la misma forma que (1.7) con a = 1, $b = \pm 1$. Nosotros solamente consideramos el caso b = 1. El caso b = -1 es similar.

Definición 2. Una familia de campos vectoriales (1.6) es llamada *deformación* de la ecuación (1.8) si para $\mu = 0$ tiene la forma (1.8).

Bajo las hipótesis consideradas, podemos suponer que (1.6) es una familia de deformaciones de (1.8) de la siguiente forma:

$$\dot{x} = y + w_1(x, y, \mu) \dot{y} = x^2 + xy + \mathcal{O}(|(x, y)|^3) + w_2(x, y, \mu),$$
(1.9)

donde $x, y \in \mathbb{R}, \mu \in \mathbb{R}^m, m \ge 2, y w_1, w_2 \in C^{\infty}(x, y, \mu) y w_i|_{\mu=0} = 0, i = 1, 2.$

La familia biparamétrica de campos vectoriales

$$\dot{x} = y,
\dot{y} = \mu_1 + \mu_2 y + x^2 + xy,$$
(1.10)

es la deformación versal de (1.8). Este resultado no es obvio y su demostración fue dada por Bogdanov [9] y Takens [36].

La deformación versal de codimensión 3 es

$$\dot{x} = y, \dot{y} = \mu_1 + \mu_2 y + \mu_3 x y + x^2 \pm x^3 y.$$
 (1.11)

donde μ_i (i = 1, 2, 3) son parámetros pequeños. Para mayores detalles ver [12] y [26].

Figura 1.1: Flujo en un entorno del punto tipo cúspide.

La demostración de los siguientes teoremas se pueden consultar en [12], capítulo 4.

Teorema 4. Para el sistema (1.10) se cumplen las siguientes propiedades.

- 1. Existe un entorno Δ de $\mu_1 = \mu_2 = 0$ en \mathbb{R}^2 tal que el diagrama de bifurcación dentro de Δ consiste del origen (μ_1, μ_2) y las siguientes curvas:
 - (a) $SN^+ = \{\mu \mid \mu_1 = 0, \ \mu_2 > 0\},\$
 - (b) $SN^{-} = \{\mu | \mu_1 = 0, \mu_2 < 0\},\$
 - (c) $H = \{\mu | \mu_1 = -\mu_2^2, \mu_2 > 0\},\$
 - (d) $HL = \{\mu \mid \mu_1 = -\frac{49}{25}\mu_2^2 + O(\mu_2^{5/2}), \mu_2 > 0\}.$
- 2. El diagrama de bifurcación y los retratos fase para $\mu \in \Delta$ son los que se muestran en la figura 1.2, donde las regiones I-IV están formadas por las curvas de bifurcación dadas en el inciso anterior.

Figura 1.2: Diagrama de bifurcación y retratos fase de (1.10). Figura tomada de [12].

Teorema 5. Existe un entorno Δ_1 de $\mu_1 = \mu_2 = 0$ tal que el diagrama de bifurcación del sistema (1.10) consiste del origen y las siguientes curvas SN^+ y $SN^$ que son curvas de bifurcación silla-nodo, H que es una curva bifurcación de Hopf. Además, si $(\mu_1, \mu_2) \in \Delta_1 \cap$ region II y cerca de H, entonces el sistema tiene un único ciclo límite en un entorno pequeño del foco $(-\sqrt{-\mu_1}, 0)$. Más aún, este ciclo es inestable, y tiende al foco cuando (μ_1, μ_2) tiende a un punto en H. El retrato fase de (1.10) para $(\mu_1, \mu_2) \in \Delta_1 \cap \{\mu \mid \mu_1 \leq 0\}$ son mostrados en la figura 1.2.

1.2. Resultante

Teorema 6. Sean $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \ y \ g(x) = b_m x^m + b_{m-1} x^{m_1} + \dots + b_0$ polinomios de grado n $y \ m > 0$ respectivamente, si

	$ a_n $	a_{n-1}	•••	•••	•••	a_0	0	•••	•••	0	
	0	a_n	a_{n-1}	•••	•••	•••	a_0	0	•••	0	
		• • •	• • •	•••	•••	•••	• • •	•••	•••		
$P_{oo}(f(x), q(x)) =$		• • •	0	a_n	a_{n-1}	•••		•••	•••	a_0	
$\operatorname{nes}(f(x),g(x)) =$	b_m	b_{m-1}	•••	• • •	b_0	0	• • •	• • •	• • •	0	,
	0	b_m	b_{m-1}	• • •	•••	b_0	0	• • •	• • •	0	
		• • •	• • •	•••	•••	• • •	•••	• • •	•••		
	0	0	•••	• • •	0	b_m	b_{m-1}	• • •	• • •	b_0	

entonces Res(f(x), g(x)) = 0 si y sólo si f(x) y g(x) tiene un factor común de grado positivo.

La función $\operatorname{Res}(f(x), g(x)) = 0$ se llama la *resultante* de los polinomios f(x) y g(x). Notemos que la principal propiedad de la resultante es que permite calcular las raíces comunes entre f(x) y g(x).

La prueba de este teorema y más detalles de esta función se encuentran en las referencias [17, 28, 32].

Ejemplo 1. Dados los polinomios

$$f(x,y) = x^{2} - 5y^{2} - 2xy - 3x + 3y + 2, \qquad g(x,y) = x^{2} - 7y^{2} - 3x - 5y + 2$$

Sean $f_b(x) = x^2 - (2b+3)x + 2 + 3b - 5b^2$ y $g_b(x) = x^2 - 3x + 2 - 5b - 7b^2$. Vamos a encontrar todos los ceros comunes a estos polinomios, buscando cuando la resultante es cero.

$$Res(f,g) = \begin{vmatrix} 1 & -(2b+3) & 2+3b-5b^2 & 0\\ 0 & 1 & -(2b+3) & 2+3b-5b^2\\ 1 & -3 & 2-5b-7b^2 & 0\\ 0 & 1 & -3 & 2-5b-7b^2 \end{vmatrix} = 24b^2(b^2-1),$$

obtenemos b = 0, 1, -1. Para $b = 0, f_0 = x^2 - 3x + 2 = (x - 1)(x - 2) = g_0$, cuyas raíces son x = 1 y x = 2, obteniendo los puntos (1, 0) y (2, 0). Para $b = -1, f_{-1} = x^2 - x - 6 = (x + 2)(x - 3)$ y $g_{-1} = x^2 - 3x = x(x - 3)$, cuya raíz común es x = 3, y obtenemos el punto (3, -1). Por último, para $b = 1, f_1 = x^2 - 5x = x(x - 5)$ y $g_1 = x^2 - 3x - 10 = (x + 2)(x - 5)$, cuya raíz común es x = 5, y obtenemos el punto (5, 1).

En resumen, las raíces comunes de los polinomios f(x, y) y g(x, y) son (x, y) = (1, 0), (2, 0), (3, -1), (5, 1).

Capítulo 2

Modelo de población de mosquitos silvestres y estériles con tasa de liberación saturada

En este capítulo presentamos el modelo matemático propuesto por Cai y colaboradores en [10, 30], el cual describe la dinámica de una población de mosquitos silvestres cuando son liberados mosquitos machos estériles, y de esta forma se reduce la reproducción en la población de mosquitos silvestres. En particular, consideramos que la tasa de liberación de mosquitos estériles es no lineal. Llevaremos a cabo el análisis del modelo, para lo cual determinaremos primero la existencia de puntos de equilibrios, así como su estabilidad local. Los resultados presentados aquí fueron inspirados en los obtenidos por Huang et al. en [24].

2.1. Ecuaciones de movimiento

Sean w(t) el número de mosquitos silvestres, g(t) el número de mosquitos estériles en el tiempo t, y N(t) = w(t) + g(t) el número total. Supongamos que la dinámica de ambas especies, en ausencia de interacciones, es de tipo logístico, y que la tasa de crecimiento de la población de los mosquitos estériles es su tasa de liberación. Tomando en cuenta estas hipótesis, el modelo matemático que describe la dinámica de población de los mosquitos silvestres cuando se liberan mosquitos estériles, es descrito por las siguientes ecuaciones diferenciales

$$\frac{dw}{dt} = \left[C(N) \frac{aw}{w+g} - \left(\mu_1 + \xi_1(w+g)\right) \right] w,$$

$$\frac{dg}{dt} = B(\cdot) - [\mu_2 + \xi_2(w+g)]g,$$
(2.1)

donde C(N) es el número de apareamientos por individuo por unidad de tiempo, a > 0 es el número de descendencia silvestre producida por pareja, las constantes $\mu_i > 0$ y $\xi_i > 0$ (i = 1, 2) son las tasas de mortalidad independientes y dependientes de la densidad de los mosquitos silvestres y estériles, respectivamente, y $B(\cdot)$ es la tasa de liberación de los mosquitos estériles.

Teniendo en cuenta la posible dificultad de encontrar compañeros cuando el tamaño de la población de mosquitos es pequeña, Cai et al. [10] supusieron un efecto Allee¹, tal que la tasa de apareamiento es dada por $C(N) = c_0 N/(1+N)$, donde c_0 es la tasa máxima de apareamiento. Al mismo tiempo Cai et al. [10] supusieron que la tasa de liberación $B(\cdot)$ es una función no lineal, la cual es proporcional al tamaño de la población de mosquitos silvestres cuando el tamaño de la población de mosquitos silvestres cuando el tamaño de la población de mosquitos silvestres es lo suficientemente grande. Aquí usaremos $B(\cdot) = \frac{bw}{1+w}$, donde b > 0 es la tasa de velocidad de liberación.

Tomando en cuenta las hipótesis descritas anteriormente, y redefiniendo a $c_0 a$ como a, el sistema (2.1) se transforma en el siguiente modelo no lineal

$$\frac{dw}{dt} = \left[\frac{aw}{1+w+g} - \left(\mu_1 + \xi_1(w+g)\right)\right]w,$$

$$\frac{dg}{dt} = \frac{bw}{1+w} - [\mu_2 + \xi_2(w+g)]g,$$
(2.2)

donde $w, g \ge 0$, y todos los parámetros $a, b, \mu_1, \mu_2, \xi_1, \xi_2$ son positivos.

2.2. Puntos de equilibrio

En esta sección estudiaremos la existencia de puntos de equilibrio, pero antes veamos cuál es el comportamiento asintótico de las soluciones de (2.2).

¹Se dice que una población experimenta el *efecto Allee* cuando existe un tamaño crítico de la misma por debajo del cual el éxito reproductor se ve drásticamente mermado y decae hasta desaparecer. Por ejemplo, una planta puede verse dañada por el viento excesivo si crece aislada, pero estaría protegida si vive en un grupo.

Proposición 1. El conjunto

$$\Omega := \left\{ (w,g) : 0 \le w \le \frac{a}{\xi_1}, \ 0 \le g \le \frac{ab}{\xi_1 \mu_2} \right\}$$

es positivamente invariante y atractor con respecto al flujo de las ecuaciones diferenciales (2.2) en el primer cuadrante.

Demostración. El campo vectorial asociado a la ecuación diferencial (2.2) lo denotamos

$$F(w,g) = \left(\left[\frac{aw}{1+w+g} - \left(\mu_1 + \xi_1(w+g) \right) \right] w, \frac{bw}{1+w} - \left[\mu_2 + \xi_2(w+g) \right] g \right).$$

Para demostrar que Ω es positivamente invariante es suficiente probar que el campo en $\partial\Omega$ apunta al interior de Ω o es tangente a éste, ver la figura 2.1.

Figura 2.1: El flujo del sistema (2.2) es positivamente invariante en Ω .

Iniciemos por ver que si w = 0 y $0 \le g \le \frac{ab}{\xi_1 \mu_2}$, tenemos que $F(0,q) = (0, -(\mu_2 + \xi_2 q)q),$

de tal forma que en este caso el campo es tangente a la frontera.

Si $0 < w < \frac{a}{\xi_1}$ y g = 0, entonces $F(w,0) = \left(\frac{aw^2}{1+w} - \mu_1 w - \xi_1 w^2, \frac{bw}{1+w}\right),$ donde $\frac{bw}{1+w} \ge 0.$ Por otro lado, si $w = \frac{a}{\xi_1} \ge 0 < g < \frac{ab}{\xi_1 \mu_2}$, obtenemos que $F\left(\frac{a}{\xi_1}, g\right) = \left(\frac{a^3}{\xi_1(a+\xi_1+\xi_1g)} - \frac{\mu_1 a - a^2 - ag\xi_1}{\xi_1}, \frac{ab}{\xi_1 + a} - \xi_2 g - \frac{ag\xi_2}{\xi_1} - \xi_2 g^2\right),$ donde $\frac{a^3}{\xi_1(a+\xi_1+g\xi_1)} - \frac{\mu_1 a - a^2 - ag\xi_1}{\xi_1} < 0$, lo cual es consecuencia de que $a^2 < \mu_1 a + a^2 + g\xi_1 a + \mu_1\xi_1 + a\xi_1 + g\xi_1^2 + \mu_1\xi_1 g + ag\xi_1 + g^2\xi_1^2.$ Finalmente, si $0 < w < \frac{a}{\xi_1} \ge g = \frac{ab}{\xi_1 \mu_2}$ tenemos que

$$F\left(w,\frac{ab}{\xi_{1}\mu_{2}}\right) = \left(\frac{aw^{2}(\xi_{1}\mu_{2})}{\xi_{1}\mu_{2} + w\xi_{1}\mu_{2} + ab} - \mu_{1}w - \xi_{1}w^{2} - \frac{abw}{\mu_{2}}, \frac{bw}{1+w} - \frac{ab\xi_{1}\mu_{2}^{2} + ab\xi_{1}\xi_{2}\mu_{2}w + a^{2}b^{2}\xi_{2}}{\xi_{1}^{2}\mu_{2}^{2}}\right)$$

Ya que
$$\frac{bw}{1+w} \le \frac{b\frac{a}{\xi_1}}{1+\frac{a}{\xi_1}} = \frac{ab}{\xi_1+a}$$
, entonces tenemos que

$$\frac{bw}{1+w} - \frac{ab\xi_1\mu_2^2 + ab\xi_1\xi_2\mu_2w + a^2b^2\xi_2}{\xi_1^2\mu_2^2} \le \frac{ab}{\xi_1 + a} - \frac{ab\xi_1\mu_2^2 + ab\xi_1\xi_2\mu_2w + a^2b^2\xi_2}{\xi_1^2\mu_2^2} < 0$$

lo cual es consecuencia de que

$$ab\xi_1^2\mu_2^2 < a^2b\xi_1\mu_2^2 + a^3b^2\xi_2 + ab\xi_1^2\mu_2^2 + a^2b^2\xi_1\xi_2.$$

Por lo tanto el conjunto Ω es positivamente invariante.

En lo que sigue vamos a demostrar que Ω es un conjunto atractor en el primer cuadrante. Notemos que $\left.\frac{dg}{dt}\right|_{g=0} = \frac{bw}{1+w} > 0$ para w > 0. Ahora, usando la primera ecuación de (2.2), con $w \ge 0$ y $g \ge 0$, obtenemos

$$\frac{w}{1+w+g} < 1,$$
$$\frac{aw^2}{1+w+g} < aw,$$

de donde

$$\frac{aw^2}{1+w+g} - \mu_1 w - \xi_1 wg \le \frac{aw^2}{1+w+g} < aw,$$
$$\frac{aw^2}{1+w+g} - \mu_1 w - \xi_1 wg - \xi_1 w^2 < aw - \xi_1 w^2.$$

Al simplificar llegamos a

$$\left[\frac{aw}{1+w+g} - (\mu_1 + \xi_1(w+g))\right]w < (a - \xi_1 w)w$$

Tomando en cuenta esto y la primera ecuación de (2.2) concluimos que

$$\frac{dw}{dt} < (a - \xi_1 w)w, \tag{2.3}$$

para $w \geq 0$ y $g \geq 0.$

Utilizando el método de separación de variables en (2.3) se sigue que

$$w(t) \le \frac{ae^{at}}{c + \xi_1 e^{at}},$$

donde c es la constante de integración. Por lo tanto,

$$\limsup_{t \to \infty} w(t) \le \frac{a}{\xi_1}.$$

Luego podemos garantizar la existencia de unT>0,tal que para t>T se satisface $w(t)\leq \frac{a}{\xi_1}.$

Tomando en cuenta que $\frac{w}{1+w} \leq w$ y lo obtenido anteriormente, se sigue que

$$\frac{w}{1+w} \le w \le \frac{a}{\xi_1}$$
$$\frac{bw}{1+w} \le \frac{ba}{\xi_1}.$$

Como consecuencia

$$\frac{bw}{1+w} - \xi_2 wg - \xi_2 g^2 \le \frac{bw}{1+w} \le \frac{ba}{\xi_1}$$
$$\frac{bw}{1+w} - \xi_2 wg - \xi_2 g^2 - \mu_2 g \le \frac{ba}{\xi_1} - \mu_2 g$$

y simplificando llegamos a

$$\frac{bw}{1+w} - [\mu_2 + \xi_2(w+g)]g \le \frac{ba}{\xi_1} - \mu_2 g.$$
(2.4)

Nuevamente haciendo uso del método de separación de variables en (2.4) tenemos la desigualdad

$$\frac{dg}{dt} \le \frac{bw}{1+w} - [\mu_2 + \xi_2(w+g)]g,$$

para t > T. Es decir,

$$g(t) \le ce^{-\mu_2 t} + \frac{ba}{\xi_1 \mu_2}$$

donde c es la constante de integración y podemos concluir que

$$\limsup_{t \to \infty} g(t) \le \frac{ba}{\xi_1 \mu_2}.$$

Como consecuencia de los resultados obtenidos anteriormente, tenemos que Ω es un conjunto atractor para el flujo de las ecuaciones (2.2) en el primer cuadrante.

Con el fin de simplificar la expresión de las ecuaciones diferenciales (2.2), hacemos el reescalamiento del tiempo $\tau = at$, es decir $d\tau = a dt$. Sin embargo, por conveniencia continuaremos denotando la variable independiente τ por t, y los parámetros μ_1 , ξ_1 , b, μ_2 , ξ_2 denotaran a $\frac{\mu_1}{a}$, $\frac{\xi_1}{a}$, $\frac{b}{a}$, $\frac{\mu_2}{a}$, $\frac{\xi_2}{a}$, respectivamente. Entonces el sistema (2.2) toma la forma

$$\frac{dw}{dt} = \left[\frac{w}{1+w+g} - \left(\mu_1 + \xi_1(w+g)\right)\right]w,
\frac{dg}{dt} = \frac{bw}{1+w} - [\mu_2 + \xi_2(w+g)]g,$$
(2.5)

donde $w, g \ge 0$ y todos los parámetros b, μ_1, ξ_1, μ_2 y ξ_2 son positivos.

El siguiente teorema caracteriza el número de puntos de equilibrio de (2.2) en Ω .

Teorema 7. El origen (0,0) es el único punto de equilibrio del sistema (2.2) en la frontera del primer cuadrante.

- (i) si $b > b_0$ ó $\sqrt{\mu_1} + \sqrt{\xi_1} \ge 1$, entonces el sistema (2.2) no tiene otros puntos de equilibrio en el primer cuadrante;
- (ii) si $b = b_0 y \sqrt{\mu_1} + \sqrt{\xi_1} < 1$, entonces el sistema (2.2) tiene un único punto de equilibrio $E^*(w^*, g^*)$ en el interior del primer cuadrante. Este punto satisface

$$w^* = (1 + N^*)(\mu_1 + \xi_1 N^*),$$

$$g^* = \frac{b(1 + N^*)(\mu_1 + \xi_1 N^*)}{[1 + (1 + N^*)(\mu_1 + \xi_1 N^*)](\mu_2 + \xi_2 N^*)},$$

donde N^* es la única raíz positiva de (2.13);

(iii) si $b < b_0$ y $\sqrt{\mu_1} + \sqrt{\xi_1} < 1$, entonces el sistema (2.2) tiene dos puntos de equilibrio en el interior del primer cuadrante $E_1^*(w_1^*, g_1^*)$ y $E_2^*(w_2^*, g_2^*)$ con

$$w_{1,2}^* = (1 + N_{1,2}^*)(\mu_1 + \xi_1 N_{1,2}^*),$$

$$g_{1,2}^* = \frac{b(1 + N_{1,2}^*)(\mu_1 + \xi_1 N_{1,2}^*)}{[1 + (1 + N_{1,2}^*)(\mu_1 + \xi_1 N_{1,2}^*)](\mu_2 + \xi_2 N_{1,2}^*)},$$

donde $N_1^* < N_2^*$ son las dos raíces positivas de (2.13).

El valor b_0 será definido por (2.14) más adelante.

Demostración. Los puntos de equilibrio del sistema (2.5) son las soluciones del siguiente sistema algebraico no lineal

$$\left[\frac{w}{1+w+g} - \left(\mu_1 + \xi_1(w+g)\right)\right]w = 0,$$
 (2.6a)

$$\frac{bw}{1+w} - [\mu_2 + \xi_2(w+g)]g = 0.$$
(2.6b)

Evidentemente w = 0 y g = 0 es solución de este sistema y, por tanto (0, 0) es punto de equilibrio. Lo siguiente es determinar las demás soluciones del sistema (2.6a) y (2.6b).

Se
a $N=w+g\geq 0.$ Luego la ecuación (2.6a) toma la forma

$$\left[\frac{w}{1+N} - \mu_1 - \xi_1 N\right] w = 0,$$

cuyas soluciones son

$$w = 0, \quad y \quad w = (1+N)(\mu_1 + \xi_1 N).$$
 (2.7)

Por otro lado, la ecuación (2.6b) se transforma en

$$\frac{bw}{1+w} - \left[\mu_2 + \xi_2 N\right]g = 0,$$

la cual tiene por solución

$$g = \frac{bw}{(1+w)(\mu_2 + \xi_2 N)}.$$
(2.8)

Combinando (2.7) y (2.8) obtenemos que los puntos de equilibrio de (2.5) son (w,g) = (0,0) y

$$w = (1+N)(\mu_1 + \xi_1 N), \qquad g = \frac{b(1+N)(\mu_1 + \xi_1 N)}{[1+(1+N)(\mu_1 + \xi_1 N)](\mu_2 + \xi_2 N)}.$$
 (2.9)

Ahora, sustituimos estos últimos valores en la ecuación N = w + g y obtenemos

$$N = (1+N)(\mu_1 + \xi_1 N) + \frac{b(1+N)(\mu_1 + \xi_1 N)}{[1+(1+N)(\mu_1 + \xi_1 N)](\mu_2 + \xi_2 N)},$$

es decir,

$$[N - (1 + N)(\mu_1 + \xi_1 N)][1 + (1 + N)(\mu_1 + \xi_1 N)](\mu_2 + \xi_2 N)$$

= b(1 + N)(\mu_1 + \xi_1 N), (2.10)

ó equivalentemente

$$[1 + (1+N)(\mu_1 + \xi_1 N)](\mu_2 + \xi_2 N) = \frac{b(1+N)(\mu_1 + \xi_1 N)}{N - (1+N)(\mu_1 + \xi_1 N)}.$$
 (2.11)

Las soluciones de esta ecuación son las raíces del polinomio de grado cinco en la variable N dado en (2.10), pero debido a que estamos trabajando con poblaciones sólo nos interesan sus raíces positivas. Posteriormente mostraremos que tiene a lo más dos raíces positivas.

Para encontrar los puntos de equilibrio hacemos la siguiente simplificación. Definimos $G_1(N) = N - (1+N)(\mu_1 + \xi_1 N)$ entonces $G_1(0) = -\mu_1 < 0$. Las raíces positivas de

$$G_1(N) = N - (1+N)(\mu_1 + \xi_1 N)$$

= $-\xi_1 N^2 + (1 - \mu_1 - \xi_1)N - \mu_1$

 son

$$N_{1,2} = \frac{1}{2\xi_1} \left[(1 - \mu_1 - \xi_1) \pm \sqrt{(1 - \mu_1 - \xi_1)^2 - 4\mu_1\xi_1} \right].$$

Notemos que para que estas raíces sean reales y positivas se debe cumplir $1 - \mu_1 - \xi_1 > 0$ y $(1 - \mu_1 - \xi_1)^2 - 4\mu_1\xi_1 > 0$, entonces

$$(1 - \mu_1 - \xi_1)^2 > 4\mu_1\xi_1.$$

Por otro lado, tenemos que $1-\mu_1-\xi_1>0$ de tal forma que

$$1 - \mu_1 - \xi_1 > 2\sqrt{\mu_1 \xi_1},$$

es decir,

$$\sqrt{\mu}_1 + \sqrt{\xi}_1 < 1. \tag{2.12}$$

Ya que $G_1(N)$ es un polinomio cuadrático en N y el coeficiente de N^2 es negativo, obtenemos que $G_1(N) > 0$ para $N \in (N_1, N_2)$. Ahora, definimos

$$F_1(N) = [1 + (1 + N)(\mu_1 + \xi_1 N)](\mu_2 + \xi_2 N),$$

$$F_2(N) = \frac{(1 + N)(\mu_1 + \xi_1 N)}{N - (1 + N)(\mu_1 + \xi_1 N)}.$$

A partir de (2.11) tenemos que

$$F_1(N) = bF_2(N),$$

donde $N \in (N_1, N_2)$. Además el denominador de $F_2(N)$ es $G_1(N)$.

En la figura 2.2 mostramos la gráfica de $F_1(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Notemos que $F_1(N)$ es una función positiva monótona creciente cuando N > 0 y $\lim_{N \to \infty} F_1(N) = \infty$.

Figura 2.2: Gráfica de $F_1(N)$ con $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos en el eje N son las raíces N_1 y N_2 del polinomio $G_1(N)$.

Por otro lado, en la figura 2.3 mostramos la gráfica de $F_2(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Observemos $\lim_{N \to N_1^+} F_2(N) = +\infty$ y $\lim_{N \to N_2^-} F_2(N) = +\infty$ y no hay ceros positivos. Como consecuencia, $F_2(N)$ es positiva para $N \in (N_1, N_2)$.

Figura 2.3: Gráfica de $F_2(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos azules en el eje N son las raíces N_1 y N_2 de $G_1(N)$.

Notemos que

$$F_1''(N) = 2(\mu_2\xi_1 + \xi_2(\mu_1 + \xi_1 + 3\xi_1N)) = 0,$$

cuando $N = \frac{-\mu_2 \xi_1 - \mu_1 \xi_2 - \xi_1 \xi_2}{3\xi_1 \xi_2} < 0$, mientras que la única raíz real de $F_2''(N) = \frac{2(\mu_1^2 - \xi_1^2 N^3 + \mu_1(\xi_1 + 3\xi_1 N - 1)))}{2\xi_1^2},$

$$F_2''(N) = \frac{2(\mu_1^2 - \xi_1^2 N^3 + \mu_1(\xi_1 + 3\xi_1 N - 1))}{(\mu_1 + \xi_1 N^2 + N(\mu_1 + \xi_1 - 1))^3}$$

es

$$N = -\frac{\sqrt[3]{2} \left(\sqrt{\mu_1^2 \xi_1^8 \left(\mu_1^2 - 2\mu_1 (\xi_1 + 1) + (\xi_1 - 1)^2\right)} - \mu_1^2 \xi_1^4 - \mu_1 (\xi_1 - 1) \xi_1^4\right)^{2/3} + 2\mu_1 \xi_1^3}{\sqrt[3]{4} \xi_1^2 \sqrt[3]{\sqrt{\mu_1^2 \xi_1^8 \left(\mu_1^2 - 2\mu_1 (\xi_1 + 1) + (\xi_1 - 1)^2\right)}} - \mu_1^2 \xi_1^4 - \mu_1 (\xi_1 - 1) \xi_1^4} < 0.$$

Como consecuencia tenemos que $F_1(N)$ y $F_2(N)$ no tienen puntos de inflexión para N > 0. Luego $F_1(N) = bF_2(N)$ implica que (2.10) tiene a lo más dos raíces positivas.

Por otro lado, la ecuación (2.11) se puede reescribir como

$$\frac{N - (1+N)(\mu_1 + \xi_1 N)}{(1+N)(\mu_1 + \xi_1 N)} \left[1 + (1+N)(\mu_1 + \xi_1 N)\right](\mu_2 + \xi_2 N) = b,$$

lo cual es equivalente a $\frac{1}{F_2(N)}F_1(N) = b$. Definimos $F_3(N) = \frac{1}{F_2(N)}$, y de (2.11) se sigue que

$$F_1(N)F_3(N) = b. (2.13)$$

En pocas palabras, los puntos de equilibrio con coordenadas positivas del sistema (2.2) son determinados por las raíces positivas de (2.13) contenidas en el intervalo (N_1, N_2) .

Notemos que

$$F_3(N_1) = \frac{N_1 - (1+N_1)(\mu_1 + \xi_1 N_1)}{(1+N_1)(\mu_1 + \xi_1 N_1)} = \frac{G_1(N_1)}{(1+N_1)(\mu_1 + \xi_1 N_1)} = 0,$$

$$F_3(N_2) = \frac{N_2 - (1+N_2)(\mu_1 + \xi_1 N_2)}{(1+N_2)(\mu_1 + \xi_1 N_2)} = \frac{G_1(N_2)}{(1+N_2)(\mu_1 + \xi_1 N_2)} = 0.$$

Por otra parte, $F_3(N)$ no está definida en $N = -1, -\frac{\mu_1}{\xi_1}$, lo cual implica que su gráfica tiene asíntotas verticales en esos puntos. En lo que sigue vamos a calcular los máximos y mínimos relativos de

$$F_3(N) = \frac{N - (1+N)(\mu_1 + \xi_1 N)}{(1+N)(\mu_1 + \xi_1 N)}.$$

Derivando con respecto a N obtenemos

$$F'_{3}(N) = \frac{\mu_{1} - \xi_{1}N^{2}}{(N+1)^{2}(\mu_{1} + \xi_{1}N)^{2}},$$

cuyos ceros son

$$N = \pm \sqrt{\frac{\mu_1}{\xi_1}}.$$

Dado que estamos interesados en N > 0 sólo tenemos el punto crítico $N = \sqrt{\frac{\mu_1}{\xi_1}}$.

Ahora calculamos la segunda derivada

$$F_3''(N) = -\frac{2\left(\mu_1^2 - \xi_1^2 N^3 + \mu_1(\xi_1 + 3\xi_1 N)\right)}{(N+1)^3(\mu_1 + \xi_1 N)^3},$$

y la evaluamos en el punto crítico para obtener

$$F_{3}''\left(\sqrt{\frac{\mu_{1}}{\xi_{1}}}\right) = -\frac{2\mu_{1}\left(2\xi_{1}\sqrt{\frac{\mu_{1}}{\xi_{1}}} + \mu_{1} + \xi_{1}\right)}{\left(\sqrt{\frac{\mu_{1}}{\xi_{1}}} + 1\right)^{3}\left(\xi_{1}\sqrt{\frac{\mu_{1}}{\xi_{1}}} + \mu_{1}\right)^{3}} < 0,$$

de donde obtenemos que $N = \sqrt{\frac{\mu_1}{\xi_1}}$ es un punto máximo.

En la figura 2.4 mostramos la gráfica de $F_3(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Notemos que $\lim_{N\to 0^+} F_3(N) = -\infty$. Tomando en cuenta esto y el análisis anterior, tenemos que en el intervalo (N_1, N_2) la función $F_3(N)$ crece hasta alcanzar su máximo en $N = \sqrt{\frac{\mu_1}{\xi_1}}$ y posteriormente decrece.

Figura 2.4: Gráfica de $F_3(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos de color azul en el eje N son las raíces N_1 y N_2 del polinomio $G_1(N)$.

En lo que sigue veremos el comportamiento de $F_1(N)F_3(N)$. En el intervalo (N_1, N_2) la función $F_3(N)$ crece, y alcanza su valor máximo para luego decrecer; además, $F_1(N)$ es una función positiva y monótona creciente, por lo tanto la función $F_1(N)F_3(N)$ tiene dos raíces positivas, N_1 y N_2 . En la figura 2.5 mostramos la gráfica de $F_1(N)F_3(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$, y observamos que tiene un comportamiento similar a la gráfica de $F_3(N)$.

Figura 2.5: Gráfica de $F_1(N)F_3(N)$ para $\mu_1 = \frac{1}{45}$ y $\xi_1 = \frac{7}{45}$. Los puntos de color azul en el eje N son las raíces N_1 y N_2 del polinomio $G_1(N)$.

Además la función $F_1(N)F_3(N)$ tiene un único valor máximo en el intervalo (N_1, N_2) , que denotaremos \tilde{N} y que determina el valor del umbral de liberación de los mosquitos estériles. Definimos

$$b_0 := \max_{N \in (N_1, N_2)} F_1(N) F_3(N) = F_1(\tilde{N}) F_3(\tilde{N}).$$
(2.14)

Observación 1. De la gráfica de la figura 2.5 tenemos que $\frac{dF_1(N)F_3(N)}{dN} > 0$ para $N < \tilde{N}$, $\frac{dF_1(N)F_3(N)}{dN} < 0$ para $N > \tilde{N}$ y $\frac{dF_1(N)F_3(N)}{dN} = 0$ para $N = \tilde{N}$.

2.3. Estudio de la estabilidad de los puntos de equilibrio

Para analizar la estabilidad lineal de los puntos de equilibrio utilizaremos el teorema de Hartman-Grobman (ver apéndice ??). Sea J la matriz jacobiana asociada a la linealización del sistema (2.5) en los puntos de equilibrio dados en el teorema 7.

Proposición 2. La matriz de la linealización del sistema (2.5) en los puntos de equilibrio interiores en el primer cuadrante está dada por

$$J = \begin{pmatrix} \frac{w(1+g)}{(1+N)^2} - \xi_1 w & -\left(\frac{w}{(1+N)^2} + \xi_1\right) w\\ \frac{b}{(1+w)^2} - \xi_2 g & -\mu_2 - \xi_2 w - 2\xi_2 g \end{pmatrix},$$
 (2.15)

 $con\ traza$

$$\operatorname{tr} J = \frac{w(1+g)}{(1+N)^2} - \xi_1 w - \mu_2 - \xi_2 w - 2\xi_2 g, \qquad (2.16)$$

 $y \ determinante$

$$\det J = -\frac{w(\mu_1 + \xi_1 N)}{1 + w} \frac{d(G_1 G_2)}{dN},$$
(2.17)

donde
$$G_2(N) = \frac{F_1(N)}{(1+N)(\mu_1 + \xi_1 N)}.$$

Demostración. Con el fin de obtener la matriz jacobiana definimos

$$f_1 = \left[\frac{w}{1+w+g} - (\mu_1 + \xi_1(w+g))\right]w,$$

$$f_2 = \frac{bw}{1+w} - [\mu_2 + \xi_2(w+g)]g,$$

que corresponden al lado derecho de las ecuaciones (2.2). Ahora vamos a calcular sus derivadas parciales,

$$f_{1w} = \frac{(1+w+g)2w - w^2}{(1+w+g)^2} - \mu_1 - 2\xi_1 w - \xi_1 g_2$$

$$f_{1g} = -\left(\frac{w}{(1+N)^2} + \xi_1\right)w,$$

$$f_{2w} = \frac{b}{(1+w)^2} - \xi_2 g,$$

$$f_{2g} = -\mu_2 - \xi_2 w - 2\xi_2 g.$$

Ya que $w = (1+N)(\mu_1+\xi_1N)$ y N=w+g obtenemos que

$$f_{1w} = \frac{(1+w+g)2w - w^2}{(1+w+g)^2} - \mu_1 - 2\xi_1 w - \xi_1 g$$

= $\frac{(1+w+g)2w - w^2}{(1+w+g)^2} - ((\mu_1 + \xi_1(w+g)) - \xi_1 w)$
= $\frac{(1+N)2w - (1+N)w - w^2}{(1+N)^2} - \xi_1 w$
= $\frac{(1+N)w - w^2}{(1+N)^2} - \xi_1 w = \frac{w(1+N-w)}{(1+N)^2} - \xi_1 w$
= $\frac{w(1+g)}{(1+N)^2} - \xi_1 w.$

Luego, la matriz jacobiana del sistema (2.2) es

$$J = \begin{pmatrix} \frac{w(1+g)}{(1+N)^2} - \xi_1 w & -\left(\frac{w}{(1+N)^2} + \xi_1\right) w\\ \frac{b}{(1+w)^2} - \xi_2 g & -\mu_2 - \xi_2 w - 2\xi_2 g \end{pmatrix}.$$
 (2.18)

Notemos que la traza de esta matriz es

$$\operatorname{tr} J = \frac{w(1+g)}{(1+N)^2} - \xi_1 w - \mu_2 - \xi_2 w - 2\xi_2 g, \qquad (2.19)$$

y su determinante

$$\det J = w \left[\xi_1 - \frac{1+g}{(1+N)^2} \right] (\mu_2 + \xi_2 N + \xi_2 g) + \left[\frac{b}{(1+w)^2} - \xi_2 g \right] \left[\frac{w}{(1+N)^2} + \xi_1 \right] w.$$

Con el fin de simplificar los cálculos, utilizaremos a

$$G_1(N) = N - (1+N)(\mu_1 + \xi_1 N),$$

у

$$G_2(N) = \frac{F_1(N)}{(1+N)(\mu_1 + \xi_1 N)} = Q_2 \frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N},$$

donde $Q_2 = \frac{1 + (1 + N)(\mu_1 + \xi_1 N)}{1 + N}.$

Como $F_1(N)F_3(N) = b$, usando el hecho de que

$$F_1(N) = G_2(N)(1+N)(\mu_1 + \xi_1 N),$$

$$F_3(N) = G_1(N) \frac{1}{(1+N)(\mu_1 + \xi_1 N)},$$

tenemos que

$$G_1(N)G_2(N) = F_1(N)F_3(N) = b.$$
 (2.20)

Para obtener (2.17) vamos a hacer algunas simplificaciones

$$\begin{aligned} \frac{1}{w} \det J &= \left[\xi_1 - \frac{1+g}{(1+N)^2}\right] (\mu_2 + \xi_2 N + \xi_2 g) \\ &+ \left[\frac{b}{(1+w)^2} - \xi_2 g\right] \left[\frac{w}{(1+N)^2} + \xi_1\right] \\ &= \left[\xi_1 - \frac{1+g}{(1+N)^2}\right] (\mu_2 + \xi_2 N) + \xi_1 \xi_2 g - \frac{(1+g)\xi_2 g}{(1+N)^2} \\ &+ \left[\frac{w}{(1+N)^2} + \xi_1\right] \left(\frac{b}{(1+w)^2}\right) - \frac{w\xi_2 g}{(1+N)^2} - \xi_1 \xi_2 g \\ &= \left[\xi_1 - \frac{1+g}{(1+N)^2}\right] (\mu_2 + \xi_2 N) + \left[\frac{w}{(1+N)^2}\right] \frac{b}{(1+w)^2} \\ &+ \frac{\xi_1 b}{(1+w)^2} - \frac{\xi_2 g}{(1+N)}. \end{aligned}$$

Ya que $w = (1+N)(\mu_1 + \xi_1 N)$ y $g = \frac{b(1+N)(\mu_1 + \xi_1 N)}{[1+(1+N)(\mu_1 + \xi_1 N)](\mu_2 + \xi_2 N)}$, obtenemos $g = \frac{b(1+N)(\mu_1 + \xi_1 N)}{(1+w)(\mu_2 + \xi_2 N)}$. Luego,

$$\begin{aligned} \frac{1}{w} \det J &= \left[\xi_1 - \frac{1+g}{(1+N)^2}\right] (\mu_2 + \xi_2 N) \\ &+ \left[\frac{w}{(1+N)^2}\right] \frac{b}{(1+w)^2} + \frac{\xi_1 b}{(1+w)^2} - \frac{\xi_2 b(1+N)(\mu_1 + \xi_1 N)}{(1+N)(1+w)(\mu_2 + \xi_2 N)} \\ &= \left[\xi_1 - \frac{1+g}{(1+N)^2}\right] (\mu_2 + \xi_2 N) \\ &+ \left[\frac{1}{(1+N)^2} - \frac{\xi_2 (\mu_1 + \xi_1 N)}{\mu_2 + \xi_2 N}\right] \frac{g(\mu_2 + \xi_2 N)}{1+w} + \frac{b(\xi_1 \mu_2 - \xi_2 \mu_1)}{(1+w)^2(\mu_2 + \xi_2 N)}. \end{aligned}$$
Por lo tanto

$$\begin{aligned} \frac{\det J}{(\mu_2 + \xi_2 N)w} = &\xi_1 - \frac{1+g}{(1+N)^2} + \left[\frac{1}{(1+N)^2} - \frac{\xi_2(\mu_1 + \xi_1 N)}{\mu_2 + \xi_2 N}\right] \frac{g}{1+w} \\ &+ \frac{b(\xi_1 \mu_2 - \xi_2 \mu_1)}{(1+w)^2(\mu_2 + \xi_2 N)^2}, \end{aligned}$$

y obtenemos

$$Q_2 = \frac{1 + (1 + N)(\mu_1 + \xi_1 N)}{1 + N} = \frac{1 + w}{1 + N},$$

es decir, $(1+N)Q_2 = 1+w$ ó equivalentemente $w = (1+N)Q_2 - 1$. Por otro lado tenemos que N = w + g, de tal forma que

$$g = N - w = N - [(1 + N)Q_2 - 1] = (1 + N)(1 - Q_2),$$

 pero

$$G_1 = N - (1+N)(\mu_1 + \xi_1 N).$$

En otras palabras,

$$G_1 = N - w = (1 + N)(1 - Q_2) = (1 + N)\left(1 - \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N}G_2\right),$$

y recordemos que

$$G_{2} = \frac{F_{1}(N)}{(1+N)(\mu_{1}+\xi_{1}N)}$$

= $\frac{[1+(1+N)(\mu_{1}+\xi_{1}N)](\mu_{2}+\xi_{2}N)}{(1+N)(\mu_{1}+\xi_{1}N)}$
= $Q_{2}\frac{\mu_{2}+\xi_{2}N}{\mu_{1}+\xi_{1}N}.$

Esta última igualdad junto con los resultados obtenidos anteriormente, nos dicen que hay varias expresiones equivalentes de Q_2 , las cuales son las siguientes:

$$Q_2 = \frac{1 + (1 + N)(\mu_1 + \xi_1 N)}{1 + N} = \frac{1}{1 + N} + \mu_1 + \xi_1 N = \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2.$$

Con el fin de expresar el determinante de J en términos de la derivada de G_1G_2 calculamos la derivada de Q_2 y obtenemos

$$\frac{dQ_2}{dN} = -\frac{1}{(1+N)^2} + \xi_1. \tag{2.21}$$

Ahora, con esta información tenemos que

$$\begin{split} \frac{dG_2}{dN} &= \frac{d}{dN} \left(\frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N} Q_2 \right) \\ &= \left(\frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N} \right) \left(-\frac{1}{(1+N)^2} + \xi_1 \right) + \left(\frac{\mu_1 \xi_2 - \mu_2 \xi_1}{(\mu_1 + \xi_1 N)^2} \right) \left(\frac{1+w}{1+N} \right) \\ &= -\frac{(\mu_2 + \xi_2 N)(\mu_1 + \xi_1 N)}{(\mu_1 + \xi_1 N)^2(1+N)^2} + \xi_1 \left(\frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N} \right) \\ &+ \frac{(\mu_1 \xi_2 - \mu_2 \xi_1)(1+N)}{(\mu_1 + \xi_1 N)^2(1+N)^2} + \frac{(\mu_1 \xi_2 - \mu_2 \xi_1)w}{(\mu_1 + \xi_1 N)(\mu_1 + \xi_1 N)(1+N)} \\ &= -\frac{(\mu_2 + \xi_2 N)(\mu_1 + \xi_1 N)}{(\mu_1 + \xi_1 N)^2(1+N)^2} + \xi_1 \left(\frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N} \right) + \frac{(\mu_1 \xi_2 - \mu_2 \xi_1)(1+N)}{(\mu_1 + \xi_1 N)^2(1+N)^2} \\ &+ \frac{\mu_1 \xi_2 - \mu_2 \xi_1}{\mu_1 + \xi_1 N}, \end{split}$$

pero

$$\xi_1\left(\frac{\mu_2+\xi_2N}{\mu_1+\xi_1N}\right) + \frac{\mu_1\xi_2-\mu_2\xi_1}{\mu_1+\xi_1N} = \frac{\xi_2(\mu_1+\xi_1N)}{(\mu_1+\xi_1N)} = \xi_2.$$

Por lo que (2.21) se transforma en

$$\frac{dG_2}{dN} = \xi_2 + \frac{(\mu_1\xi_2 - \mu_2\xi_1)(1+N)}{(\mu_1 + \xi_1 N)^2(1+N)^2} - \frac{(\mu_2 + \xi_2 N)(\mu_1 + \xi_1 N)}{(\mu_1 + \xi_1 N)^2(1+N)^2}.$$

Haciendo un poco de manipulación algebraica llegamos a

$$\begin{pmatrix} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \end{pmatrix} \frac{dG_2}{dN} = \begin{pmatrix} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \end{pmatrix} \xi_2 + \begin{pmatrix} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \end{pmatrix} \frac{(\mu_1 \xi_2 - \mu_2 \xi_1)(1+N)}{(\mu_1 + \xi_1 N)^2(1+N)^2} - \begin{pmatrix} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \end{pmatrix} \frac{(\mu_2 + \xi_2 N)(\mu_1 + \xi_1 N)}{(\mu_1 + \xi_1 N)^2(1+N)^2} = \frac{\xi_2 (\mu_1 + \xi_1 N)}{\mu_2 + \xi_2 N} + \frac{\xi_2 \mu_1 - \xi_1 \mu_2}{(1+N)(\mu_1 + \xi_1 N)(\mu_2 + \xi_2 N)} - \frac{1}{(1+N)^2},$$

y por lo tanto

$$\frac{1}{(1+N)^2} - \frac{\xi_2(\mu_1 + \xi_1 N)}{\mu_2 + \xi_2 N} = \frac{\xi_2 \mu_1 - \xi_1 \mu_2}{(1+N)(\mu_1 + \xi_1 N)(\mu_2 + \xi_2 N)} - \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N}\right) \frac{dG_2}{dN}.$$
(2.22)

Como vimos anteriormente

$$\begin{aligned} \frac{\det J}{(\mu_2+\xi_2N)w} &= \xi_1 - \frac{1+g}{(1+N)^2} + \left[\frac{1}{(1+N)^2} - \frac{\xi_2(\mu_1+\xi_1N)}{\mu_2+\xi_2N}\right] \frac{g}{1+w} \\ &+ \frac{b(\xi_1\mu_2 - \xi_2\mu_1)}{(1+w)^2(\mu_2+\xi_2N)^2}. \end{aligned}$$

Luego usando (2.22) obtenemos

$$\frac{\det J}{(\mu_2 + \xi_2 N)w} = \xi_1 - \frac{1}{(1+N)^2} - \frac{g}{(1+N)^2} + \frac{b(\xi_1\mu_2 - \xi_2\mu_1)}{(1+w)^2(\mu_2 + \xi_2 N)^2} \\ + \left[\frac{\xi_2\mu_1 - \xi_1\mu_2}{(1+N)(\mu_1 + \xi_1 N)(\mu_2 + \xi_2 N)} - \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N}\right)\frac{dG_2}{dN}\right]\frac{g}{1+w}.$$

Aplicando ahora las identidades

$$\frac{dQ_2}{dN} = \xi_1 - \frac{1}{(1+N)^2},$$
$$\frac{g}{1+w} = \frac{(1+N)(1-Q_2)}{(1+N)Q_2} = \frac{1-Q_2}{Q_2},$$
$$-\frac{g}{(1+N)^2} = \frac{(1+N)(Q_2-1)}{(1+N)^2} = \frac{Q_2-1}{1+N},$$

obtenemos

$$\frac{\det J}{(\mu_2 + \xi_2 N)w} = \frac{dQ_2}{dN} + \frac{Q_2 - 1}{1 + N} + \left[\frac{\xi_2 \mu_1 - \xi_1 \mu_2}{(1 + N)(\mu_1 + \xi_1 N)(\mu_2 + \xi_2 N)}\right] \frac{g}{1 + w} - \left[\left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N}\right) \frac{dG_2}{dN}\right] \frac{1 - Q_2}{Q_2} + \frac{b(\xi_1 \mu_2 - \xi_2 \mu_1)}{(1 + w)^2(\mu_2 + \xi_2 N)^2}.$$

Sin embargo, $w = (1 + N)(\mu_1 + \xi_1 N)$ y la última expresión toma la forma

$$\begin{aligned} \frac{\det J}{(\mu_2 + \xi_2 N)w} &= \frac{dQ_2}{dN} + \frac{Q_2 - 1}{1 + N} + \left[\frac{g(\xi_2 \mu_1 - \xi_1 \mu_2)}{w(1 + w)(\mu_2 + \xi_2 N)} \right] \frac{(1 + w)(\mu_2 + \xi_2 N)}{(1 + w)(\mu_2 + \xi_2 N)} \\ &- \left[\left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \right) \frac{dG_2}{dN} \right] \frac{1 - Q_2}{Q_2} + \frac{b(\xi_1 \mu_2 - \xi_2 \mu_1)}{(1 + w)^2(\mu_2 + \xi_2 N)^2} \\ &= \frac{dQ_2}{dN} + \frac{Q_2 - 1}{1 + N} + \left(\frac{g(1 + w)(\mu_2 + \xi_2 N)}{w} \right) \left(\frac{\xi_2 \mu_1 - \xi_1 \mu_2}{(1 + w)^2(\mu_2 + \xi_2 N)^2} \right) \\ &- \frac{1 - Q_2}{Q_2} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \frac{dG_2}{dN} + \frac{b(\xi_1 \mu_2 - \xi_2 \mu_1)}{(1 + w)^2(\mu_2 + \xi_2 N)^2}. \end{aligned}$$

De
$$g = \frac{bw}{(1+w)(\mu_2 + \xi_2 N)}$$
 obtenemos $b = \frac{g(1+w)(\mu_2 + \xi_2 N)}{w}$. Luego
 $\frac{\det J}{(\mu_2 + \xi_2 N)w} = \frac{dQ_2}{dN} + \frac{Q_2 - 1}{1+N} + \frac{b(\xi_2 \mu_1 - \xi_1 \mu_2)}{(1+w)^2(\mu_2 + \xi_2 N)^2}$
 $- \frac{1 - Q_2}{Q_2} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \frac{dG_2}{dN} + \frac{b(\xi_1 \mu_2 - \xi_2 \mu_1)}{(1+w)^2(\mu_2 + \xi_2 N)^2}$
 $= \frac{dQ_2}{dN} + \frac{Q_2 - 1}{1+N} - \frac{1 - Q_2}{Q_2} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \frac{dG_2}{dN}.$

Sin embargo
$$Q_2 = \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2$$
, lo cual implica

$$\begin{split} \frac{\det J}{(\mu_2 + \xi_2 N)w} &= \frac{d}{dN} \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2 \right) + \frac{\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2 - 1}{1 + N} \\ &- \frac{1 - \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2}{\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2} \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \frac{dG_2}{dN} \\ &= \frac{d}{dN} \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2 \right) + \frac{\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2 - 1}{1 + N} - \frac{1 - \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2}{G_2} \frac{dG_2}{dN} \\ &= \left(\frac{\xi_1 \mu_2 - \xi_2 \mu_1}{(\mu_2 + \xi_2 N)^2} \right) G_2 + \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \right) \frac{dG_2}{dN} + \frac{(\mu_1 + \xi_1 N) G_2}{(\mu_2 + \xi_2 N)(1 + N)} \\ &- \frac{1}{1 + N} - \frac{1}{G_2} \frac{dG_2}{dN} + \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \frac{dG_2}{dN} \\ &= \frac{\xi_1 \mu_2 - \xi_2 \mu_1}{(\mu_2 + \xi_2 N)^2} G_2 + 2 \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} \right) \frac{dG_2}{dN} \\ &+ \left(\frac{1}{1 + N} \right) \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2 \right) \\ &- \frac{1}{1 + N} - \frac{1}{G_2} \frac{dG_2}{dN}. \end{split}$$

Ahora multiplicamos ambos lados de esta ecuación por 1+wy obtenemos

$$\frac{(1+w)\det J}{(\mu_2+\xi_2N)w} = (1+w)\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}G_2 + 2(1+w)\left(\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}\right)\frac{dG_2}{dN} \\ + \left(\frac{1+w}{1+N}\right)\left(\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2\right) - \frac{1+w}{1+N} - \left(\frac{1+w}{G_2}\right)\frac{dG_2}{dN},$$

 pero

$$Q_2 = \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N}\right) G_2,$$

de donde obtenemos que

$$\frac{1}{Q_2} = \left(\frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N}\right) \frac{1}{G_2} \qquad y \qquad \frac{1}{G_2} = \left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N}\right) \frac{1}{Q_2}.$$

Usando estas expresiones y $Q_2 = \frac{1+w}{1+N}$ llegamos a que

$$\begin{split} \frac{(1+w)\det J}{(\mu_2+\xi_2N)w} &= (1+w)\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}G_2\\ &+ (1+N)\left(\frac{\mu_1-\xi_1N}{\mu_2+\xi_2N}\right)\frac{dG_2}{dN}\left[\frac{2(1+w)}{1+N} - \frac{\mu_2+\xi_2N}{\mu_1+\xi_1N}\left(\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}\frac{1}{Q_2}\right)\frac{1+w}{1+N}\right]\\ &+ \frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2\left[\frac{1+w}{1+N} - \left(\frac{\mu_2+\xi_2N}{\mu_1+\xi_1N}\frac{1}{G_2}\right)\frac{1+w}{1+N}\right]\\ &= (1+w)\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}G_2\\ &+ (1+N)\left(\frac{\mu_1-\xi_1N}{\mu_2+\xi_2N}\right)\frac{dG_2}{dN}\left[2\left(\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}\right)G_2 - 1\right]\\ &+ \frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2\left[\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2 - 1\right]. \end{split}$$

Con lo obtenido estamos en posibilidad de calcular

$$\frac{d(G_1G_2)}{dN} = \frac{d}{dN} \left(\frac{[N - (1+N)(\mu_1 + \xi_1 N)] [1 + (1+N)(\mu_1 + \xi_1 N)] (\mu_2 + \xi_2 N)}{(1+N)(\mu_1 + \xi_1 N)} \right).$$

Tomando en cuenta que

$$w = (1+N)(\mu_1 + \xi_1 N) \quad y \quad G_2 = \frac{[1+(1+N)(\mu_1 + \xi_1 N)](\mu_2 + \xi_2 N)}{(1+N)(\mu_1 + \xi_1 N)},$$

tenemos que

$$\begin{aligned} \frac{d(G_1G_2)}{dN} &= \frac{d}{dN} \left[(N-w)G_2 \right] = \frac{d}{dN} \left[(N-(1+w)+1)G_2 \right] \\ &= \frac{d}{dN} \left[\left(N-(1+N)\left(\frac{1+w}{1+N}\right) + 1 \right)G_2 \right] \\ &= \frac{d}{dN} \left[(N-(1+N)Q_2+1)G_2 \right] = \frac{d}{dN} \left[(N-Q_2-NQ_2+1)G_2 \right] \\ &= \frac{d}{dN} \left[(1+N)(1-Q_2)G_2 \right] \\ &= \frac{d}{dN} \left[(1+N)\left(1-\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2\right)G_2 \right] \\ &= \left(1-\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2 \right)G_2 + (1+N) \left[1-2\left(\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}\right)G_2 \right] \frac{dG_2}{dN} \\ &- (1+N)\left(\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}\right)G_2^2. \end{aligned}$$

Por otro lado, considerando que $G_2 = \frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N} Q_2 = \left(\frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N}\right) \left(\frac{1+w}{1+N}\right)$ obtenemos que

$$(1+N)G_2 = \frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N}(1+w).$$

Por lo tanto

$$(1+N)\left(\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}\right)G_2^2 = (1+N)G_2\left(\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}\right)G_2$$
$$= \frac{\mu_2+\xi_2N}{\mu_1+\xi_1N}(1+w)\left(\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}\right)G_2.$$

En otras palabras,

$$\begin{aligned} \frac{d(G_1G_2)}{dN} &= \left(1 - \frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N} G_2\right) G_2 + (1+N) \left[1 - 2\left(\frac{\mu_1 + \xi_1 N}{\mu_2 + \xi_2 N}\right) G_2\right] \frac{dG_2}{dN} \\ &- \left(\frac{\mu_2 + \xi_2 N}{\mu_1 + \xi_1 N}\right) (1+w) \left(\frac{\xi_1 \mu_2 - \xi_2 \mu_1}{(\mu_2 + \xi_2 N)^2}\right) G_2. \end{aligned}$$

Finalmente tenemos que

$$\frac{(1+w)\det J}{(\mu_2+\xi_2N)w} = (1+w)\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}G_2 + \frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2\left[\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2 - 1\right] + (1+N)\left(\frac{\mu_1-\xi_1N}{\mu_2+\xi_2N}\right)\frac{dG_2}{dN}\left[2\left(\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}\right)G_2 - 1\right].$$

Entonces

$$-\frac{(1+w)\det J}{w(\mu_1+\xi_1N)} = -\left(\frac{\mu_2+\xi_2N}{\mu_1+\xi_1N}\right)\frac{(1+w)\det J}{(\mu_2+\xi_2N)w}$$
$$= -\left(\frac{\mu_2+\xi_2N}{\mu_1+\xi_1N}\right)(1+w)\frac{\xi_1\mu_2-\xi_2\mu_1}{(\mu_2+\xi_2N)^2}G_2$$
$$+(1+N)\left[1-2\left(\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}\right)G_2\right]\frac{dG_2}{dN}$$
$$= \left(1-\frac{\mu_1+\xi_1N}{\mu_2+\xi_2N}G_2\right)G_2$$
$$= \frac{d(G_1G_2)}{dN}.$$

Por lo tanto

$$\det J = -\frac{w(\mu_1 + \xi_1 N)}{1 + w} \frac{d(G_1 G_2)}{dN}.$$
(2.23)

Observemos que, det J = 0 es equivalente a $\frac{d(G_1G_2)}{dN} = 0$, donde $G_1(N)G_2(N) = F_1(N)F_3(N) = b$.

Teorema 8. Para el sistema (2.5) se satisface lo siguiente.

- (i) El punto de equilibrio (0,0) existe siempre y localmente es asintóticamente estable.
- (ii) Si existe un único punto de equilibrio con coordenadas positivas $E^*(w^*, g^*)$, entonces éste es un nodo, silla (topológicamente) o un silla-nodo si tr $J \mid_{E^*} \neq 0$ y es una cúspide o una silla-nodo si tr $J \mid_{E^*} = 0$.
- (iii) Si existen dos puntos de equilibrio con coordenadas positivas $E_1^*(w_1^*, g_1^*) y E_2^*(w_1^*, g_1^*)$, entonces E_1^* es una silla; E_2^* es un nodo estable o un foco estable cuando tr $J|_{E_2^*} < 0$, un nodo inestable o un foco inestable cuando tr $J|_{E_2^*} > 0$, y un centro lineal cuando tr $J|_{E_2^*} = 0$.

Los retratos fase son mostrados en la figura 2.6.

Demostración. La linealización del sistema (2.5) en el punto (0,0) está dada por la matriz jacobiana

$$\begin{pmatrix} -\mu_1 & 0 \\ b & -\mu_2 \end{pmatrix},$$

cuyos valores propios son $-\mu_1$ y $-\mu_2$, los cuales son negativos. Luego el punto (0,0) es un nodo estable, y por lo tanto localmente asintóticamente estable.

Recordemos ahora que el polinomio característico de la matriz cuadrada J es $p(\lambda) = \lambda^2 - (\text{tr } J)\lambda + \det J$ y sus valores propios son

$$\lambda = \frac{\operatorname{tr} J \pm \sqrt{(\operatorname{tr} J)^2 - 4 \det J}}{2}.$$

Vamos demostrar el caso (ii). Por el teorema 7 existe un único punto de equilibrio, donde $N = \tilde{N}$. Entonces la observación 1 implica que

$$\left. \frac{d(G_1 G_2)}{dN} \right|_{N = \tilde{N}} = 0,$$

y usando la proposición 2 tenemos que det J = 0, por lo que los valores propios son:

$$\lambda_1 = 0, \qquad \lambda_2 = \operatorname{tr} J.$$

Figura 2.6: Retratos fase del sistema (2.5) con $\mu_1 = \frac{1}{45}$, $\xi_1 = \frac{7}{45}$, $\mu_2 = \frac{1}{30}$, $\xi_2 = \frac{1}{90}$. (a) No hay puntos de equilibrio positivos cuando $b = \frac{2}{15}$. (b) Existe un único punto de equilibrio el cual es una cúspide cuando $b = \frac{1}{9}$. (c) Existen dos puntos de equilibrio positivos cuando $b = \frac{11}{100}$ son: E_1^* el cual es una silla, mientras que E_2^* es un nodo estable.

Si tr $J \neq 0$ entonces el punto de equilibrio tiene un valor propio $\lambda_1 = 0$ y $\lambda_2 \neq 0$, y el teorema 2 nos dice que el punto puede ser un nodo, silla (topológicamente) o silla-nodo. En el caso de que tr J = 0 entonces los valores propios $\lambda_1 = \lambda_2 = 0$, y aplicando el teorema 1.5, obtenemos que el punto de equilibrio puede ser una cúspide (ver la figura 2.6) o un silla-nodo.

Ahora consideremos el caso donde existen dos puntos de equilibrio con coordenadas positivas E_1^* y E_2^* del sistema (2.5), los cuales deberán estar asociados con dos soluciones positivas $N_1^* < N_2^*$ de $G_1(N)G_2(N) = F_1(N)F_3(N) = b$. Tomando en cuenta la observación 1 tenemos que

$$\left. \frac{d(G_1 G_2)}{dN} \right|_{N = N_2^*} < 0 < \left. \frac{d(G_1 G_2)}{dN} \right|_{N = N_1^*}.$$

Finalmente considerando el signo menos en (2.23) concluimos que

$$\det J|_{N=N_1^*} < 0 < \det J|_{N=N_2^*}.$$

En el punto E_1^* tenemos det $J|_{N=N_1^*} < 0$ y los valores propios de J son reales y de signo contrario, es decir, E_1^* es un punto silla y por lo tanto inestable; ver la figura 2.6 (c).

Lo siguiente es considerar el punto E_2^* donde det $J|_{N=N_2^*} > 0$.

Si $(\text{tr } J)|_{N=N_2^*} < 0$ los valores propios de J pueden ser: complejos conjugados con parte real negativa, obteniendo que E_2^* es un foco estable, ó $\lambda_{1,2} \in \mathbb{R}^-$ y por tanto E_2^* es un nodo estable.

Por otro lado, en el caso $(\text{tr } J)|_{N=N_2^*} > 0$ consideramos las dos opciones posibles para los dos valores propios son las siguientes: $\lambda_{1,2} \in \mathbb{R}^+$ originando que E_2^* sea un nodo inestable. Mientras que en el caso de que $\lambda_{1,2}$ son números complejos conjugados con parte real positiva, y por tanto E_2^* es un foco inestable. Por último, cuando $(\text{tr } J)|_{N=N_2^*} = 0$ tenemos que $\lambda_{1,2}$ son imaginarios puros y por lo tanto E_2^* es un centro lineal.

Capítulo 3

Bifurcación de Hopf

En el teorema 8 vimos que el sistema (2.5) tiene dos puntos de equilibrio positivos, E_1^* que es siempre inestable y, E_2^* que puede ser localmente asintóticamente estable o inestable. En particular, los cambios cualitativos a los que se refiere el teorema 8 (iii), hay cambios de signo en la parte real de los valores propios complejos, dando origen a valores propios imaginarios puros del sistema linealizado en un entorno de E_2^* , esto sugiere la existencia de una bifurcación de Hopf. Este capítulo está enfocado en analizar cuándo existe esta bifurcación. Los resultados presentados aquí fueron inspirados en los obtenidos por Huang et al. en [24].

3.1. Análisis de la bifurcación de Hopf

Iniciemos esta sección con el reescalamiento del tiempo $t = (1+w)(1+w+g)\tau$ en el sistema (2.2). Luego el sistema toma la forma

$$\frac{dw}{d\tau} = w(1+w) \left[w - (1+w+g)(\mu_1 + \xi_1(w+g)) \right],$$

$$\frac{dg}{d\tau} = (1+w+g) \left[bw - (1+w)(\mu_2 + \xi_2(w+g))g \right].$$
(3.1)

El siguiente paso es resolver el sistema de ecuaciones algebraico $\frac{dw}{d\tau} = \frac{dg}{d\tau} = 0$ para μ_1 y μ_2 , y conseguimos

$$\mu_1 = \frac{w_2^*}{1 + w_2^* + g_2^*} - \xi_1(w_2^* + g_2^*), \qquad \mu_2 = \frac{bw_2^*}{(1 + w_2^*)g_2^*} - \xi_2(w_2^* + g_2^*).$$
(3.2)

Notemos que estos parámetros son positivos cuando

$$0 < \xi_1 < \frac{w_2^*}{(w_2^* + g_2^*)(1 + w_2^* + g_2^*)},$$

$$0 < \xi_2 < \frac{bw_2^*}{g_2^*(1 + w_2^*)(w_2^* + g_2^*)}.$$
(3.3)

Aplicando el teorema 8 para el caso tr $J|_{E_2^*} = 0$, obtenemos que el punto de equilibrio $E_2^*(w_2^*, g_2^*)$ es linealmente un centro, lo cual nos sugiere la existencia de una bifurcación de Hopf. Un cálculo sencillo nos permite ver que tr $J|_{E_2^*} = 0$ si

$$\xi_1 = \xi_{1H} = \frac{1 + g_2^*}{(1 + w_2^* + g_2^*)^2} - \frac{bw_2^* + (1 + w_2^*)(g_2^*)^2 \xi_2^*}{w_2^* g_2^* (1 + w_2^*)}.$$
(3.4)

De tal forma que $\xi_{1H} > 0$ cuando

$$0 < \xi_2 < \frac{w_2^*}{g_2^*} \left[\frac{1 + g_2^*}{(1 + w_2^* + g_2^*)^2} - \frac{b}{g_2^*(1 + w_2^*)} \right],$$
(3.5)

lo cual se satisface cuando

$$0 < b < \frac{g_2^*(1+w_2^*)(1+g_2^*)}{(1+w_2^*+g_2^*)^2}.$$
(3.6)

El siguiente paso es obtener los valores propios de la matriz jacobiana asociada a la linealización del sistema (3.1) en un entorno del punto $E_2^* = (w_2^*, g_2^*)$ con $\xi_1 = \xi_{1H}$.

En la proposición 2 de la sección 2.3 calculamos la matriz jacobiana (2.18), que evaluada en (w_2^*, g_2^*) toma la forma

$$J = \begin{pmatrix} \frac{w_2^*(1+g_2^*)}{(1+w_2^*+g_2^*)^2} - \xi_1 w_2^* & -\left(\frac{w_2^*}{(1+w_2^*)^2} + \xi_1\right) w_2^* \\ \frac{b}{(1+w_2^*)^2} - \xi_2 g_2^* & -\mu_2 - \xi_2 w_2^* - 2\xi_2 g_2^* \end{pmatrix}.$$
 (3.7)

Tomando en cuenta que los sistemas (3.1) y (2.5) difieren entre si solo en la escala de tiempo $t = (1+w)(1+w+g)\tau$, tenemos que la matriz jacobiana asociada con (2.5) en (w_2^*, g_2^*) es

$$\mathcal{J} = (1+w_2^*)(1+w_2^*+g_2^*) \begin{pmatrix} \frac{w_2^*(1+g_2^*)}{(1+w_2^*+g_2^*)^2} - \xi_1 w_2^* & -\left(\frac{w_2^*}{(1+w_2^*)^2} + \xi_1\right) w_2^* \\ \frac{b}{(1+w_2^*)^2} - \xi_2 g_2^* & -\mu_2 - \xi_2 w_2^* - 2\xi_2 g_2^* \end{pmatrix}.$$

El polinomio característico asociado a esta matriz es $\lambda^2-{\rm tr}\,\mathcal{J}\lambda+\det\mathcal{J}$ con ${\rm tr}\,\mathcal{J}=0,\,y$

$$\det \mathcal{J} = \frac{w_2^*}{g_2^*} \left[(1+w_2^*) \left((1+w_2^*+g_2^*)^2 \xi_1 - 1 - g_2^* \right) \left(bw_2^* + (g_2^*)^2 (1+w_2^*) \xi_2 \right) \right. \\ \left. + g_2^* \left(w_2^* + (1+w_2^*+g_2^*)^2 \xi_1 \right) \left(b - g_2^* (1+w_2^*)^2 \xi_2 \right) \right].$$

Luego los valores propios son $\lambda_{1,2} = \pm \sqrt{-\det \mathcal{J}} = \pm i w_c$, donde

$$\omega_{c} = \left\{ \frac{w_{2}^{*}}{g_{2}^{*}} \left[(1+w_{2}^{*}) \left((1+w_{2}^{*}+g_{2}^{*})^{2}\xi_{1} - 1 - g_{2}^{*} \right) \left(bw_{2}^{*} + (g_{2}^{*})^{2} (1+w_{2}^{*})\xi_{2} \right) + g_{2}^{*} \left(w_{2}^{*} + (1+w_{2}^{*}+g_{2}^{*})^{2}\xi_{1} \right) \left(b - g_{2}^{*} (1+w_{2}^{*})^{2}\xi_{2} \right) \right] \right\}^{\frac{1}{2}}.$$
 (3.8)

Ahora, usando las condiciones (3.3), (3.5) y (3.6) tenemos que w_2^* , g_2^* y b deben ser elegidos de tal forma que ω_c sea real y positivo.

En lo que sigue definimos la transformación

$$w = w_2^* + \frac{w_2^* [b(1+w_2^*) + (b-1-w_2^*)g_2^*] + (g_2^*)^2 (1+w_2^*)(1+w_2^* + g_2^*)\xi_2}{g_2^*}u,$$

$$g = g_2^* - \frac{(1+w_2^* + g_2^*) [bw_2^* + (g_2^*)^2 (1+w_2^*)\xi_2]}{g_2^*}u + \omega_c v,$$

у

$$\begin{aligned} \alpha &= \frac{w_2^* \left[b(1+w_2^*) + (b-1-w_2^*) g_2^* \right] + (g_2^*)^2 (1+w_2^*) (1+w_2^*+g_2^*) \xi_2}{g_2^*},\\ \beta &= \frac{(1+w_2^*+g_2^*) \left[bw_2^* + (g_2^*)^2 (1+w_2^*) \xi_2 \right]}{g_2^*}. \end{aligned}$$

Luego la representación matricial de la anterior transformación es

$$\begin{pmatrix} w - w_2^* \\ g - g_2^* \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ -\beta & \omega_c \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

Ahora derivamos con respecto a t y obtenemos

$$\begin{pmatrix} w'\\g' \end{pmatrix} = \begin{pmatrix} \alpha & 0\\ -\beta & \omega_c \end{pmatrix} \begin{pmatrix} u'\\v' \end{pmatrix}.$$

Definimos $B = \begin{pmatrix} \alpha & 0 \\ -\beta & \omega_c \end{pmatrix}$ cuya inversa es

$$B^{-1} = \begin{pmatrix} \frac{1}{\alpha} & 0\\ \frac{\beta}{\alpha\omega_c} & \frac{1}{\omega_c} \end{pmatrix}.$$

Lo siguiente es considerar el sistema (2.5) como una función X = X(w, g), la cual desarrollamos en serie de Taylor alrededor de (w_2^*, g_2^*) hasta orden dos:

$$\begin{pmatrix} w' \\ g' \end{pmatrix} = X(w,g) = X(w_2^*, g_2^*) + D\left[X(w_2^*, g_2^*)\right] \begin{pmatrix} w - w_2^* \\ g - g_2^* \end{pmatrix} + \mathcal{O}\left(|(w,g)|^2\right)$$
$$= D\left[X(w_2^*, g_2^*)\right] \begin{pmatrix} w - w_2^* \\ g - g_2^* \end{pmatrix} + \mathcal{O}\left(|(w,g)|^2\right),$$

donde $D[X(w_2^*, g_2^*)] = J$ es la matriz (2.15), es decir, la matriz jacobiana del sistema (3.1) evaluada en (w_2^*, g_2^*) . Entonces

$$\binom{w'}{g'} = J \binom{w - w_2^*}{g - g_2^*} + \mathcal{O}\left(|(w, g)|^2\right) = JB \binom{u}{v} + \mathcal{O}\left(|(u, v)|^2\right),$$

es decir,

$$\begin{pmatrix} u'\\v' \end{pmatrix} = B^{-1}JB\begin{pmatrix} u\\v \end{pmatrix} + \mathcal{O}\left(|(u,v)|^2\right) = \begin{pmatrix} 0 & \omega_c\\-\omega_c & 0 \end{pmatrix} \begin{pmatrix} u\\v \end{pmatrix} + \mathcal{O}\left(|(u,v)|^2\right).$$

Con el fin de escribir este sistema como la perturbación de un oscilador armónico de frecuencia 1, reescalamos nuevamente el tiempo a través de $\tau_1 = \omega_c \tau$, y obtenemos

$$\frac{du}{d\tau_1} = v + \sum_{i+j=2}^{4} a_{ij} u^i v^j,
\frac{dv}{d\tau_1} = -u + \sum_{i+j=2}^{4} b_{ij} u^i v^j,$$
(3.9)

donde los coeficientes a_{ij} y b_{ij} están dados en términos de b, ξ_2 , w_2^* y g_2^* . Ver el apéndice ??.

Observación 2. Notemos que el punto de equilibrio (u, v) = (0, 0) es un centro del sistema lineal asociado a (3.9). Sin embargo, al agregar los términos de orden superior, el punto (0,0) puede dejar de ser un centro. En otras palabras, puede cambiar la estructura topológica de las soluciones en un entorno del origen, lo cual, en este caso, como el sistema es analítico se reduce a distinguir si el punto (0,0) es un centro o un foco.

En lo que sigue vamos a ver cómo determinar el número máximo de ciclos límite pequeños que bifurcan del punto de equilibrio (0,0), para lo cual usaremos el método donde suponemos que la solución tiene un desarrollo en serie formal de potencias.

Con el fin de simplificar nuestros cálculos, usaremos un resultado de Yu [41]. Él demostró que la forma normal del sistema (3.9) en coordenadas polares tiene la forma:

$$\frac{dr}{d\tau_1} = r \left(\nu_0 \mu + \nu_1 r^2 + \nu_2 r^4 + \nu_3 r^6 + \dots \right),$$

$$\frac{d\theta}{d\tau_1} = 1 + \nu_0 \mu + \nu_1 r^2 + \nu_2 r^4 + \nu_3 r^6 + \dots,$$

donde $r \ge \theta$ representan la amplitud y la fase de los movimientos periódicos, respectivamente, y $\mu = \xi_1 - \xi_{1H}$ es el desdoblamiento.

Los v_k son llamados valores foco, y pueden ser usados para determinar el número de ciclos límite que bifurcan de un punto crítico de Hopf, así como de las condiciones de centro del punto de equilibrio, mientras que los v_k pueden ser aplicados para determinar los periodos críticos de los ciclos límite que bifurcan de éste.

Para poder aplicar el teorema 13 debemos calcular los ν_j y ν_j . Las expresiones de ν_0 y ν_0 las obtenemos del análisis lineal, pero para obtener ν_k y ν_k $(k \ge 1)$ debemos hacer análisis no lineal con la ayuda de los manipuladores algebraicos computacionales Maple y Mathematica.

En [20], los autores afirman que los valores foco que se obtienen de la salida del programa de Maple codificado por Yu son:

$v_1 =$	$-\frac{w_2^*[b(1+w_2^*+g_2^*)-g_2^*(1+w_2^*)]+(g_2^*)^2(1+w_2^*)(1+w_2^*+g_2^*)\xi_2}{8w_2^*(g_2^*)^4(1+w_2^*+g_2^*)^3\omega_c^2}F_1$
$v_2 =$	$\frac{\{w_2^*[b(1+w_2^*+g_2^*)-g_2^*(1+w_2^*)]+(g_2^*)^2(1+w_2^*)(1+w_2^*+g_2^*)\xi_2\}^2}{288(w_2^*)^3(g_2^*)^{10}(1+w_2^*+g_2^*)^6\omega_c^6}F_2,$
$v_3 =$	$\frac{-F_3}{663552(w_2^*)^{10}(g_2^*)^{18}(1+w_2^*)^{14}(1+w_2^*+g_2^*)^8\omega_c^{12}\{w_2^*[b(1+w_2^*+g_2^*)-g_2^*(1+w_2^*)]+(g_2^*)^2(1+w_2^*)(1+w_2^*+g_2^*)\xi_2\}^6},$
$v_4 =$,

donde los F_i , i = 1, 2, 3 y v_4 son polinomios con expresiones muy largas en las variables b, ξ_2, w_2^* y g_2^* , pero no son proporcionados en el artículo [20].

Ya que es muy difícil resolver $v_1 = v_2 = v_3 = 0$ para los parámetros b y ξ_2 , estudiaremos un caso más sencillo al tomar $w_2^* = g_2^*$, lo cual implica que el punto de equilibrio (w_2^*, g_2^*) está restringido a la línea recta de 45° en el primer cuadrante del plano wg. Biológicamente esto significa que los mosquitos salvajes y estériles están en equilibrio. En lo que sigue veremos que el sistema dinámico tiene una dinámica muy compleja aún con esta restricción y demostraremos el siguiente teorema.

Teorema 9. Si $b < b_0$, $\sqrt{\mu_1} + \sqrt{\xi_1} < 1$ y el punto de equilibrio $E_2^*(w_2^*, g_2^*)$ satisface $w_2^* = g_2^*$, entonces el sistema (3.1), es decir, el sistema (2.2) tiene una bifurcación

de Hopf de codimensión 3 alrededor del punto de equilibrio $E_2^*(w_2^*, g_2^*)$, y tres ciclos límite bifurcan desde $E_2^*(w_2^*, g_2^*)$ y el ciclo límite exterior es inestable.

Demostración. Sin pérdida de generalidad consideraremos el caso $g_2^* = w_2^* = 1$.

Los coeficientes v_0 y ν_0 son obtenidos de la parte lineal del sistema (3.9), que en nuestro caso son $v_0 = 0$ y $\nu_0 = 0$. Por otro lado, los valores foco (o números de Liapunov) v_1 , v_2 y v_3 los hemos calculado con el programa codificado en Maple del Dr. J. Torregrosa de la Universidad Autónoma de Barcelona y son los siguientes:

$$\upsilon_{1} = \frac{1}{108(-2+3b+6\xi_{2})^{2}} \bigg(729b^{4} + (-2916\xi_{2} - 1782)b^{3} + (-37908\xi_{2}^{2} - 648\xi_{2} + 828)b^{2} + (-58320\xi_{2}^{3} - 1944\xi_{2}^{2} - 936\xi_{2} - 96)b - 4032\xi_{2}^{2} + 512\xi_{2} \bigg).$$

Los coeficientes v_2 y v_3 son muy largos, por lo tanto los hemos escrito en el apéndice ??.

Notemos que v_1 , v_2 y v_3 dependen de las variables ξ_2 y b. Luego, tenemos tres ecuaciones con dos incógnitas. En lo que sigue usamos el programa Mathematica para resolver $v_1 = v_2 = 0$ y obtenemos:

ξ_2	b
0.046400614224799935	0.195152158788003652
0.004078688255735518	0.15234730517648018
0.07046862315747023	2.434487043237996
-0.12802729578813765	-0.42139748645096337
-0.07327066623436737	1.604453180733024
-0.5414575508455908	0.733563983437017
0.08454483033081156	0.0730169006058842
0.12199049051389702	0.007144743366011733
0.12199049051388985	0.007144743366022234

Ahora debemos elegir parejas de soluciones (ξ_2, b) que satisfagan (3.6) y que se cumpla la condición $\omega_c > 0$.

Un cálculo directo nos permite ver que para $w_2^* = g_2^* = 1$, la condición (3.6) se transforma en

Luego los valores elegibles de b son:

```
0.195152158788003652
0.15234730517648018
0.0730169006058842
0.007144743366011733
0.007144743366022234.
```

Al evaluar en estos valores de b y sus respectivos ξ_2 , encontramos que el único valor en el cual se cumple que $\omega_c > 0$ es:

 $\xi_2 = 0.004078688255735518, \qquad b = 0.15234730517648018,$

en este caso

$$\begin{split} \xi_1 &= 0.1419698813782466, \qquad \omega_c = 0.27926600973828647, \\ \mu_1 &= 0.04939357057684013, \qquad \mu_2 = 0.06801627607676905 \\ \upsilon_1 &= \upsilon_2 = 0, \qquad \upsilon_3 = 0.0004295146978034307 \end{split}$$

Además, en el punto crítico anterior evaluamos el determinante

$$\det\left[\frac{\partial(\upsilon_1,\upsilon_2)}{\partial(b,\xi_2)}\right] = -0.0343025 \neq 0.$$

Usando este determinate, el teorema 13 y $v_3 \neq 0$ concluimos que del punto $E_2^*(1, 1)$ (punto crítico de Hopf) bifurcan tres ciclos límite de amplitud pequeña. Ya que el primer coeficiente de Liapunov diferente de cero es $v_3 > 0$, el ciclo límite exterior es inestable.

Recordemos que el problema depende de 5 parámetros b, ξ_1 , ξ_2 , μ_1 , μ_2 , pero solo 2 de ellos deben variar para que se produzca la bifurcación, por lo tanto la bifurcación es de codimensión 3.

Observación 3. Dado que que el primer coeficiente de Liapunov es positivo, el teorema de Hopf implica que el punto de equilibrio genera un ciclo límite inestable, y por lo tanto la bifurcación de Hopf es subcrítica. Como consecuencia el ciclo límite más interior y el exterior son inestables, mientras que el ciclo de enmedio es estable. Ver la figura 3.1.

Figura 3.1: Tres ciclos límite donde los ciclos límite más internos y externos (curvas azules punteadas) son inestables y el ciclo del límite medio (curva roja continua) es estable. Las flechas indican las direcciones en espiral de las trayectorias hacia el ciclo límite estable y el foco estable (en color rojo). Figura tomada de [24].

Capítulo 4

Bifurcación de Takens-Bogdanov

Como se dice en el capitulo 1, la bifurcación de Takens-Bogdanov es una bifurcación de un punto de equilibrio en una familia de parámetros de ecuaciones diferenciales ordinarias autónomas en el plano, donde el equilibrio crítico tiene un valor propio cero de multiplicidad (algebraica) dos, y por lo tanto la parte lineal del sistema de ecuaciones diferenciales es nilpotente.

En este capítulo llevaremos a cabo un análisis completo de la bifurcación tipo Takens-Bogdanov del sistema (3.1) (es decir, del sistema (2.5)) en un entorno del punto de equilibrio $E^*(w^*, g^*)$. Restringiremos nuestro estudio al caso $w^* = g^*$.

Los resultados son descritos en términos de un conjunto de diagramas de estabilidad que muestran las regiones del espacio de parámetros cerca del origen que corresponden a retratos de fases específicas.

4.1. Condiciones necesarias para bifurcación de Takens-Bogdanov

Proposición 3. En un entorno del punto de equilibrio $E^*(w^*, g^*)$ con $w^* = g^*$, el sistema de ecuaciones (3.1) puede ser escrito como

$$\frac{dx}{d\tau} = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 x y + a_5 y^2 + a_6 x^3 + a_7 x^2 y + a_8 x y^2 + a_{10} x^4
+ a_{11} x^3 y + a_{12} x^2 y^2,$$
(4.1)
$$\frac{dy}{d\tau} = b_0 + b_1 x + b_2 y + b_3 x^2 + b_4 x y + b_5 y^2 + b_6 x^3 + b_7 x^2 y + b_8 x y^2 + b_9 y^3
+ b_{11} x^3 y + b_{12} x^2 y^2 + b_{13} x y^3,$$

donde $x = w - w^*$, $y = g - w^* y$ los coeficientes dependen de w^* , $g^* y$ de los parámetros b, ξ_1 , ξ_2 , μ_1 , μ_2 .

Demostración. Consideremos $g^* = w^*$ en las ecuaciones que definen el punto de equilibrio $E^*(w^*, g^*)$ del sistema (3.1). Luego hacemos la translación del origen al punto de equilibrio, $x = w - w^*$, $y = g - w^*$. Lo siguiente es calcular las ecuaciones diferenciales (3.1) en estas nuevas variables. Como consecuencia obtenemos expresiones que simplificamos para posteriormente igualar coeficientes, y obtenemos

$$\begin{aligned} a_0 &= w^{*2} + w^{*3} - \mu_1 w^* - 3\mu_1 w^{*2} - 2\mu_1 w^{*3} - 2\xi_1 w^{*2} - 6\xi_1 w^{*3} - 4\xi_1 w^{*4}, \\ a_1 &= 2w^* + 3w^{*2} - \mu_1 - 5\mu_1 w^* - 5\mu_1 w^{*2} - 3\xi_1 w^* - 13\xi_1 w^{*2} - 12\xi_1 w^{*3}, \\ a_2 &= -\mu_1 w^* - \mu_1 w^{*2} - \xi_1 w^* - 5\xi_1 w^{*2} - 4\xi_1 w^{*3}, \\ a_3 &= 1 + 3w^* - 2\mu_1 - 4\mu_1 w^* - \xi_1 - 9\xi_1 w^* - 13\xi_1 w^*, \\ a_4 &= -\mu_1 - 2\mu_1 w^* - \xi_1 - 8\xi_1 w^* - 10\xi_1 w^{*2}, \qquad a_5 &= -\xi_1 w^* - \xi_1 w^{*2}, \\ a_6 &= 1 - \mu_1 - 2\xi_1 - 6\xi_1 w^*, \qquad a_7 &= -\mu_1 - 3\xi_1 - 8\xi_1 w^*, \qquad a_8 &= -\xi_1 - 2\xi_1 w^*, \\ a_9 &= 0, \qquad a_{10} &= -\xi_1, \qquad a_{11} &= -2\xi_1, \qquad a_{12} &= -\xi_1, \\ b_0 &= bw^* + 2bw^{*2} - \mu_2 w^* - 3\mu_2 w^{*2} - 2\mu_2 w^{*3} - 2\xi_2 w^{*2} - 6\xi_2 w^{*3} - 4\xi_2 w^{*4}, \\ b_1 &= b + 3bw^* - 2\mu_2 w^* - 3\mu_2 w^{*2} - 3\xi_2 w^* - 11\xi_2 w^{*2} - 8\xi_2 w^{*3}, \\ b_2 &= bw^* - \mu_2 - 4\mu_2 w^* - 3\mu_2 w^{*2} - 3\xi_2 w^* - 11\xi_2 w^{*2} - 8\xi_2 w^{*3}, \\ b_3 &= b - \mu_2 - 2\mu_2 w^* - \xi_2 - 10\xi_2 w^* - 14\xi_2 w^{*2}, \\ b_5 &= -\mu_2 - 2\mu_2 w^* - \xi_2 - 6\xi_2 w^* - 5\xi_2 w^{*2}, \\ b_6 &= -\xi_2 w^*, \qquad b_7 &= -\mu_2 - 2\xi_2 - 7\xi_2 w^*, \qquad b_8 &= -\mu_2 - 3\xi_2 - 7\xi_2 w^*, \\ b_9 &= -\xi_2 - \xi_2 w^*, \qquad b_{10} &= 0, \qquad b_{11} &= -\xi_2, \qquad b_{12} &= -2\xi_2, \qquad b_{13} &= -\xi_2. \end{aligned}$$

Como hemos dicho antes, estamos interesados en la bifurcación de Takens-Bogdanov, luego requerimos saber cuándo se anulan simultáneamente la traza y el determinate de la matriz de linealización del sistema (2.2) en un entorno del punto de equilibrio $E^*(w^*, g^*)$. El siguiente resultado da las condiciones para que ésto ocurra.

Proposición 4. Consideremos la matriz jacobiana (2.15) y el punto de equilibrio $E^*(w^*, g^*)$ de (2.2) con $w^* = g^*$. Entonces las condiciones necesarias para que

 $\operatorname{tr} J\big|_{E^*} = \det J\big|_{E^*} = 0 \ \operatorname{son}$

$$\begin{aligned} \xi_1 &= \frac{w^* \xi_1^*}{(1+2w^*)^2 \left[w^* (1+w^*)^2 + b(2+w^*)(1+2w^*)\right]} > 0, \\ \xi_2 &= \frac{b\xi_2^*}{w^* (1+w^*) \left[w^* (1+w^*)^2 + b(2+w^*)(1+2w^*)\right]} > 0, \\ \mu_1 &= \frac{w^* \mu_1^*}{(1+2w^*)^2 \left[w^* (1+w^*)^2 + b(2+w^*)(1+2w^*)\right]} > 0, \\ \mu_2 &= \frac{b\mu_2^*}{(1+w^*) \left[w^* (1+w^*)^2 + b(2+w^*)(1+2w^*)\right]} > 0, \end{aligned}$$
(4.2)

donde

$$\begin{aligned} \xi_1^* &= (1+w^*)^3 - b(2+w^*)(1+2w^*), \\ \xi_2^* &= w^*(1+w^*) - b(2+w^*)(1+2w^*), \\ \mu_1^* &= b(2+w^*)(1+2w^*)(1+4w^*) - w^*(1+w^*)^2, \\ \mu_2^* &= 3b(2+w^*)(1+2w^*) + w^*(w^{*2}-1). \end{aligned}$$
(4.3)

Demostración. Iniciemos por observar que las expresiones (3.2), que determinan cuándo $E^*(w^*, g^*)$ es punto de equilibrio, para $g^* = w^*$ se transforman en

$$\mu_1 = \frac{w^*}{1+2w^*} - 2w^*\xi_1, \qquad \qquad \mu_2 = \frac{b}{1+w^*} - 2w^*\xi_2. \tag{4.4}$$

El siguiente paso es despejar ξ_1 de las ecuaciones tr $J|_{E^*} = 0$ y det $J|_{E^*} = 0$.

Iniciemos por resolver tr $J\big|_{E^*}=0$ para $\xi_1:$

$$\xi_1 = \frac{1+w^*}{1+2w^*} - \frac{b+w^*(1+w^*)\xi_2}{w^*(1+w^*)}.$$
(4.5)

Por otro lado,

$$\det J\big|_{E^*} = (w^* + 1)(\xi_1(2w^* + 1)^2 - w^* - 1)(bw^* + \xi_2(w^* + 1)(w^*)^2) + w^*(\xi_1(2w^* + 1)^2 + w^*)(b - \xi_2w^*(w^* + 1)^2) = 0,$$

que implica

$$\xi_1 = \frac{bw^{*2} + bw^* + b + 2\xi_2 w^{*4} + 5\xi_2 w^{*3} + 4\xi_2 w^{*2} + \xi_2 w^*}{b(w^* + 2)(2w^* + 1)^2}.$$
(4.6)

Ahora, igualamos (4.5) y (4.6) y despejamos $\xi_2,$ es decir,

$$\xi_2 = \frac{b \left[w^* (1 + w^*) - b(2 + w^*)(1 + 2w^*) \right]}{w^* (1 + w^*) \left[w^* (1 + w^*)^2 + b(2 + w^*)(1 + 2w^*) \right]}$$

Sustituyendo este valor en (4.4) y (4.6) obtenemos

$$\xi_{1} = \frac{w^{*}\xi_{1}^{*}}{(1+2w^{*})^{2} \left[w^{*}(1+w^{*})^{2} + b(2+w^{*})(1+2w^{*})\right]},$$

$$\xi_{2} = \frac{b\xi_{2}^{*}}{w^{*}(1+w^{*}) \left[w^{*}(1+w^{*})^{2} + b(2+w^{*})(1+2w^{*})\right]},$$

$$\mu_{1} = \frac{w^{*}\mu_{1}^{*}}{(1+2w^{*})^{2} \left[w^{*}(1+w^{*})^{2} + b(2+w^{*})(1+2w^{*})\right]},$$

$$\mu_{2} = \frac{b\mu_{2}^{*}}{(1+w^{*}) \left[w^{*}(1+w^{*})^{2} + b(2+w^{*})(1+2w^{*})\right]},$$

(4.7)

donde

$$\begin{aligned} \xi_1^* &= (1+w^*)^3 - b(2+w^*)(1+2w^*), \\ \xi_2^* &= w^*(1+w^*) - b(2+w^*)(1+2w^*), \\ \mu_1^* &= b(2+w^*)(1+2w^*)(1+4w^*) - w^*(1+w^*)^2, \\ \mu_2^* &= 3b(2+w^*)(1+2w^*) + w^*(w^{*2}-1). \end{aligned}$$

$$(4.8)$$

Una inspección rápida nos permite concluir que ξ_1 , ξ_2 , μ_1 y μ_2 tienen el mismo signo de ξ_1^* , ξ_2^* , μ_1^* y μ_2^* , respectivamente.

Lo que sigue es resolver la ecuación $\mu_1 = 0$ para b, y obtenemos

$$b_L = \frac{w^*(1+w^*)^2}{(2+w^*)(1+2w^*)(1+4w^*)}.$$

Ahora resolvemos la ecuación $\xi_2 = 0$ para b, y llegamos a

$$b_U = \frac{w^*(1+w^*)}{(2+w^*)(1+2w^*)}.$$

Notemos que $\frac{1+w^*}{1+4w^*} < 1$ cuando $w^* > 0$, de tal forma que $b_L < b_U$. Por otro lado los denominadores de las expresiones en (4.7) son positivas.

Lo siguiente es determinar las condiciones en b y w^* para que $\xi_1^* > 0$, $\xi_2^* > 0$, $\mu_1^* > 0$ y $\mu_2^* > 0$. Recordemos que $\xi_1^* > \xi_2^*$ para $w^* > 0$, luego podemos ignorar la condición $\xi_1^* > 0$. Como consecuencia nos enfocaremos en analizar bajo que condiciones $\xi_2^* > 0$, $\mu_1^* > 0$ y $\mu_2^* > 0$.

Para iniciar vemos que

$$\xi_2^* = w^*(1+w^*) - b(2+w^*)(1+2w^*) > 0,$$

implica que

$$b < \frac{w^*(1+w^*)}{(2+w^*)(1+2w^*)} = b_U.$$
(4.9)

Por otro lado

$$\mu_1^* = b(2+w^*)(1+2w^*)(1+4w^*) - w^*(1+w^*)^2 > 0,$$

entonces

$$b_L = \frac{w^* (1+w^*)^2}{(2+w^*)(1+2w^*)(1+4w^*)} < b.$$
(4.10)

Ahora, usando (4.9) y (4.10) concluimos que

$$b_L < b < b_U$$
 para $w^* > 0.$ (4.11)

Notemos que $w^* \geq 1$ y $\mu_2^* > 0$ se cumplen para toda b > 0.Además

$$b > \frac{w^*(1-w^{*2})}{3(2+w^*)(1+2w^*)} \quad \text{para} \quad 0 < w^* < 1.$$

Por otro lado, si $w^* > 0$ tenemos

$$\frac{1-w^*}{3} < \frac{1+w^*}{1+4w^*},$$

y al multiplicar por $\frac{w^*(1+w^*)}{(2+w^*)(1+2w^*)} > 0$ tenemos que

$$\frac{w^*(1-w^{*2})}{3(2+w^*)(1+2w^*)} < \frac{w^*(1+w^*)^2}{(2+w^*)(1+2w^*)(1+4w^*)} = b_L, \quad \text{para} \quad w^* > 0.$$

En resumen, hemos demostrado que (4.11) son condiciones necesarias y suficientes para que $\xi_1^* > 0$, $\xi_2^* > 0$, $\mu_1^* > 0$ y $\mu_2^* > 0$.

4.2. Bifurcación de cúspide

En esta sección vamos dar condiciones suficientes sobre el campo vectorial definido por (3.1), para que la dinámica alrededor de $E^*(w^*, g^*)$ sea localmente topológicamente equivalente a la deformación versal de una bifurcación cúspide genérica en el plano.

Teorema 10. Sea $w^* = g^*$ en el punto de equilibrio positivo $E^*(w^*, g^*)$ del sistema (2.2) $y \ b \in (b_L, b_U)$. Entonces $E^*(w^*, g^*)$ es una cúspide nilpotente de codimensión 2 y 3, respectivamente, con respecto a las siguientes condiciones:

(i) codimensión 2 si

$$w^* \in (0, w_L^*] \cup [w_U^*, \infty)$$
, ó $w^* \in (w_L^*, w_U^*)$ $y \ b \neq b^*(w^*);$

(ii) codimensión 3 si

$$w^* \in (w_L^*, w_U^*) \quad y \quad b = b^*(w^*).$$

Demostración. Iniciemos por recordar que $g^* = w^*$ en las ecuaciones que definen al punto de equilibrio $E^*(w^*, g^*)$ del sistema (3.1) y hacemos la translación del origen al punto de equilibrio, $x = w - w^*$, $y = g - w^*$.

El siguiente paso es transformar el sistema (4.1) a la forma normal (1.5). Para llevar a cabo ésto, hacemos el cambio de variable $x_1 = y$ y $x_2 = \frac{dy}{d\tau}$ en (4.1), y obtenemos

$$\begin{aligned} \frac{dx_1}{d\tau} &= x_2, \\ \frac{dx_2}{d\tau} &= a_0 b_1 + (a_1 b_1 + 2a_0 b_3) x + (a_2 b_1 + a_0 b_4) x_1 + b_2 x_2 \\ &+ (a_3 b_1 + 2a_1 b_3 + 3a_0 b_6) x^2 + (a_4 b_1 + 2a_2 b_3 + a_1 b_4 + 2a_0 b_7) x x_1 \\ &+ (a_5 b_1 + a_2 b_4 + a_0 b_8) x_1^2 + b_4 x x_2 + 2b_5 x_1 x_2 + (a_6 b_1 + 2a_3 b_3 + 3a_1 b_6) x^3 \\ &+ (a_7 b_1 + 2a_4 b_3 + a_3 b_4 + 3a_2 b_6 + 2a_1 b_7 + 3a_0 b_{11}) x^2 x_1 \\ &+ (a_8 b_1 + 2a_5 b_3 + a_4 b_4 + 2a_2 b_7 + a_1 b_8 + 2a_0 b_{12}) x x_1^2 + b_7 x^2 x_2 + 2b_8 x x_1 x_2 \\ &+ 3b_9 x_1^2 x_2 + (a_5 b_4 + a_2 b_8 + a_0 b_{13}) x_1^3 + (a_{10} b_1 + 2a_6 b_3 + 3a_3 b_6) x^4 \\ &+ (a_{11} b_1 + 2a_7 b_3 + a_6 b_4 + 3a_4 b_6 + 2a_3 b_7 + 3a_1 b_{11}) x^3 x_1 \\ &+ (a_{12} b_1 + 2a_8 b_3 + a_7 b_4 + 3a_5 b_6 + 2a_4 b_7 + a_3 b_8 + 3a_2 b_{11} + 2a_1 b_{12}) x^2 x_1^2 \\ &+ (a_8 b_4 + 2a_5 b_7 + a_4 b_8 + 2a_2 b_{12} + a_1 b_{13}) x x_1^3 + a_5 b_8 x_1^4 + b_{11} x^3 x_2 \\ &+ 2b_{12} x^2 x_1 x_2 + 3b_{13} x x_1^2 x_2 + a_2 b_{13} x_1^4. \end{aligned}$$

Ahora vamos ha realizar varias manipulaciones algebraicas para que la ecuación diferencial en $\frac{dx_2}{d\tau}$ sólo dependa de x_1 y x_2 . En otras palabras, debemos expresar a x en términos de x_1 y x_2 . Para conseguir nuestro objetivo proponemos que x sea de la forma:

$$\begin{aligned} x &= x(x_1, x_2) \\ &= \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_1^2 + \delta_4 x_1 x_2 + \delta_5 x_2^2 + \delta_6 x_1^2 + \delta_7 x_1^2 x_2 + \delta_8 x_1 x_2^2 + \delta_9 x_2^3 \\ &+ \delta_{10} x_1^4 + \delta_{11} x_1^3 x_2 + \delta_{12} x_1^2 x_2^2 + \delta_{13} x_1 x_2^3 + \delta_{14} x_2^4. \end{aligned}$$

Con el fin de obtener los coeficientes δ_i , para $i = 1, \ldots, 13$, vamos a sustituir en esta última expresión a $x_1 = y$ y $x_2 = \frac{dy}{dt}$, hasta el orden de los términos cuyos coeficientes se van a calcular. Por ejemplo, para calcular δ_0 , δ_1 y δ_2 truncamos la expresión hasta orden uno, obteniendo

$$x_1 = y,$$
 $x_2 = \frac{dy}{dt} = b_0 + b_1 x + b_2 y.$

En otras palabras,

$$x = \delta_0 + \delta_1 y + \delta_2 (b_0 + b_1 x + b_2 y) = \delta_0 + b_0 \delta_2 + b_1 \delta_2 x + (\delta_1 + b_2 \delta_2) y.$$

Igualando coeficientes, obtenemos

$$\delta_0 = -\frac{b_0}{b_1}, \quad \delta_1 = -\frac{b_2}{b_1}, \quad \delta_2 = \frac{1}{b_1}.$$

Similarmente para orden dos tenemos

$$\delta_3 = \frac{b_1 b_2 b_4 - b_1^2 b_5 - b_2^2 b_3}{b_1 (b_1^2 + 2b_0 b_3)}, \quad \delta_4 = \frac{2b_2 b_3 - b_1 b_4}{b_1 (b_1^2 + 2b_0 b_3)}, \quad \delta_5 = -\frac{b_3}{b_1 (b_1^2 + 2b_0 b_3)}.$$

Siguiendo este procedimiento hasta orden cuatro, encontramos $\delta_6, \dots, \delta_{14}$ cuyas expresiones son muy largas, por lo que hemos decidido incluirlas en el apéndice ??.

Es importante notar que una vez que hemos calculado los primeros coeficientes δ_j , no es necesario volverlos calcular para ordenes superiores.

Finalmente, sustituyendo la expresión obtenida de $x(x_1, x_2)$ en $\frac{dx_2}{d\tau}$, tenemos el sistema

$$\begin{aligned} \frac{dx_1}{d\tau} &= x_2, \\ \frac{dx_2}{d\tau} &= c_{20}x_1^2 + c_{11}x_1x_2 + c_{02}x_2^2 + c_{30}x_1^3 + c_{21}x_1^2x_2 + c_{12}x_1x_2^2 + c_{03}x_2^3 \\ &+ c_{40}x_1^4 + c_{31}x_1^3x_2 + c_{22}x_1^2x_2^2 + c_{13}x_1x_2^3 + c_{04}x_2^4. \end{aligned}$$

Este sistema lo reescribimos para obtener la forma (1.5) de (4.1):

$$\frac{dx_1}{d\tau} = x_2,$$

$$\frac{dx_2}{d\tau} = c_{20}x_1^2 \left(1 + \frac{c_{30}}{c_{20}}x_1 + \frac{c_{40}}{c_{20}}x_1^2 \right) + c_{11}x_1x_2 \left(1 + \frac{c_{21}}{c_{11}}x_1 + \frac{c_{31}}{c_{11}}x_1^2 \right) + x_2^2 (c_{02} + c_{12}x_1 + c_{03}x_2 + c_{22}x_1^2 + c_{13}x_1x_2 + c_{04}x_2^2),$$
(4.12)

donde

$$c_{20} = \frac{C_{20}}{(2+w^*)(1+2w^*)^2 (b(2+w^*)(1+2w^*)+w^*(1+w^*)^2)},$$

$$c_{11} = \frac{C_{11}}{bw^*(2+w^*)(1+2w^*)^3 (b(2+w^*)(1+2w^*)+w^*(1+w^*)^2)},$$

$$c_{31} = \frac{-C_{31}}{b^5w^{*3}(w^*+2)^8 (2w^*+1)^7 (b(2+w^*)(1+2w^*)+w^*(1+w^*)^2)},$$

 con

$$\begin{split} C_{20} &= -(2+w^*)^2(1+2w^*)^2(3w^{*3}+6w^{*2}+5w^*+1)b^2 \\ & w^*(2+w^*)(1+2w^*)(1+w^*)^2(3w^{*2}+2w^*+1)b \\ & -w^{*3}(1+w^*)^3(w^{*3}+w^*+1), \end{split}$$

$$\begin{split} C_{11} &= 2(2+w^*)^2(1+2w^*)^5b^3 \\ &+ w^*(2+w^*)(1+w^*)(1+2w^*)^2(4w^{*3}-w^{*2}-5w^*-1)b^2 \\ &+ w^{*2}(1+2w^*)(1+w^*)^3(2w^{*3}+w^{*2}-w^*+1)b-2w^{*4}(1+w^*)^6, \end{split}$$

$$\begin{split} C_{31} &= b^7(w^*+2)^7(2w^*+1)^8(5w^{*3}+18w^{*2}+14w^*-1)+b^6w^*(w^*+2)^6(2w^*+1)^4 \\ &(18w^{*8}+134w^{*7}+174w^{*6}-213w^{*5}-649w^{*4}-559w^{*3}-216w^{*2}-37w^*-2) \\ &+ b^5w^{*2}(w^*+2)^5(2w^*+1)^3(140w^{*8}+1218w^{*7}+3174w^{*6}+3921w^{*5} \\ &+ 2694w^{*4}+1115w^{*3}+295w^{*2}+48w^*+4)(w^*+1)^2 \\ &+ b^4w^{*3}(w^*+2)^4(2w^*+1)^2(w^*+1)^3(16w^{*9}+442w^{*8}+882w^{*7}+191w^{*6} \\ &- 737w^{*5}-639w^{*4}-158w^{*3}+16w^{*2}+12w^*+2) -b^3w^{*4}(w^*+2)^3(w^*+1)^4 \\ &(1784w^{*11}+12112w1^{*10}+38690w^{*9}+73176w^{*8}+87834w^{*7}+68732w^{*6} \\ &+ 35479w^{*5}+12260w^{*4}+2966w^{*3}+537w^{*2}+66w^*+3) \\ &+ b^2w^{*6}(w^*+2)^2(w1+1)^6(30w^{*9}+2188w^{*8}+9720w^{*7}+19420w^{*6}+22121w^{*5} \\ &+ 15499w^{*4}+6836w^{*3}+1896w^{*2}+320w^*+27) \\ &+ 2bw^{*8}(w^*+1)^8(18w^{*7}-238w^{*6}-1292w^{*5}-2139w^{*4}-1486w^{*3}-346w^{*2} \\ &+ 57w^*+26) - 4w^{*10}(w^{*3}-24w^{*2}-23w^*-5)(w^*+1)^{10}. \end{split}$$

Con el fin de garantizar la existencia de una cúspide, vamos a aplicar el teorema 1.5, para lo cual debemos obtener condiciones en los parámetros que garanticen cuando $c_{20} \neq 0$ y c_{11} es igual o diferente de cero.

Iniciemos por verificar cuando $c_{20} = 0$, es decir, cuándo $C_{20} = 0$. Para obtener esto, vamos a buscar las raíces de la ecuación $C_{20} = 0$, es decir, los ceros de un polinomio cuadrático en *b* cuyos ceros son

$$b_{\pm} = \frac{w^*(1+w^*)}{2(2+w^*)(1+2w^*)(3w^{*3}+6w^{*2}+5w^*+1)} \\ \times \left[3w^{*3}+5w^{*2}+3w^*+1\pm(1+2w^*) \right] \\ \sqrt{(1+w^*)(1-3w^*-2w^{*2}-2w^{*3}-3w^{*4}-3w^{*5})} \right].$$

Definimos $P(w^*) = 1 - 3w^* - 2w^{*2} - 2w^{*3} - 3w^{*4} - 3w^{*5}$, el cual corresponde a uno de los polinomios dentro de la raíz cuadrada de la expresión anterior. A partir de la gráfica de la figura 4.1, vemos que $P(w^*) \ge 0$ para $0 < w^* \le 0.26679924...$

Figura 4.1: Gráfica del polinomio $P(w^*)$, donde el punto azul en el eje w^* es la raíz $w^* = 0.26679924...$

Cuando $P(w^*) \ge 0$ tenemos que $C_{20} = 0$ tiene dos soluciones positivas, es decir, $b_+ > b_- > 0$ ó $b_+ = b_- > 0$ si $w^* = 0.26679924...$, pues

$$(3w^{*3} + 5w^{*2} + 3w^{*} + 1)^{2} - (1 + 2w^{*})^{2}(1 + w^{*})(1 - 3w^{*} - 2w^{*2} - 2w^{*3} - 3w^{*4} - 3w^{*5})$$

= $12w^{*} + 12w^{*2} + 28w^{*3} + 52w^{*4} + 32w^{*5} + 8w^{*6} + 12w^{*7} + 12w^{*8} > 0,$

donde $w^* > 0$. Esto implica que si $0 < w^* \le 0.26679924...$ se cumple

$$3w^{*3} + 5w^{*2} + 3w^{*} + 1 - (1 + 2w^{*})\sqrt{(1 + w^{*})(1 - 3w^{*} - 2w^{*2} - 2w^{*3} - 3w^{*4} - 3w^{*5})} > 0.$$

Para verificar que $b_{\pm} \in (b_L, b_U)$, calculamos μ_1 en $b = b_{\pm}$ y obtenemos

$$\mu_{1\pm} = -\frac{w^{*2}(1+w^{*})^{2}}{2(1+2w^{*})(3w^{*3}+6w^{*2}+5w^{*}+1)\left[w^{*}(1+w^{*})^{2}+b_{\pm}(2+w^{*})(1+2w^{*})\right]} \times \left[(1-w^{*2})(1+3w^{*})\mp(1+4w^{*})\sqrt{(1+w^{*})P(w^{*})}\right].$$

Por otro lado, si $0 < w^* \le 0.26679924\ldots$ tenemos que $\mu_{1-} < 0$, mientras que para $b = b_+$ y $w^* > 0$ obtenemos

$$(1+w^{*2})^2(1+3w^*)^2 - (1+4w^*)^2(1+w^*)(1-3w^*-2w^{*2}-2w^{*3}-3w^{*4}-3w^{*5})$$

= $12w^{*2} + 64w^{*3} + 100w^{*4} + 116w^{*5} + 140w^{*6} + 120w^{*7} + 48w^{*8}$
= $4w^{*2}(1+w^*) \left[2(1+w^*)(1-2w^*)^2\right] (3w^{*3}+6w^{*2}+5w^*+1) > 0.$

Esto implica que si $0 < w^* \leq 0.26679924\ldots$ se cumple

$$(1 - w^{*2})(1 + 3w^{*}) - (1 + 4w^{*})\sqrt{(1 + w^{*})P(w^{*})} > 0.$$

Por lo tanto $\mu_{1+} < 0$, es decir, $b_{\pm} \notin (b_L, b_U)$. Luego $c_{20} \neq 0$ cuando $b_{\pm} \in (b_L, b_U)$.

A continuación vamos a buscar las soluciones de $c_{11} = 0$, es decir, de $C_{11} = 0$. Notemos que C_{11} es un polinomio cúbico en b, de tal forma que podemos usar el discriminante de la fórmula de Cardano para determinar el número de raíces reales. Este discriminante lo obtenemos de la siguiente forma. Consideramos la ecuación

$$C_{11} = 2(2+w^*)^2(1+2w^*)^5b^3 + w^*(2+w^*)(1+w^*)(1+2w^*)^2(4w^{*3}-w^{*2}-5w^*-1)b^2 + w^{*2}(1+2w^*)(1+w^*)^3(2w^{*3}+w^{*2}-w^*+1)b - 2w^{*4}(1+w^*)^6 = 0,$$

y la dividimos entre $2(2+w^{\ast})^2(1+2w^{\ast})^5$ para obtener

$$b^{3} + \frac{w^{*}(1+w^{*})(4w^{*3}-w^{*2}-5w^{*}-1)b^{2}}{2(2+w^{*})(1+2w^{*})^{3}}b^{2} + \frac{w^{*2}(1+w^{*})^{3}(2w^{*3}+w^{*2}-w^{*}+1)}{2(2+w^{*})^{2}(1+2w^{*})^{4}}b - \frac{w^{*4}(1+w^{*})^{6}}{(2+w^{*})^{2}(1+2w^{*})^{5}} = 0.$$

Sustituyendo $b=y-\frac{w^*(1+w^*)(4w^{*3}-w^{*2}-5w^*-1)b^2}{6(2+w^*)(1+2w^*)^3},$ obtenemos la siguiente ecuación

$$y^3 + py + q = 0,$$

donde

$$p = \frac{w^{*2}(w^{*}+1)^{3} \left(2w^{*3}+w^{*2}-w^{*}+1\right)}{2(w^{*}+2)^{2} (2w^{*}+1)^{4}} - \frac{w^{*2}(w^{*}+1)^{2} \left(4w^{*3}-w^{*2}-5w^{*}-1\right)^{2}}{12(w^{*}+2)^{2} (2w^{*}+1)^{6}},$$

$$\begin{split} q &= -\frac{w^{*4}(w^*+1)^6}{(w^*+2)^2(2w^*+1)^5} - \frac{w^{*3}\left(2w^{*3}+w^{*2}-w^*+1\right)\left(4w^{*3}-w^{*2}-5w^*-1\right)(w^*+1)^4}{12(w^*+2)^3(2w^*+1)^7} \\ &+ \frac{w^{*3}\left(4w^{*3}-w^{*2}-5w^*-1\right)^3(w^*+1)^3}{108(w^*+2)^3(2w^*+1)^9}. \end{split}$$

Por lo tanto el discriminante de Cardano es $\Delta = \frac{p^3}{27} + \frac{q^2}{4}$ es:

$$\Delta = \frac{w^{*6}(1+w^{*})^{8}}{1728(2+w^{*})^{6}(1+2w^{*})^{12}} \Big[2224w^{*10} + 18008w^{*9} + 62343w^{*8} + 12252w^{*7} + 151642w^{*6} + 120900w^{*5} + 59089w^{*4} + 15044w^{*3} + \frac{1706}{7}w^{*2} + \frac{1}{7}(7-74w^{*})^{2} \Big] > 0,$$

lo cual implica que hay una única raíz real; para mayores detalles ver [38]. Tomando en cuenta esto, que el coeficiente del término b^3 es positivo y que $C_{11}(b = 0) < 0$, podemos concluir que la raíz real de $C_{11} = 0$ es positiva y será denotada por $b^*(w^*)$.

Ahora vamos a garantizar que $b^*(w^*)$ esté en el intervalo (b_L, b_U) . Para obtener ésto es necesario que

$$C_{11}(b_L, w^*)C_{11}(b_U, w^*) < 0,$$

lo cual es equivalente a

$$(16w^{*4} + 40w^{*3} + 21w^{*2} + 2w^{*} - 1)(2w^{*2} + 2w^{*} - 1) < 0,$$

pues

$$2w^{*2} + 2w^* - 1 \begin{cases} > 0 \quad \text{si} \quad w^* > \frac{1}{2}(\sqrt{3} - 1) = 0.36602540\dots, \\ < 0 \quad \text{si} \quad w^* < \frac{1}{2}(\sqrt{3} - 1) = 0.36602540\dots, \end{cases}$$
$$16w^{*4} + 40w^{*3} + 21w^{*2} + 2w^* - 1 \begin{cases} > 0 \quad \text{si} \quad w^* > 0.15732625\dots, \\ < 0 \quad \text{si} \quad w^* < 0.15732625\dots, \end{cases}$$

Notemos que para el caso en el cual

$$w_L^* = 0.15732625 \dots < w^* < \frac{1}{2}(\sqrt{3} - 1) = 0.36602540 \dots = w_U^*,$$

la ecuación $C_{11} = 0$ tiene una única solución positiva $b^*(w^*) \in (b_L, b_U)$.

у

Por lo tanto, el teorema 1.5 nos garantiza la existencia de una cúspide nilpotente en el punto $E^*(w^*, w^*)$ cuando $c_{20} \neq 0$ y $c_{11} = 0$, también cuando $c_{11} \neq 0$ pues n = m = 1.

Las condiciones $c_{20} \neq 0$ y $c_{11} \neq 0$ se cumplen cuando

$$w^* \in (0, w_L^*] \cup [w_U^*, \infty), \quad \acute{o} \quad w^* \in (w_L^*, w_U^*) \quad y \quad b \neq b^*(w^*).$$

Con estas condiciones las ecuaciones (1.5) se pueden transformar en la forma versal (1.10), y por lo tanto hay una bifurcación de codimensión 2.

Para estudiar la singularidad de cúspide de codimensión 3, primero verificamos si existen soluciones tales que $c_{11} = c_{31} = 0$. Para obtener ésto, al eliminar *b* de las dos ecuaciones $C_{11} = C_{31} = 0$ aplicamos el método de resultantes, en particular la resultante *R* con respecto a la variable *b*

```
\begin{split} R &= -\ 184685037696w^{*37} - 3864490358656w^{*36} - 38772019181920w^{*35} \\ &- 248203146343472w^{*34} - 1136370855387744w^{*33} - 3942731060984876w^{*32} \\ &- 10670749134099792w^{*31} - 22657607523237208w^{*30} - 36709759259788740w^{*29} \\ &- 40004752043274214w^{*28} - 8647585301842788w^{*27} + 83940910089411892w^{*26} \\ &+ 248368119072767962w^{*25} + 461185333006385632w^{*24} + 664385911074969601w^{*23} \\ &+ 789978154879828749w^{*22} + 796246517740430911w^{*21} + 689786035983894934w^{*20} \\ &+ 517683605869205150w^{*19} + 338237138314540148w^{*18} + 192998144137383936w^{*17} \\ &+ 96372942096357780w^{*16} + 42167496232913438w^{*15} + 16175240276488597w^{14} \\ &+ 5437753268090668w^{*13} + 1599578135886650w^{*12} + 410389063622456w^{*11} \\ &+ 91319693745056w^{*10} + 17470072904317w^{*9} + 2835321214218w^{*8} \\ &+ 382579049059w^{*7} + 41583148401w^{*6} + 3452835840w^{*5} \\ &+ 198494630w^{*4} + 6494143w^{*3} + 150972w^{*2} + 24198w^{*} + 2002. \end{split}
```

Usando el programa Mathematica hemos verificado que c_{11} y c_{31} se anulan simultáneamente cuando $w^* = 1.669918901045291 \dots$ y $b = 0.45879718713603945 \dots$, es decir, fuera del intervalo (w_L^*, w_U^*) . Por lo tanto el sistema (3.1) es topológicamente equivalente a su deformación versal (1.11), y tiene una cúspide nilpotente $E^*(w^*, w^*)$ de codimensión 3 si

$$w^* \in (w_L^*, w_U^*), \quad y \quad b = b^*(w^*);$$

donde $b^*(w^*)$ es la única raíz real de $C_{11} = 0$.

Con el fin de ejemplificar la existencia del punto cúspide, consideremos el caso $w^* = g^* = 1$, tal que las expresiones (4.2) son

$$\xi_1 = \frac{8 - 9b}{9(9b + 4)}, \quad \xi_2 = \frac{2b - 9b^2}{2(9b + 4)}, \quad \mu_1 = \frac{45b - 4}{9(9b + 4)}, \quad \mu_2 = \frac{27b^2}{2(9b + 4)} \tag{4.14}$$

donde $\frac{4}{5} < b < \frac{2}{9}$.

El retrato de fase de (2.2) para estos valores con b = 7/45 es la cúspide de codimensión 2 que mostramos en la figura 4.2.

Figura 4.2: Punto cúspide para $w^* = g^* = 1 \operatorname{con} b = 7/45$. Figura tomada de [24].

4.3. Despliegue de la bifurcación de Takens-Bogdanov para $(w^*, g^*) = (1, 1)$

En esta sección vamos a mostrar el despliegue completo de la bifurcación de Takens-Bogdanov en el sistema (2.5) para el caso $w^* = g^* = 1$. Para llevar a cabo esto tomaremos una pequeña perturbación de los parámetros μ_1 y ξ_1 . De hecho, tenemos el siguiente teorema.

Teorema 11. Bajo las condiciones (4.14), el sistema (2.5) experimenta una bifurcación Takens-Bogdanov repulsiva de codimensión 2 en una vecindad pequeña del punto de equilibrio positivo $E^*(1,1)$, cuando (ξ_1,μ_1) varían cerca de $\left(\frac{8-9b}{9(9b+4)},\frac{45b-4}{9(9b+4)}\right)$, donde $\frac{4}{45} < b < \frac{2}{9}$. Además se cumple lo siguiente:

- (i) Existen valores de los parámetros tales que el sistema (2.5) tiene un ciclo límite inestable.
- (ii) Existen valores de los parámetros para los que el sistema (2.5) tiene un lazo homoclínico inestable.

El diagrama de bifurcación y los retratos de fase correspondientes son como los de la figura 4.3.

Figura 4.3: Diagrama de bifurcación y su correspondiente retrato de fase del sistema (2.5). El origen es el punto de bifurcación Takens-Bogdanov (TB), y las curva de bifurcación SN se refiere a silla-nodo, H a Hopf y HL a lazo homoclínico.

Demostración. Sustituyendo las expresiones (4.14) en el sistema (2.5), obtenemos las ecuaciones de despliegue

$$\begin{aligned} \frac{dw}{dt} &= w \left[\frac{w}{1+w+g} - \left(\frac{45b-4}{9(9b+4)} + \lambda_1 \right) - \left(\frac{8-9b}{9(9b+4)} + \lambda_2 \right) (w+g) \right], \\ \frac{dg}{dt} &= \frac{bw}{1+w} - \left[\frac{27b^2}{2(9b+4)} + \frac{2b-9b^2}{2(9b+4)} (w+g) \right] g \end{aligned}$$
(4.15)

donde (λ_1, λ_2) es un vector de parámetros en una vecindad de (0, 0).

El siguiente paso es hacer la traslación del origen de coordenadas al punto de equilibrio, es decir, x = w - 1, y = g - 1. Luego obtenemos

$$\frac{dx}{dt} = (x+1) \left[\frac{x+1}{x+y+3} - \left(\frac{45b-4}{81b+36} + \lambda_1 \right) - \left(\frac{8-9b}{81b+36} + \lambda_2 \right) (x+y+2) \right].$$

Ahora, para eliminar el denominador x + y + 3 desarrollamos $\frac{1}{x + y + 3}$ en serie de potencias hasta orden cuatro, y obtenemos

$$\frac{1}{x+y+3} = \frac{2x^2y^2}{81} - \frac{x^2y}{27} - \frac{xy^2}{27} + \frac{x^2}{27} + \frac{2xy}{27} + \frac{y^2}{27} - \frac{x}{9} - \frac{y}{9} + \frac{1}{3} + \mathcal{O}(|(x,y)|^5).$$

Sustituyendo esta expansión en $\frac{dx}{dt}$ obtenemos

$$\begin{aligned} \frac{dx}{dt} &= \frac{1}{3} - \frac{12}{81b + 36} - \frac{27b}{81b + 36} + \frac{y^2}{27} + x^3 \left(\frac{y^2}{81} - \frac{1}{27}\right) + x^4 \left(\frac{2y^2}{81} - \frac{y}{27} + \frac{1}{27}\right) - \lambda_1 \\ &+ xy \left(\frac{9b}{81b + 36} - \frac{8}{81b + 36} - \lambda_2 - \frac{4}{27}\right) \\ &- x \left(\frac{18b}{81b + 36} - \frac{20}{81b + 36} - \lambda_1 - 3\lambda 2 + \frac{y^2}{27} + \frac{5}{9}\right) \\ &+ x^2 \left(\frac{9b}{81b + 36} - \frac{8}{81b + 36} - \lambda_2 - \frac{y^2}{81} + \frac{4}{27}\right) \\ &+ y \left(\frac{9b}{81b + 36} - \frac{8}{81b + 36} - \lambda_2 - \frac{1}{9}\right) - 2\lambda_2. \end{aligned}$$

Llevando a cabo simplificaciones y reorganizando los términos, obtenemos

$$\frac{dx}{dt} = -\lambda_1 - 2\lambda_2 + \left(\frac{3b}{9b+4} - \lambda_1 - 3\lambda_2\right)x + \left(-\frac{4}{3(9b+4)} - \lambda_2\right)y \\
+ \left(\frac{63b-8}{27(9b+4)} - \lambda_2\right)x^2 + \left(-\frac{9b+40}{27(9b+4)} - \lambda_2\right)xy + \frac{1}{27}y^2 + \mathcal{O}\left(|(x,y)|^3\right).$$
(4.16)

Lo siguiente es calcular

$$\frac{dy}{dt} = \frac{b(x+1)}{x+2} - \left[\frac{27b^2}{2(9b+4)} + \frac{2b-9b^2}{2(9b+4)}(x+y+2)\right](y+1).$$

Ahora, para eliminar el denominador x + 2 desarrollamos $\frac{1}{x+2}$ en serie de potencias hasta orden tres y obtenemos

$$\frac{1}{x+2} = \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \mathcal{O}(|x|^4).$$

Sustituyendo esta expresión en la ecuación diferencial, tenemos que

$$\begin{split} \frac{dy}{dt} = & \frac{b}{2} - \frac{4b}{18b+8} - \frac{9b^2}{18b+8} + \left(\frac{9b^2}{18b+8} + \frac{b}{4} - \frac{2b}{18b+8}\right)x\\ & - \frac{bx^2}{8} + \frac{bx^3}{16} - \frac{bx^4}{16} - \frac{6by}{18b+8} + \left(\frac{9b^2}{18b+8} - \frac{2b}{18b+8}\right)xy\\ & + \left(\frac{9b^2}{18b+8} - \frac{2b}{18b+8}\right)y^2. \end{split}$$

Simplificando y reorganizando los términos, obtenemos

$$\frac{dy}{dt} = \frac{27b^2}{4(9b+4)}x - \frac{3b}{9b+4}y - \frac{b}{8}x^2 + \frac{b(9b-2)}{2(9b+4)}xy + \frac{b(9b-2)}{2(9b+4)}y^2 + \frac{b}{16}x^3 + \mathcal{O}(|(x,y)|^4).$$
(4.17)

Tomando en cuenta (4.16) y (4.17), vemos que el sistema (4.15) se transforma en

$$\frac{dx}{dt} = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 x y + a_5 y^2 + \mathcal{O}\left(|(x, y)|^3\right),$$

$$\frac{dy}{dt} = b_1 x + b_2 y + b_3 x^2 + b_4 x y + b_5 y^2 + \frac{b}{16} x^3 + \mathcal{O}\left(|(x, y)|^4\right)$$
(4.18)

donde

$$a_0 = -\lambda_1 - 2\lambda_2, \quad a_1 = \frac{3b}{9b+4} - \lambda_1 - 3\lambda_2, \quad a_2 = -\frac{4}{3(9b+4)} - \lambda_2$$

$$a_{3} = \frac{63b - 8}{27(9b + 4)} - \lambda_{2}, \quad a_{4} = -\frac{9b + 40}{27(9b + 4)} - \lambda_{2}, \quad a_{5} = \frac{1}{27}, \quad b_{1} = \frac{27b^{2}}{4(9b + 4)}$$
$$b_{2} = -\frac{3b}{9b + 4}, \quad b_{3} = -\frac{b}{8}, \quad b_{4} = b_{5} = \frac{b(9b - 2)}{2(9b + 4)}, \quad b_{6} = \frac{b}{16}.$$

Ahora hacemos el cambio de variable $x_1 = y$ y $x_2 = \frac{dy}{dt}$, de tal forma que el sistema (4.18) se transforma en

$$\begin{aligned} \frac{dx_1}{dt} &= x_2, \\ \frac{dx_2}{dt} &= a_0 b_1 + (a_1 b_1 + 2a_0 b_3) x + (a_2 b_1 + a_0 b_4) x_1 + b_2 x_2 + \left(a_3 b_1 + 2a_1 b_3 + \frac{3b}{16} a_0\right) x^2 \\ &+ (a_5 b_1 + a_2 b_4) x_1^2 + (a_4 b_1 + 2a_2 b_3 + a_1 b_4) x x_1 + b_4 x x_2 + 2b_5 x_1 x_2 \\ &+ \mathcal{O}\left(|(x_1, x_2)|^3\right). \end{aligned}$$

El siguiente paso es lograr que esta última ecuación sólo dependa de x_1 y x_2 . Luego debemos expresar a x en términos de x_1 y x_2 más términos de orden tres. Para llevar a cabo ésto, proponemos que x sea de la siguiente forma:

$$x = x(x_1, x_2) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_1^2 + \delta_4 x_1 x_2 + \delta_5 x_2^2.$$

Los coeficientes δ_i para i = 1, ..., 5 son calculados al reemplazar en la ecuación anterior $x_1 = y$ y $x_2 = b_1 x + b_2 y + b_3 x^2 + b_4 x y + b_5 y^2$ para obtener

$$x = \delta_0 + \delta_2 b_1 x + (\delta_1 + \delta_2 b_2) y + (\delta_2 b_3 + \delta_5 b_1^2) x^2 + (\delta_2 b_4 + \delta_4 b_1 + 2\delta_5 b_1 b_2) x y + (\delta_2 b_5 + \delta_3 + \delta_4 b_2 + \delta_5 b_2^2) y^2 + \mathcal{O}\left(|(x, y)|^3\right).$$

Ahora igualamos coeficientes y obtenemos el sistema de ecuaciones algebraicas

$$\begin{split} \delta_0 &= 0, \\ \delta_2 b_1 &= 1, \\ \delta_1 + \delta_2 b_2 &= 0, \\ \delta_2 b_3 + \delta_5 b_1^2 &= 0, \\ \delta_2 b_4 + \delta_4 b_1 + 2 \delta_5 b_1 b_2 &= 0, \\ \delta_2 b_5 + \delta_3 + \delta_4 b_2 + \delta_5 b_2^2 &= 0 \end{split}$$

cuya solución es:

$$\delta_0 = 0, \qquad \delta_1 = -\frac{b_2}{b_1}, \qquad \delta_2 = \frac{1}{b_1}, \qquad \delta_3 = \frac{b_1 b_2 b_4 - b_2^2 b_3 - b_1^2 b_5}{b_1^3},$$
$$\delta_4 = \frac{2b_2 b_3 - b_1 b_4}{b_1^3}, \qquad \delta_5 = -\frac{b_3}{b_1^3}.$$

Por lo tanto

$$x = -\frac{b_2}{b_1}x_1 + \frac{1}{b_1}x_2 + \frac{b_1b_2b_4 - b_2^2b_3 - b_1^2b_5}{b_1^3}x_1^2 + \frac{2b_2b_3 - b_1b_4}{b_1^3}x_1x_2 - \frac{b_3}{b_1^3}x_2^2.$$

Sustituyendo estas expresiones en $\frac{dx_2}{dt}$ obtenemos

$$\begin{split} \frac{dx_2}{dt} &= a_0 b_1 + \left[\left(a_1 b_1 + 2a_0 b_3\right) \left(-\frac{b_2}{b_1}\right) + a_2 b_1 + a_0 b_4 \right] x_1 + \left[\frac{2a_0 b_3 + a_1 b_1}{b_1} + b_2\right] x_2 \\ &+ \left[\left(a_1 b_1 + 2a_0 b_3\right) \left(\frac{b_2^2 b_3 - b_1^2 b_5 - 2b_2^2 b_3 + b_1 b_2 b_4}{b_1^3}\right) + \left(a_3 b_1 + 2a_1 b_3 + \frac{3b}{16} a_0\right) \left(\frac{b_2^2}{b_1^2}\right) \\ &- \frac{b_2 (a_1 b_4 + 2a_2 b_3 + a_4 b_1)}{b_1} + a_2 b_4 + a_5 b_1 \right] x_1^2 \\ &+ \left[\left(a_1 b_1 + 2a_0 b_3\right) \left(\frac{2b_2 b_3 - b_1 b_4}{b_1^3}\right) + \left(a_3 b_1 + 2a_1 b_3 + \frac{3b}{16} a_0\right) \left(-\frac{2b_2}{b_1^2}\right) \\ &+ \frac{a_4 b_1 + 2a_2 b_3 + a_1 b_4 - b_2 b_4}{b_1} + b_4 + 2b_5 \right] x_1 x_2 \\ &+ \left[\left(a_1 b_1 + 2a_0 b_3\right) \left(-\frac{b_3}{b_1^3}\right) + \left(a_3 b_1 + 2a_1 b_3 + \frac{3b}{16} a_0\right) \left(\frac{1}{b_1^2}\right) + \frac{b_4}{b_1} \right] x_2^2 + \mathcal{O} \left(|(x_1, x_2)|^3\right). \end{split}$$

Entonces podemos escribir el sistema (4.18) como:

$$\frac{dx_1}{dt} = x_2,$$

$$\frac{dx_2}{dt} = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \gamma_3 x_1^2 + \gamma_4 x_1 x_2 + \gamma_5 x_2^2 + \mathcal{O}\left(|(x_1, x_2)|^3\right),$$
(4.19)

donde los γ_i , $i = 1, \ldots, 5$ en términos de b, λ_1, λ_2 son

$$\begin{split} \gamma_0 &= \frac{27b^2(-\lambda_1 - 2\lambda_2)}{4(9b+4)}, \qquad \gamma_1 = \frac{1}{36}((4-18b)\lambda_1 + (8-63b)\lambda_2), \\ \gamma_2 &= \frac{(4-18b)\lambda_1 + (8-63b)\lambda_2}{27b}, \\ \gamma_3 &= \frac{(26244b^4 - 17496b^3 - 324b^2 + 720b + 128)\lambda_1}{8748b^2(9b+4)} + \frac{-10935b^4 + 1944b^3 - 216b^2}{8748b^2(9b+4)}, \\ &+ \frac{(52488b^4 - 52488b^3 - 6480b^2 + 2304b + 256)\lambda_2}{8748b^2(9b+4)} \\ \gamma_4 &= \frac{(-13122b^4 - 10206b^3 + 1440b + 256)\lambda_1}{6561b^3(9b+4)} + \frac{59049b^5 - 2187b^4 + 972b^3 - 1728b^2}{6561b^3(9b+4)} \\ &+ \frac{(-65610b^4 - 72900b^3 - 11664b^2 + 4608b + 512)\lambda_2}{6561b^3(9b+4)}, \\ \gamma_5 &= \frac{(9b+4)(-81b^2 + 36b + 32)\lambda_1}{19683b^4} + \frac{(9b+4)(-2592b^2 + 288b + 64)\lambda_2}{19683b^4} \\ &+ \frac{(9b+4)(1458b^3 - 378b^2)}{19683b^4}. \end{split}$$

Ahora introducimos un nuevo tiempo a través de $\tau = \frac{t}{1 - \gamma_5 x_1}$ tal que $dt = (1 - \gamma_5 x_1) d\tau$. Además, definimos las nuevas variables $x = x_1$ y $y = (1 - \gamma_5 x_1) x_2$, de tal forma que las ecuaciones (4.19) se transforman en

$$\begin{aligned} \frac{dx}{d\tau} &= y, \\ \frac{dy}{d\tau} &= -\frac{\gamma_5 y^2}{1 - \gamma_5 x} + \left(\gamma_0 + \gamma_1 x + \frac{\gamma_2}{1 - \gamma_5 x} y + \gamma_3 x^2 + \frac{\gamma_4}{1 - \gamma_5 x} xy \right. \\ &+ \frac{\gamma_5}{(1 - \gamma_5 x)^2} y^2 + \mathcal{O}(|(x, y)|^3) \left(1 - \gamma_5 x)^2. \end{aligned}$$
Notemos que

$$\frac{dy}{d\tau} = \frac{dx_2(1-\gamma_5 x_1)}{d\tau}$$
$$= x_2 \left(-\gamma_5 \frac{dx_1}{d\tau}\right) + (1-\gamma_5 x_1) \frac{dx_2}{d\tau}$$
$$= -\frac{\gamma_5 y^2}{1-\gamma_5 x} + \frac{dy}{d\tau},$$

lo cual se cumple si y sólo si $-\frac{\gamma_5 y^2}{1-\gamma_5 x}=0.$ Como consecuencia

$$\begin{aligned} \frac{dy}{d\tau} &= (1 - \gamma_5 x)^2 \left(\gamma_0 + \gamma_1 x + \frac{\gamma_2}{1 - \gamma_5 x} y + \gamma_3 x^2 + \frac{\gamma_4}{1 - \gamma_5 x} xy + \mathcal{O}\left(|(x, y)|^3 \right) \right) \\ &= \gamma_0 + (\gamma_1 - 2\gamma_0 \gamma_5) x + \gamma_2 y + (\gamma_3 - 2\gamma_1 \gamma_5 + \gamma_0 \gamma_5^2) x^2 \\ &+ (\gamma_4 - \gamma_2 \gamma_5) xy + \mathcal{O}\left(|(x, y)|^3 \right). \end{aligned}$$

En lo que sigue, continuáremos denotando la variable independiente nueva τ como t. Entonces el sistema (4.19) toma la forma

$$\frac{dx}{dt} = y,$$

$$\frac{dy}{dt} = \psi_1 + \psi_2 x + \psi_3 y + \psi_4 x^2 + \psi_5 x y + \mathcal{O}\left(|(x,y)|^3\right).$$
(4.20)

 ${\rm donde}$

$$\psi_1 = \gamma_0, \quad \psi_2 = \gamma_1 - 2\gamma_0\gamma_5, \quad \psi_3 = \gamma_2, \quad \psi_4 = \gamma_3 - 2\gamma_1\gamma_5 + \gamma_0\gamma_5^2, \quad \psi_5 = \gamma_4 - \gamma_2\gamma_5.$$

Estos coeficientes pueden ser expresados en términos de b, λ_1 y λ_2 , es decir,

$$\begin{split} \psi_1 &= \frac{27b^2(-\lambda_1 - 2\lambda_2)}{4(9b+4)}, \\ \psi_2 &= \frac{1}{36} \Big((4 - 18b)\lambda_1 + (8 - 63b)\lambda_2 \Big) \\ &\quad + \frac{27b^2(-\lambda_1 - 2\lambda_2)}{2(9b+4)} \left(\frac{(9b+4)\left(-81b^2 + 36b + 32\right)\lambda_1}{19683b^4} \right. \\ &\quad + \frac{(9b+4)\left(-2592b^2 + 288b + 64\right)\lambda_2}{19683b^4} + \frac{(9b+4)\left(1458b^3 - 378b^2\right)}{19683b^4} \Big), \\ \psi_3 &= \frac{(4 - 18b)\lambda_1}{27b} + \frac{(8 - 63b)\lambda_2}{27b}, \end{split}$$

$$\begin{split} \psi_4 &= \frac{-405b^2 + 72b - 8}{324(9b + 4)} + \frac{(26244b^4 - 17496b^3 - 324b^2 + 720b + 128)\lambda_1}{8748b^2(9b + 4)} \\ &+ \frac{(52488b^4 - 52488b^3 - 6480b^2 + 2304b + 256)\lambda_2}{8748b^2(9b + 4)} \\ &- \frac{1}{18}\left((4 - 18b)\lambda_1 + (8 - 63b)\lambda_2\right)\left(\frac{(9b + 4)\left(1458b^3 - 378b^2\right)}{19683b^4} \\ &+ \frac{(9b + 4)\left(-81b^2 + 36b + 32\right)\lambda_1}{19683b^4} + \frac{(9b + 4)\left(-2592b^2 + 288b + 64\right)\lambda_2}{19683b^4}\right) \\ &+ \frac{1}{4(9b + 4)}27b^2(-\lambda_1 - 2\lambda_2)\left(\frac{(9b + 4)\left(1458b^3 - 378b^2\right)}{19683b^4} \\ &+ \frac{(9b + 4)\left(-81b^2 + 36b + 32\right)\lambda_1}{19683b^4} + \frac{(9b + 4)\left(-2592b^2 + 288b + 64\right)\lambda_2}{19683b^4}\right)^2, \end{split}$$

En particular tenemos que

$$\psi_4 = \frac{-405b^2 + 72b - 8}{324(9b + 4)} + h_1(\lambda_1, \lambda_2),$$

donde $h_1(\lambda_1, \lambda_2)$ es una función que depende de (λ_1, λ_2) , cuyos coeficientes dependen suavemente de *b*. Notemos que $\psi_4 < 0$ cuando $\frac{4}{45} < b < \frac{2}{9}$ y λ_1, λ_2 son pequeños, pues el término dominante es $\frac{-405b^2+72b-8}{324(9b+4)}$; ver la figura 4.4.

Figura 4.4: Gráfica de la función $\frac{-405b^2+72b-8}{324(9b+4)}$, la cual es negativa en el intervalo $\frac{4}{45} < b < \frac{2}{9}$.

Ahora introducimos un nuevo tiempo $\tau = \sqrt{-\psi_4}$, tal que $\frac{d\tau}{dt} = \sqrt{-\psi_4}$. Además definimos las variables $x_1 = x$ y $x_2 = \frac{y}{\sqrt{-\psi_4}}$. Luego, en las nuevas variables las ecuaciones del sistema (4.20) son

$$\frac{dx_1}{d\tau} = x_2,$$

$$\frac{dx_2}{d\tau} = -\frac{\psi_1}{\psi_4} - \frac{\psi_2}{\psi_4}x_1 + \frac{\psi_1}{\sqrt{-\psi_4}}x_2 - x_1^2 + \frac{\psi_5}{\sqrt{-\psi_4}}x_1x_2 + \mathcal{O}\left(|(x_1, x_2)|^3\right)$$

En lo que sigue, continuáremos denotando la variable independiente nueva τ como t. Entonces el sistema (4.20) toma la forma

$$\frac{dx_1}{dt} = x_2,$$

$$\frac{dx_2}{dt} = -\frac{\psi_1}{\psi_4} - \frac{\psi_2}{\psi_4}x_1 + \frac{\psi_3}{\sqrt{-\psi_4}}x_2 - x_1^2 + \frac{\psi_5}{\sqrt{-\psi_4}}x_1x_2 + \mathcal{O}\left(|(x_1, x_2)|^3\right).$$
(4.21)

Definimos el cambio de variable

$$x = x_1 + \frac{\psi_2}{2\psi_4}, \qquad y = x_2.$$

donde, sin pérdida de generalidad, x y y no son las mismas variables definidas anteriormente.

Luego las ecuaciones del sistema (4.21) se pueden escribir como

$$\frac{dx}{dt} = y,$$

$$\frac{dy}{dt} = -\frac{\psi_1}{\psi_4} + \frac{\psi_2^2}{4\psi_4^2} + \left(\frac{\psi_3}{\sqrt{-\psi_4}} - \frac{\psi_2\psi_5}{2\psi_4\sqrt{-\psi_4}}\right)y - x^2 + \frac{\psi_5}{\sqrt{-\psi_4}}xy + \mathcal{O}\left(|(x,y)|^3\right).$$
(4.22)

Tenemos que

$$\psi_5 = \frac{2187b^3 - 81b^2 + 36b - 64}{243b(9b + 4)} + h_2(\lambda_1, \lambda_2),$$

donde $h_2(\lambda_1, \lambda_2)$ es una función que depende de (λ_1, λ_2) cuyos coeficientes dependen suavemente de *b*. Además, $\psi_5 < 0$ cuando $\frac{4}{45} < b < \frac{2}{9}$ y λ_1, λ_2 son pequeños, pues el término dominante es $\frac{2187b^3 - 81b^2 + 36b - 64}{243b(9b+4)}$; ver la figura 4.5.

Figura 4.5: Gráfica de la función $\frac{2187b^3 - 81b^2 + 36b - 64}{243b(9b+4)}$, la cual es negativa en el intervalo $\frac{4}{45} < b < \frac{2}{9}$.

Finalmente, introducimos una nueva escala de tiempo $\tau = -\frac{\sqrt{-\psi_4}}{\psi_5}t$ tal que $d\tau = -\frac{\sqrt{-\psi_4}}{\psi_5}dt$, y tomando en cuenta las nuevas variables $x_1 = \frac{\psi_5^2}{\psi_4}x$, $x_2 =$

$$-\frac{\psi_5^3}{\psi_4\sqrt{-\psi_4}}y$$
, las ecuaciones del sistema (4.22) se transforman en

$$\begin{aligned} \frac{dx_1}{d\tau} &= x_2, \\ \frac{dx_2}{d\tau} &= \frac{\psi_1\psi_5^4}{\psi_4^3} - \frac{\psi_2^2\psi_5^4}{4\psi_4^4} + \left(\frac{\psi_3\psi_5}{\psi_4} - \frac{\psi_2\psi_5^2}{2\psi_4^2}\right)x_2 + x_1^2 + x_1x_2 + \mathcal{O}\left(|(x_1, x_2)|^3\right) \end{aligned}$$

Sin pérdida de generalidad, escribimos τ como t, y obtenemos la forma versal del sistema (4.15)

$$\frac{dx_1}{dt} = x_2,$$

$$\frac{dx_2}{dt} = \tau_1 + \tau_2 x_2 + x_1^2 + x_1 x_2 + \mathcal{O}\left(|(x_1, x_2)|^3\right),$$
(4.23)

donde

$$\tau_1 = \frac{\psi_1 \psi_5^4}{\psi_4^3} - \frac{\psi_2^2 \psi_5^4}{4\psi_4^4}, \qquad \tau_2 = \frac{\psi_3 \psi_5}{\psi_4} - \frac{\psi_2 \psi_5^2}{2\psi_4^2}.$$

Con el fin de ver la independencia lineal de τ_1 y τ_2 , calculamos el determinante

$$\left|\frac{\partial(\tau_1,\tau_2)}{\partial(\lambda_1,\lambda_2)}\right|_{\lambda=0} = \frac{32\left(729b^3 + 243b^2 - 36b - 16\right)\left(2187b^3 - 81b^2 + 36b - 64\right)^5}{243b^3(9b+4)^2\left(405b^2 - 72b + 8\right)^5} \neq 0$$

cuando $\frac{4}{45} < b < \frac{2}{9}$. Entonces τ_1 y τ_2 son parámetros linealmente independientes, y la transformación de parámetros anterior es un homeomorfismo en una vecindad pequeña del origen.

Notemos que todas las transformaciones de tiempo que hemos realizado son positivas, entonces usando los resultados en Takens [36] y Bogdanov [9] (ver también [12] y [33]) obtenemos que el sistema (4.15) es el desarrollo versal del desdoblamiento de una bifurcación Takens-Bogdanov *repulsiva* de codimensión 2 dada por (4.23). En otras palabras, el sistema (4.15) sufre una bifurcación de Takens-Bogdanov de codimensión 2 en una pequeña vecindad de $E^*(1,1)$, pues (μ_1,ξ_1) varía cerca de $\left(\frac{8-9b}{9(9b+4)}, \frac{45b-4}{9(9b+4)}\right)$, y la bifurcación de Hopf dentro de la bifurcación de Takens-Bogdanov es subcrítica.

Aplicando el teorema 4 obtenemos las siguientes representaciones locales de las curvas de bifurcación:

(i) la curva de bifurcación de silla nodo $SN = \{(\tau_1, \tau_2) | \tau_1 = 0, \tau_2 \neq 0\}$, es decir,

$$\begin{cases} (\lambda_1, \lambda_2) \mid \frac{b^2 \left(405b^2 - 72b + 8\right)}{12(9b+4)^2} \lambda_1 + \frac{b^2 (405b^2 - 72b+8)}{6(9b+4)^2} \lambda_2 \\ + \frac{\left(-111537b^4 - 17496b^3 + 14904b^2 + 3024b - 1088\right)}{324(9b+4)^2} \lambda_1^2 \\ + \frac{\left(-583929b^4 - 139968b^3 + 69336b^2 + 18144b - 4352\right)}{324(9b+4)^2} \lambda_1 \lambda_2 \\ + \frac{\left(-2945889b^4 - 892296b^3 + 304560b^2 + 96768b - 17408\right)}{1296(9b+4)^2} \lambda_2^2 \\ + \frac{\left(9b+4\right) \left(81b^2 - 90b+16\right)}{4374b^2} \lambda_1^3 + \left(\frac{64}{729b^2} + \frac{25b}{4} - \frac{8}{27b} - \frac{7}{3}\right) \lambda_1^2 \lambda_2 \\ + \left(\frac{128}{729b^2} + \frac{61b}{2} - \frac{16}{27b} - \frac{26}{3}\right) \lambda_1 \lambda_2^2 + \frac{16 \left(5103b^3 - 1215b^2 - 54b + 16\right)}{2187b^2} \lambda_2^3 = 0 \end{cases}$$

(ii) La curva de bifurcación de Hopf subcrítica es $H = \{(\tau_1, \tau_2) | \tau_2 = \sqrt{-\tau_1}, \tau_1 < 0\},$ pues

$$\begin{cases} (\lambda_1, \lambda_2) \mid -\frac{(-2187b^3 + 81b^2 - 36b + 64)^2}{8748(9b + 4)^3} \lambda_1 - \frac{(-2187b^3 + 81b^2 - 36b + 64)^2}{4374(9b + 4)^3} \lambda_2 \\ + \frac{-2125764b^5 + 1180980b^4 - 219429b^3 + 74844b^2 - 36720b + 5792}{177147b^2(9b + 4)} \lambda_1^2 \\ + \frac{-105225318b^6 + 11160261b^5 + 13555026b^4 + 285768b^3 - 252720b^2 - 470592b + 92672}{177147b^2(9b + 4)^2} \lambda_1\lambda_2 \\ + \frac{-578739249b^6 + 29760696b^5 + 62329500b^4 + 6969240b^3 - 1034208b^2 - 2248704b + 370688}{708588b^2(9b + 4)^2} \lambda_2^2 \\ + \frac{14348907b^6 - 11691702b^5 + 7866639b^4 - 5505408b^3 + 248832b^2 + 642240b - 120832}{14348907b^4(9b + 4)} \lambda_1^3 \\ + \frac{167403915b^6 - 41629545b^5 + 16021962b^4 - 19898784b^3 + 2348352b^2 + 1406592b - 241664}{4782969b^4(9b + 4)} \\ + \frac{1669256181b^6 - 180512793b^5 + 52684830b^4 - 135599832b^3 + 18164736b^2 + 6114816b - 966656}{946520b + 241664} \lambda_1\lambda_2^2 \\ + \frac{6485705964b^6 - 74933181b^5 + 72328464b^4 - 433562544b^3 + 56609280b^2 + 13206528b - 1933312}{28697814b^4(9b + 4)} \\ + \frac{6485705964b^6 - 74933181b^5 + 72328464b^4 - 433562544b^3 + 56609280b^2 + 13206528b - 1933312}{387420489b^6} \lambda_1^2 \\ + \frac{2(9b + 4)^2(98415b^4 - 172044b^3 + 101088b^2 - 25704b + 2368)}{387420489b^6} \lambda_1^4 \\ + \frac{(9b + 4)(71035947b^5 - 74257398b^4 + 23150124b^3 + 540432b^2 - 1338624b + 151552)}{387420489b^6} \lambda_1^2 \lambda_2^2 \\ + \frac{43609517019b^6 - 28176765624b^5 - 3329523792b^4 + 495398912b^3 - 513008640b^2 - 68272128b + 9699328}{15496356b^6} \lambda_1\lambda_2^2 \\ + \frac{8(1060224795b^6 - 806314095b^5 - 67460202b^4 + 102310776b^3 - 11254464b^2 - 1101312b + 151552)}{387420489b^6} \lambda_1^4 \\ + \frac{8(1060224795b^6 - 806314095b^5 - 67460202b^4 + 102310776b^3 - 11254464b^2 - 1101312b + 151552)}{387420489b^6} \lambda_1^4 \\ + \frac{8(1060224795b^6 - 806314095b^5 - 67460202b^4 + 102310776b^3 - 11254464b^2 - 1101312b + 151552)}{387420489b^6} \lambda_2^4 \\ \end{bmatrix}$$

$$-\frac{4(9b+4)^3 (81b^2 - 90b + 16)^2}{10460353203b^8} \lambda_1^5 \\ -\frac{4(9b+4)^2 (4310577b^5 - 6364170b^4 + 2426112b^3 - 64800b^2 - 92160b + 10240)}{10460353203b^8} \lambda_1^4 \lambda_2 \\ -\frac{(9b+4) (3457023705b^6 - 2651536296b^5 + 63930384b^4 + 265192704b^3 - 33841152b^2 - 4423680b + 655360)}{10460353203b^8} \lambda_1^3 \lambda_2^2 \\ -\frac{2(9b+4) (11607202881b^6 - 7370732376b^5 + 438064848b^4 + 406280448b^3 - 51757056b^2 - 4423680b + 655360)}{10460353203b^8} \lambda_1^2 \lambda_2^3 \\ -\frac{128(9b+4) (472451049b^6 - 256331709b^5 + 18226458b^4 + 8893800b^3 - 1111968b^2 - 69120b + 10240)}{10460353203b^8} \lambda_1 \lambda_2^4 \\ -\frac{2048(9b+4) (5103b^3 - 1215b^2 - 54b + 16)^2}{10460353203b^8} \lambda_2^5 = 0 \bigg\}$$

(iii) La curva de bifurcación homoclínica es $HL = \{(\tau_1, \tau_2) | \tau_2 = \frac{5}{7}\sqrt{-\tau_1}, \tau_1 < 0\},$ pues

$$\begin{cases} (\lambda_1,\lambda_2) + \frac{25(405b^2 - 72b + 8)(-2187b^3 + 81b^2 - 36b + 64)^2}{2834352(9b + 4)^4} \lambda_1 + \frac{25(405b^2 - 72b + 8)(-2187b^3 + 81b^2 - 36b + 64)^2}{1417176(9b + 4)^4} \lambda_2 \\ + \frac{1}{172186884b^2(9b + 4)^4} (1129718145924b^{10} + 16506437354334b^9 - 315360278046b^8 \\ - 2218240579851b^7 - 591526782342b^6 + 178238934108b^5 + 56796949872b^4 \\ + 3989601216b^3 - 5489731584b^2 + 365395968b - 7860224)\lambda_1^2 \\ + \frac{1}{172186884b^2(9b + 4)^4} (-1412147682405b^{10} + 83002902665805b^9 + 5707478643948b^8 \\ - 1050482046573b^7 - 3253931401086b^6 + 549709815816b^5 + 284598544032b^4 \\ + 23597298432b^3 - 32377984768b^2 + 1969367040b - 31440896)\lambda_1\lambda_2 \\ + \frac{1}{688747536b^2(9b + 4)^4} (-14121476824050b^{10} + 435412202074875b^9 + 73055881610730b^8 \\ - 45799128340740b^7 - 18299567118024b^6 + 971746245792b^5 + 1360384403904b^4 \\ + 142540425216b^3 - 98112715776b^2 + 9908600832b - 125763584)\lambda_2^2 \\ + \frac{1}{6973568802b^4(9b + 4)^2} (-18765873646182b^9 + 1173554032299b^8 - 1600821460548b^7 + 444820899969b^6 \\ - 310492514682b^5 + 52552296764b^4 - 13991247936b^3 + 7432560000b^2 - 1405532160b + 93234176)\lambda_1^3 \\ + \frac{1}{9298091736b^4(9b + 4)^3} (-2341623286963971b^{10} - 77071882399704b^9 + 399239525857923b^8 \\ + 62460160819092b^7 - 7874127462960b^6 - 13359047355360b^5 - 655393721472b^4 \\ + 531847047168b^3 + 22000002048b^2 - 60821692416b + 2983493632)\lambda_1^2\lambda_2 \\ + \frac{1}{9298091736b^4(9b + 4)^3} (-7374235197518910b^{10} - 1451740119278355b^9 + 105223587770797b^8 \\ + 385834274726778b^7 + 6959168876664b^6 - 45801349291728b^5 - 6625699228224b^4 \\ + 2205467751168b^3 + 684652207104b^2 - 166758432768b + 5966987264)\lambda_1\lambda_2^2 \\ + \frac{1}{27894275208b^4(9b + 4)^3} (-2297811905174950b^{10} - 7757920953004950b^9 + 2227851836482275b^8 \\ + 153497289143300b^7 + 153144005235624b^6 - 134388543935808b^5 - 31054369835520b^4 \\ + 6911280930816b^3 + 2014487635568b^2 - 423746961408b + 11933974528)\lambda_3^2 \\ \end{cases}$$

 $+11236233717504b^{3} + 1168898273280b^{2} - 134412779520b - 6121848832)\lambda_{2}^{5} = 0$

 $+\ 2460412545440598b^7 + 1000334967709284b^6 - 163516150570032b^5 - 77860581206976b^4$

 $+\ 553735190753280b^3 + 78831259582464b^2 - 8727557308416b - 489747906560)\lambda_1\lambda_2^4$

 $+\ 109874027300037408b^7 + 38388118819459392b^6 - 6616217760632064b^5 - 3859789208606208b^4$

 $+\frac{1}{30502389939948b^8(9b+4)}(1146432608322482061b^{10}-618111308510437392b^9-277067602045395990b^8$

 $+601838807740416b^3 + 127544881250304b^2 - 13404184510464b - 979495813120)\lambda_1^2\lambda_2^3$

 $+\ 128228072468983632b^7 + 32110084454673024b^6 - 6458395553966592b^5 - 4319697499637760b^4$

 $+\ 261867115081728b^3 + 96670809980928b^2 - 9353254404096b - 979495813120)\lambda_1^3\lambda_2^2$

 $+\ 75198030434188776b^7 + 10370450647003680b^6 - \ 3295599592475520b^5 - 2045664762342912b^4$

 $- 1125184960512b^{2} + 48413417472b + 15304622080)\lambda_{1}^{4}\lambda_{2} \\ + \frac{1}{122009559759792b^{8}(9b+4)}(662026977981532683b^{10} - 346342671124045308b^{9} - 128569132576928556b^{8})$

 $- 63531135602640b^6 + 15646357137168b^5 + 7410825229824b^4 + 1461045143808b^3$

 $-\frac{1}{30502389939948b^8}(-1607839970126724b^9+1838457052670331b^8-495491262219666b^7$

 $+ 152911190880b^4 - 46311048864b^3 + 9143964288b^2 + 1232944128b - 382615552)\lambda_1^5$

 $+ \frac{(9b+4)}{30502389939948b^8} (3835462841100b^8 - 7157980954764b^7 + 4453781158575b^6 - 1124713625076b^5 + 11247156b^5 + 11266b^5 + 11266b^5 + 11266b^5 + 11266b^5 + 1126b^5 + 1126b^5$

 $-\ 58177598796288b^3 - 5508180983808b^2 + 1268517666816b - 10325327872)\lambda_2^4$

 $-\ 10602169735702266b^7 - 1082011112506800b^6 + 755801966708928b^5 + 240741479275776b^4$

 $+ \frac{1}{564859072962b^6(9b+4)^2} (128437656010099560b^{10} + 24648723985783185b^9 - 2114155158154956b^8 + 246487239857856b^9 + 246487239857856b^8 + 246487239857856b^8 + 24648766b^8 + 24648766b^8 + 24648766b^8 + 24664876b^8 + 2464876b^8 + 246486b^8 + 24648b^8 + 2464b^8 + 246b^8 + 246$

 $-\ 565115175899136b^3 - 69179388788736b^2 + 16650306846720b - 165205245952)\lambda_1\lambda_2^3$

 $-\ 83155665032629704b^7 - 5316057126977760b^6 + 6505767484781184b^5 + 2085515768259072b^4$

 $-\ 38885819807232 b^3 - 6399427534848 b^2 + 1625541378048 b - 20650655744) \lambda_1^2 \lambda_2^2$

 $-\ 4926411847387584b^7 - 205003272216384b^6 + 422342137514016b^5 + 127418997079296b^4$

 $+ \frac{1}{753145430616b^6(9b+4)^2} (49067613090990054b^{10} - 10773965052379143b^9 + 3586614912605520b^8$

 $+\ 261867115081728b^3 + 96670809980928b^2 - 9353254404096b - 979495813120)\lambda_1^3\lambda_2$

 $+\ 75198030434188776b^7 + 10370450647003680b^6 - 3295599592475520b^5 - 2045664762342912b^4$

 $-\ 2119234959360b^3 - 566565580800b^2 + 178511855616b - 5162663936)\lambda_1^4$

 $-\ 391914337089888b^7 - 19742225359680b^6 + 45178652549952b^5 + 1015025541120b^4$

 $+\frac{1}{4518872583696b^6(9b+4)^2}(1179708173881137b^{10}-1245890828596518b^9+919609554386097b^8$

72

A partir del diagrama de bifurcación de Takens-Bogdanov, así como de los correspondientes retratos de fase del sistema en la figura 4.3, tenemos la siguiente información.

- 1. Las curvas de bifurcación SN, H y HL dividen al entorno del origen en el plano (τ_1, τ_2) en cuatro regiones.
- 2. Cuando $(\tau_1, \tau_2) = (0, 0)$, el único punto de equilibrio positivo es una cúspide de codimensión 2.
- 3. No hay puntos de equilibrio cuando los parámetros están en la región I.
- 4. Cuando los parámetros cruzan la región SN hacia la región II, hay dos puntos de equilibrio a través de la bifurcación de silla-nodo, uno es un foco inestable y el otro es una silla.
- 5. Cuando los parámetros cruzan H hacia la región *III*, aparece un ciclo límite inestable a través de la bifurcación subcrítica de Hopf, donde el foco es estable, mientras que el foco es inestable con multiplicidad uno cuando los parámetros están en la curva H.
- 6. Cuando los parámetros cruzan la región *III* y se encuentran en la curva HL, aparece un ciclo homoclínico inestable a través de la bifurcación homoclínica.
- 7. Cuando los parámetros cruzan la región III hacia la región IV, las ubicaciones relativas de una variedad estable y una inestable de la silla E_1^* se invierten.

Capítulo 5

Conclusiones

En los últimos años, se han desarrollado modelos matemáticos para comprender las interacciones entre mosquitos salvajes y estériles. La técnica de liberación de mosquitos estériles se ha utilizado para reducir o eliminar la población de mosquitos silvestres con el fin de controlar las enfermedades infecciosas transmitidas por vectores.

En esta tesis estudiamos un modelo que describe la dinámica de una población de mosquitos con una tasa de liberación saturada de mosquitos estériles. En particular hemos considerado que la tasa de apareamiento es dada considerando el efecto Allee, mientras que la tasa de liberación de mosquitos silvestres es una función racional, cociente de dos polinomios de grado uno. Además, hemos tomado las tasas de mortalidad diferentes para los mosquitos estériles y salvajes.

Mediante el ajuste de los diferentes tipos de parámetros de control, estudiamos la existencia y estabilidad lineal de los puntos de equilibrio. Posteriormente, llevamos a cabo el estudio considerando que la densidad de la población de mosquitos salvajes y estériles son iguales, es decir, biologicamente se encuemtran en equilibrio. Para llevar a cabo un estudio detallado, éstos números los tomamos iguales a uno. Hemos demostrado la existencia de diversos fenómenos de bifurcación, tales como una bifurcación de Hopf subcrítica de codimensión 3, cúspide nilpotente de codimensión 3 y una bifurcación de Bogdanov-Takens de codimensión 2 cuando los valores de los parámetros varían. A partir de estos resultados podemos concluir que la diversidad de bifurcaciones encontradas indican que el comportamiento dinámico del modelo es muy sensible a las densidades iniciales de los mosquitos salvajes y estériles.

Usando métodos computacionales demostramos que el tercer coeficiente de Liapunov para la bifurcación de Hopf es el primero diferente de cero y positivo, por lo que la bifurcación de Hopf obtenida es subcrítica. Luego hemos garantizado la existencia de tres ciclos límite que encierran y bifurcan del equilibrio (1,1), siendo el más externo inestable. Ya que los ciclos límite representan oscilaciones en la densidad de mosquitos salvajes y estériles. Esto lo podemos interpretar como que existe un número crítico o umbral, de la tasa de liberación de mosquitos estériles, por debajo de la cual los mosquitos estériles y salvajes coexistirán, y este fenómeno es representado en forma de oscilaciones periódicas y estados estacionarios. Una interpretación adicional es que cuando la densidad inicial de las poblaciones de mosquitos está fuera del ciclo límite exterior inestable, obtendremos que las poblaciones de ambos mosquitos tenderán al extinción.

Apéndices

Apéndice A. Coeficientes de Liapunov

 $\overline{(262440(-2+3b+6\xi^2)^5(b-4\xi_2)^2(9b^2+18b\xi_2-2b+8\xi_2)^2}$ $\left[-47624022333b^{13} + (-65660598432\xi_2 + 216033955146)b^{12}\right]$ $+(2988992119356\xi_2^2+551138329224\xi_2-373761038124)b^{11}$ + $(19419925525056\xi_2^3 - 4571574524784\xi_2^2 - 684535688928\xi_2 + 332259117696)b^{10}$ + $(49188282778512\xi_2^4 - 24784631101296\xi_2^3 + 3349943303616\xi_2^2)$ + $10856560183200\xi_2^3 - 2393659392768\xi_2^2 + 409823574624\xi_2 + 50703338016)b^8$ + 998002353024 ξ_2^2 - 276598152000 ξ_2 - 8785622016) b^7 + (- 1240010043853824 ξ_2^7 $+ 380050686291456\xi_2^6 - 61412154206976\xi_2^5 - 1486563456384\xi_2^4 + 519013941120\xi_2^3$ + $84445773696\xi_2^2$ + $78737636736\xi_2$ + 781161984) b^6 + $(-2029171460622336\xi_2^8)$ + 716599057842432 ξ_2^7 - 183826093800960 ξ_2^6 + 19697476610304 ξ_2^5 - 1751512522752 ξ_2^4 + $484154724096\xi_2^3 - 185196326400\xi_2^2 - 10182118656\xi_2 - 21381120 b^5$ + $(-2180042067548160\xi_2^9 + 473291797165056\xi_2^8 - 82660134735360\xi_2^7)$ + $30932852977152\xi_2^6 - 10748326358016\xi_2^5 + 1036849102848\xi_2^4 + 1808275968\xi_2^3$ $+ 45942627840\xi_2^2 + 406984704\xi_2 - 786432 b^4 + (-1796459279818752\xi_2^1 0 b^4 + (-1796459279818752\xi_2^1 b^4 + (-17964592798818752\xi_2^1 b^4 + (-1796459279884764 b^4 + (-1796459279884764 b^4 + (-17964592798864 b^4 + (-1796459864 b^4 + (-179645864 b^4 + (-1796464 b^4 + (-179645864 b^4 + (-179666466 b^4 + (-179666666 b^4 + (-1796666666 b^4 + (-17966666666666666 b^4 + (-17966666666666666666666666$ $+ 18219668152320\xi_2^9 + 202537261264896\xi_2^8 - 24372867465216\xi_2^7 - 12712901529600\xi_2^6$ + $1891880644608\xi_2^5 + 149435006976\xi_2^4 - 78531317760\xi_2^3 - 3034202112\xi_2^2 + 13631488\xi_2 b^3$ $- 12712901529600\xi_2^6 + 1891880644608\xi_2^5 + 149435006976\xi_2^4 - 78531317760\xi_2^3$ $+ \ 207927699922944 \xi_2^9 - 30466729304064 \xi_2^8 + 6694205865984 \xi_2^7 - 2234853752832 \xi_2^6$ $+ \hspace{0.1cm} 25187770368 \xi_{2}^{5} + 12670279680 \xi_{2}^{4} + 11204001792 \xi_{2}^{3} - 88080384 \xi_{2}^{2} \big) b^{2}$ $- \ 376147987660800 \Big(\xi_2^8 - \frac{493}{1800} \xi_2^7 - \frac{91}{1800} \xi_2^6 - \frac{52499}{2624400} \xi_2^5 + \frac{373993}{23619600} \xi_2^4 - \frac{11003}{8503056} \xi_2^3 - \frac{11003}{8503056} \xi_2^4 \Big) \Big] + \frac{11003}{8503056} \xi_2^4 - \frac{11003}{8503056} \xi_2^4 + \frac{11003}{8505} \xi_2^4 + \frac{11$ $-\frac{99359}{382637520}\xi_{2}^{2} + \frac{13231}{239148450}\xi_{2} - \frac{16}{23914845}\Big)\xi_{2}^{3}b - 26005292974080\Big(\xi_{2}^{6} - \frac{3221}{5040}\xi_{2}^{5} + \frac{11741}{136080}\xi_{2}^{4} - \frac{551}{734832}\xi_{2}^{3} + \frac{25909}{6613488}\xi_{2}^{2} - \frac{841}{1377810}\xi_{2} + \frac{64}{6200145}\Big)\xi_{2}^{4}\Big]$

```
\overline{107138505600(b-4\xi_2)^5(-2+3b+6\xi_2)^9(-2b+9b^2+8\xi^2+18b\xi_2)^4} \left[ -\frac{1}{2} 
3205531666112891247801 \ b^{24} + \Big( -23549490898542007903044 + 16928325013301575478118\xi_2 \Big) b^{23}
 + \left(75929307146584259396868 - 121401537989607913080132\xi_2 - 211290055175024575879896\xi_2^2\right)b^{22}
 -\ 2088910280079500077070640\xi_2^2 + 9549086318096024883792672\xi_2^3 - 8026620740122533107151312\xi_2^4 \Big) b^{20}
 + ( - 155272450796254379352096 + 138439818197595713225088\xi_2 + 3402251444419244623491552\xi_2^2
 - 16469299199575379016442656\xi_2^3 + 24870457142606536502118336\xi_2^4 + 13179013827571197783625248\xi_2^5 ) b^{19}
 + 16402797917720467442892288\xi_2^3 - 24434753303197808428285440\xi_2^4 - 57555043839532381720185792\xi_2^5 - 244347533031978084288540\xi_2^4 - 57555043839532381720185792\xi_2^5 - 245347533031978084288540\xi_2^4 - 57557643839538646\xi_2^4 - 5755643839566\xi_2^5 - 245366\xi_2^5 - 24536\xi_2^5 - 2456\xi_2^5 - 24536\xi_2^5 - 24536\xi_2^5 - 24536\xi_2^5 - 2456
 + (15458077485778050397440 + 309665642183254539952128\xi_2 - 1300051239799612858071552\xi_2^2)
 +\ 773052094844365165049958912 \xi_2^6 - 1777599004517513544579563520 \xi_2^7 + 1543386469677463425646980864 \xi_2^8 \big) b^{16}
 + ( -3901925145017223751680 - 152570452788562279279104\xi_2 + 1259249117333355242496\xi_2^2
 -\ 62001978286066408875718656\xi_2^5 + 196720926328467328388714496\xi_2^6 - 81939693443489872338124800\xi_2^7 + 1967209263284673288871496\xi_2^6 - 81939693443489872338124800\xi_2^7 + 196720926328467328388714496\xi_2^6 - 81939693443489872338124800\xi_2^7 + 19672092632846732838871496\xi_2^6 - 819396934434898723388714866\xi_2^6 - 81966\xi_2^6 - 81966\xi_2^6 - 81966\xi_2^6 - 81966\xi_2^6 - 8196\xi_2^6 - 8190\xi_2^6 - 8190\xi_2
 + (-91634228387245799424 - 11758045066906939840512\xi_2 - 213524048645951237222400\xi_2^2)
 - 16713648574636256016262060032 \xi_2^9 + 41722000879673893645132443648 \xi_2^1 0 - 57086179775681814160956370944 \xi_2^{11} ) b^{13} + 5600 b^{13} b^{13} + 5000 b^{13} b^{13} + 500
 + \left(7708412474321190912 + 1835998813447563902976\xi_2 + 71425477903409551724544\xi_2^2\right)
 +\ 801837685140439695189073920\xi_2^8 - \ 3029778921385328320919273472\xi_2^9 + \ 6574483928591581803144044544\xi_2^{10} + \ 6374483928591581803144044544\xi_2^{10} + \ 637448392859158180314404544\xi_2^{10} + \ 637448392859158180314404544\xi_2^{10} + \ 63744839285915818031440454\xi_2^{10} + \ 637448392859158180314404554\xi_2^{10} + \ 637448392859158848458454\xi_2^{10} + \ 63744839285915884845845454\xi_2^{10} + \ 63744854\xi_2^{10} + \ 63744\xi_2^{10} + \ 6374\xi_2^{10} + \ 6374\xi
```

 $- 312125313040317699885628932096 \xi_2^{13} + 277315104769210582678175809536 \xi_2^{14} \Big) b^{10} + \Big(123012636475392 + 2773151047692105826781 + 2773151047692105826781 + 277315104769210589 + 277315104769210 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 2773151047692105826781 + 277315104769210584 + 277315104769210584 + 277315104769210584 + 277315104769210584 + 277315104769210584 + 277315104769210584 + 277315104769210584 + 2773151047692104 + 277315104769210584 + 277315104769210584 + 2773151047692104 + 2773151047692104 + 277315764 + 2773157664 + 2773157664 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 277315766 + 27731576 + 277315766 + 277315766 + 277315766 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 + 277566 +$ $- \left. \xi_2 945647076018518001781646819328 \xi_2^{15} + 1063836965412761766298682130432 \xi_2^{16} \right) b^8$ $+ 1027195913501565112358535168\xi_2^{11} + 190749931168052135202914304\xi_2^{12} - 13928747067946307006408687616\xi_2^{13} + 19074993168052135202914304\xi_2^{13} + 19074993168052135202914304\xi_2^{13} + 19074993168052135202914304\xi_2^{12} + 19074993168052135202914304\xi_2^{12} + 19074993168052135202914304\xi_2^{12} + 19074993168052135202914304\xi_2^{13} + 19074993168052135202914400\xi_2^{13} + 190749931680\xi_2^{13} + 190749956\xi_2^{13} + 19074995\xi_2^{13} + 19074995\xi_2^{13} + 1907495\xi_2^{13} + 19074\xi_2^{13} + 1907495\xi_2^{13} + 19074$ $+ 1005363458234125685443233054720\xi_2^{18} b^6 + \left(-4\xi_2 545793386086400\xi_2^3 + 2661102352236281856\xi_2^4 - 512072081637063524352\xi_2^5 + 26\xi_2^5 + 2\xi_2^5 + 2\xi_2^5 + \xi_2^5 +$ $-14438391599252895694848\xi_{2}^{6}+768715820629462351872\xi_{2}^{7}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+380472302337877358936064\xi_{2}^{8}-199509513084865433567232\xi_{2}^{9}+38047236264\xi_{2}^{8}-19950951308486543567235\xi_{2}^{8}+380472364\xi_{2}^{8}+3804723564\xi_{2}^{8}+380472364\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+38047236\xi_{2}^{8}+380\xi_$ $+\ 7643608405765270756392960\xi_2^{10} - 173319922087403820542853120\xi_2^{11} + 1051145200903047799665328128\xi_2^{12}$ $+ 633094579823704466969812008960\xi_2^{19} \Big) b^5 + \Big(23570780520448000\xi_2^4 - 9414514703050211328\xi_2^5 + \xi_2^5 + \xi_2$

 $+ 96836507879611589296128\xi_2^4 - 135673586267551783501824\xi_2^5 - 6365830414075033599737856\xi_2^6 \\ + 27862610203752705429995520\xi_2^7 - 69225008612810282157735936\xi_2^8 - 79326946390407438505623552\xi_2^9$

_	$579326888146140529806016512\xi_2^{15} - 8573092055980402678872145920\xi_2^{16} + 97353161825973880514276229120\xi_2^{17} - 8573092055980402678872145920\xi_2^{16} - 8573092055980402678872145900\xi_2^{16} - 8573092055980402678872145900\xi_2^{16} - 85730920559804020000000000000000000000000000000000$
_	$283803384062172039277298319360\xi_2^{18} + 142021115709319309128892416000\xi_2^{19} + 283150903223708601415253360640\xi_2^{20} \Big) b^4 - 100000000000000000000000000000000000$
+	$943565009341172577069957120\xi_2^8 \left(\frac{320}{3064883488479} - \frac{143032\xi_2 2)}{11918991344085} + \frac{43002569\xi_2^2}{95351930752680} + \frac{4751257\xi_2^3}{12108181682880} + \frac{143032\xi_2 2}{12108181682880} + \frac{14303\xi_2 2}{12108181682880} + \frac{1430\xi_2 2}{1210818168280} + \frac{1430\xi_2 2}{1210818168280} + \frac{1430\xi_2 2}{1210818168280} + \frac{1430\xi_2 2}{1210818168280} + \frac{1430\xi_2 2}{12108181682880} + \frac{1430\xi_2 2}{1210818168280} + \frac{1430\xi_2 2}{1210816680} + \frac{1430\xi_2 2}{1210816680} + \frac{140\xi_2 2}{121081$
_	$\frac{220610951\xi_2^4}{8475727178016} - \frac{20880123937\xi_2^5}{84757271780160} + \frac{10977972547\xi_2^6}{4708737321120} + \frac{411059627\xi_2^7}{348795357120} - \frac{5425235\xi_2^8}{143537184} - \frac{455849\xi_2^9}{861223104} + \frac{10977972547\xi_2^6}{47878737321120} + \frac{10977972547\xi_2^6}{348795357120} - \frac{10977972547\xi_2^6}{143537184} - \frac{10977972547\xi_2^9}{861223104} + \frac{10977972547\xi_2^6}{143537184} - \frac{10977972547\xi_2^9}{861223104} - \frac{10977972547\xi_2^6}{143537184} - \frac{10977972547\xi_2^9}{861223104} - \frac{10977972547\xi_2^9}{143537184} - \frac{1097797254\xi_2^9}{143537184} - \frac{1097797254\xi_2^9}{143537184} - \frac{1097797254\xi_2^9}{143537184} - \frac{109779754\xi_2^9}{14353714} - \frac{109779754\xi_2^9}{1435374} - \frac{10977954\xi_2^9}{143537} - \frac{10977954\xi_2^9}{1435374} - \frac{10977954\xi_2^9}{143537} - \frac{10977954\xi_2^9}{1$
+	$\frac{1192241\xi_2^{10}}{2278368} - \frac{194095\xi_2^{11}}{147672} + \xi_2^{12} \bigg) + 13647993885113389061190451200b\xi_2^7 \bigg(- \frac{3472}{248255562566799} \bigg) + 13647993885113389061190451200b\xi_2^7 \bigg) \bigg) + 13647993885113389061190451200b\xi_2^7 \bigg) $
+	$\frac{4379678\xi_2}{2068796354723325} - \frac{775846223\xi_2^2}{7355720372349600} - \frac{626775943\xi_2^3}{3269209054377600} + \frac{3002198401\xi_2^4}{245190679078320} - \frac{52687437377\xi_2^5}{1634604527188800} - 1000000000000000000000000000000000000$
_	$\frac{28777722247\xi_2^6}{90811362621600} + \frac{2533799899\xi_2^7}{2242255867200} + \frac{47248710869\xi_2^8}{6726767601600} - \frac{11956977773\xi_2^9}{249139540800} + \frac{224436497\xi_2^{10}}{2768217120} + \frac{8063491\xi_2^{11}}{410106240} + \frac{11956977773\xi_2^9}{410106240} + \frac{11956977775\xi_2^9}{410106240} + \frac{11956977773\xi_2^9}{410106240} + \frac{11956977775\xi_2^9}{410106240} + \frac{11956977775\xi_2^9}{410106240} + \frac{11956977775\xi_2^9}{410006240} + \frac{1195697775\xi_2^9}{410006240} + \frac{1195697775\xi_2^9}{410006240} + \frac{1195697775\xi_2^9}{410006240} + \frac{1195697775\xi_2^9}{410006240} + \frac{119569775\xi_2^9}{410006240} + \frac{1195697}{410006240} + \frac{119569775}{410006240} + \frac{1195697}{410006240} + \frac{1195697775\xi_2^9}{410006240} + \frac{119569775}{410006240} + \frac{119569775}{410006240} + \frac{119569775}{410006240} + \frac{1195697775}{410006240} + \frac{119569775}{410006240} + \frac{1195697775}{410006240} + \frac{119569775}{410006240} + \frac{119569775}{410006240} + \frac{119569775}{410006240} + \frac{119569775}{410006240} + \frac{119569775}{410006240} + \frac{119569775}{410006240} + \frac{1195697}{410006240} + \frac{1195697}{410006240} + \frac{119569775}{41$
+	$\frac{1182769\xi_2^{12}}{22783680} - \frac{10648\xi_2^{13}}{13185} + \xi_2^{14} \right) + 61415972483010250775357030400b^2 \xi_2^6 \bigg(\frac{1960}{744766687700397} - \frac{80124797\xi_2}{148953337540079400} - \frac{10648\xi_2^{13}}{148953337540079400} - \frac{1064\xi_2^{13}}{14895337540079400} - \frac{106\xi_2^{13}}{148953337540079400} - \frac{106\xi_2^{13}}{14895337540079400} - \frac{106\xi_2^{13}}{1489533754007940} - \frac{106\xi_2^{13}}{1489533754007940} - \frac{106\xi_2^{13}}{148953754007940} - \frac{106\xi_2^{13}}{14895} - \frac{106\xi_2^{13}}{14895540} - \frac{106\xi_2^{13}}{14895540} - \frac{106\xi_2^{13}}{14895540} - \frac{106\xi_2^{13}}{14895560} - 106\xi_2^$
+	$\frac{9902550577\xi_2^2}{264805933404585600} + \frac{1195285193\xi_2^3}{35307457787278080} - \frac{32612796241\xi_2^4}{9807627163132800} + \frac{342638206217\xi_2^5}{23538305191518720} + \frac{1055736154241\xi_2^6}{39230508652531200} + \frac{10557361\xi_2^6}{3923050865253120} + \frac{10557361\xi_2^6}{3923050865253120} + \frac{10557361\xi_2^6}{3923050865253120} + \frac{10557365}{3923050865253120} + \frac{10557565}{3923050865253120} + \frac{10557565}{392305085555} + \frac{10557565}{392505} + \frac{10557565}{392505} + \frac{1055756}{392505} + \frac{1055756}{3925} + \frac{1055756}{3925} + \frac{1055756}{3925} + \frac{1055756}{3925} + \frac{1055756}{3925} + \frac{1055756}{3925$
_	$\frac{2192039558627\xi_2^7}{127004570702000} + \frac{407086522123\xi_2^8}{1014404004000} - \frac{376056721241\xi_2^9}{520141400100000} + \frac{66015380303\xi_1^{10}}{70700400700000} - \frac{379274777\xi_1^{11}}{205200470000} + \frac{383603443\xi_1^{12}}{1014000000000} - \frac{379274777\xi_2^{11}}{1014000000000000000000000000000000$
_	$\frac{11825311\xi_2^{13}}{30378240} - \frac{441671\xi_2^{14}}{1265760} + \xi_2^{15}\right) + 69092969043386532122276659200b^3\xi_2^5 \left(-\frac{22736}{20108700567910719} + \frac{71287139\xi_2}{223430006310119100}\right)$
_	$\frac{24726197731\xi_2^2}{2} - \frac{230414532259\xi_2^3}{2} + \frac{2181458431\xi_2^4}{2} + \frac{761826448151\xi_2^5}{2} - \frac{697946788007\xi_2^6}{2}$
	794417800213756800 3177671200855027200 1807549033478400 198604450053439200 176537288936390400
_	$\frac{4897932603919\xi_2^7}{4997932603919\xi_2^7} + \frac{1225324232177\xi_2^8}{499905185049\xi_2^9} - \frac{143011483201\xi_2^{10}}{499905185049\xi_2^9} - \frac{199660889633\xi_2^{11}}{499905185049\xi_2^9} + \frac{7640482751\xi_2^{12}}{499905185049\xi_2^9} - 1000000000000000000000000000000000000$
	9807627163132800 435894540583680 80721211219200 26907070406400 5979348979200 33218605440
+	$\frac{43997911\xi_2^{13}}{820212480} - \frac{85889039\xi_2^{14}}{45567360} + \frac{990449\xi_2^{15}}{474660} + \xi_2^{16}\Big) \bigg].$

Apéndice B. Teorema de Hartman-Grobman

Teorema 12 (Hartman-Grobman). Sea Ω un subconjunto abierto de \mathbb{R}^n que contiene al origen, $f \in C^1(\Omega)$ y ϕ_t el flujo del sistema no lineal

$$\dot{x} = f(x). \tag{5.1}$$

Supongamos que f(0) = 0 y que la matriz

$$A = Df(0) \tag{5.2}$$

no tiene valores propios con parte real cero. Entonces existe un homeomorfismo Hde un conjunto abierto U que contiene al origen hacia el conjunto V que contiene al origen tal que para cada $x_0 \in U$, existe un intervalo abierto $I_0 \subset \mathbb{R}$ que contiene al cero tal que para toda $x_0 \in U$ y $t \in I_0$

$$H \circ \phi_t(x_0) = e^{At} H(x_0);$$

es decir, H envía órbitas de (5.1) cerca del origen hacia órbitas de (5.2) cerca del origen y se preserva la parametrización por el tiempo.

Apéndice C. Variedad central y forma normal: ciclos límite

En esta sección describimos brevemente la teoría de la variedad central y la teoría de la forma normal.

Considere un sistema dinámico no lineal general de la forma

$$\dot{\mathbf{w}} = A\mathbf{w} + \mathbf{F}(\mathbf{w}), \qquad \mathbf{w} \in \mathbb{R}^n, \qquad \mathbf{F}(\mathbf{w}) : \mathbb{R}^n \to \mathbb{R}^n,$$
(5.3)

donde el punto denota la diferenciación con respecto al tiempo t, $A\mathbf{w} \neq \mathbf{F}(\mathbf{w})$ representan la partes lineales y no lineales del sistema, respectivamente, y se supone que $\mathbf{F}(\mathbf{w})$ es analítica. Aquí, la matriz A se supone diagonalizable, lo que implica que la singularidad del sistema es un caso semisimple. Además, suponga que $\mathbf{w} = \mathbf{0}$ es un equilibrio del sistema, lo que implica que $\mathbf{F}(\mathbf{0}) = \mathbf{0} \neq D_{\mathbf{w}} \mathbf{F}(\mathbf{0}) = \mathbf{0}$. Denotemos los n valores propios de A por λ_i , $i = 1, \ldots, n$, y sin pérdida de generalidad, supongamos que existen k valores propios λ_j , $j = 1, \ldots, k \leq n$ con parte real cero. Esto indica que el sistema (5.3) tiene una variedad central de dimensión k.

Nosotros no tenemos la intención de discutir el cálculo de la forma normal, y asumimos que la forma normal para el sistema general (5.3) se ha obtenido en las coordenadas polares de la siguiente manera (los lectores interesados pueden encontrar los detalles del cálculo de la forma normal en [41]):

$$\frac{dr}{dt} = r(v_0 + v_1 r^2 + v_2 r^4 + \dots + v_k r^{2k}), \qquad (5.4)$$

$$\frac{d\theta}{dt} = \omega + \nu_1 r^2 + \nu_2 r^4 + \dots + \nu_k r^{2k},$$
 (5.5)

hasta términos de orden 2k + 1, donde $r \neq \theta$ denotan la amplitud y fase de movimiento, respectivamente. Los coeficientes $v_k \neq v_k$ son expresados en términos de los coeficientes del sistema original. Los v_k son llamados los k-ésimos valores foco de un punto crítico tipo Hopf. El v_0 es obtenido del sistema lineal.

La primera ecuación (5.4) se utiliza para determinar la bifurcación de los ciclos límite cerca del origen y su estabilidad, mientras que (5.5) se usa para determinar la frecuencia de los ciclos límite.

El siguiente teorema da condiciones suficientes para la existencia de ciclos límite de amplitudes pequeñas, y su demostración se puede consultar en [42].

Teorema 13. Supongamos que los valores foco dependen de k parámetros, expresados como

$$v_j = v_j(\epsilon_1, \epsilon_2, \dots, \epsilon_k), \qquad j = 0, 1, 2, \dots, k,$$
(5.6)

los cuales satisfacen

$$v_j(0,...,0) = 0, \quad j = 0, 1,..., k - 1, \quad v_k(0,...,0) \neq 0,$$

 $y \quad \det\left[\frac{\partial(v_0, v_1, ..., v_{k-1})}{\partial(\epsilon_1, \epsilon_2, ..., \epsilon_k)}(0,...,0)\right] \neq 0.$

Entonces, para cualquier $\epsilon_0 > 0$, existen $\epsilon_1, \epsilon_2, \ldots, \epsilon_k$ y $\delta > 0$ con $|\epsilon_j| < \epsilon_0$, $j = 1, 2, \ldots, k$ tal que la ecuación $\dot{r} = 0$ tiene exactamente k raíces positivas (es decir, el sistema (5.3) tiene exactamente k ciclos límite) en una bola de radio δ con centro en el origen.

Este teorema indica que el procedimiento para encontrar multiples ciclos límite involucra dos etapas: Cálculo de los valores foco (es decir, cálculo de los coeficientes de la forma normal) y resolver las ecuaciones polinómicas multivariables acopladas no lineales: $v_0 = v_1 = \cdots = v_{k-1} = 0$. Debemos notar que $v_0 = 0$ es automáticamente satisfecho en el punto de equilibrio.

Apéndice D. Coeficientes del sistema de ecuaciones

$$\begin{split} a_{01} &= 1, \\ a_{10} &= 0, \\ a_{02} &= \frac{\omega_c (bw_2(1+g_2+w_2)^2 + g_2(1+w_2)(g_2(1+g_2)^2\xi_2 + g_2w_2^2\xi_2 + (1+g_2)w_2(-1+2g_2\xi_2)))}{(1+g_2+w_2)^2(bw_2(1+g_2+w_2) + g_2(1+w_2)(g_2(1+g_2)\xi_2 + w_2(-1+g_2\xi_2)))} \\ a_{11} &= \frac{1}{w_2g_2(1+w_2)(1+w_2+g_2)^2(bw_2(1+w_2+g_2) + (1+w_2)g_2(g_2(g_2(1+g_2)\xi_2 + w_2(-1+g_2\xi_2))))} \\ &\left[b^2w_2^2(1+2w_2(1+g_2+w_2)^4 + 2bw_2(1+w_2)g_2(1+w_2+g_2)^2(g_2(1+g_2)^2\xi_2 + w_2^3(-3+2g_2\xi_2))(\right] \end{split}$$

Las expresiones de los siguientes coeficientes son demasiado largas para escribirlas en este texto, pero se pueden consultar en el archivo adjunto:

generado con Mathematica.

Apéndice E. Expresiones de los $\delta_6, \ldots, \delta_{14}$

$$\begin{split} \delta_6 &= \frac{1}{b_1(2b_0b_3 + b_1^2)^2(3b_0^2b_6 + 6b_0b_1b_3 + b_1^3)} \Big(12b_0^3b_2b_3(-b_3b_4b_7 + b_3(b_3b_8 - b_5b_6) + b_4^2b_6) \\ &\quad -b_1^3(3b_0^2(6b_3^2b_9 - 4b_3b_5b_7 + 3b_4b_5b_6) + b_0b_2^2(6b_3b_7 - 6b_4b_6) + 2b_0b_2b_3(2b_3b_5 + b_4^2) + 2b_3^2b_3^2) \\ &\quad -b_0b_1b_3(12b_0^2(b_3(b_3b_9 - b_5b_7) + b_4b_5b_6) + b_0b_2^2(6b_3b_7 - 9b_4b_6) + 4b_2^3b_3^2) \\ &\quad -b_1^5(8b_0b_3b_9 - 2b_0b_5b_7 + b_2^2b_7 + b_2(2b_3b_5 + b_4^2)) \\ &\quad +b_1^4(-2b_0b_2(-4b_3b_8 + b_4b_7 + 3b_5b_6) + 2b_0b_3b_4b_5 + b_2^3b_6 + 3b_2^2b_3b_4) \\ &\quad +b_0b_1^2b_2(3b_0(6b_3^2b_8 - 4b_3b_4b_7 - 6b_3b_5b_6 + 3b_4^2b_6) + 2b_2^2b_3b_6 + 6b_2b_3^2b_4) \\ &\quad -b_1^7b_9 + b_1^6(b_2b_8 + b_4b_5) \Big) \\ \delta_7 &= \frac{1}{b_1(2b_0b_3 + b_1^2)^2(3b_0^2b_6 + 6b_0b_1b_3 + b_1^3)} \Big(-12b_0^3b_3(-b_3b_4b_7 + b_3(b_3b_8 - b_5b_6) + b_4^2b_6) \\ &\quad +b_1^4(2b_0(-4b_3b_8 + b_4b_7 + 3b_5b_6) - 3b_2^2b_6 - 6b_2b_3b_4) \\ &\quad +2b_1^3(b_0b_2(6b_3b_7 - 6b_4b_6) + b_0b_3(2b_3b_5 + b_4^2) + 3b_2^2b_3^2) \\ &\quad -3b_0b_1^2(b_0(6b_3^2b_8 - 4b_3b_4b_7 - 6b_3b_5b_6 + 3b_4^2b_6) + 2b_2^2b_3b_6 + 4b_2b_3^2b_4) \\ &\quad +6b_0b_1b_2b_3(2b_0b_3b_7 - 3b_0b_4b_6 + 2b_2b_3^2) - b_1^6b_8 + b_1^5(2b_2b_7 + 2b_3b_5 + b_4^2) \Big) \\ \delta_8 &= \frac{1}{(2b_0b_3 + b_1^2)^2(3b_0^2b_6 + 6b_0b_1b_3 + b_1^3)} \Big(-6b_1^2(b_0b_3b_7 - b_0b_4b_6 + b_2b_3^2) + 6b_0b_1b_3(b_2b_6 + b_3b_4) \\ &\quad -3b_0b_3(2b_0b_3b_7 - 3b_0b_4b_6 + 4b_2b_3^2) + b_1^4(-b_7) + 3b_1^3(b_2b_6 + b_3b_4) \Big) \\ \delta_9 &= \frac{2b_3^2 - b_1b_6}{(2b_0b_3 + b_1^2)(3b_0^2b_6 + 6b_0b_1b_3 + b_1^3)} \Big) \end{split}$$

```
\delta_{10} =
                     - (b_5b_4^2 + 2b_2b_8b_4 + b_3b_5^2 + b_{12}(b_2^2 - 2b_0b_5) + 2b_2b_5b_7 + 2b_2b_3b_9 - 2b_0b_7b_9)b_1^{15}
                    + (b_2(b_4^3 + 6b_3b_5b_4 + 3b_2b_7b_4 + 3b_2b_5b_6 + 3b_2b_3b_8) + b_{11}(b_2^3 - 6b_0b_5b_2 + 3b_0^2b_9)
                    + b_0(-9b_6b_5^2 - 8b_4b_7b_5 + 22b_3b_8b_5 + 28b_{13}b_2b_3 - 2b_{12}b_2b_4 - 2b_2b_7b_8 + 22b_3b_4b_9 - 6b_2b_6b_9))b_1^{14}
                    + ((-4b_5b_7^2 + 40b_3b_9b_7 + 52b_{12}b_3b_5 + 15b_{13}b_2b_6 + 3b_5b_6b_8 - 3b_{11}(4b_4b_5 + b_2b_8) - 6b_4b_6b_9)b_0^2
                     + 22b_3^2b_9b_2 + 5b_3^2b_5^2 + 5b_3b_4^2b_5) - 2b_2^2(3b_5b_3^2 + 3b_4^2b_3 + 2b_2b_7b_3 + 2b_2b_4b_6))b_1^{13}
                    + (6b_0^3(5b_{12}b_5b_6 + b_7b_9b_6 - b_{11}b_5b_7 + 11b_{11}b_3b_9) + (3b_{11}b_7b_2^2 + 292b_{13}b_3^2b_2 + 12b_{11}b_4^2b_2)
                     - b_6(33b_4^2 + 8b_2b_7)b_2 + 2b_3(5b_4^3 + 21b_2b_7b_4) + b_3^2(60b_4b_5 + 66b_2b_8))b_0 + 5b_2^3b_3(2b_3b_4 + b_2b_6))b_1^{12}
                     - 18b_4b_6b_9b_3 - 27b_5^2b_6^2 + 30b_{12}(16b_3^2b_5 - b_2b_4b_6) + 18b_4b_5b_6b_7 - 6b_2b_6b_7b_8 - 6b_{11}(40b_3b_4b_5 + 12b_2b_6b_5) + 12b_2b_6b_5 + 1
                     -b_{2}b_{4}b_{7}+11b_{2}b_{3}b_{8})-18b_{2}b_{6}^{2}b_{9})b_{0}^{3}-(4b_{5}^{2}b_{3}^{3}+368b_{2}b_{9}b_{3}^{3}+240b_{12}b_{2}^{2}b_{3}^{2}+34b_{4}^{2}b_{5}b_{3}^{2}+48b_{2}b_{5}b_{7}b_{3}^{2}+344b_{2}b_{4}b_{8}b_{3}^{2}+240b_{12}b_{2}^{2}b_{3}^{2}+34b_{4}^{2}b_{5}b_{3}^{2}+48b_{2}b_{5}b_{7}b_{3}^{2}+344b_{2}b_{4}b_{8}b_{3}^{2}+240b_{12}b_{2}^{2}b_{3}^{2}+34b_{4}^{2}b_{5}b_{3}^{2}+48b_{2}b_{5}b_{7}b_{3}^{2}+344b_{2}b_{4}b_{8}b_{3}^{2}+24b_{12}b_{2}^{2}b_{3}^{2}+34b_{4}^{2}b_{5}b_{3}^{2}+48b_{2}b_{5}b_{7}b_{3}^{2}+344b_{2}b_{4}b_{8}b_{3}^{2}+24b_{12}b_{2}^{2}b_{3}^{2}+34b_{4}^{2}b_{5}b_{3}^{2}+48b_{2}b_{5}b_{7}b_{3}^{2}+344b_{2}b_{4}b_{8}b_{3}^{2}+24b_{12}b_{2}^{2}b_{3}^{2}+34b_{4}^{2}b_{5}b_{3}^{2}+48b_{2}b_{5}b_{7}b_{3}^{2}+344b_{2}b_{4}b_{8}b_{3}^{2}+24b_{12}b_{2}^{2}b_{3}^{2}+34b_{4}^{2}b_{5}b_{3}^{2}+48b_{2}b_{5}b_{7}b_{3}^{2}+344b_{2}b_{4}b_{8}b_{3}^{2}+24b_{2}b_{3}b_{3}^{2}+24b_{2}b_{3}b_{3}^{2}+24b_{2}b_{3}b_{3}^{2}+24b_{2}b_{3}b_{3}^{2}+24b_{2}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}b_{3}b_{3}^{2}+24b_{3}
                     + 24b_2^2b_4b_6b_7)b_0^2 + 2b_2^2(-30b_5b_3^3 - 6b_3^2(5b_4^2 + 6b_2b_7) + 61b2b4b6b3 + 3b2^2b6^2)b0 - 5b2^4b3^3)b_1^{11}
                    - \ 6b_5b_6b_7^2 + 248b_{12}b_3b_5b_6 - 72b_{11}b_4b_5b_6 - 60b_{11}b_3b_5b_7 + 240b_{11}b_3^2b_9 + 33b_3b_6b_7b_9)b_0^3 + 2(728b_{13}b_2b_3^3)b_1^3 + 2(728b_{13}b_2b_3
                     - 4b_{12}b_2(60b_3b_4 + 31b_2b_6)b_3 + 3(10(7b_5b_8 + 12b_4b_9)b_3^3 - (61b_6b_5^2 + 112b_4b_7b_5 + 44b_2b_7b_8 + 126b_2b_6b_9)b_3^2 - (61b_6b_5^2 + 112b_4b_7b_5 + 44b_2b_7b_8 + 126b_2b_7b_8 + 126b_4b_7b_8 + 126b_4b_7b_7b_8 + 126b_7b_8 + 126
                    + (68b_5b_6b_4^2 + 12b_2b_7^2b_4 - 3b_2b_6b_8b_4 + 54b_2b_5b_6b_7)b_3 + 2b_{11}b_2(-80b_5b_3^2 + 5(4b_4^2 + b_2b_7)b_3 + 6b_2b_4b_6)
                     + (34b_4^3 + 96b_2b_7b_4 - 444b_2b_5b_6)b_3^2 + 2b_2b_6(24b_4^2 - 65b_2b_7)b_3 + 177b_2^2b_4b_6^2)b_0 + b_3^3b_3^2(113b_2b_6 - 20b_3b_4))b_1^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3^{10}b_3
                    + b_0 \left(-3456b_3^3 b_3 b_4^3 b_6 (6 b_2 b_4 b_6 - 43 b_3^2 b_5) b_0^5 - 12 (6192 b_3^3 b_4^3 b_6 b_5^5 - 1440 b_3^4 b_4^4 b_4^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_3 b_9) b_0^4 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_8 b_9 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_8 b_7 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_5 b_7 - 35 b_{11} b_8 b_7 + b_6 (-10 b_{12} b_5 b_6 + 6 b_{11} b_8 b_7 + b_6 b_8 b_8 b_8 + b_6 (-10 b_{12} b_8 b_8 b_8 b_8 + b_6 b_8 b_8 + b_6 b_8 b_8 b_8 + b_6 (-10 b_{12} b_8 b_8 b_8 b_8 + b_6 b_8 b_8 b_8 + b_6 b_8 b_8 b_8 + b_6 b_8 b_8 + b_6 b_8 b_8 b_8 b_8 + b_6 b_8 b_8 b_8 + b_6 b_8 b_8 b_8 + b_6 b_8 b_8 + b_6 b_8 b_8 b_8 b_8 + b_6 b_8 b_8 b_8 + b_6 b_8 b_8 b_8 + b_6 b_8 
                    - 198b_2b_6^2b_9b_3 - 27b_4^2b_5b_6^2 + 12b_2b_4b_6b_7^2 + 4b_{12}(488b_5b_3^3 - 124b_2b_4b_6b_3 - 15b_2^2b_6^2) + 72b_2b_5b_6^2b_7 + 2b_2b_5b_6^2b_7 + 4b_{12}(488b_5b_3^3 - 124b_2b_4b_6b_3 - 15b_2^2b_6^2) + 72b_2b_5b_6^2b_7 + 4b_{12}(48b_5b_3^3 - 124b_2b_4b_6b_3 - 15b_2^2b_6^2) + 72b_2b_5b_6^2b_7 + 4b_{12}(4b_5b_5b_6^2 - 12b_{12}) + 7b_{12}(4b_5b_5b_6^2 - 12b_{12}) + 
                     + 1460b_2b_4b_6b_3 + 153b_2^2b_6^2)b_0 - 110b_2^4b_3^4)b_1^9
                    + 4(17280b_2^5b_3^3b_5^3 + 662b_{12}b_5b_6b_3^2 + 3b_2b_6(57b_{13}b_3b_6 - 10b_{12}b_4b_6 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8)
                    + 3(4b_{11}b_3(b_3(31b_3b_9 - 15b_5b_7) - 29b_4b_5b_6) + 3b_6(2b_4b_6(b_5b_7 + b_3b_9) + b_3(-3b_5b_7^2 + 6b_3b_9b_7 - b_5b_6b_8))))b_0^3 + b_3(-3b_5b_7^2 + b_3b_9b_7 - b_5b_6b_8)))b_0^3 + b_3(-3b_5b_7^2 + b_3b_9b_7 - b_5b_6b_8))b_0^3 + b_3(-3b_5b_7^2 + b_3b_9b_7 - b_3b_9b_7 + b_3b_9b_7 - b_3b_9b_7 + b_3b_7 + b
                    + (3700b_{13}b_2b_3^4 - 4b_{12}b_2(488b_3b_4 + 331b_2b_6)b_3^2 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 4(7b_6b_5^2 - 90b_4b_7b_5 - 62b_2b_7b_8 - 214b_2b_6b_9)b_3^3 + 3(12(5b_5b_8 + 36b_4b_9)b_3^4 + 3(12(5b_5b_8 + 36b_4b_8)b_4^4 + 3(12(5b_8)b_8)b_4^4 + 3(12(5b_8)b_8)b_4^4 + 3(12(5b_8)b_8)b_8^4 + 3(12(5b_8)b
                    -3b_2b_6^2(-3b_4^3+8b_2b_7b_4+12b_2b_5b_6)+8b_{11}b_2(-124b_5b_3^3+15(4b_4^2+b_2b_7)b_3^2+29b_2b_4b_6b_3+b_2^2b_6^2))b_0^2
```

 $+ 375b_2^2b_4b_6^2b_3 + 3b_2^3b_6^3)b_0 + 2b_2^3b_3^3(337b_2b_6 - 400b_3b_4)\big)b_1^8$

```
+ 2602b_{13}b_2b_6b_3^3 - 306b_5b_6b_8b_3^3 + 288b_4b_6b_9b_3^3 + 270b_5^2b_6^2b_3^2 + 360b_4b_5b_6b_7b_3^2 - 108b_2b_6b_7b_8b_3^2 - 396b_2b_6^2b_9b_3^2 + 200b_3b_6b_7b_8b_3^2 - 306b_2b_6b_7b_8b_3^2 - 306b_2b_8b_3^2 - 3
  - 477b_4^2b_5b_6^2b_3 + 54b_2b_4b_6b_7^2b_3 + 2b_{12}(874b_5b_3^3 - 662b_2b_4b_6b_3 - 141b_2^2b_6^2)b_3 + 288b_2b_5b_6^2b_7b_3 - 18b_2b_4b_6^2b_8b_3 - 18b_2b_4b_6^2b_8b_4 - 18b_2b_8b_8^2b_8b_8 - 18b_2b_8b_8 - 18b_2b_8b_8^2b_8b_8 - 18b_2b_8b_8^2b_8b_8 - 18b_2b_8b
  -540b_2b_4b_5b_6^3 - 36b_2b_4^2b_6^2b_7 - 6b_{11}(4(64b_4b_5 + 31b_2b_8)b_3^3 + 10b_2(25b_5b_6 - 6b_4b_7)b_3^2 - 29b_2b_6(4b_4^2 + b_2b_7)b_3 - 12b_2^2b_4b_6^2))b_0^3
  -2(874b_{12}b_2^2b_3^4 - 2b_{11}b_2^2(384b_3b_4 + 125b_2b_6)b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 + 246b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 + 246b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 + 246b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 + 246b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 + 246b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 + 246b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 + 246b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 - 24b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 - 24b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_6b_3^2 + 3(-48b_5^2 - 9b_2b_9)b_3^5 + (-68b_5b_4^2 - 9b_2b_9)b_3^2 + (-68b_5b_4^2 - 9b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_3^2 + 3(-6b_5b_4^2 - 9b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_4^2 + 3(-6b_5b_4^2 - 9b_2b_8b_4 - 300b_2b_5b_7)b_3^4 + 125b_2b_4^2 + 3(-6b_4b_4 - 3b_4b_4 - 3(-6b_4b_4 - 3(-6b_4b_4 - 3(-6b_4b_4 - 3b_4b_4 - 3(-6b_4b_4 -
  -12b_2(15b_7b_4^2-52b_5b_6b_4+5b_2b_7^2+36b_2b_6b_8)b_3^3+3b_2b_6(18b_4^3+84b_2b_7b_4+217b_2b_5b_6)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-369b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_4^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_7^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_7^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_7^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_7^2)b_3^2+2b_2^2)b_3^2+2b_2^2b_6^2(16b_2b_7-36b_7^2)b_3^2+2b_2^2)b_3^2+2b_2^2b_6^2(16b_2b_7-3b_7^2)b_3^2+2b_2^2)b_3^2+2b_2^2b_6^2(16b_2b_7-3b_7^2)b_3^2+2b_2^2)b_3^2+2b_2^2)b_3^2+2b_2^2b_4^2+2b_2^2)b_3^2+2b_2^2)b_3^2+2b_2^2b_4^2+2b_2^2)b_3^2+2b_2^2)b_3^2+2b_2^2+2b_2^2)b_3^2+2b_2^2)b_3^2+2b_2^2+2b_2^2+2b_2^2)b_3^2+2b_2^2+2b_2^2+2b_2^2+2b_2^2)b_3^2+2b_2^2+2b_2^2+2b_2^2+2b_2^2)b_3^2+
  -90b_3^3b_4b_6^3)b_0^2+3b_5^2b_3^2(336b_5b_3^3-8(98b_4^2+39b_2b_7)b_3^2+1272b_2b_4b_6b_3+375b_5^2b_6^2)b_0-620b_2^4b_5^3)b_1^7
  - \ 2b_0^3 (5184b_2^3b_3b_4^3b_6^2 (6b_2b_4b_6 - 53b_3^2b_5)b_0^5 + 36(2880b_2^3b_4^3b_5b_3^6 + 3456b_2^4b_4^4b_6b_3^4 + 3816b_2^5b_4^3b_6^2b_3^3 + b_6^2 (-2b_{12}b_5b_6^2b_4^2b_6^2) + b_6^2 (-2b_{12}b_5b_6^2b_4^2b_6^2) + b_6^2 (-2b_{12}b_5b_6^2b_4^2b_6^2) + b_6^2 (-2b_{12}b_5b_6^2) + b_6
 + 2b_{11}b_5b_7 - 5b_{11}b_3b_9))b_0^4 - 6(8640b_2^5b_3^3b_6^6 + 181b_{11}b_9b_3^4 + 426b_{12}b_5b_6b_3^3 - 128b_{11}b_5b_7b_3^3 + 18b_6b_7b_9b_3^3 - 18b_5b_6b_7^2b_3^2)
  + b_2b_6(201b_{13}b_6b_3^2 - 94b_{12}b_4b_6b_3 + b_{11}(24b_6b_4^2 + 58b_3b_7b_4 - 5b_3(12b_5b_6 + 25b_3b_8))))b_0^3
  -(2420b_{13}b_2b_3^5 - 2b_{12}b_2(874b_3b_4 + 639b_2b_6)b_3^3 + 3(4b_{11}b_2b_3(-181b_5b_3^3 + 32(4b_4^2 + b_2b_7)b_3^2 + 67b_2b_4b_6b_3 + 5b_2^2b_6^2)
 + 3(-8b_5b_8 - 6b_4b_9)b_5^3 + 4(9b_6b_5^2 - 9b_4b_7b_5 - 2b_2(7b_7b_8 + 29b_6b_9))b_3^4 + (-20b_5b_6b_4^2 + 2b_2(20b_7^2 + b_6b_8)b_4 + 228b_2b_5b_6b_7)b_3^3 + (-20b_5b_6b_4^2 + 2b_2(20b_7^2 + b_6b_8)b_4 + 228b_2b_7)b_3^3 + (-20b_5b_6b_4^2 + 2b_2(20b_7^2 + b_6b_8)b_4 + 228b_2b_8)b_4 + (-20b_5b_6b_8)b_4^3 + (-20b_5b_6b_8)b_4^3 + (-20b_5b_6b_8)b_4^3 + (-20b_5b_6b_8)b_4^3 + (-20b_5b_6b_8)b_4^3 + (-20b_5b_6b_8)b_8^3 + (-20b_5b_6b_8)b_8^3 + (-20b_5b_8b_8)b_8^3 + (-20b_5b_8b_8)b_8^3 + (-20b_7b_8b_8)b_8^3 + (-20b_7b_8b_8b_8)b_8^3 + (-20b_7b_8b_8)b_8^
 + 2b_2b_6(-20b_7b_4^2 - 288b_5b_6b_4 + 3b_2(b_7^2 + 7b_6b_8))b_3^2 + b_2b_6^2(53b_4^3 - 24b_2b_7b_4 - 60b_2b_5b_6)b_3 + 66b_2^2b_4^2b_6^3))b_0^2
  + 1133b_2^2b_4b_6^2b_3 + 51b_2^3b_6^3)b_0 + 3b_2^3b_3^4(360b_3b_4 - 173b_2b_6)b_1^6
 + b_6(b_{11}(-179b_9b_3^2 + 134b_5b_7b_3 + 72b_4b_5b_6) - 214b_{12}b_3b_5b_6)b_3 - 6b_2b_6^2(5b_{13}b_3b_6 - 2b_{12}b_4b_6 + 2b_{11}b_4b_7 - 5b_{11}b_3b_8))b_0^4
- 576b_2b_4b_5b_6^3b_3 - 48b_2b_4^2b_6^2b_7b_3 + 2b_{11}(-(212b_4b_5 + 181b_2b_8)b_3^3 + b_2(128b_4b_7 - 358b_5b_6)b_3^2 + 67b_2b_6(4b_4^2 + b_2b_7)b_3 + b_2(b_4b_7 - 358b_5b_6)b_3^2 + 67b_2b_6(4b_4^2 + b_2b_7)b_3 + b_2(b_4b_7 - 358b_5b_7)b_3 + b_2(b_4b_7 - 358b_7b_7)b_3 + b_2(b_7b_7 - 358b_7)b_3 + b_2(b
+ 36b_2^2b_4b_6^2)b_3 + 54b_2b_4^3b_6^3)b_0^3 - 4b_3(336b_12b_2^2b_3^4 - b_{11}b_2^2(318b_3b_4 + 179b_2b_6)b_3^2 + 9(48b_2b_9b_3^5 - 4(5b_5b_4^2 - 5b_2b_8b_4 + 11b_2b_5b_7)b_3^4 + 10b_2b_3b_4^2 + 10b_2b_3
 - 58b_2^3b_4b_6^3)b_0^2 + 3b_2^2b_3^3(576b_5b_3^3 - 24(46b_4^2 + 11b_2b_7)b_3^2 + 1148b_2b_4b_6b_3 + 775b_2^2b_6^2)b_0 - 840b_2^4b_3^6)b_1^5
+ 2b_0^4b_3(-15552b_2^3b_3b_3^2b_6^2(6b_2b_4b_6-11b_3^2b_5)b_0^5+72b_6(-1188b_3^3b_4^3b_6b_2^5-720b_3^4b_4^4b_2^4+b_6(3b_{12}b_5b_6-3b_{11}b_5b_7+4b_{11}b_3b_9))b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9))b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_6-3b_{11}b_5b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_7+4b_{11}b_3b_9)b_0^4(-15b_2b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_{11}b_7+4b_
 + \ 6((283b_{13}b_2b_3^2 + 18(2b_4b_9b_3^2 + 2b_5(b_5b_6 - b_3b_8)b_3 - 3b_4^2b_5b_6))b_6^2 - 2b_{12}(-145b_5b_3^3 + 107b_2b_4b_6b_3 + 9b_2^2b_6^2)b_6b_3 + 2b_5b_6b_3 + 2b_5b_5b_6b_3 + 2b_5b_6b_3 + 
- 108b_2^2b_4b_6^2b_7b_3 + 576b_2^2b_4^2b_6^3)b_0^2 + 2b_2b_3(124b_{11}b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + 2b_2b_3(124b_{11}b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + 2b_2b_3(124b_{11}b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + 2b_2b_3(124b_{11}b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + 2b_2b_3(124b_{11}b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + 2b_2b_3(124b_1b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + 2b_2b_3(124b_1b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + 2b_2b_3(124b_1b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + b_2b_3(124b_1b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + b_2b_3(124b_1b_2^2b_3^3 + 9(44b_2b_8b_3^4 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_5b_6)b_3^3 + b_2b_6(79b_4^2 - 30b_2b_7)b_3^2 + b_2b_3(124b_1b_2^2b_3^3 + 9(44b_2b_8b_4^3 - 2(10b_4^3 + 19b_2b_7b_4 + 24b_2b_3b_4)b_3^2 + b_2b_3(12b_4^2 - 2(10b_4^3 + 19b_4^2 - 2(10b_4^3 + 19b_4^2 - 2(10b_4^3 + 19b_4^2 - 2(10b_4^3 - 2(
 + 205b_2^2b_4b_6^2b_3 + 22b_2^3b_6^3)b_0 + 12b_2^3b_3^4(19b_2b_6 - 60b_3b_4)b_1^4
 + 12b_0^5b_3 (10368b_3^3b_2^3b_4^3b_5b_6^3b_0^5 - 2592b_3^3b_3^2b_4^3b_6 (-4b_5b_3^3 + 11b_2b_4b_6b_3 + 2b_2^2b_6^2)b_0^4 + 6b_6 (-864b_2^5b_4^3b_3^5 + (23b_{12}b_3b_5b_6)b_6^2)b_6^3 + (23b_{12}b_3b_5b_6)b_6^2 + (23b_{12}b_5b_6)b_6^2 + (23b_{12
+ \ b_{11}(16b_9b_3^2 - 15b_5b_7b_3 - 8b_4b_5b_6))b_3 + 2b_2b_6(4b_{13}b_3b_6 - 3b_{12}b_4b_6 + 3b_{11}b_4b_7 - 4b_{11}b_3b_8))b_0^3 + 2b_2b_6(4b_{13}b_4b_7 - 4b_{11}b_4b_7 - 4b_{11}b_4b_7
 + b_{12}(72b_5b_3^3 - 290b_2b_4b_6b_3 - 69b_2^2b_6^2)b_3^2 + 72b_2b_5b_6^2b_7b_3^2 - 216b_2b_4b_5b_6^3b_3 + b_{11}(-4(18b_4b_5 + 31b_2b_8)b_3^3) + b_{12}(14b_4b_5 + 31b_2b_8)b_3^3) + b_{11}(14b_4b_5 + 31b_
  - 68b_2^2b_4b_6^3)b_0 + 3b_2^3b_3^3(-4b_7b_3^2 + 46b_4b_6b_3 + 39b_2b_6^2)b_1^3
```

```
85
```

 $+ 12b_0^5b_3^2 \big(-5184b_2^3b_3b_4^3b_6^2 (2b_2b_4b_6 - b_3^2b_5)b_0^5 + 24b_6 (-108b_3^3b_4^3b_6b_2^5 - 432b_3^4b_4^4b_2^4 + b_6 (b_{12}b_5b_6 - b_{11}b_5b_7 + b_{11}b_3b_9))b_0^4 - b_{12}b_{12}b_{12}b_{12}b_{12}b_{13}b_{14}b$

 $+ 6(-6(b_4^2b_5b_6 - 4b_{13}b_2b_3^2)b_6^2 + b_{12}(10b_5b_3^3 - 23b_2b_4b_6b_3 - 2b_2^2b_6^2)b_6 + b_{11}(6b_9b_3^4 - 6b_5b_7b_3^3 - 4b_6(b_4b_5 + 4b_2b_8)b_3^2 + b_{12}(10b_5b_3^3 - 23b_2b_4b_6b_3 - 2b_2^2b_6^2)b_6 + b_{11}(6b_9b_3^4 - 6b_5b_7b_3^3 - 4b_6(b_4b_5 + 4b_2b_8)b_3^2 + b_{12}(10b_5b_3^3 - 23b_2b_4b_6b_3 - 2b_2^2b_6^2)b_6 + b_{11}(6b_9b_3^4 - 6b_5b_7b_3^3 - 4b_6(b_4b_5 + 4b_2b_8)b_3^2 + b_{12}(10b_5b_3^3 - 23b_2b_4b_6b_3 - 2b_2^2b_6^2)b_6 + b_{11}(6b_9b_3^4 - 6b_5b_7b_3^3 - 4b_6(b_4b_5 + 4b_2b_8)b_3^2 + b_{12}(10b_5b_3^3 - 23b_2b_4b_6b_3 - 2b_2^2b_6^2)b_6 + b_{11}(6b_9b_3^4 - 6b_5b_7b_3^3 - 4b_6(b_4b_5 + 4b_2b_8)b_3^2 + b_{12}(10b_5b_3^3 - 23b_2b_4b_6b_3 - 2b_2^2b_6^2)b_6 + b_{11}(6b_9b_3^4 - 6b_5b_7b_3^3 - 4b_6(b_4b_5 + 4b_2b_8)b_3^2 + b_{12}(b_4b_5 - b_4b_6b_8 - b_4b_6b_8)b_3^2 + b_{12}(b_4b_5 - b_4b_8)b_3^2 + b_{12}(b_4b_5 - b_4b_8)b_3^2 + b_{12}(b_4b_8 - b_4b_8)b_4^2 +$

 $+ b_2 b_6 (15 b_4 b_7 - 8 b_5 b_6) b_3 + 2 b_2 b_6^2 (4 b_4^2 + b_2 b_7))) b_0^3 + (72 b_{13} b_2 b_3^5 - 72 b_{11} b_2 b_5 b_3^4 - 36 b_2 b_7 b_8 b_3^4 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_7 b_8 b_3^4 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_7 b_8 b_3^4 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_7 b_8 b_3^4 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_7 b_8 b_3^4 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_7 b_8 b_3^4 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_7 b_8 b_4^3 + 72 b_{11} b_2 b_5^2 b_3^4 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_7 b_8 b_4^3 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_7 b_8 b_4^3 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_7 b_8 b_7 b_8 b_8^3 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_4 b_7^2 b_3^3 + 36 b_2 b_7 b_8 b_8^3 + 72 b_{11} b_2 b_4^2 b_3^3 + 36 b_2 b_7 b_8 b_8^3 + 72 b_{11} b_2 b_5^2 b_8^3 + 72 b_{11} b_2^2 b_8^3 + 72 b_{11} b_8^2 b_8^3 + 72 b_{11} b_8^2$

- $-72b_2b_4^2b_6b_7b_3^2+36b_2^2b_6^2b_8b_3^2-108b_2^2b_5b_6^3b_3+8b_{11}b_2^3b_6^2b_3+135b_2b_4^3b_6^2b_3-36b_2^2b_4b_6^2b_7b_3+198b_2^2b_4^2b_6^3)b_0^2$
- $+ \ 6b_2^2b_3(6b_8b_3^4 + 2b_{11}b_2b_3^3 6(3b_5b_6 + b_4b_7)b_3^3 + b_6(33b_4^2 2b_2b_7)b_3^2 + 41b_2b_4b_6^2b_3 + 7b_2^2b_6^3)b_0 + 42b_2^4b_3^4b_6)b_1^2$

- $+ (4b_4^3 2b_2b_7b_4 6b_2b_5b_6)b_3^2 + 11b_2b_4^2b_6b_3 + 8b_2^2b_4b_6^2)) 12b_0^3b_6(2b_{13}b_2b_3b_6^2 + b_{12}(b_3^2b_5 2b_2b_4b_6)b_6(2b_{13}b_2b_3b_6^2 + b_{12}(b_3^2b_5 2b_2b_4b_6)b_6(2b_1b_2b_3b_6^2 + b_{12}(b_3^2b_5 2b_2b_4b_6)b_6(2b_1b_2b_5 + b_{12}(b_3^2b_5 2b_2b_5)b_6(b_3^2b_5 + b_{12}(b_3^2b_5 2b_2b_5)b_6(b_3^2b_5 2b_2b_5 + b_{12}(b_3^2b_5 2b_2b_5)b_6(b_3^2b_5 2b_2b_5)b_6(b_3^2b_5 2b_2b_5 + b_{12}(b_3^2b_5 2b_2b_5)b_6(b_3^2b_5 2b_2b_5)b_$
- $+ b_{11}(b_9b_3^3 2b_2b_6b_8b_3 b_3^2b_5b_7 + 2b_2b_4b_6b_7)))b_1$

 $+ \left. 72b_0^7 b_2 b_3^4 b_6 \left(3b_0 b_6 b_4^3 + 6b_2^2 b_3 b_6 b_4 + 2b_0^2 (b_{13} b_3 b_6 - b_{12} b_4 b_6 + b_{11} b_4 b_7 - b_{11} b_3 b_8) \right) \right)$

 $\delta_{11} = \frac{1}{b_1^2 (2b_0 b_3 + b_1^2)^3 (3b_0^2 b_6 + 6b_0 b_1 b_3 + b_1^3)^2 (12b_0^2 b_1 b_6 + 6b_0^2 b_3^2 + 12b_0 b_1^2 b_3 + b_1^4)} \left(2 \left(b_{12} b_2 + b_5 b_7 + b_4 b_8 + b_3 b_9 \right) b_1^{15} b_1^2 (b_1 b_2 b_3 + b_1^2)^2 (b_1 b_2 b_3 +$ $- (b_4^3 + 6b_3b_5b_4 + 6b_2b_7b_4 + 3b_{11}(b_2^2 - 2b_0b_5) + 6b_2b_5b_6 + 6b_2b_3b_8 - 2b_0(-14b_{13}b_3 + b_{12}b_4 + b_7b_8 + 3b_6b_9))b_1^{14} + b_1b_2b_3b_4 + b_1b_2b_3b_4 + b_2b_3b_4 + b_1b_2b_3b_4 + b_1b_2b_4 +$ $+ (3(b_{11}b_8 - 5b_{13}b_6)b_0^2 + 2(22b_9b_3^2 + 26b_{12}b_2b_3 + 14b_5b_7b_3 + 22b_4b_8b_3 - 2b_2b_7^2 - 6b_{11}b_2b_4 - 21b_4b_5b_6 - 4b_4^2b_7 - 6b_2b_6b_8)b_0 + (b_4b_5b_6 - b_4b_6b_8)b_0 + (b_4b_7b_8)b_0 + (b_4b_7b_8)$ + $12b_2(b_5b_3^2 + (b_4^2 + b_2b_7)b_3 + b_2b_4b_6))b_1^{13}$ $-\left((292b_{13}b_3^2 - 52b_{12}b_4b_3 - 132b_{11}b_5b_3 - 40b_7b_8b_3 - 108b_6b_9b_3 + 12b_{11}b_4^2 + 4b_4b_7^2 - 30b_{12}b_2b_6 + 6b_{11}b_2b_7 + 18b_5b_6b_7 + 18b_5b_7 + 18b_5b_6b_7 + 18b_5b_7 + 18b_7b_7 + 18b_7b$ $+ \ 3b_4b_6b_8)b_0^2 + 2(33b_{11}b_3b_2^2 - 3b_6(11b_4^2 + 4b_2b_7)b_2 + b_3(5b_4^3 + 42b_2b_7b_4) + 6b_3^2(5b_4b_5 + 11b_2b_8))b_0 + 10b_2^2b_3(3b_3b_4 + 2b_2b_6))b_1^{+2}b_2^{+2}(3b_4b_5 + b_2b_6)b_1^{+2}(3b_4b_5 + b_2b_6)b_2^{+2}(3b_4b_5 + b_2b_6)b_1^{+2}(3b_4b_5 + b_2b_6)b_1^{+2}(3b_4b_6 + b_2b_6)$ $+ 2 \left(8640b_{4}^{4}b_{3}^{2}b_{4}^{3}b_{6}b_{2}^{4} + 10b_{3}^{3}b_{2}^{3} - 3b_{0}(-20b_{5}b_{3}^{3} - 4(5b_{4}^{2} + 9b_{2}b_{7})b_{3}^{2} + 41b_{2}b_{4}b_{6}b_{3} + 4b_{2}^{2}b_{6}^{2})b_{2} + b_{0}^{2}(184b_{9}b_{3}^{3} + 240b_{12}b_{2}b_{3}^{2})b_{3}^{2} + b_{0}^{2}(184b_{9}b_{3}^{2})b_{3}^{2} + b_{0}^{2}($ $+ 24b_5b_7b_3^2 + 172b_4b_8b_3^2 - 36b_2b_7^2b_3 - 198b_4b_5b_6b_3 - 68b_4^2b_7b_3 - 111b_2b_6b_8b_3 + 27b_2b_5b_6^2 + 30b_4^3b_6 - 6b_{11}b_2(20b_3b_4 + 3b_2b_6) + 3b_4b_5b_6b_3 - 6b_{11}b_2(20b_3b_4 + 3b_2b_6) + 3b_{11}b_{12}b_{12}b_{13}b_{14}b_{15}b_{16}b_{15$ $+ 24b_2b_4b_6b_7) + b_0^3(9b_9b_6^2 - 139b_{13}b_3b_6 + 15b_{12}b_4b_6 + 36b_{11}b_5b_6 + 3b_7b_8b_6 - 3b_{11}b_4b_7 + 33b_{11}b_3b_8))b_1^{11} + b_1^{11}b_2b_3b_3b_6 + b_2^{11}b_3b_3b_6 + b_2^{11}b_3b_3b_6 + b_2^{11}b_3b_3b_6 + b_2^{11}b_3b_3b_6 + b_3^{11}b_3b_3b_6 + b_3^{11}b_3b_3b_6 + b_3^{11}b_3b_3b_6 + b_3^{11}b_3b_3b_6 + b_3^{11}b_3b_3b_6 + b_3^{11}b_3b_6 + b_3^{11}b_3b$ $+ \ b_0 \big(3456b_3^2b_3b_4^3b_6 (5b_3b_4 + 6b_2b_6)b_0^4 - 12(1440b_2^4b_3^3b_3^4 + b_6 (5b_{13}b_6 - 3b_{11}b_8))b_0^3 - 2(728b_{113}b_3^3 - 8b_{12}(30b_3b_4 + 31b_2b_6)b_3 - 2(144b_3b_3^2 - 2b_{113}b_3^3 - 2b_{113}$ $- \ 6b_2b_6(24b_4^2 + 65b_2b_7)b_3 + 387b_2^2b_4b_6^2)b_0 - 4b_2^2b_3^2(15b_3b_4 + 83b_2b_6))b_1^{10}$ $+ \ 33b_6b_7b_8b_3 + 99b_6^2b_9b_3 - 6b_4b_6b_7^2 - 72b_{11}b_4^2b_6 + 4b_{12}b_6(62b_3b_4 + 15b_2b_6) - 36b_5b_6^2b_7 - 36b_{11}b_2b_6b_7)b_0^3$ $+ 10b_{11}b_2(24b_3b_4 + 7b_2b_6)b_3 - 2b_6(34b_4^3 + 54b_2b_7b_4 + 81b_2b_5b_6)b_3 + 3b_2b_6^2(23b_4^2 - 4b_2b_7)))b_0^2$ $- \ 6b_2b_3(-24b_5b_3^3 - 2(27b_4^2 + 52b_2b_7)b_3^2 + 259b_2b_4b_6b_3 + 39b_2^2b_6^2)b_0 + 160b_2^3b_3^4)b_1^9$ $+ b_0^2 (3456b_2^3b_3^2b_4^3b_6 (43b_3b_4 + 69b_2b_6)b_0^4 - 12(11520b_2^4b_4^3b_5^3 + b_6(57b_{13}b_3b_6 - 10b_{12}b_4b_6 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_2^3b_4^3b_5^3 + b_0^2(57b_{13}b_3b_6 - 10b_{12}b_4b_6 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_2^3b_4^3b_5^3 + b_0^2(57b_{13}b_3b_6 - 10b_{12}b_4b_6 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4^3 + b_0^2(57b_{13}b_3b_6 - 10b_{12}b_4b_6 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4^3 + b_0^2(57b_{13}b_3b_6 - 10b_{12}b_4b_6 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4 - 12b_{12}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (345b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (34b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (34b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (34b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_3b_8))b_0^3 + b_0^2 (34b_3^3b_4 - 12b_{11}b_5b_6 + 6b_{11}b_4b_7 - 35b_{11}b_4b_7 - 35b_{11}b_4b_7$ $+ (-3700b_{13}b_3^4 + 8b_{12}(244b_3b_4 + 331b_2b_6)b_3^2 - 3(9b_6^2b_4^3 - 64b_3b_6b_7b_4^2 - 2(32(b_6b_8 - 2b_7^2)b_3^2 + 93b_5b_6^2b_3 + 24b_2b_6^2b_7)b_4 - 2(3b_6b_8 - 2b_7^2)b_3^2 + 2(b_6b_8 - 2b_7^2)b_3^2 + 2(b_7b_8 - 2b_8^2)b_3^2 + 2(b_7b_8 -$ $+ \ 8b_{11}(-124b_5b_3^3 + 30(2b_4^2 + b_2b_7)b_3^2 + 58b_2b_4b_6b_3 + 3b_2^2b_6^2) + 4(3b_2b_6(-6b_5b_6^2 + 11b_3b_8b_6 + 3b_3b_7^2) - 2b_3^2(-78b_5b_6b_7 + 11b_3b_8b_6 + 3b_3b_7^2) + 2b_3^2(-78b_7b_7 + 11b_3b_8b_6 + 3b_3b_7^2) + 2b_3^2(-78b_7b_7 + 11b_3b_8b_7 + 11$

 $+ 4b_2b_6(104b_4^2 - 87b_2b_7)b_3^2 + 801b_2^2b_4b_6^2b_3 + 12b_2^3b_6^3)b_0 + 16b_2^2b_3^3(75b_3b_4 - 104b_2b_6))b_1^8$

 $+ frm - e; b_{12}b_6(331b_3b_4 + 141b_2b_6)b_3 + 3(2b_{11}(62b_8b_3^3 + 5(25b_5b_6 - 6b_4b_7)b_3^2 - 29b_6(2b_4^2 + b_2b_7)b_3 - 12b_2b_4b_6^2) + 5(2b_4b_5b_6)b_3 + 5(2b_4b_6)b_3 + 5(2b_4b_6)b_4 + 5(2b_4$ $+ 3b_6(2b_6b_7b_4^2 + (6b_5b_6^2 + b_3b_8b_6 - 3b_3b_7^2)b_4 + 2b_3(-8b_5b_6b_7 + 3b_3b_8b_7 + 11b_3b_6b_9)))b_0^3 + (874b_{12}b_2b_3^4)b_3^2 + (874b_{12}b_3^2)b_3^2 + (874b_{12}b_3^2)b_3$ $- 3(b_{11}b_2b_3^2(256b_3b_4 + 125b_2b_6) - 3(72b_3b_3^5 + (41b_4b_8 - 50b_5b_7)b_3^4 - 2(15b_7b_4^2 - 4b_5b_6b_4 + 10b_2b_7^2 + 72b_2b_6b_8)b_3^3 - 2(15b_7b_4^2 - 4b_7b_6b_4 + 10b_2b_7^2 + 72b_2b_6b_8)b_3^3 - 2(15b_7b_4^2 - 4b_7b_7b_8)b_4^3 - 2(15b_7b_7b_8^2 - 4b_7b_8^2 + \ b_6(9b_4^3 + 84b_2b_7b_4 + 125b_2b_5b_6)b_3^2 + 2b_2b_6^2(8b_2b_7 - 77b_4^2)b_3 - 33b_2^2b_4b_6^3)))b_0^2 - 3b_2b_3^2(8b_5b_3^3 - 2(116b_4^2 + 117b_2b_7)b_3^2)b_3^2 + 2b_3b_4b_6^2)b_3^2 + 2b_3$ $+ 638b_2b_4b_6b_3 + 237b_2^2b_6^2)b_0 + 380b_2^3b_3^5)b_1^7$ $+ 2b_0^3 (31104b_2^3b_3b_4^4b_6^3b_0^5 + 5184b_2^3b_3^3b_4^3b_6 (24b_3b_4 + 53b_2b_6)b_0^4 - 6(17280b_2^4b_4^3b_6^3 - 12b_2b_6^2(b_{12}b_6 - b_{11}b_7) + b_6(201b_{13}b_6b_3^2)b_{12}^3b_{1$ $-94b_{12}b_4b_6b_3+b_{11}(24b_6b_4^2+58b_3b_7b_4-5b_3(12b_5b_6+25b_3b_8))))b_0^3-(2420b_{13}b_5^3-4b_{12}(437b_3b_4+639b_2b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_3b_4+63b_4b_6)b_3^3-24b_{12}(437b_4b_6)b_3^3$ $+ 3(4b_{11}b_3(-181b_5b_3^3 + 64(2b_4^2 + b_2b_7)b_3^2 + 134b_2b_4b_6b_3 + 15b_5^2b_6^2) + 3(-8(7b_7b_8 + 29b_6b_9)b_3^4 + 2(20b_4b_7^2 + 114b_5b_6b_7)b_3^2 + 134b_5b_6b_7) + 3(2b_4b_5b_6b_7)b_3^2 + 3(2b_4b_7b_7)b_3^2 + 3(2b_4b_7b_7)b_3^2$ $-3b_3((924b_2b_8-48b_4b_5)b_3^4+362b_{11}b_2^2b_3^3-4(17b_4^3+132b_2b_7b_4+201b_2b_5b_6)b_3^3-12b_2b_6(60b_2b_7-89b_4^2)b_3^2-12b_2b_4(60b_2b_7-89b_4^2)b_3^2-12b_2b_6(60b_2b_7-89b_4^2)b_3^2-12b_2b_6(60b_2b_7-89b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(60b_2b_7-8b_4^2)b_3^2-12b_2b_4(6b_2b_7-8b_4^2)b_3^2-12b_2b_4(6b_2b_7-8b_4^2)b_3^2-12b_2b_4(6b_2b_7-8b_4^2)b_3^2-12b_2b_4^2-12b_4^2)b_3^2-12b_4^2-12b_4^2)b_3^2-12b_4^2$ $+ 2211b_2^2b_4b_6^2b_3 + 132b_2^3b_6^3)b_0 + 12b_2^2b_3^4(130b_3b_4 - 101b_2b_6))b1^6$ $+ b_0^2 (224b_{12}b_2b_3^4 - b_{11}b_2(212b_3b_4 + 179b_2b_6)b_3^2 + 6(24b_9b_3^5 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (9b_7b_4^2 - 19b_5b_6b_4 + 8b_2b_7^2 + 99b_2b_6b_8)b_3^3 + 6(24b_9b_3^2 + (10b_4b_8 - 22b_5b_7)b_3^4 - (10b_4b_8 - 22b_5b_8)b_3^4 - (10b_4b_8 - 22b_5b_8)b_4^4 - (10b_4b_8 - 22b_8)b_6^4 - (10b_4b_8 - 22b_8)b_6^4 - (10b_4b_8 - 22b_8)b_6^4 - (10b_4b_8 - 22b_8)b_8^4 - (10b_4b_8 - 22b_8)b_8^4 - (10b_4b_8 - 22b_8$ $+ \ b_6(-5b_4^3 + 78b_2b_7b_4 + 95b_2b_5b_6)b_3^2 + 2b_2b_6^2(9b_2b_7 - 95b_4^2)b_3 - 57b_2^2b_4b_6^3))b_3 + 6b_0^4(-2880b_3^2b_4^4b_6^4 + 1440b_2^4b_4^3b_6b_5^3)b_3 + 6b_0^4(-2880b_3^4b_6^4 + 1440b_2^4b_4^3b_6b_5^3)b_6^4 + 6b_0^4(-2880b_3^4b_6^4 + 1440b_2^4b_4^3b_6b_5^3)b_6^4 + 1440b_2^4b_4^3b_6^3 + 1440b_2^4b_6^3 + 1440b_2^4 + 1440b_2^4b_6^3 + 1440b_2^4 + 1440b_2^$ $+ \ 6b_4b_6^2b_8b_3^2 + 72b_4b_5b_6^3b_3 - 72b_{11}b_2b_4b_6^2b_3 + 24b_4^2b_6^2b_7b_3 - 27b_4^3b_6^3)b_1^5$ $+ \ 6b_{0}^{4}b_{3}(31104b_{2}^{3}b_{3}b_{4}^{4}b_{6}^{3}b_{0}^{5} + 1728b_{2}^{3}b_{3}^{3}b_{4}^{4}b_{6}(10b_{3}b_{4} + 33b_{2}b_{6})b_{0}^{4} + 2b_{6}(-283b_{13}b_{6}b_{3}^{2} + 2b_{12}b_{6}(107b_{3}b_{4} + 18b_{2}b_{6})b_{0}^{4} + 2b_{6}(-283b_{13}b_{6}b_{3}^{2} + 2b_{13}b_{6}(107b_{3}b_{4} + 18b_{2}b_{6})b_{0}^{4} + 2b_{6}(-283b_{13}b_{6}b_{3}^{2} + 2b_{12}b_{6}(107b_{3}b_{4} + 18b_{2}b_{6})b_{0}^{4} + 2b_{6}(-283b_{13}b_{6}b_{6}^{2} + 2b_{12}b_{6}(107b_{6}b_{6}^{2} + 2b_{12}b_{6})b_{1}^{4} + 2b_{6}(-283b_{13}b_{6}b_{6}^{2} + 2b_{12}b_{6})b_{1}^{4} + 2b_{6}(-28b_{1}b_{6}b_{6}^{2} + 2b_{1}b_{6})b_{1}^{4} + 2b_{6}(-2b_{1}b_{6}b_{6}^{2} + 2b_{1}b_{6}b_{6})b_{1}^{4} + 2b_{6}(-2b_{1}b_{6}b_{6})b_{1}^{4} + 2b_{6}(-2b_{1}b_{6}b_{6})b_{1}^{4} + 2b_{6}(-2b_{1}b_{6}b_{6})b_{1}^{4} + 2b_{6}(-2b_{1}b_{6}b_{6})b_{1}^{4} + 2b_{6}(-2b_{1}b_{6}b_{6})b_{1}^{4} + 2b_{6}(-2b_{1}b_{6}b_{6})b_{1}^{4} + 2$ $+ b_{11}(179b_8b_3^2 + 96b_5b_6b_3 - 134b_4b_7b_3 - 72b_4^2b_6 - 36b_2b_6b_7))b_0^3 - (520b_{13}b_3^5 - 496b_{11}b_5b_3^4 - 132b_7b_8b_3^4 - 432b_6b_9b_3^4 - 432b_7b_8b_3^4 - 432b_7b_8b_7b_8b_7b_8b_7b_8b_7b_8b_7b_8b_7b_8b_7b_7b_7b_7b_7b_7b_7b$ $- \ 2b_3(124b_{11}b_2^2b_3^3 + 3(88b_2b_8b_3^4 - 4(5b_4^3 + 19b_2b_7b_4 + 14b_2b_5b_6)b_3^3 + 2b_2b_6(59b_4^2 - 45b_2b_7)b_3^2 + 337b_2^2b_4b_6^2b_3 + 52b_2^3b_6^3))b_0(b_1b_2b_3^2 + 2b_2b_2b_3^2)$ $+ 8b_2^2b_3^4(30b_3b_4-23b_2b_6))b_1^4$ $+ 24b_0^5b_3(1296b_2^3b_3^2b_4^3b_6^2(11b_3b_4 + 4b_2b_6)b_0^4 + 6b_6(864b_2^4b_4^3b_5^3 + b_6(-4b_{13}b_3b_6 + 3b_{12}b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_3b_3^2b_4^3b_6^3(12b_3b_4^2b_4^3b_5^3 + b_6(-4b_{13}b_3b_6 + 3b_{12}b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_3b_4^3b_5^3 + b_6(-4b_{13}b_3b_6 + 3b_{12}b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_3b_6 + 3b_{12}b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_4b_6 - 3b_{11}b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_4b_7 + 4b_{11}b_3b_8)b_0^3(12b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_4b_7 + 4b_{11}b_3b_8)b_0^3(12b_4b_7 + 4b_{11}b_3b_8))b_0^3(12b_4b_7 + 4b_{11}b_3b_8)b_0^3(12b_4b_7 + 4b_{11}b_3b_8)b_0^3(12b_4b_7 + 4b_{11}b_3b_8)b_0^3(12b_4b_7 + 4b_{11}b_3b_8)b_0^3(12b_4b_7 + 4b_{11}b_3b_8)b_0^3(12b_4b_7 + 4b_{11}b_8)b_0^3(12b_4b_7 + 4b_{11}b_8)b_0^3(12b_4b_7 + 4b_{11}b_8)b_0^3(12b_4b_7 + 4b_{11}b_8)b_0^3(12b_4b_7 + 4b_{11}b_8)b_0^3(12b_7 + 4b_{11}b_8)b_0^3$ $+ (-160b_{13}b_6b_3^4 + 62b_{11}b_8b_3^4 + 96b_{11}b_5b_6b_3^3 - 53b_{11}b_4b_7b_3^3 + 36b_6^2b_9b_3^3 - 90b_{11}b_4^2b_6b_3^2 + b_{12}b_6(145b_3b_4 + 69b_2b_6)b_3^2 + b_{12}b_6(145b_3b_4 + 60b_2b_6)b_3^2 + b_{12}b_6(14b_3b_4 + 6b_2b_4)b_3^2 + b_{12}b_6(14b_3b_4 + 6b_2b_4)b_3^2 + b_{12}b_6(14b_3b_4 + 6b_2b_4)b_3^2 + b_{12}b_6(14b_3b_4 + 6b_2b_4)b_3^2 + b_{12}b_6(14b_3b_4 + b_{12}b_4)b_3^2 + b_{12}b_6(14b_3b_4 + b_{12}b_4)b_3^2 + b_{12}b_6(14b_3b_4 + b_{12}b_6)b_3^2 + b_{12}b_6(14b_3b_4 + b_{12}b_6)b_3^2 + b_{12}b_6(14b_3b_4 + b_{12}b_6)b_6^2 + b_{12}b_6(14$ $- \ 36b_5b_6^2b_7b_3^2 - 45b_{11}b_2b_6b_7b_3^2 + 36b_4b_5b_6^3b_3 - 24b_{11}b_2b_4b_6^2b_3 - 27b_4^3b_6^3)b_0^2 + 3b_3(12b_{12}b_2b_3^4 + 6b_4b_8b_3^4 - 6b_2b_7^2b_3^3)b_1^2 + 2b_4b_3b_3^2 + 2b_4b_3^2 + 2b_4b_3$ + $12b_2^2b_6^2b_7b_3 - 54b_2^2b_4b_6^3b_0 - 3b_2^2b_3^3(-6b_7b_3^2 + 37b_4b_6b_3 + 45b_2b_6^2)b_1^3$ $+ \ 36b_0^5b_3^2(3456b_2^3b_3b_4^4b_6^3b_0^5 + 1728b_3^3b_3^3b_4^3b_6(2b_3b_4 + b_2b_6)b_0^4 + 2b_6(-24b_{13}b_6b_3^2 + b_{12}b_6(23b_3b_4 + 4b_2b_6) + b_{11}(16b_8b_3^2 + b_{12}b_6(23b_3b_4 + b_2b_6) + b_{11}(16b_8b_3^2 + b_{12}b_6(23b_3b_4 + b_{12}b_6)) + b_{11}(16b_8b_3^2 + b_{12}b_6(23b_4 + b_{12}b_6)) + b_{11}(16b_8b_3^2 + b_{12}b_6) + b_{12}(16b_8b_3 + b_{12}b_6) + b_{12}(16b_8b_$ $+ 8b_5b_6b_3 - 15b_4b_7b_3 - 8b_4^2b_6 - 4b_2b_6b_7))b_0^3 - (24b_{13}b_3^5 - 24b_{11}b_5b_3^4 - 12b_7b_8b_3^4 + 24b_{11}b_4^2b_3^3 + 12b_4b_7^2b_3^3 + 12b_4b_7^2b_3^3 + 12b_4b_7^2b_3^3 + 12b_4b_7^2b_3^3 + 12b_7b_8b_3^4 + 24b_{11}b_7b_3^2 + 2b_{11}b_7b_3^2 + 2b_{11}b_7b_7b_3^2 + 2b_{11}b_7b_7b_7 + 2b_{11}b_7b_7b_7 + 2b_{11}b_7b_7b_7 + 2b_{11}b_7b_7b_7 + 2b_{11}b_7b_7 + 2b_{11}b_7b_7b_7 + 2b_{11}b_7b_7 + 2b_{11}b_7 + 2b_{1$ $-12(b_5b_6+b_4b_7)b_3^3+6b_6(7b_4^2-b_2b_7)b_3^2+51b_2b_4b_6^2b_3+16b_2^2b_6^3)b_0-32b_2^3b_3^4b_6)b_1^2$ $+ 72b_0^6b_3^2(864b_0^4b_2^3b_3^3b_6^2b_4^4 - 4b_2^2b_3^3b_6(3b_3b_4 + 2b_2b_6) - 4b_0^3b_6^2(b_{13}b_3b_6 - b_{12}b_4b_6 + b_{11}b_4b_7 - b_{11}b_3b_8)$ $-\ 2b_0^2(5b_{13}b_6b_3^4-3b_{11}b_8b_3^4-2b_{11}b_5b_6b_3^3+3b_{11}b_4b_7b_3^3+2b_{11}b_4^2b_6b_3^2-b_{12}b_6(5b_3b_4+b_2b_6)b_3^2+b_{11}b_2b_6b_7b_3^2+3b_4^3b_6^3)$ $- b_0 b_3 b_6 (2b_{11} b_2^2 b_3^2 + 3(2b_2 b_8 b_3^3 + 2(b_4^3 - b_2 b_7 b_4 - b_2 b_5 b_6) b_3^2 + 7b_2 b_4^2 b_6 b_3 + 4b_2^2 b_4 b_6^2))) b_1$ $- b_1^{16} b_{13} - 72 b_0^7 b_3^4 b_6 \left(3 b_0 b_6 b_4^3 + 6 b_2^2 b_3 b_6 b_4 + 2 b_0^2 (b_{13} b_3 b_6 - b_{12} b_4 b_6 + b_{11} b_4 b_7 - b_{11} b_3 b_8) \right) \bigg)$

 $\delta_{12} =$ + $2(3(b_5b_3^2 + (b_4^2 + 2b_2b_7)b_3 + 2b_2b_4b_6) + b_0(-b_7^2 + 13b_{12}b_3 - 3b_{11}b_4 - 3b_6b_8))b_1^{12}$ $- 3((b_{11}b_7 - 5b_{12}b_6)b_0^2 + (22b_8b_3^2 + 22b_{11}b_2b_3 + 14b_4b_7b_3 - 11b_4^2b_6 - 8b_2b_6b_7)b_0 + 10b_2b_3(b_3b_4 + b_2b_6))b_1^{11}b_2^{11}b_3^{11}b_4$ $+ 2(10b_5b_3^3 + 2(5b_4^2 + 18b_2b_7)b_3^2 - 21b_2b_4b_6b_3 - 6b_2^2b_6^2)b_0 + 10b_2^2b_3^3)b_1^{10}$ $- b_0 \left(-10368 b_2^3 b_3 b_4^3 b_6^2 b_4^4 + 8640 b_2^3 b_3^4 b_4^3 b_0^3 + (6(2b_{11}(6b_4 b_6 + 5b_3 b_7) + b_6(b_7^2 + 3b_6 b_8)) - 248 b_{12} b_3 b_6) b_0^2 + b_0^2 b_0$ $+ 3(176b_8b_3^3 + 160b_{11}b_2b_3^2 - 4(27b_5b_6 - 8b_4b_7)b_3^2 - 2b_6(32b_4^2 + 65b_2b_7)b_3 + 81b_2b_4b_6^2)b_0 + 18b_2b_3^2(10b_3b_4 + 21b_2b_6))b_1^9$ $+ b_0 (74304b_2^3b_3^3b_4^3b_6b_0^4 + 12b_6 (5b_{12}b_6 - 3b_{11}b_7)b_0^3 + (976b_{12}b_3^3 - 3(64b_7^2b_3^2 + 264b_6b_8b_3^2 - 162b_5b_6^2b_3 - 162b_5b_6^2b_5 - 162b_5b_6^2b_5 - 162b_5b_6^2b_5 - 162b_5b_5 - 162b_5 - 326b_2b_4b_6b_3 - 93b_2^2b_6^2)b_0 + 360b_2^2b_3^4)b_1^8$ $+ 2b_0^2 \left(- 34560b_0^3 b_2^3 b_3^4 b_5^5 + 12b_2 (5b_3 b_4 - 61 b_2 b_6) b_3^3 + 59616b_0^4 b_2^3 b_4^3 b_6^2 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 59616 b_2^3 b_2^3 - 3b_0 (310 b_8 b_3^4 + 248 b_{11} b_2 b_3^3 - 4(68 b_5 b_6 + 19 b_4 b_7) b_3^3 + 5961 b_2^3 b_2^3 - 560 b_2^3 b_2^$ $+ \ 12b_6(3b_4^2 - 29b_2b_7)b_3^2 + 501b_2b_4b_6^2b_3 + 18b_2^2b_3^3) + b_0^2(662b_{12}b_3^2b_6 - 3(4b_{11}(15b_7b_3^2 + 29b_4b_6b_3 + 3b_2b_6^2)) + b_0^2(662b_{12}b_3^2b_6 - 3(4b_{11}(15b_7b_3^2 + 20b_3^2)) + b_0^2(b_0^2b_6^2) + b_0^2(b_0^$ $+ 3b_6(-6b_5b_6^2 - 4b_4b_7b_6 + 11b_3b_8b_6 + 3b_3b_7^2)))b_1^7$ $+ \ 2 b_0^2 \big(15552 b_2^3 b_3 b_4^3 b_6^3 b_0^5 + 62208 b_2^3 b_3^4 b_4^3 b_6 b_0^4 + 6 b_6 (47 b_{12} b_3 b_6 - 12 b_{11} b_4 b_6 - 29 b_{11} b_3 b_7) b_0^3 + (874 b_{12} b_3^4 - 3(2 b_{11} (128 b_3 b_4 - 12 b_{12} b_3 b_6 - 12 b_{11} b_4 b_6 - 29 b_{11} b_3 b_7) b_0^3 + (874 b_{12} b_3^4 - 3(2 b_{11} (128 b_3 b_4 - 12 b_{12} b_3 b_6 - 12 b_{11} b_4 b_6 - 29 b_{11} b_3 b_7) b_0^3 + (874 b_{12} b_3^4 - 3(2 b_{11} (128 b_3 b_4 - 12 b_{12} b_3 b_6 - 12 b_{11} b_4 b_6 - 29 b_{11} b_3 b_7) b_0^3 + (874 b_{12} b_3^4 - 3(2 b_{11} (128 b_3 b_4 - 12 b_{12} b_3 b_6 - 12 b_{11} b_4 b_6 - 29 b_{11} b_3 b_7) b_0^3 + (874 b_{12} b_3^4 - 3(2 b_{11} (128 b_3 b_4 - 12 b_{12} b_3 b_6 - 12 b_{11} b_4 b_6 - 29 b_{11} b_3 b_7) b_0^3 + (874 b_{12} b_3^4 - 3(2 b_{11} (128 b_3 b_4 - 12 b_{12} b_3 b_6 - 12 b_{11} b_4 b_6 - 29 b_{11} b_3 b_7) b_0^3 + (874 b_{12} b_3^4 - 3(2 b_{11} (128 b_3 b_4 - 12 b_{12} b_3 b_7 - 12 b_{12} b$ $+ 125b_2b_6)b_3^2 + 3(4(5b_7^2 + 36b_6b_8)b_3^3 - b_6(125b_5b_6 + 84b_4b_7)b_3^2 + 2b_6^2(31b_4^2 - 16b_2b_7)b_3 + 42b_2b_4b_6^3))b_6^2$ $- 3b_3^2(8b_5b_3^3 - 36(2b_4^2 + 13b_2b_7)b_3^2 + 816b_2b_4b_6b_3 + 435b_2^2b_6^2)b_0 + 660b_2^2b_3^5)b_1^6$ $+ 6b_0^3 (45792b_2^3 b_3^3 b_6^2 b_6^4 - 12(1440b_2^3 b_4^3 b_6^3 + b_6^2 (b_{11}b_7 - b_{12}b_6))b_0^3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 67b_4 b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 6b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 6b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 6b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 6b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 6b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 6b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + 6b_6 b_3 + 15b_2 b_6^2)b_3 + 2(213b_{12}b_6 b_3^3 - 2b_{11}(32b_7 b_3^2 + b_{12}b_6 b_3^2 + b_{12}b_6 b_3^2 + b_{12}b_6 b_3^3 + b_{12}b_6 b_3^2 + b_{12}b_6 b_6^2 + b_$ $- \ 9b_6(3b_4^2b_6^2 - 4b_3b_4b_7b_6 + b_3(-6b_5b_6^2 + 7b_3b_8b_6 + b_3b_7^2)))b_0^2 - b_3(362b_{11}b_2b_3^3 + 3(154b_8b_3^4 - 2(67b_5b_6 + 44b_4b_7)b_3^3 + 2(67b_5b_7 + 44b_7 + 4$ + $(82b_4^2b_6 - 240b_2b_6b_7)b_3^2 + 433b_2b_4b_6^2b_3 + 42b_2^2b_6^3)b_0 + 6b_2b_3^4(20b_3b_4 - 53b_2b_6)b_1^5$ $+ 179b_2b_6)b_3^2 + 3((8b_7^2 + 99b_6b_8)b_3^3 - b_6(95b_5b_6 + 78b_4b_7)b_3^2 + 12b_6^2(7b_4^2 - 3b_2b_7)b_3 + 66b_2b_4b_6^3)))b_0^2 + 12b_6^2(7b_4^2 - 3b_2b_7)b_3 + 66b_2b_4b_6^3))b_0^2 + 12b_6^2(7b_4^2 - 3b_2b_7)b_3 + 6b_2b_4b_6^3))b_0^2 + 12b_6^2(7b_4^2 - 3b_2b_7)b_3 + 6b_2b_4b_6^3))b_0^2 + 12b_6^2(7b_4^2 - 3b_2b_7)b_3 + 6b_2b_4b_6^3))b_0^2 + 12b_6^2(7b_4^2 - 3b_2b_7)b_3 + 6b_2b_4b_6^3)b_0^2 + 12b_6^2(7b_4^2 - 3b_2b_7)b_0^2 + 12b_6^2(7b_4^2 - 3b_2^2 + 3b_2^2 + 3b_4^2 + 3b_4^2 + 3b_4^2 + 3b_4^2 + 3b_4^2$ $- 3b_3^2(16b_5b_3^3 - 12(2b_4^2 + 11b_2b_7)b_3^2 + 206b_2b_4b_6b_3 + 245b_2^2b_6^2)b_0 + 240b_2^2b_3^5)b_1^4$ $+ 12b_0^4b_3(14256b_2^3b_3^3b_4^3b_6^2b_0^4 + 18b_6^2(b_{12}b_6 - b_{11}b_7)b_0^3 + (145b_{12}b_6b_3^3 - b_{11}(53b_7b_3^2 + 90b_4b_6b_3 + 48b_2b_6^2)b_3$ $+ 18b_6^2(-5b_8b_3^2 + 5b_5b_6b_3 + 3b_4b_7b_3 - 4b_4^2b_6))b_0^2 - b_3(124b_{11}b_2b_3^3 + 3(44b_8b_3^4 - 2(14b_5b_6 + 19b_4b_7)b_3^3 + 3(14b_5b_6 + 19b_4b_7)b_3^3 + 3(14b_5b_7 + 19b_7b_7)b_3^3 + 3(14b_7b_7 + 10b_7b_7)b_3^3 + 3(14b_7b_7 + 10b_7b_7)b_3^3 + 3(14b_7b_7 + 10b_$ + $(39b_4^2b_6 - 90b_2b_6b_7)b_3^2 + 165b_2b_4b_6^2b_3 + 42b_2^2b_6^3)b_0 - 78b_2^2b_3^4b_6)b_1^3$ $+ 36b_0^5b_3^2(1728b_2^3b_3b_4^3b_6^3b_0^4 + 1728b_2^3b_3^4b_4^3b_6b_0^3 + b_6(23b_{12}b_3b_6 - 8b_{11}b_4b_6 - 15b_{11}b_3b_7)b_0^2$ $+ (12b_{12}b_{3}^{4} - 6b_{7}^{2}b_{3}^{2} - 45b_{6}b_{8}b_{3}^{3} + 39b_{5}b_{6}^{2}b_{3}^{2} - 4b_{11}(3b_{3}b_{4} + 8b_{2}b_{6})b_{3}^{2} + 57b_{4}b_{6}b_{7}b_{3}^{2} - 66b_{4}^{2}b_{6}^{2}b_{3} + 24b_{2}b_{6}^{2}b_{7}b_{3} - 48b_{2}b_{4}b_{6}^{3}b_{6}b_{7}b_{3}^{2} - 6b_{4}^{2}b_{6}^{2}b_{7}b_{3} - 48b_{2}b_{4}b_{6}^{3}b_{6}b_{7}b_{3}^{2} - 6b_{4}^{2}b_{6}^{2}b_{7}b_{3} - 48b_{2}b_{4}b_{6}^{3}b_{6}b_{7}b_{3}^{2} - 6b_{4}^{2}b_{6}^{2}b_{7}b_{3} - 48b_{2}b_{4}b_{6}^{3}b_{6}b_{7}b_{3}^{2} - 6b_{4}^{2}b_{6}^{2}b_{7}b_{3} - 48b_{2}b_{4}b_{6}^{3}b_{6}b_{7}b_{7}^{2} - 6b_{4}^{2}b_{6}^{2}b_{7}b_{7}^{2} - 6b_{4}^{2}b_{6}^{2}b_{7}b_{7}^{2} - 6b_{6}^{2}b_{6}^{2}b_{7}b_{7}^{2} - 6b_{6}^{2}b_{6}^{2}b_{7}b_{7}^{2} - 6b_{6}^{2}b_{6}^{2}b_{7}^{2} - 6b_{6}^{2}b_{7}^{2} - 6b_{6}^{2}b_{6}^{2}b_{7}^{2} - 6b_{6}^{2}b_{7}^{2} - 6b_{6}^{2}b_{7}^{2}$ $- 3b_2b_3^2(-4b_7b_3^2+10b_4b_6b_3+23b_2b_6^2))b_1^2$ $+ 72b_0^5b_3^2(432b_2^3b_3^3b_4^3b_6^2b_0^4 + 2b_6^2(b_{12}b_6 - b_{11}b_7)b_0^3 + (5b_{12}b_6b_3^3 - b_{11}(3b_7b_3^2 + 2b_4b_6b_3 + 4b_2b_6^2)b_3$ $+ \ 3b_6^2(-2b_8b_3^2 + 2b_5b_6b_3 + 2b_4b_7b_3 - 3b_4^2b_6))b_0^2 - 3b_3(2b_8b_3^4 + 2b_{11}b_2b_3^3 - 2(b_5b_6 + b_4b_7)b_3^3 + 2b_4b_7b_3^2 - 2b_5b_6b_3 + 2b_4b_7b_3 - 3b_4^2b_6))b_0^2 - 3b_3(2b_8b_3^4 + 2b_{11}b_2b_3^3 - 2(b_5b_6 + b_4b_7)b_3^3 - 2(b_5b_7 + b_5b_7)b_3^3 + b_6(3b_4^2 - 2b_2b_7)b_3^2 + 4b_2b_4b_6^2b_3 + 4b_2^2b_6^3)b_0 - 12b_2^2b_3^4b_6)b_1$

 $- 36b_0^6b_3^4b_6\left((2b_{11}b_7 - 2b_{12}b_6)b_0^2 + (6b_8b_3^2 + 4b_{11}b_2b_3 - 6b_5b_6b_3 - 6b_4b_7b_3 + 9b_4^2b_6)b_0 + 12b_2^2b_3b_6\right)$

$$\begin{split} \delta_{13} &= \frac{-1}{b_1(2b_0b_3 + b_1^2)^2(3b_0^2b_6 + 6b_0b_1b_3 + b_1^3)^2(12b_0^2b_1b_6 + 6b_0^2b_3^2 + 12b_0b_1^2b_3 + b_1^4)} \left(24b_0^5b_3^4b_6(b_0b_{11} + 3b_2b_6) \\ &+ 36b_0^4b_1^2b_3(b_0b_6(5b_{11}b_3^2 - 4b_3b_6b_7 + 4b_4b_6^2) + b_3^2(11b_2b_6^2 - 2b_3^2b_7 + b_3b_4b_6)) + 4b_0^2b_1^5(6b_0^2b_{11}b_6^2 + b_0(64b_{11}b_3^3 + 3b_6(6b_2b_6^2 - 39b_3^2b_7 + 32b_3b_4b_6)) + 6b_3^3(12b_2b_6 + 5b_3b_4)) + 4b_0^2b_1^4(b_0(b_0b_6(67b_{11}b_3^2 + 9b_6(3b_4b_6 - 4b_3b_7))) \\ &+ 30b_3^3(4b_4b_6 - 3b_3b_7)) + b_2(159b_0b_3^2b_6^2 - 60b_3^5)) + 24b_0^4b_1b_3^2(2b_0^2b_{11}b_6^2 + 3b_0(b_{11}b_3^3 + 2b_2b_6^3 - b_3^2b_6b_7 + b_3b_4b_6^2) + 6b_2b_3^3b_6) \\ &+ 2b_0^3b_1^3b_3(36b_0^2b_{11}b_6^2 + b_0(106b_{11}b_3^3 + 9b_6(12b_2b_6^2 - 28b_3^2b_7 + 31b_3b_4b_6)) + 60b_2b_3^3b_6) + 2b_1^9(2b_0(5b_{11}b_3 - 2b_6b_7)) \\ &+ 5b_3(2b_2b_6 + b_3b_4)) + 2b_1^8(b_0(6b_0b_{11}b_6 - 32b_3^2b_7 + 5b_3b_4b_6) - 2b_2(5b_3^3 - 6b_0b_6^2)) + b_0b_1^7(3b_0(40b_{11}b_3^2 - 38b_3b_6b_7 + 11b_4b_6^2)) \\ &+ 4b_3^2(43b_2b_6 + 20b_3b_4)) + 4b_0b_1^6(b_0(b_0b_6(29b_{11}b_3 - 6b_6b_7) + 72b_3^2(b_4b_6 - b_3b_7)) + b_2(69b_0b_3b_6^2 - 40b_3^4)) \\ &+ b_1^{11}b_{11} - 4b_1^{10}(b_3b_7 + b_4b_6) \bigg) \\ \delta_{14} &= \frac{6b_0^2b_1b_3b_6^2 + 3b_0^2b_3^3b_6 + b_1^3(6b_0b_6^2 - 5b_3^3) + 3b_0b_1^2b_3^2b_6 + 5b_1^4b_3b_6}{b_1(2b_0b_3 + b_1^2)(3b_0^2b_6 + 6b_0b_1b_3 + b_1^3)(12b_0^2b_1b_6 + 6b_0^2b_3^2 + 12b_0b_1^2b_3 + b_1^4)} \end{split}$$

Bibliografía

- L. Alphey, Genetic control of mosquitoes, Annu. Rev. Entomol., 59 (2014), 205-224.
- [2] A.A. Andronov, E.A. Leontovich, I.I. Gordon & A.G. Maier, *Qualitative theory of second-order dynamical systems*, John Wiley and Sons, New York, 1973.
- [3] R. Anguelov, Y. Dumont, & J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl., 64 (2012), 374-389.
- [4] M. P. Atkinson, Z. Su, N. Alphey, L. S. Alphey, P. G. Coleman, & L. M. Wein, Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system, Proc. Natl. Acad. Sci. USA, **104** (2007), 9540-9545.
- [5] J. H. Werren, L. Baldo, & M. E. Clark, Wolbachia: Master manipulators of invertebrate biology, Nat. Rev. Microbiol., 6 (2008), 741-751.
- [6] M. Q. Benedict & A. S. Robinson, The first releases of transgenic mosquitoes: An argument for the sterile insect technique, Trends Parasitol., 19 (2003), 349-356.
- [7] K. W. Blayneha & J. Mohammed-Awel, Insecticide-resistant mosquitoes and malaria control, Math. Biosci., 252 (2014), pp. 14-26.
- [8] C. Boete, F. B. Agusto, & R. G. Reeves, Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes, J. Theoret. Biol., 347 (2014), 33-43.
- [9] R. I. Bogdanov, The versal deformations of a singular point on the plane in the case of zero eigenvalues, Trudy Sem. Petrovsk. Vyp., 2 (1976), 37-65.

- [10] L. Cai, S. Ai, & J. Li, Dynamics of mosquitoes populations with different strategies of releasing sterile mosquitoes, SIAM, J. Appl. Math., 75 (2014), 1223-1237.
- [11] D. O. Carvalho, A. L. Costa-da-Silva, & R. S. Lees, Two step male release strategy using transgenic mosquito lines to control transmission of vectorborne diseases, Acta Tropica, 132 (2014), S170-S177.
- [12] S.N. Chow, C. Li, & D. Wang, Normal forms and bifurcation of planar vector fields, Cambridge University Press London (1994).
- [13] C. Dufourd & Y. Dumont, Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control, Comput. Math. Appl., 66 (2013), 1695-1715.
- [14] Y. Dumont & J. M. Tchuenche, Mathematical studies on the sterile insect technique for the chikungunya disease and Aedes albopictus, J. Math. Biol., 65 (2012), 809-854.
- [15] V. A. Dyck, J. Hendrichs, & A. S. Robinson, eds., Sterile insect technique principles and practice in area-wide integrated pest management, Springer, New York, 2005.
- [16] L. Esteva & M. H. Yang, Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique, Math. Biosci., 198 (2005), 132-147.
- [17] J. Nathan, Basic algebra I, 2a. edición, Ed. W. H. Freeman and Company, New York, 1985.
- [18] K. R. Fister & M. McCarthy, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201-212.
- [19] G. Fu, R. S. Lees, D. Nimmo, D. Aw, L. Jin, P. Gray, T. U. Berendonk, H. White-Cooper, S. Scaife, H. Kim Phuc, O. Marinotti, N. Jasinskiene, A. A. James, & L. Alphey, *Female-specific flightless phenotype for mosquito control*, Proc. Natl. Acad. Sci. USA, **107** (2010), 4550-4554.
- [20] J. Huang, S. Ruan, P. Yu, & Y. Zhang: Bifurcation analysis of a mosquito population model with a saturated release rate of sterile mosquitoes. SIAM J. Appl. Dyn. Syst., 18 (2) (2018), 939-972.
- [21] K. Guckenheimer & P. J. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer New York, 2002.

- [22] J. Huang, Y. Gong, & S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
- [23] J. Huang, S. Ruan, & J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differential Equations, 257 (2014), 1721-1752.
- [24] J. Huang, S. Ruan, P. Yu, & Y. Zhang, Bifurcation analysis of a mosquito population model with a saturated release rate of sterile mosquitoes, SIAM J. Applied Dynamical Systems, 18 (2019), 939-972.
- [25] E. F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol., 48 (1955), 459-462.
- [26] Y.A. Kuznetsov: *Elements of applied bifurcation theory*, vol. 112. Springer, Berlin (2013).
- [27] E. S. Krafsur, Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting, J. Agr. Entomol., 15 (1998), 303-317.
- [28] S. Lang, Algebra, 3rd. Edition, Addison-Wesley, 1993.
- [29] R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, & K. Bourtzis, Back to the future: The sterile insect technique against mosquito disease vectors, Curr. Opin. Insect Sci., 10 (2015), 156-162.
- [30] J. Li, L. Cai, and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dynam., 11 (2017), 79-101.
- [31] J. Li, Simple mathematical models for interacting wild and transgenic mosquito populations, Math. Biosci., 189 (2004), 39-59.
- [32] P. Olver, *Classical Invariant Theory*, London Math. Soc., Student Texts, Vol.44, Cambridge Univ. Press, New York, 1999.
- [33] L. Perko, *Differential equations and dynamical systems*, Third edition. Springer-verlag, New York, 1991.
- [34] M. M. Peixoto, On structural stability, Ann. of Math., 69 (1959), 199-222.
- [35] J. Sotomayor, Generic bifurcations of dynamical systems. Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 561-582. Academic Press, New York, 1973

- [36] F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis I, Comm. Math. Inst. Rijksuniv. Utrecht 3, Mathematisch Instituut der Rijksuniversiteit Utrecht, the Netherlands, 1974, 1-59.
- [37] D. D. Thomas, C. A. Donnelly, R. J. Wood, & L. S. Alphey, Insect population control using a dominant, repressible lethal, genetic system, Science, 287 (2000), 2474-2476.
- [38] J. V. Uspensky, *Teoría de ecuaciones*, 1a Ed., México, Limusa, 1987.
- [39] J. H. Werren, L. Baldo, & M. E. Clark, Wolbachia: Master manipulators of invertebrate biology, Nat. Rev. Microbiol., 6 (2008), 741-751.
- [40] D. Xiao & S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Inst. Commun., 21 (1999), 493-506.
- [41] P. Yu, Computation of normal forms via a perturbation technique, J Sound Vib., 211 (1998),19-38.
- [42] P. Yu & M. Han, Small limit cycles bifurcating from fine focus points in cubic-order Z₂-equivariant vector fields, Chaos Solitons Fractals, 24 (2005), 329-348.

ACTA DE EXAMEN DE GRADO

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

No. 00214 Matrícula: 2183802424

El presente documento cuenta con la firma –autógrafa, escaneada o digital, según corresponda- del funcionario universitario competente, que certifica que las firmas que aparecen en esta acta – Temporal, digital o dictamen- son auténticas y las mismas que usan los c.c. profesores mencionados en ella