Modificación superficial mediante la adición de

ácido cítrico en catalizadores NiWS soportados en

alúmina-titania (AT₂) para la hidrodesulfuración de

4,6-dimetil dibenzotiofeno.

Tesis que presenta

Carlos Eduardo Santolalla Vargas

Para obtener el grado de

Maestro en Ciencias en Ingeniería Química

VoBo.

Asesor : José Antonio de los Reyes Heredia

UNIVERSIDAD AUTÓNOMA METROPOLITANA-Iztapalapa

Tesis para la obtención del grado de Maestro en Ciencias (Ingeniería Química)

Modificación superficial mediante la adición de ácido cítrico en catalizadores NiWS soportados en alúmina-titania (AT₂) para la hidrodesulfuración de 4,6-dimetil dibenzotiofeno.

Santolalla Vargas Carlos Eduardo

Asesor: Dr. José Antonio de los Reyes-Heredia.

México, D.F. a 28 de agosto de 2012

Agradecimientos

A mi familia en especial a mis dos madres (Mónica y Juana), amigos y compañeros.

A mis profesores de la carrera en Ing. Química y a los trabajadores del taller.

Los amigos de la Planta PPU04.

A mi asesor José Antonio de los Reyes Heredia.

A los Doctores Barbará García Pawelec y José Luis G. Fierro.

Al grupo de catálisis de México(UAMI) y España(ICP).

A CONACYT por la beca nacional y mixta otorgada con número de registro 248758 y número de CVU 366834.

RESUMEN

La creciente demanda de combustibles fósiles provenientes de cortes intermedios ha ido creciendo en el transcurso de los años. Uno de los productos de cortes intermedios utilizado en los vehículos, calefacción domestica y motores, es el diesel. No obstante, la combustión del diesel produce compuestos azufrados, nitrogenados u otros nocivos para el medio ambiente. Por ello se han propuesto normas estándar para el combustible diesel, donde se propone en México tener combustible diesel por debajo de 15 ppm de S y la tendencia internacional es que se disminuya a menos de 1 ppm de S. Para lograr llegar a estas concentraciones de S, se busca mejoras en el proceso y en el catalizador de HDS.

En este trabajo se estudiaron las propiedades catalíticas en la reacción de hidrodesulfuración (HDS) de materiales NiWS soportados en alúmina(AI_2O_3) y alúmina-titania(AT_2) modificados con ácido cítrico.

Los soportes de Al_2O_3 y AT_2 se prepararon por el método de sol-gel. Los soportes calcinados se impregnaron por el método de llenado de poro con ácido cítrico para obtener los soportes de Al_2O_3CIT y AT_2CIT .

Se sintetizaron catalizadores de W y NiW por el método de impregnación incipiente con 20% en peso de W con respecto al catalizador final. Para los catalizadores bimetálicos se usó la relación atómica de promotor a fase activa de Ni/(Ni+W)=0.41. Además, se estudiaron como parámetros de síntesis en la HDS de 4,6-dimetil dibenzotiofeno (4,6-DMDBT), la influencia de la temperatura de sulfuración y el efecto de la relación molar ácido cítrico /Ni.

Los materiales se caracterizaron mediante diferentes técnicas tales como fisisorción de nitrógeno (F-N₂),difracción de rayos X (DRX), espectroscopía de reflectancia difusa de Uvvis (DRS Uv-vis), espectroscopía Raman, espectroscopía infrarroja por transformada de Fourier (FT-IR),desorción a temperatura programada de amoníaco (TPD-NH₃), reducción a temperatura programada de rayos X(XPS) y microscopía electrónica en modo de transmisión en alta resolución (HRTEM).

Los soportes de Al_2O_3 y AT_2 presentaron áreas superficiales de 240 y 320 m²/g y volúmenes de poro de 0.40 y 1.40 cm³/g, respectivamente. Para Al_2O_3 se pudo detectar dos reflexiones en DRX características de la fase γ - Al_2O_3 , mientras que para el sistema mixto AT_2 no se pudo detectar las fases de Al_2O_3 y TiO₂. Se obtuvieron en este último caso materiales amorfos.

Los resultados de DRS Uv-vis para los catalizadores después de impregnación, mostraron en los materiales de NiW/AT₂ y NiW/AT₂CIT predominio de especies de WO_x en simetría octaédrica y aumentaron considerablemente en comparación con NiW/Al₂O₃ y NiW/Al₂O₃CIT. Además se obtuvieron las energías de borde de los catalizadores monometálicos, donde se encontró que los materiales de W/AT₂ y W/AT₂CIT formaron partículas ligeramente más grandes en comparación con los de W/Al₂O₃ y W/Al₂O₃CIT.

Por espectroscopía Raman para los catalizadores monometálicos W/Al_2O_3 , W/Al_2O_3 CIT, W/AT_2 , W/AT_2 CIT se observo mayores intensidades debido al estiramiento vibracionales correspondiente a especies W=O para los materiales con ácido cítrico. El catalizador de

 W/AT_2CIT presentó la mayor intensidad de especies W=O que están estrechamente relacionada con la dispersión de especies WO_x en la superficie del soporte.

Las pruebas de TPD-NH₃ de los catalizadores de W/Al₂O₃CIT y W/AT₂CIT mostraron mayor contenido de acidez intermedia comparados con los sistemas W/Al₂O₃ y W/AT₂. En los catalizadores promovidos por Ni se detectó la disminución de los sitios ácidos fuertes en comparación con los materiales sin promover. Los catalizadores NiW/Al₂O₃CIT y NiW/AT₂CIT mostraron mayor contenido de acidez tipo intermedia, en comparación NiW/Al₂O₃ y NiW/AT₂.

Los resultados de TPR indicaron que los catalizadores de W/Al₂O₃CIT y W/AT₂CIT presentaron menores de temperatura de reducción, en comparación con los sistemas W/Al₂O₃ y W/AT₂. Los catalizadores NiW/Al₂O₃CIT y NiW/AT₂CIT mostraron también menores temperaturas de reducción en comparación con los de NiW/Al₂O₃ y NiW/AT₂.

Los resultados de XPS para el catalizador de W/Al₂O₃CIT sugirió un aumento en el grado de sulfuración en comparación con el sistema W/Al₂O₃. En catalizadores de W/AT₂CIT y W/AT₂ no se encontraron especies parcialmente sulfuradas y el grado de sulfuración mas alto fue para el catalizador de W/AT₂CIT. En el caso de los catalizadores bimetálicos, se pudo determinar que el grado de sulfuración para NiW/Al₂O₃CIT fue mayor que el de NiW/Al₂O₃. El grado de sulfuración disminuyó ligeramente en comparación con el sólido NiW/AT₂ para el catalizador NiW/AT₂CIT, esto podría estar relacionado con la dispersión que promueve el ácido cítrico.

Los resultados de HRTEM de NiW/AT₂ y NiW/AT₂CIT mostraron las longitudes promedio 2.70 nm a 2.85 nm respectivamente. Asimismo, se encontró que la distribución de apilamientos se incremento de 30 y 75 % para 2 y 3 láminas en el catalizador de NiW/AT₂CIT comparado con NiW/AT₂ por influencia del ácido cítrico.

En cuanto a la actividad de los catalizadores de NiW en la HDS de 4,6-dimetil dibenzotiofeno, el sistema NiW/AT₂CIT resultó ser 17 % más activo que NiW/AT₂ y 34 % mayor que el de NiW/Al₂O₃CIT.

Finalmente, se estudió en el catalizador de NiW/AT₂CIT la temperatura de sulfuración y la relación molar de ácido cítrico/Ni. Al abordar el efecto de la temperatura de activación se encontró que tratándolo a 400°C se registro un optimo de actividad. Al variar la relación molar de ácido cítrico/Ni , se halló que la relación molar de 0.3 resultó ser la más activa. Sin embargo la caracterización fisicoquímica se realiza actualmente para explicar estas diferencias.

En este trabajo se pusieron en evidencias diferencias en cuanto a interacción electrónica entre la fase WO_x y soportes diversos en la formación de la fase sulfuro. Se pudo obtener que un catalizador de NiW soportado en AT₂ modificado con ácido cítrico mostró un potencial como catalizador de hidrodesulfuración de moléculas representativas del diesel.

Abreviaturas

HDT	Hidrotratamiento
HDS	Hidrodesulfuración
НР	Hidropurificación
HDN	Hidrodesnitrogenación
HDM	Hidrodesmetalización
HDO	Hidrodeoxidación
NiWS	Fase activa compuesta por níquel, tungsteno y azufre
DBT	Dibenzotiofeno
4,6-DMDBT	4,6- Dimetil dibenzotiofeno
NH ₃	Amoníaco
H ₂ S	Ácido sulfhídrico
H ₂	Hidrogeno
Ni	Níquel
Со	Cobalto
W	Tungsteno
Мо	Molibdeno
O ₂	Oxigeno molecular
CIT	Ácido cítrico
Al ₂ O ₃	Óxido de aluminio
Al ₂ O ₃ CIT	Óxido de aluminio con adición de ácido cítrico
TiO ₂	Óxido de titanio
AT ₂	Óxido de alúmina-titania relación atómica Al/Ti=2
AT ₂ CIT	Óxido de alúmina-titania con adición de acido cítrico
h	Horas
N ₂	Nitrógeno molecular

F-N ₂	Fisisorción de N ₂
DRX	Difracción de rayos X
UV- vis	Rayos ultravioleta y visible
DRS	Espectroscopía de reflectancia difusa
FT-IR	Espectroscopía infrarroja por transformada de fourier
TPD-NH ₃	Desorción a temperatura programada de amoníaco
TPR	Reducción a temperatura programada
XPS	Espectroscopia fotoelectrónica de rayos X
HRTEM	Microscopía electrónica en modo de transmisión en alta resolución
WO ₃	Trióxido de tungsteno
NiW/MO ₂	Sistema catalítico NiW soportado en algún óxido metálico
СоМо	Sistema catalítico hidrodesulfurante
NiMo	Sistema catalítico hidrogenante
THDMDBT	1,2,3,4-Tetrahidro dimetil-dibenzotiofeno
3,3DMDBF	3,3- Dimetil bifenil
MCTH	Metil ciclo hexil tolueno
МВСН	Metil biciclo hexil
DSD	Desulfuración Directa
HID	Hidrogenación
ppm	Partes por millón
Sg	Área especifica
BET	Brunauer Emmet y Teller
Vp	Volumen de poro
N _w	Próximos vecinos
E _b	Energía de borde
Р	Presión de operación

Po	Presión atmosférica
T _a	Temperatura ambiente
Å	Armstrong
КМ	Kubelka-Munk
λ	Longitud de onda (nm)
R _o	Velocidad de reacción inicial (mol reactivo /mol de metal * s)

ÍNDICE

CAPÍTULO I				
I.1	Introducción	11		
1.2	Generalidades	12		
I.2.1 I.2.2 I.2.3 I.2.4 I.2.5 I.2.6 I.2.7 I.3 I.3.1 I.3.2 I.3.3 I.3.4 I.3.5	HIDROTRATAMIENTO (HDT) HIDRODESULFURACION(HDS) HDS DE DIBENZOTIOFENO(DBT) Y 4,6-DIMETIL DIBENZOTIOFENO (4,6-DMDBT) CATALIZADORES ALÚMINA (AL ₂ O ₃) ÓXIDO DE TITANIO (TIO ₂) ALÚMINA-TITANIA (AT ₂) Estado del Arte ÓXIDO DE TUNGSTENO/ALÚMINA (W/AL ₂ O ₃) ÓXIDO DE NÍQUEL-TUNGSTENO/ALÚMINA (NIW/AL ₂ O ₃) ÓXIDO DE NÍQUEL-TUNGSTENO/ALÚMINA (NIW/AL ₂ O ₃) ÓXIDO DE NÍQUEL-TUNGSTENO/ALÚMINA-TITANIA (NIW/AT ₂) CATALIZADORES DE TUNGSTENO EN FASE SULFURO PROMOVIDO POR NI (NIWS) SOPORTADOS EN AL ₂ O ₃ CATALIZADORES DE TUNGSTENO EN FASE SULFURO PROMOVIDO POR NI (NIWS) SOPORTADOS EN AL ₂ O ₃	12 13 13 15 16 17 17 18 19 19 19 19 19 20 20 22		
۱.3.6 ۱ ۸	Modificación Superficial de Al_2O_3 con agentes organicos	22 23		
1.4	Hinótesis	25		
1.6	Objetivos	23		
CAPÍT	ULO II	25		
II.1	Plan de actividades	25		
II.2	Síntesis de soportes	25		
II.3	Síntesis de catalizadores	26		
II.4	Métodos de caracterización	26		
.4.1 .4.2 .4.3 .4.4 .4.5	 FISISORCIÓN DE NITRÓGENO (F-N2) DIFRACCIÓN DE RAYOS X (DRX) ESPECTROSCOPÍA INFRARROJA POR TRANSFORMADA DE FOURIER(FT-IR) ESPECTROSCOPÍA DE REFLECTANCIA DIFUSA DE UV-VIS (DRS-UV VIS) ESPECTROSCOPÍA RAMAN DESPECTROSCOPÍA RAMAN 	26 27 27 27 28		
11.4.6 11.4.7 11.4.8 11.4.9	 DESORCION A TEMPERATURA PROGRAMADA DE AMONIACO (TPD-NH₃) REDUCCIÓN A TEMPERATURA PROGRAMADA (TPR) ESPECTROSCOPÍA FOTOELECTRÓNICA DE RAYOS X (XPS) MICROSCOPÍA ELECTRÓNICA EN MODO DE TRANSMISIÓN EN ALTA RESOLUCIÓN (HRTEM) 	28 29 29 30		
II.5	Activación de catalizador	31		
II.6	Evaluación catalítica	31		

CAPÍTULO III		
III.1	Resultados de caracterización	33
III.1.	.1 Soportes	33
III.1.	33	
III.1.	.1.2 DIFRACCIÓN DE RAYOS X (DRX)	35
III.1.	.1.3 ESPECTROSCOPÍA INFRARROJA POR TRANSFORMADA DE FOURIER (FT-IR)	
III.1.	.1.4 ESPECTROSCOPÍA DE REFLECTANCIA DIFUSA DE UV-VIS (DRS UV-VIS)	39
III.1.	.1.5 DESORCIÓN A TEMPERATURA PROGRAMADA DE NH3 (TPD-NH3)	40
III.1.	.2 CATALIZADORES	41
III.1.	.2.1 DIFRACCION DE RAYOS X (DRX)	41
III.1.	.2.2 REFLECTANCIA DIFUSA DE UV-VIS (DRS UV-VIS)	42
III.1.	.2.3 Espectroscopía Raman	46
III.1.	.2.4 Desorción a temperatura programada de NH_3 (TPD- NH_3)	47
III.1.	.2.5 REDUCCIÓN A TEMPERATURA PROGRAMADA (TPR)	49
III.1.	.2.6 Espectroscopía fotoelectrónica de rayos X (XPS)	52
III.1.	.2.7 MICROSCOPÍA ELECTRÓNICA EN MODO DE TRANSMISIÓN EN ALTA RESOLUCIÓN(HRTEM)	57
III.2	Resultados Catalíticos	59
111.2.	.1 Actividad catalítica	59
111.2.	.2 EFECTO DEL ÁCIDO CÍTRICO	62
111.2.	.3 EFECTO DE TEMPERATURA DE SULFURACIÓN	63
CAPÍTULO IV		65
IV.1	Discusión	65
IV.2	Conclusiones	67
CAPÍT	TULO V	68
V.1	Referencias	68
Apéno	dice	73
Apéno	dice A	73
Apéno	dice B	77

CAPÍTULO I

I.1 Introducción

En la industria de refinación de petróleo, las restricciones ambientales han requerido que se disminuya el contenido de contaminantes en los combustibles. Para ese propósito, en las refinerías existen los procesos de hidrotratamiento (HDT), que son un conjunto de procesos catalíticos y sirven para disminuir la presencia de precursores de contaminantes azufrados, nitrogenados y aromáticos. Estos procesos comprenden la hidrodesulfuración (HDS), hidrodesoxigenación (HDO), hidrodesnitrogenación (HDN) y hidrodesmetalización (HDM).

Este trabajo de investigación se ubica en la temática relativa al desarrollo de catalizadores de hidrodesulfuración, para reducir el contenido de azufre en diesel. Los compuestos de azufre presentes en el petróleo se encuentran en forma de mercaptanos, sulfuros, tiofenos, dibenzotiofenos y alguil-dibenzotiofenos. También estos compuestos son una fuente de contaminación del aire por sus productos de combustión (SO₂,SO₃, provocando la lluvia ácida), y la corrosión (H₂S). Además, envenenan los catalizadores de otras etapas de refinación (reformación, isomerización) y genera un olor muy desagradable (H₂S, mercaptanos).Los estándares de emisiones de azufre de los combustibles tienen actualmente más exigencias, en especial del combustible diesel, por lo que se requiere una mejora continua del rendimiento de los catalizadores de HDS. La cantidad máxima de azufre de los combustibles diesel o gasolina ha evolucionado en el tiempo. Así, el contenido máximo de azufre en los combustibles diesel establecidos por la legislación europea, fue de 500 ppm desde 1996, disminuyó a 350 ppm en enero del 2000, de 50 ppm en el año 2005, de 10 ppm en el 2008 y la tendencia es de seguir disminuyendo en el futuro. México exige en su norma relativa de contenido de azufre, que se produzca combustibles con una concentración de 15 ppm (NOM-086-SEMARNAT-SENER-SCFI-2005). Por consiguiente se requiere continuar el desarrollo actual de los catalizadores para diesel conforme a las normas.

I.2 Generalidades

I.2.1 Hidrotratamiento (HDT)

Las reacciones de hidrotratamiento son muy importantes en la industria de la refinación del petróleo. Se emplean, generalmente, en procesos de HDT para preparar las alimentaciones que van a ir a las unidades de conversión (reformado catalítico, FCC) o para mejorar la calidad de los productos finales. La mayor parte de los productos de destilación del petróleo de una refinería se han sometido a un proceso de hidrotratamiento antes de su comercialización [1]. Así, las naftas se tratan para eliminar azufre, nitrógeno y metales, que son venenos de los catalizadores de reformado. Este último proceso es fundamental en la producción de gasolina, aromáticos e hidrógeno. El queroseno se somete a un proceso de hidrotratamiento para eliminar el azufre y saturar olefinas y aromáticos, previamente a su utilización como combustible de aviación. El diesel y otros destilados intermedios sufre un proceso similar al queroseno para eliminar el azufre y el nitrógeno. El diesel de vacío, que alimenta el FCC (fuente importantísima de gasolinas en la actualidad), también se trata en algunas ocasiones para mejorar el rendimiento de la unidad y eliminar las emisiones de azufre y nitrógeno. Los aceites lubricantes se hidrogenan para mejorar su viscosidad, color y estabilidad. Y, por último, los residuos (combustible atmosférico y de vacío) también se someten, aunque en mucha menor proporción que los destilados anteriores, a procesos de hidrotratamiento para obtener combustibles de bajo contenido de azufre y mejorar la conversión. Como puede verse por lo anteriormente expuesto, los procesos de HDT son de una importancia crucial en el esquema de una refinería y, además, su importancia crece día a día, debido fundamentalmente a la necesidad de procesar cargas más pesadas y a exigencias medio ambientales. La tendencia actual del suministro de petróleo es que la obtención de los crudos es cada vez más pesados, con mayor cantidad de heteroátomos (S,N,O,) y, por tanto, más difíciles de procesar. Por otra parte, hay una demanda cada vez mayor de productos ligeros y limpios, esto hace que los procesos de hidrotratamiento obtengan cada vez más importancia, no sólo para eliminar heteroátomos, sino también para convertir productos del fondo de barril (hidrocarburos de alto peso molecular) en otros más ligeros por medio de reacciones de hidrocraqueo. Por otra parte, el creciente auge del aprovechamiento del carbón para producir combustibles por hidrolicuefacción da lugar a productos líquidos ricos en asfáltenos, S, N, y metales, que es necesario tratar para mejorar sus propiedades.

En el hidrotratamiento de los destilados del petróleo tienen lugar diversas reacciones de hidrogenación e hidrogenólisis, las más importantes se enumeran a continuación.

- Hidrodesulfuración de compuestos de azufre (HDS).
- Hidrodesnitrogenación de compuestos de nitrógeno (HDN).
- Hidrodesoxigenación de compuestos que contienen oxígeno en su molécula (HDO).
- Hidrogenación de olefinas y aromáticos (BID).
- Hidrodesmetalización o eliminación de metales pesados (HDM).

- Hidrocraqueo de moléculas largas a otras más ligeras.

- Formación de coque.

La gran cantidad de reacciones que se producen simultáneamente da una idea de la complejidad del proceso. Esto hace que, para comprender mejor los procesos catalíticos, sea necesario el empleo de compuestos modelo. De estos compuestos modelo, los más usados para estudiar en HDS son el dibenzotiofeno y los alquil-dibenzotiofenos.

I.2.2 Hidrodesulfuracion(HDS)

La HDS consiste en la reacción de hidrógeno con moléculas que contienen azufre y de esta manera remover este elemento y a la vez, saturar dichas moléculas para mejorar la calidad y estabilidad de la carga sin modificar significativamente su peso molecular promedio. En la ecuación 1.1 se presenta de manera esquemática la reacción:

$$R - S - R' + H_2 \rightarrow R - R' + H_2 S$$
 Ec.1.1

Los catalizadores que se utilizan en la HDS convencional es la fase mixta de Cobalto-Molibdeno(CoMo) y para la HDS profunda son de Níquel-Molibdeno (Ni-Mo) aunque también se puede considerar el sistema Níquel-Tungsteno(Ni-W). En la HDS se eliminan principalmente moléculas como tiofenos, benzotiofenos , dibenzotiofenos y los alquildibenzotiofenos. Estos compuestos son abundantes en los cortes intermedios, pero las últimas moléculas mencionadas después de un tratamiento de HDS convencional, siguen apareciendo en concentraciones mucho más bajas. Asimismo al utilizar el catalizador comercial de Co-Mo en HDS encontraron que los compuestos alquil-dibenzotiofénicos como el 4-metil dibenzotiofeno o el 4,6-dimetil dibenzotiofeno(4,6 DMDBT) no reaccionaban, lo cual indica que este tipo de compuestos son los más difíciles de hidrodesulfurar[1].

En la HDS a nivel laboratorio se trabaja con moléculas modelo difíciles de tratar como el dibenzotiofeno y el 4,6-dimetildibenzotiofeno (4,6-dimetil dibenzotiofeno) a temperaturas y presiones típicas de HDS industrial. Con respecto a las condiciones de operación típica de HDS industrial éstas se llevan entre 300-425°C de temperatura y entre 55-70 atm de presión. Los valores van a depender de las condiciones de alimentación y del nivel de remociones de moléculas refractarias.

I.2.3 HDS de Dibenzotiofeno(DBT) y 4,6-Dimetil dibenzotiofeno (4,6-DMDBT)

La HDS de DBT y 4,6-DMDBT, se llevan a cabo principalmente a través de dos vías paralelas, como se muestra en la Figura 1.1. En el caso del DBT la primera ruta consiste en desulfuración directa (DSD) que conduce a la formación de bifenil, mientras que la segunda ruta consiste en la hidrogenación (HID) de uno de los anillos de benceno, que conduce a la formación de ciclohexil benceno [2,3,4]. Evaluaciones de DBT han demostrado que la reacción sigue la ruta preferente hacia la desulfuración directa.

Figura 1.1. Rutas de reacción de los Alquil-DBT_s[11]

La HDS del 4,6-DMDBT se ha visto afectada por la reducción su capacidad de reacción hacia la DSD y por ende se modifica la relación entre las tasas de las dos rutas. Se ha sugerido [4,5] que la molécula de 4,6-DMDBT, por tener sustituyentes alquilo , hace que haya un impedimento estérico , y como resultado de esto el azufre de la molécula no se adsorbe con facilidad en el sitio activo y por lo tanto no hay reacción. La ruta de HID se convierte en la dominante con la introducción de sustituyentes alquilo en la posición 4 y 6 de las moléculas de DBT [6,7,8,9]. La ruta de DSD está menos favorecida, mientras que la ruta de HID apenas se ve afectada por la presencia de grupos alquilo en la posición 4 y 6 como se muestra en la Figura 1.2. Se ha propuesto que los grupos alquilo en el 4,6-DMDBT juegan un papel importante en la reactividad de 4,6-DMDBT a lo largo de la vía DSD y que la ruta preferente es la HID[10,11]. Los estudios de HDS de DBT con catalizadores de CoMo/Al₂O₃ han mostrado que la vía de DSD es más selectiva que la HID, por el promotor de Co[11], mientras que en el caso de 4,6-DMDBT, el efecto promotor de Co en la ruta de DSD es significativamente más pequeño que en la vía de HID.

Figura 1.2 . HDS de DBT y 4,6-DMDBT con NiMo/Al₂O₃ (reactor empacado, 340 $\,^\circ\text{C}$, 4.0 MPa) [11,12].

I.2.4 Catalizadores

El interés por el estudio de nuevos materiales catalíticos para reacciones de HDS se ha incrementado. En las refinerías los materiales catalíticos de Mo (W) promovidos por Co (Ni) soportados en γ -Al₂O₃, han sido típicamente usados para la HDS de compuestos azufrados [13-17]. Sin embargo, las propiedades intrínsecas del soporte, hacen que difícilmente pueda ser utilizado en los esquemas de HDS profundo [18]. En consecuencia se han buscado alternativas tanto en las fases activas metálicas como en los soportes de Al₂O₃. En lo referente a nuevos soportes con mejores propiedades que la Al₂O₃, se han propuesto óxidos puros tales como TiO₂[19-21]. Estas han mostrado resultados interesantes, pero con ciertas desventajas, como baja área superficial e inestabilidad térmica en condiciones cercanas a la reacción industrial [23].

Estudios sobre nuevos catalizadores han revelado información valiosa acerca de las interacciones con el soporte y su influencia sobre la estructura y actividad/selectividad de las fases activas [24]. Además, el tipo de soporte utilizado puede tener una importante influencia sobre las propiedades catalíticas tales como envejecimiento, desactivación y regeneración, así como recubrimiento de coque en catalizadores agotados [18].

Por otro lado, se cree que Al_2O_3 ejerce fuertes interacciones con las fases activas comparado con, por ejemplo, SiO₂, TiO₂ o carbón. Estas interacciones serían responsables de la alta dispersión de las partículas de MoS₂ soportado y de que éstas permanezcan estables durante la operación en esquemas de HDT [25,26]. Esto último conlleva en casos como los de W, baja sulfuración del óxido correspondiente.

Los materiales con diferencias apreciables en propiedades fisicoquímicas interesantes, son los óxidos mixtos de Al_2O_3 -Ti O_2 [27-31], Al_2O_3 -Zr O_2 [32,33] y Zr O_2 -Ti O_2 [34] entre otros,

destacando entre ellas el área específica, volumen de poro y acidez superficial. De las cuales el sistema Al_2O_3 -Ti O_2 es tema de estudio en este trabajo.

I.2.5 Alúmina (Al₂O₃)

Actualmente, el soporte de alúmina se utiliza en la preparación de catalizadores de hidrotratamiento por sus propiedades superficiales (área superficial, porosidad, volumen de poro), acidez (bronsted y lewis), el grado de acidez (sitios ácidos fuertes , intermedios y débiles). Sin embargo, las propiedades obtenidas por calcinación dependen fuertemente del hidróxido de partida y de las condiciones de calcinación (Figura 1.3). Para Al_2O_3 se tienen áreas superficiales entre 200-400 m²/g que se obtienen a partir de la descomposición térmica de hidróxidos de Al³⁺ y su estructura depende del hidróxido de partida. Los hidróxidos de partida son : trihidróxidos como bayerita, gibsita y norstrandita; oxihidróxidos como boehmita [35]. Las fases que tienen mayor relevancia en catálisis son la y-alúmina y n-alúmina por poseer un grado elevado de estabilidad térmica y área superficial elevada. La fase y-alúmina y n-alúmina tienen estructura cristalina tipo espinela, pero n-alúmina es la más distorsionada y su acidez es mayor que la de y-alúmina, en adición la fase y-alúmina presenta acidez tipo Bronsted y Lewis en iguales cantidad por lo que se le considera como un anfótero. Estas fases presentan capacidades adsortivas diferentes, por quimisorción de amoníaco se ha encontrado que la cantidad de sitios ácidos es semejante, pero en el caso de n-alúmina la fuerza de los centros ácidos son mayores que las de y-alúmina.

Figura 1.3. Representación esquemática de la formación de varias estructuras de Al₂O₃[35]

Los cationes de Al³⁺ se localizan en dos tipos de huecos : octaédricos y tetraédricos , los cuales están entre aniones de oxigeno. Además la relación $\frac{Metal}{Oxigeno}$ ha permitido obtener la posible vacante para incorporar a otros metales que pueden provenir de fases activas depositadas, está relación es de $\frac{2}{2}$ para la y-Al₂O₃.

Los sitios desocupados por un catión de Al^{3+} pueden ser ocupados por otros cationes como las fases activas de HDS (W,Mo,Co,Ni). Se ha encontrado que los metales de Co y Ni interaccionan fuertemente con la superficie de Al_2O_3 formando compuestos estables e inertes denominados aluminatos, por el contrario, si se evita la formación de estos aluminatos, estos metales mejorarían su efecto promotor por otros como Co o Ni incrementado el nivel de sulfurabilidad y actividad[36].

Las características físico-químicas de Al_2O_3 la hacen un material para el HDT, por ello se busca mejoras como agregarle otros óxidos como titania durante la síntesis de esta. En estas mezclas de alúmina-titania se han encontrado mejoras en la reducibilidad, sulfurabilidad, actividad catalítica y selectividad[37,38,39].

I.2.6 Óxido de Titanio (TiO₂)

El óxido de titanio comúnmente se ha utilizado como adsorbente y como pigmento, pero se ha encontrado que el TiO₂ puede ser usado como soporte. Por ser un óxido de metal de transición TiO₂, presenta propiedades químicas tales como: elevada resistencia a los compuestos de óxidos de azufre , reducibilidad (óxido no estequiométrico) porque tiene la facilidad de intercambio de electrones (semiconductor de tipo n). Las propiedades físicoquímicas del oxido de titanio al igual que la alúmina, depende de sus hidróxidos de formación y condiciones de calcinación. Los hidróxidos de formación son los siguientes : $Ti(OH)_4$ y $TiO(OH)_2$. Estos posteriormente se transforman en TiO_2 hidratados, y con las condiciones adecuadas podemos obtener diferentes fases del TiO_2 . Las fases de oxido de titanio son la anatasa , bruquita y rutilo. Rutilo es la fase más estable de TiO_2 , mientras que anatasa y bruquita son meta estables. El rango de temperatura para las fases son: a temperaturas menores de 500 °C se obtiene anatasa y mayores de 500°C se obtiene rutilo preferentemente[40].

La temperatura de calcinación, como se menciono en el párrafo anterior, tiene un efecto en la fase del óxido de titanio, pero al mismo tiempo tiene el efecto sobre las propiedades texturales del óxido de titanio, en el caso de la fase anatasa se tiene área superficial baja (40-60 m²/g). En el óxido de titanio, se encuentran cationes con coordinación insaturada, y estos podrían disociar moléculas de agua, y de esta manera crear grupos hidroxilos superficiales que van a saturar a los cationes Ti⁴⁺ superficiales insaturados. El TiO₂ al igual que Al₂O₃ se comportan como un anfótero (tienen sitios ácidos y básicos Lewis), y el grado de sitios y fuerza son comparables con la Al₂O₃[41].

En hidrotratamiento el óxido de titanio ha presentado resultados interesantes. La presencia del catión Ti⁴⁺ en la superficie, coordinado tetraédricamente, ha dado como

resultado que la superficie tenga mayor homogeneidad provocando que aniones de la fase activa (Mo o W) no formen agregados de MoO_3 y WO_3 difíciles de reducir, en adición, al compararlo con Al_2O_3 se ve mayor reducibilidad en TiO₂. Pero las desventajas de tener baja área superficial y estabilidad térmica a llevado a mezclarla con algún otro compuesto, con características que podrían mejorarla, como Al_2O_3 .

I.2.7 Alúmina-Titania (AT₂)

Como ya se mencionó , los materiales de óxido de titanio tiene propiedades interesantes en las aplicaciones catalíticas al igual que la alúmina, pero sus características superficiales limitan su aplicación práctica. Una alternativa que se ha propuesto durante mucho tiempo es la síntesis de materiales mixtos en una sola preparación y de esta manera conjugar las propiedades más sobresaliente de los materiales individuales. Existen varios métodos de preparación de óxidos mixtos, tales como coprecipitación ,sol-gel entre otros. Las características físico-químicas de los materiales mixtos van a depender del método que se utilice, en este caso en particular, se hace énfasis del método sol-gel , ya que ha sido fuente de estudio y continuación durante muchos años en la literatura para su mejora[37,38,39,42].

En la síntesis del óxido de Al_2O_3 -Ti O_2 (AT_2) por medio del método sol-gel, se ha encontrado que al realizar variaciones en la cantidad de titania agregada al sistema , por arriba del 14 % en peso, el catión de Ti⁺⁴ se desincorpora de la estructura de Al_2O_3 formando cristalitos de anatasa[42].

El grado de solubilidad del oxido de titanio en alúmina depende de la relación catiónica AI^{3+}/Ti^{4+} y de la síntesis utilizada, no obstante, las incorporaciones de cationes Ti^{+4} incrementa la energía interna en la matriz mixta provocando que haya segregación de fases. Las fases más estables es α -alúmina y rutilo para la AI_2O_3 y TiO_2 , respectivamente. Se ha encontrado que por medio de este método se logra obtener la fase meta estable β - AI_2TiO_5 a 800°C, y que por arriba de 800°C se han segregado las fases[43].

Por otro lado las propiedades texturales del óxido de titanio se han visto mejoradas al combinarlas con Al_2O_3 , ya que se presentan áreas superficiales, diámetros de poro y volúmenes de poro competitivos con el sistema de Al_2O_3 [39,42].Con respecto al grado de acidez del sistema alúmina-titania en relación equimolar, se encontró que la mezcla disminuye en un 40 % con respecto al sistema de Al_2O_3 [38].

I.3 Estado del Arte

I.3.1 Óxido de Tungsteno/Alúmina (W/Al₂O₃)

Se han propuesto esquemas de formación de patrones básicos de estructuras durante la impregnación en alúmina con una solución de paratungstato de amonio $(NH_4)_{12}W_{12}O_{40}][44]$. El mecanismo sugiere la formación de la especie de tipo $HW_6O_{20}(OH)_2^{-5}$. También se sugiere la existencia de una fuerte interacción entre la fase oxotungstato y el soporte de alúmina y se han propuesto estructuras como WO-Al[45].

Se ha publicado que las especies de W con la solución de metatugnstato de amonio depositado en alúmina se dispersan en una relación atómica W/Al igual a 0.15 [46]. En la preparación del óxido, el primer paso sería la reacción entre las especies de W-O-H y Al-O-H para formar simultáneamente las especies de W=O y Al-O-W. El segundo paso sería la reorganización del oxotungstato en el soporte para formar la especie de W-O-W.

I.3.2 Óxido de Níquel-Tungsteno/Alúmina (NiW/Al₂O₃)

Se ha encontrado que la presencia de Ni limita la formación de especies WO_3 [46]. Asimismo, estos autores han señalado la existencia de cuatro especies diferentes de óxido de Ni, y Ni que está presente en la fase NiW/Al₂O₃ se encuentra con un estado de oxidación +2 [47]. Los óxidos de Ni presentes son los de Ni(WO) y Ni(WOAl) [48] y hay una fuerte interacción con la alúmina formando NiAl₂O₄. Esta última forma se encuentra ya sea en la superficie como Ni(Al) o en las capas como Ni-Al. También reportaron que la temperatura de calcinación tiene una influencia sobre la naturaleza de formación de óxidos. Después de calcinar a 400 °C, el Ni está presente como Ni(WO). Para una temperatura de calcinación por encima de 527 °C, se observa la formación de Ni-Al [49], esto no es favorable ya que el Ni no podría cumplir su efecto promotor en la superficie, para los bordes de WS₂. A 550 °C, el Ni está presente en fases de estabilidad relativa, tales como él Ni(WOAl), Ni(Al) y Al-Ni.

Muchos estudios se han llevado a cabo por temperatura de reducción programada de los óxidos precursores (TPR)[49-51]. Esta técnica ayuda a identificar las diferentes áreas de hidrogenación de la fase de reducción. Se han hecho pruebas sobre los óxidos precursores de Ni/SiAl, W/SiAl y NiW/SiAl, indicando que la reducción de NiW se produce a temperaturas más bajas que la de W. Por lo tanto, la sulfuración de NiW se vería facilitada en comparación con el de W [20].

La acidez de los catalizadores de NiW soportados también se ha estudiado. Duchet. y col. [52] han propuesto que la acidez del tipo Bronsted y Lewis del NiW/Al₂O₃ (medido por adsorción de amoníaco) es generado por la presencia de W. El número y la fuerza de sitios ácidos Lewis incrementa al aumentar el contenido de W. En los estudios realizados por Koranyi y col [53] se obtuvo la acidez (medida por adsorción de piridina) de NiW en alúmina (Al_2O_3) y en silice-alúmina(Si-Al). El NiW/Si-Al contiene pocos sitios ácidos Bronsted (mas que la Al_2O_3) y muchos sitios ácidos Lewis.

I.3.3 Óxido de Níquel-Tungsteno/Alúmina-Titania (NiW/AT₂)

Como ya se menciono, las interacciones metal-soporte y las características fisicoquímicas tienen un rol muy importante en la síntesis de catalizadores. La formación de óxidos mixtos como Al₂O₃-TiO₂ presenta propiedades interesantes para los procesos de HDS .El sistema NiW/AT₂ ha sido estudiado por varios autores [37,38,54], en lo que destacan que conforme aumenta la cantidad de titania en el oxido mixto, aumenta la actividad catalítica en la HDS de 4,6-DMDBT[55] . Por otro lado la incorporación de titanio ayuda a tener mayores especies de simetría octaédrica que tetraédrica para el caso de W, la dispersión del W fue mejorada en comparación con el de NiW/Al₂O₃ y promovió menores interacciones del Ni con el soporte al no formar aluminatos en la superficie o en la estructura interna de la Al₂O₃. Además facilito la reducibilidad y sulfurabilidad de Ni y W producido por interacciones moderadas metal-soporte a diferencia que los de Al₂O₃, esto posiblemente por el efecto semiconductor de la titania que facilita el proceso de óxido – reducción del W.

En la HDS de DBT se ha reportado que la actividad catalítica aumenta en 40% en comparación con el sistema NiW/Al₂O₃ [38]. En la HDS de 4,6-dimetil dibenzotiofeno la presencia de titania induce a tener mayores especies de WS₂, que favorecen la hidrogenación de los anillos aromáticos de la molécula modelo [56,57].

I.3.4 Catalizadores de Tungsteno en fase sulfuro promovido por Ni (NiWS) soportados en Al_2O_3

Durante la etapa de sulfuración, los óxidos formados durante la calcinación se transforman en sulfuros. Es durante esta etapa que se forma la fase activa del catalizador. La sulfuración implica dos tipos de reacciones, la reducción y la sulfuración. Las especies de tungsteno inicialmente presente como óxido tiene un estado de oxidación de +6 y este se convierte en sulfuro de tungsteno con estado de oxidación de +4. La mezcla para obtener la fase sulfuro debe contener desulfurantes con propiedades reductoras, lo cual justifica el uso de hidrógeno.

La fase activa de catalizadores de W se compone de hojas WS₂ dispersas sobre un soporte. El sulfuro de tungsteno es una malla prismática reducida de tipo laminar[58]. WS₂ es una hoja donde los átomos de W se encuentran entre dos capas de átomos de azufre. La forma de la hoja es generalmente considerada como hexagonal, y esta corresponde a la forma más estable [59-61]. En la figura 1.4 se muestra la estructura correspondiente a la fase de MoS₂ y tiene dos tipos de bordes: el borde del metal y el de S.

Figura 1.4. Estructura de la Fase MoS₂[62]

La fase WS₂ es generada por sulfuración de la fase óxido (figura 1.5). Esta transformación implica varios pasos, como se muestra esquemáticamente a continuación [63,64]:

Óxido (WO₃) --> Oxisulfuro(WO_xS_y) --> WS₃ --> WS₂

Figura 1.5. Pasos de la forma óxido a sulfuro.

Payen y col [63], observaron por espectroscopia raman y condiciones suaves de sulfuración (227°C durante 10 minutos con un flujo de 10% H₂S/H₂), los intermediarios de oxisulfuros y WS₃. Sin embargo, en condiciones más drásticas (447°C durante 5 horas con un flujo de 10% H₂S/H₂), WS₂ es la única especie identificada en el catalizador de W/Al₂O₃.

Ng y col[65] proponen el siguiente esquema (Figura 1.6) para el paso del oxisulfuro:

Figura 1.6. Transformación de la forma óxido a la forma oxisulfuro.

Por otro lado, la adición de un promotor puede mejorar el rendimiento del catalizador, probablemente por la interacción entre la fase sulfuro de tungsteno y el promotor. La existencia de esta interacción ha sido sugerida por muchos años, pero su naturaleza no se sabe con certeza[46]. La asociación de Ni como promotor y WS₂ aumentan la actividad catalítica en la HDS de moléculas refractarias. Este aumento de la actividad se debe, según Ramírez y col. [51], a que se mejora el potencial de reducción y por lo tanto la sulfuración, dando lugar a la formación de sitios activos. Una conclusión similar es sugerida por Kabe y col [66].

I.3.5 Catalizadores de Tungsteno en fase sulfuro promovido por Ni (NiWS) soportados en AT₂

En los catalizadores de NiWS soportado en AT₂, la incorporación de TiO₂ en Al₂O₃ conduce a tener un material con carácter semiconductor y la ganancia de electrones al reducirse de Ti⁴⁺ a Ti³⁺ actúa como un promotor electrónico de la fase activa de W ayudando a tener interacciones moderadas metal-soporte[55,56,57]. Además, la adición de TiO₂ disminuye los grupos OH mas reactivos y evita la formación de especies metálicas en coordinación tetraédrica, mejorando la sulfurabilidad de la fase activa y la actividad catalítica en la HDS de moléculas difíciles de reaccionar como el 4,6- DMDBT. También reportan que en el oxido mixto , una delgada capa de TiO₂ se sulfura durante la sulfuración del catalizador NiW/AT₂[56]. Esta delgada capa sulfurada de Ti presenta sitios con coordinación insaturada capaz absorber algunos compuestos. Por espectroscopía fotoelectrónica de rayos X se encontró que por arriba de 70% de concentración de TiO₂ en Al₂O₃-TiO₂ hay segregación del oxido de titanio. Por microscopía electrónica en modo de alta resolución del catalizador de NiWS/AT₂ se estimó el tamaño y apilamiento promedio de los cristales WS₂ y se usó un modelo geométrico con el cual es posible encontrar una buena correlación entre la actividad catalítica en HDS de tiofeno y la fracción de bordes y esquinas de los sitios de W en los cristales WS₂ expuestos en las capas de los cristales WS₂, indicando que durante la adsorción del reactivo en algunos de los bordes y las esquinas de los átomos de W, que están en la parte superior o inferior en la misma capa posiblemente experimentan impedimento estérico por la adsorción de muchos reactivos[56].

I.3.6 Modificación Superficial de Al₂O₃ con agentes organicos

La modificación superficial en Al_2O_3 incorporando fosforo y flúor [67,68], agentes quelantes como etilendiaminotetraacético(EDTA), acido nitriloacético(NTA), y 1,2ciclohexandiamina N,N,N, tetraacético ácido(CyNTA) [69,70] han sido estudiados, donde se señala que la incorporación de estos compuestos conlleva a tener cristales largos de fases activas y actividad catalítica considerable en HDS[71]. Por otro lado, se ha estudiado la adición de compuestos orgánicos como ácido cítrico y ácido oxálico en la superficie de Al_2O_3 . La modificación superficial con acido cítrico consiste en la impregnación del compuesto orgánico en la superficie del soporte y en este particular, el compuesto orgánico crea una capa de carbono que interactúa con los OH superficiales del soporte y posteriormente al impregnar un metal como W o Mo interacciona preferencialmente, dando como resultado interacciones entre los metales y el soporte favorables para la HDS[72].Por consiguiente, en este trabajo se sintetizaron catalizadores NiWS soportados en Al_2O_3 y Al_2O_3 -TiO₂, modificados con ácido cítrico .

I.4 Conclusiones del análisis Bibliográfico

Los soportes con base en alúmina y titania han presentado características interesantes dando resultados positivos en catalizadores de HDS como CoMo y NiMo. Sin embargo, se encuentra reducido el número de trabajos sobre el sistema NiW. Cabe destacar que este tipo de catalizadores presentan interacción fuerte en Al₂O₃ que conduce a tener :

- Sulfuración incompleta de tungsteno, permitiendo tener tungsteno en estado óxido y oxisulfuros.
- Formación de aluminatos de níquel, que son inertes en la reacción de HDS y no promueven la decoración de tungsteno.
- Segregación de especies de Ni sulfurados que dejan de promocionar la fase activa NiWS , responsable de la actividad catalítica en HDS.
- Baja dispersión de WS₂.

La formación de óxidos con base en alúmina-titania(AT₂) ha permitido obtener especies NiWS relativamente activas. El método de síntesis y la composición de este óxido binario es relevante para controlar la interacción entre las fases activas y los soportes.

La temperatura de calcinación tiene un efecto relevante en la naturaleza de los óxidos. La temperatura y el tiempo de sulfuración también va a estar relacionado con la formación de fases activas en HDS.

La adición de diferentes compuestos en la superficie de Al_2O_3 , ha mostrado diferentes efectos en el sistema NiW/Al₂O₃, en los que se destaca la formación de cristales largos de fase activa, pero la adición de ácido cítrico por medio de la creación de una capa de carbono en la superficie del soporte promueve interacciones metal-soporte favorables en la actividad catalítica, mejorando la dispersión de la fase activa en HDS. Por otro lado el sistema binario Al_2O_3 -TiO₂ con adición de ácido cítrico no ha sido estudiado, por ello se despierta un interés con vías de mejora en los catalizadores de HDS.

I.5 Hipótesis

De acuerdo a lo obtenido en la literatura, se sabe que NiW/Al₂O₃ tiene interacciones fuertes con las fases activas, por lo que la dispersión se ve limitada por estas fuertes interacciones. La síntesis de soportes binarios como NiW/Al₂O₃-TiO₂ ha mostrado propiedades interesantes en la HDS, pero la dispersión se requiere mejorar, por lo que se propone sintetizar materiales de NiW/Al₂O₃-TiO₂ con adición de ácido cítrico, y de esta manera se tendrá la interacción moderada metal-ácido cítrico-soporte permitiendo aumentar la reducibilidad, sulfurabilidad y dispersión , que conllevara a un mejor rendimiento en HDS.

I.6 Objetivos

General

Evaluar el efecto de la modificación superficial de un soporte de Al_2O_3 -Ti O_2 sobre la actividad catalítica en hidrodesulfuración de 4,6-DMDBT de catalizadores NiWS.

Particulares

- Caracterizar fisicoquímicamente el soporte de Al₂O₃-TiO₂ y catalizador NiW con modificación superficial por ácido cítrico.
- Determinar el efecto en la HDS de 4,6-DMDBT de la modificación por ácido cítrico en catalizadores de NiW, con relación atómica AC/Ni=0.3 y carga una de 20% en peso de W.
- Correlacionar los resultados de caracterización con la actividad en HDS.
- Determinar la influencia en algunos parámetros de síntesis(temperatura de sulfuración y relación AC/Ni) en la HDS para catalizador de NiW/Al₂O₃-TiO₂ modificado con ácido cítrico.

CAPÍTULO II

II.1 Plan de actividades

Se sintetizaron los soportes de alúmina (Al_2O_3) y alúmina - titania (AT_2) por el método sol-gel, posteriormente se impregnó ácido cítrico en los soportes por método de llenado de poro obteniéndose así los soportes modificados con ácido cítrico (Al_2O_3CIT,AT_2CIT) .

En la síntesis de los catalizadores se impregnaron los metales de tungsteno y níquel mediante sus sales precursoras de metatungstato de amonio (98%) y nitrato de níquel hexahidratado (98%) respectivamente, por el método de impregnación incipiente(llenado de poro), obteniéndose los catalizadores mono metálicos y bimetálicos con modificación y sin modificación de superficie: W/Al₂O₃,W/Al₂O₃CIT,W/AT₂, W/AT₂CIT, NiW/Al₂O₃, NiW/Al₂O₃CIT,NiW/AT₂ y NiW/AT₂CIT

Los materiales sintetizados se caracterización por técnicas fisicoquímicas como fisisorción de nitrógeno(F-N₂), difracción de rayos X(DRX), espectroscopía de reflectancia difusa de Uv-vis(DRS Uv-vis), espectroscopía Raman, espectroscopía infrarroja por transformada de Fourier(FT-IR), desorción a temperatura programada de amoníaco(TPD-NH₃), reducción a temperatura programada de rayos X(XPS) y microscopía electrónica en modo de transmisión en alta resolución (HRTEM).

Los catalizadores bimetálicos se redujeron y sulfuraron para luego probarlos en la reacción de HDS de 4,6-DMDBT. Además, se estudiaron como parámetros de síntesis en la HDS de 4,6-DMDBT, la influencia de la temperatura de sulfuración y el efecto de la relación molar ácido cítrico /Ni.

II.2 Síntesis de soportes

En la preparación de los soportes se empleó el método sol-gel según lo describió Montoya[42]. Las relaciones molares entre reactivos fueron:

$$\frac{ROH}{Alcoxido} = 65, \frac{H_2O}{Alcoxido} = 20, \frac{Acido}{Alcoxido} = 0.2$$

La preparación de los soportes por el método sol-gel fue el siguiente:

Para 5 gramos de soporte de alúmina -titania relación atómica Al/Ti=2 (AT₂), se disolvieron 14 mL de tri-sec-butoxido de alúminio ($C_{12}H_{27}Al_2O_3$,Aldrich 97%) y 10 mL butoxido de titanio ($C_{16}H_{36}TiO_4$,Aldrich 97%) en 372 mL de 2-propanol (Baker 99%). La solución se mantuvo bajo agitación entre 0-5 °C por aproximadamente 3 horas , para tener estas condiciones se utilizo un baño frio Cole Palmer 1268-02.

La mezcla de hidrólisis se preparó disolviendo 1.68 mL de ácido nítrico (HNO₃,Baker 65%) en 30 mL de agua desionizada. La adición se efectuó por goteo lento para evitar zonas abundantes de mezcla hidrolizante y así prevenir la precipitación de hidróxidos. Luego se dejó madurar durante 24 horas a 0-5°C, después se vertió en un cristalizador y se mantuvo a 65 °C en un baño de calentamiento para evaporar los líquidos (principalmente 2-propanol). Los sólidos obtenidos se calcinaron a 500°C durante 3 h bajo atmósfera de aire. Los óxidos se tamizaron entre 80-100 mallas (0.177-0.149 mm). Este método se utilizo para los dos soportes, el de γ -alúmina (γ -Al₂O₃) y alúmina-titania (AT₂).

II.3 Síntesis de catalizadores

Los catalizadores se sintetizaron por medio de la técnica de impregnación incipiente (llenado de poro) de forma secuencial según lo reportado por Vrinat [73]. En este método se impregna las sales precursoras con el volumen de poro correspondiente al soporte. Las sales utilizadas para la impregnación de los metales y la impregnación de ácido cítrico son:

- Metatungstato de amonio (Aldrich 98%)
- Nitrato niqueloso hexahidratado (Aldrich 98%)
- Ácido cítrico (Aldrich 99%)

Los catalizadores se prepararon por impregnación incipiente sucesiva de ácido cítrico (99%,Aldrich)(con relaciones molares de ácido cítrico/Ni=0.2,0.3,0.4 y 3) dejándolo madurar por 12 h y luego se secó a 200 °C bajo atmosfera de aire. En seguida se impregnó la solución acuosa del precursor de W con 0.41 g de metatungstato de amonio (98%,Aldrich). Por último se seco a 120 °C durante 2h y se impregnó la solución acuosa del precursor de nitrato niqueloso hexahidratado (98%,Aldrich). Los catalizadores se impregnaron con 20% en peso de W y una relación atómica de Ni/(Ni+W)=0.41[73].

Para los catalizadores sin adición de ácido cítrico se siguió el mismo método de impregnación con la diferencia que se calcinaron a 400 °C durante 5h bajo atmósfera de aire con una rampa de calentamiento 3°C/min esto posterior a la impregnación de Ni.

II.4 Métodos de caracterización

II.4.1 Fisisorción de nitrógeno (F-N₂)

El área superficial, distribución de tamaño de poros y volumen de poro de los soportes se determinaron por la técnica de adsorción de N₂ a su temperatura de ebullición (-196°C). Para ello se utilizó un equipo Autosorb Iq and Asiqwin de Quantachrome Instruments . Las muestras se desgasificaron previamente a 300°C durante 3 h. La superficie específica se calculó aplicando el método de Brunauer, Emmett y Teller (B.E.T.). La distribución de tamaños de poro por el método de Barret-Joyner-Halenda (B.J.H.).

II.4.2 Difracción de rayos X (DRX)

La difracción de rayos X es una técnica que permite identificar las estructuras cristalinas presentes. Los soportes se caracterizaron por esta técnica en un difractómetro de rayos X D-500 de Siemens Instruments y utiliza la radiación CuK α (λ =0.15406 nm) con un filtro de níquel. La condiciones de trabajo fueron , voltaje de 35 KV , 20 mA y una velocidad de barrido de 0.01 grados cada 0.1 s en un intervalo de ángulos de Bragg (2 θ) entre 4° y 70°. La identificación de las fases cristalinas presentes se llevó a cabo por comparación de los patrones de difracción obtenidos con las bases de datos de intensidad y posición de los picos de difracción de las fichas de A.S.T.M. del Joint Committee on Power Diffraction Spectroscopy (J.C.P.D.S).

II.4.3 Espectroscopía infrarroja por transformada de fourier(FT-IR)

La técnica de espectroscopía infrarroja permite identificar las vibraciones en la región de los grupos hidroxilos debido a la posibilidad de transiciones entre estados de energía vibracionales y rotacionales de las moléculas.

Los espectros de los soportes se registraron en un espectrofotómetro Bruker IFS, utilizando un Harrick HVC-DRP celular que permite en los tratamientos in situ con diferentes gases en temperaturas de hasta 400°C. Los espectros se obtuvieron después de 500 imágenes escaneadas con un espectro de KBr como blanco, sobre 30 mg de la muestra molida finamente se colocaron en una muestra titular y pretratada in situ en la celda. Las muestras se calentaron a 400°C durante 3 h con flujo de He. Los espectros se registraron a temperatura ambiente con una resolución de 4 cm⁻¹. Se comparó una muestra de bromuro de potasio (KBr) con los materiales para la asignación correcta de los de picos.

II.4.4 Espectroscopía de reflectancia difusa de Uv-Vis (DRS-Uv vis)

Los estudios de espectroscopía de reflectancia difusa permiten de forma cualitativa obtener bandas correspondientes al tipo de coordinación (tetra y octaédrica) y la naturaleza de las especies de W y Ni presentes en los catalizadores.

Los espectros de Uv-vis se obtienen mediante el análisis de la emisión o reflectancia de la radiación ultravioleta visible por una muestra absorbente. Los catalizadores son polvos opacos los cuales reflectan la radiación, la reflectancia está definida como:

$$R_{\infty} = \frac{I}{I_0}$$
 (0 < R < 1) Ec. 2.1

donde lo es la intensidad de la radiación antes de atravesar la muestra e I es la intensidad de la radiación después de atravesar la muestra. Para una lámina de espesor infinito se determina la cantidad relativa, la cual está dada en función de la reflectancia de la muestra y de la de referencia (MgO):

$$R'_{\infty} = \frac{R_{\infty}}{R_{referencia}}$$
 Ec. 2.2

Para relacionar la cantidad relativa con los coeficientes de absorción molar y de dispersión, se hace uso de la ecuación de Kubelka-Munk, la cual está definida por:

$$f(R'_{\infty}) = \frac{(1-R'_{\infty})^2}{2R'_{\infty}} = \frac{\text{coeficiente de absorcion molar}}{\text{coeficiente de dispersión}} = \frac{k}{s}$$
 Ec. 2.3

La ecuación de Kubelka-Munk brinda información cualitativa sobre las especies que existen en la muestra al graficar sus valores contra longitud de onda(nm), también se puede obtener información cualitativa de la coordinación del metal de transición asignado a las señales de absorción.

Los espectros de reflectancia de Uv-vis se obtuvieron con un espectrofotómetro Perkin Elmer Uv-vis Lamda 35, equipado con una esfera de reflectancia difusa para el análisis de las muestras. Se utilizó MgO como material de calibración (blanco). La adquisición de datos fue de 200-1000nm con una velocidad de 60 nm/min.

II.4.5 Espectroscopía Raman

La técnica de espectroscopía Raman permite determinar las especies W-O presentes en los catalizadores. Los Espectros Raman se registraron con un espectrómetro Renishaw microscopio raman equipado con un emisor de rayo láser a 785 nm, una potencia de salida de 300 mW. Los fotones dispersados por la muestra fueron dispersados por unos 1200 líneas/mm monocromador rejilla de recogida y al mismo tiempo en una cámara CCD, la colección de óptica se fijó en 50 × objetivo. La resolución espectral es de 1 cm⁻¹.

II.4.6 Desorción a temperatura programada de amoníaco (TPD-NH₃)

Los estudios de acidez de los soportes y catalizadores se llevaron a cabo mediante la técnica de desorción de NH₃ a temperatura programada. En NH₃ hay estudios [74,75] que afirman que esto puede ser estabilizado en sitios ácidos y penetrar en poros estrechos, debido a su fuerte basicidad y pequeño tamaño.

Las medidas se llevaron a cabo en un equipo Micromeritics TPR/TPD 2900 con un detector de conductividad térmica (TCD). En una primera etapa, se llevo a cabo un pre tratamiento para limpiar la superficie de la muestra (50 mg) bajo un flujo de He a 120°C durante 1 h. Después se enfrió a 100 °C y se saturo con un flujo de una mezcla al 5% en volumen de NH₃ en helio con un caudal total de 50 mL/min. Con el flujo de He y NH₃ se mantuvo a 100°C por 15 min, y finalmente se estudio la desorción de amoníaco calentando hasta 1050 °C, usando una rampa de calentamiento de 10°C/min. La distribución de centros ácidos se obtuvo por una deconvolución de los picos, asignando aquellos centros de acidez débil, intermedia y fuerte a los componentes de temperaturas baja, media y alta respectivamente.

II.4.7 Reducción a temperatura programada (TPR)

Los estudios de reducción a temperatura programada permiten seguir de forma continua, las reacciones consecutivas de reducción de las especies con el incremento de la temperatura. Esta técnica permite obtener información sobre la dispersión de las especies activas, así como de las interacciones metal-soporte[76], ya que todos estos efectos influyen en la reducibilidad de las especies. Adicionalmente , la técnica permite explorar la correlación existente entre la reducibilidad del precursor óxido y la actividad de los catalizadores sulfurados[77,78].

Para el estudio de reducción a temperatura programada se utilizo un equipo Micromeritics TPR/TPD 2900 con un detector de conductividad térmica (TCD). Las medidas se realizaron con 30 mg de catalizador utilizando un reactor tubular de cuarzo.

Antes de la reducción , la muestra se calentó hasta 120°C durante 0.5 h bajo un flujo de He para secar y eliminar contaminantes. Después se enfrió a temperatura ambiente con el mismo flujo de He. La reducción se llevo a cabo calentando bajo un flujo de una mezcla reductora al 10% en volumen de hidrógeno en He con un caudal total de 50 ml/min y una rampa de calentamiento de 10°C/min hasta 1050 °C.

II.4.8 Espectroscopía fotoelectrónica de rayos X (XPS)

Para determinar la composición superficial y el grado de sulfuración de los catalizadores se utilizo la espectroscopía fotoelectrónica de rayos X. Los procesos fotoelectrónicos implican la emisión de electrones desde los niveles atómicos profundos como consecuencia de la absorción de fotones de la región de rayos X. La energía cinética que poseen estos electrones, se relaciona con la energía de enlace del electrón de ese átomo en ese nivel según la ecuación que rige el efecto fotoeléctrico:

$E_C = h_v - BE - \varphi_s$

Ec. 2.4

Donde: h_v es la energía del fotón incidente (Mg K α =1253.6 eV) y BE es la energía de enlace del electrón. La ecuación clásica del efecto fotoeléctrico se corrige con ϕ_s , función del trabajo del espectrómetro.

El estudio de la distribución de energía de los electrones emitidos por una muestra al ser sometida a la radiación, constituye un espectro fotoelectrónico en el que aparecen picos superpuestos sobre el fondo continuo. Cada pico se asocia a un tipo de átomo presente en la muestra analizada y se refiere al átomo y nivel energético del que proceden, indicando símbolo y tipo de nivel. Como el recorrido libre medio de los fotoelectrones esta dentro del rango 0.5-5nm, aunque la radiación penetra en la materia del orden de 1-10 μ m, los electrones que provienen de la muestra proceden de una profundidad mucho menor. De tal forma que la técnica proporciona información química de las primeras 5-10 capas superficiales del sólido.

El equipo utilizado fue un espectrómetro VG Escalab 200R con ánodo de magnesio (Mg K α =1253.6 eV) alimentado a 12 kV y 10 mA, que opera con una presión residual en la cámara de análisis inferior a 5*10⁻⁹ Torr. Los catalizadores en forma de polvo se colocaron en un porta muestra de acero inoxidable de 18/8, con un hueco con de forma de cilindro, se desgasificaron a 130°C durante 1 h, hasta alcanzar un vacio de 10⁻⁵ mbar y a continuación se transfirieron a la cámara de análisis donde la presión se mantuvo por debajo de 7*10⁻⁹ mbar durante la adquisición de datos. Como patrón de referencia se utilizo el pico de Al 2p (74.5 eV) a γ -Al2O3 para considerar los efectos de las cargas. Las áreas de los picos fueron analizados después del ajuste de los espectros experimentales con las curvas gaussianas/lorenyzianas y de la eliminación del fondo (funcion de shirley).Las relacionales atómicas superficiales fueron calculadas desde las relaciones del área del pico normalizados por los factores de sensibilidad atómica correspondientes.

II.4.9 Microscopía electrónica en modo de transmisión en alta resolución (HRTEM)

La microscopía electrónica en modo transmisión en alta resolución (HRTEM) es una técnica que se utiliza en la investigación de la topografía de superficies, determinación directas de formas, distribución de tamaños y localización de componentes específicos, como es el caso de partículas metálicas de catalizadores soportados. La técnica permite realizar dicha caracterización a una escala nanométrica superior al umbral inferior de utilización de difracción de rayos X (> 5 nm).

En microscopía electrónica de transmisión, se acelera un haz monocinético de electrones (200-400 kV), que se colima, enfoca y maneja por lentes electromagnéticas. El haz se hace pasar a través de la muestra delgada de 0.1 a 0.5 micras de espesor. En la superficie de la muestra de salida de los electrones, están presentes, además del haz trasmitido, varios difractados. Estos pueden enfocarse por la lente objetivo bien el plano focal trasero de ésta o en su plano imagen, dando lugar a un diagrama de difracción de electrones o a una imagen del material, respectivamente.

Para las medidas de HRTEM se utilizó un microscopio Jem 2100F que alcanza un potencial de aceleración de 200 kV. Los catalizadores sulfurados se pulverizaron en un mortero de ágata y se suspendieron en iso-octano. Se dispersaron en un baño de ultrasonido durante 10 min. Una gota de la suspensión se depositó sobre la rejilla de cobre soportada sobre carbón. Se tomaron al menos 10 imágenes representativas del catalizador. La cuantificación del tamaño se realizó midiendo el diámetro de 250 partículas. El tamaño de partícula y apilamiento medio se estimó usando la ecuación:

$$L = \frac{\sum ni * li}{\sum ni}$$
 Ec. 2.5

Donde : ni es el numero de partículas con longitud l y $\sum ni$ es el número de partículas medidas.

$$N = \frac{\sum ni * Ni}{\sum ni}$$
 Ec. 2.6

Donde: Ni es el numero de apilamiento por partícula i, y $\sum ni$ es el número de partículas con Ni apilamientos.

II.5 Activación de catalizador

Para la activación del catalizador se hizo pasar un flujo de 4 L/h de 10% H_2S/H_2 en un reactor Pyrex en forma de U. Se mantuvo la temperatura en 400°C durante 4 h usando una rampa de calentamiento de 5°C/min. Pasado éste tiempo, se dejo enfriar el catalizador hasta llegar a temperatura ambiente con flujo de N_2 para eliminar H_2S en exceso. Inmediatamente después se transfirió aproximadamente 0.25 g de catalizador activado al reactor por lotes(batch) para hacer la reacción.

II.6 Evaluación catalítica

La evaluación catalítica se llevó a cabo en un reactor del tipo por lotes (batch) Parr 4842 de Parr Instruments Company. Las reacciones se realizaron con 0.25 g de catalizador, 0.15 g de 4,6-dimetil dibenzotiofeno (4,6-DMDBT) en 100 mL de dodecano como solvente, a 800 psi y 593 K durante apróx. 6 h. Las muestras obtenidas se analizaron en un cromatógrafo de gases Agilent Technologies 7820A con una columna Alltech part 19647 EC-5.

La transferencia del 4,6-DMDBT del fluido global a la superficie catalítica debería ser rápida, de tal manera que la diferencia de concentraciones entre el fluido global y la superficie sea despreciable, por eso la reacción se llevo a cabo a 1200 RPM para asegurar que el sistema se encuentra perfectamente agitado y los efectos de transferencia de masa externos disminuyen. El tamaño de partícula utilizado en la reacción fue entre 80 y 100 mallas, en este tamaño de partícula no hay problemas de transporte interno. De lo anterior se puede decir que las evaluaciones se hicieron en un régimen donde controlaba solo la reacción. Las velocidades de reacción inicial se obtuvieron a 1h de reacción a partir de la gráfica de concentración vs tiempo.

Figura 2.1 Configuración del reactor Parr - 4842

CAPÍTULO III

III.1 Resultados de caracterización

III.1.1 Soportes

III.1.1.1 Fisisorción de nitrógeno (F-N₂)

En las figuras 3.1 y 3.2 se muestran las isotermas de adsorción-desorción de N₂ a -196°C registradas en todo el rango de presiones relativas de los soportes de Al₂O₃ y AT₂ preparados por el método sol-gel. Según la clasificación de la IUPAC, los soportes de Al₂O₃ y AT₂ presentaron isotermas tipo IV características de los materiales mesoporosos[79].

Figura 3.2. Isoterma de adsorción-desorción AT₂.

La región de condensación capilar inicia para Al_2O_3 en P/P₀=0.65 y AT_2 en P/P₀=0.45, esto sugiere que se tendrá espacios vacios más grandes en Al_2O_3 , por lo tanto mesoporos de mayor tamaño. Por otro lado, las isotermas de los soportes muestran un único salto de desorción, indicando que se trata de una estructura de poro abierto.

En los materiales sólo se obtuvieron histéresis de Tipo 1 (H_1), esto indica que se tiene poros cilíndricos de tamaño y forma uniforme.

Distribución de tamaños de poro

En la figura 3.3 se muestra la distribución de tamaños de poro para los soportes preparados por el método sol-gel.

Figura 3.3. Distribución de tamaños de poro promedio AI_2O_3 (a) y $AT_2(b)$, calcinados a 500°C.

Los valores de tamaño de poro promedio de la AI_2O_3 y AT_2 se encuentra en valores distintos así como su valor máximo. Los valores de mayor incidencia los encontramos para AI_2O_3 y AT_2 en 85 y 33 Å respectivamente. Por otra parte, la distribución de tamaños de poro de AT_2 es más uniforme que en AI_2O_3 .

Áreas superficiales

En la tabla 3.1 se muestran las propiedades texturales de los materiales. Las áreas obtenidas de los soportes de Al_2O_3 y AT_2 fueron de 320 y 240 m²/g respectivamente. Se puede apreciar un aumento en el área de AT_2 en comparación con lo reportado en la literatura para la TiO₂ (50 m²/g aprox.). Por otra parte el volumen de poro de $AT_2(0.40 \text{ cm}^3/\text{g})$ disminuye en 70% en comparación con $Al_2O_3(1.40 \text{ cm}^3/\text{g})$. En contraste los materiales presentaron isotermas de adsorción tipo IV sugiriendo mesoporos y

presentaron tamaños de poro que están dentro del intervalo para soportar las fases activas, estos resultados texturales coinciden con lo publicado [37,42].

Material	Área superficial(m ² /g)	Dp(Å)	Vp(cm ³ /g)
AL ₂ O ₃	320	85	1.40
AT ₂	240	33	0.40

Tabla 3.1. Propiedades Texturales

III.1.1.2 Difracción de rayos X (DRX)

La figura 3.4 muestra el difractograma de rayos X de Al_2O_3 sintetizada por el método solgel. El patrón JCDPS 10-0425 correspondiente a la fase gamma alúmina se comparo con el espectro obtenido. En ella se encontraron 2 reflexiones (40°,67°) de intensidad considerable que coinciden con las reportadas en el patrón de la fase gamma, por lo que se sugiere que esta fase es γ - Al_2O_3 .

Figura 3.4. Difractograma de γ- Al₂O₃ sintetizada por sol-gel, calcinado a 500 °C. *[γ-Al₂O₃].

La figura 3.5 muestra el difractograma de rayos X de AT₂ sintetizado por sol-gel. El difractograma obtenido se compararon con el patrón JCPDS 10-0425 correspondiente a la

fase γ -Al₂O₃, el patrón JCPDS 21-1272 correspondiente a TiO₂ en fase anatasa y el patrón JCPDS 21-1276 correspondiente a TiO₂ en fase rutilo. Se sabe que TiO₂ debajo de 400°C solo forma anatasa y arriba de 400°C comienza a formarse la fase termodinámicamente más estable que es rutilo[80]. El difractograma de AT₂ sólo muestra una reflexión(29°)que posiblemente corresponde a la fase rutilo de TiO₂, pero en general no se puede detectar una fase característica de Al₂O₃ o TiO₂. Esto podría deberse a la formación de cristales menores a 3 nm y la técnica no los detecta, o que las fases cristalinas no estén segregadas y están formando fases mixtas.

El análisis de difracción de DRX sugiere la presencia de estructuras amorfas o microcristalinas (<3nm, fuera de la resolución del equipo)

III.1.1.3 Espectroscopía infrarroja por transformada de Fourier (FT-IR)

La figura 3.6 muestra los espectros de infrarrojo de la región media (650-4000 cm⁻¹) de los soportes secos de Al₂O₃,Al₂O₃CIT,AT₂,AT₂CIT, con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

Las bandas correspondientes a KBr se pueden apreciar también en los soportes, estas corresponden a especies de carbono y nitrógeno que se consideran como impurezas de la
preparación del material o del medio, que después de un tratamiento térmico más riguroso desaparecen, en este caso por limitaciones del equipo no se pudo subir la temperatura a mas de 400°C. Haciendo la substracción con el blanco (KBr) podemos notar una banda a 950 cm⁻¹ característica de Al₂O₃ que no se modificó cuando se agregó ácido cítrico en la superficie, pero disminuyó su absorción en el soporte mixto de AT₂. La absorción en esta región se debe al estiramiento de AlO₄ en coordinación tetraédrica [81]. La disminución sugiere que los átomos de Ti estarían ocupando los sitios tetraédricos de los átomos de Al. También se puede ver una banda a 1720 cm⁻¹ en los soportes con adición de ácido cítrico relacionado con la vibración de C=O, esto posiblemente se deba a los ácidos carboxílicos que tiene la molécula orgánica.

Figura 3.6. Espectros en la región IR de los soportes secos $Al_2O_3(a)$, $Al_2O_3CIT(b)$, $AT_2(c)Y$ $AT_2CIT(d)$ y KBr(e).

Figura 3.6A Espectros en la región IR de los soportes secos en la región de grupos OH $Al_2O_3(a)$, $Al_2O_3CIT(b)$, $AT_2(c)Y$ $AT_2CIT(d)$.

Por otro lado, se aprecia en la figura 3.6A que en la región entre 3800-3400 cm⁻¹ disminuyeron las bandas de absorción. Estas se pueden asignar al estiramiento de grupos OH en la superficie. El pico a 3750 cm⁻¹ se debería a grupos hidroxilos enlazados a Al en coordinación tetraédrica, mientras que a 3730 cm⁻¹ se tendrán hidroxilos enlazados a Al en coordinación octaédrica[82]. Así mismo los picos a 3750,3730 y 3690 cm⁻¹ corresponde a grupos OH de tipo básico ,neutro y ácido respectivamente[83].

Se puede observar en el material AT₂ que sus bandas de absorción en la región de grupos OH disminuyó con respecto al de Al₂O₃. Al obtener el área por medio de la deconvolución gaussina(Apéndice A), la cantidad de grupos OH básicos de AT₂ fueron aproximadamente la mitad de los correspondientes a Al₂O₃. Esto pudiese estar relacionado a la densidad de grupos OH de Al₂O₃(12 OH/nm²) y TiO₂ (4 OH/nm²) [84,85] que al impregnar un metal, la interacción y dispersión sería diferente por tener diferentes densidades.

Los materiales impregnados con ácido cítrico tienen las bandas de absorción correspondientes a grupos OH menor que los óxidos sin ácido, esto sugiere que el ácido cítrico esta interactuando con la superficie, esto se comprobó obteniendo las áreas de la deconvolución de las bandas de la región de grupos OH. Además se puede notar que las variaciones más significativas al impregnar el acido cítrico corresponden a la disminución de los grupos OH básicos y neutros, la razón es que el ácido cítrico es una molécula ácida y es susceptible a reaccionar con los hidróxidos básicos y neutros principalmente [83].

Soportes	Básico (3750cm ⁻¹)	Neutro(3730cm ⁻¹)	Ácido(3690cm⁻¹)
Al ₂ O ₃	0.32	0.30	0.23
Al ₂ O ₃ CIT	0.21	0.21	0.25
AT ₂	0.18	0.29	0.26
AT ₂ CIT	0.12	0.18	0.18

Tabla 3.2: Áreas- método de deconvolución gaussiana

La espectroscopia infrarroja permitió encontrar bandas relacionadas de Al₂O₃ y grupos OH superficiales. Se pudo observar que la banda correspondiente a AlO₄ en simetría tetraédrica disminuyó en el material AT₂. Esto sugiere que Ti está interactuando con el soporte y posiblemente esté formando un oxido mixto, esto coincidió con los resultados de DRX. Con respecto a los grupos OH, la disminución en los materiales es casi lineal y probablemente la interacción ácido cítrico-superficie permita mejorar la dispersión al impregnar otro metal sobre el soporte[83, 86, 87,88].

III.1.1.4 Espectroscopía de reflectancia difusa de Uv-vis (DRS Uv-vis)

La figura 3.7 presenta los espectros de reflectancia difusa de los soportes con el fin de óxidos.

Figura 3.7. Espectros de Reflectancia difusa de Uv-Vis de los soportes secos de $Al_2O_3(a)$, Al₂O₃CIT(b),TiO₂(c),AT₂ (d) y AT₂CIT(e), con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

El soporte de Al₂O₃ presentó una banda entre 200-240 nm y el sistema Al₂O₃-Cit presenta un hombro entre 240-260 nm relacionándose con la transición ligando–ligando del ácido cítrico. Por otro lado el TiO₂ presentó una banda de absorción entre 210-430 nm con máximo en 350 nm. El soporte de AT₂ mostró bandas de absorción entre 230-430 nm con máximos en 250 nm y 315 nm, esto concuerda con lo obtenido en la literatura para sistema AT₂ [89].En el sistema AT₂ se puede ver claramente el efecto de TiO₂ sobre Al₂O₃.Las banda de TiO₂ están relacionadas a la transferencia de carga de O²⁻→Ti⁴⁺, esto corresponde a la excitación de electrones desde la banda de valencia a la de conducción. De esta manera el sistema dAl₂O₃ se ve modificado su energía de brecha por el efecto semiconductor de TiO₂. El sistema AT₂-Cit presentó también un hombro ligando-ligando del ácido cítrico entre 380-430 nm, pero en este caso se puede ver un desplazamiento, este efecto puede deberse al TiO₂.

III.1.1.5 Desorción a temperatura programada de NH₃ (TPD-NH₃)

La figura 3.8. muestra los termogramas de TPD de amoníaco para los soportes de Al_2O_3 , Al_2O_3CIT , AT_2 y AT_2CIT de 100-900 °C, con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

Figura 3.8. TPD-NH₃ de los soportes secos Al₂O₃(a), Al₂O₃CIT(b),AT₂(c) y AT₂CIT(d).

Se sabe que a baja o alta temperatura de desorción de amoníaco corresponden a la fuerza ácida de tipo débil o fuerte respectivamente. El amoníaco es una molécula básica que puede interaccionar fuertemente con los grupos O-H superficiales que están vinculados directamente con la acidez de los materiales. Tres clases de fuerza de sitios ácidos se han reportado: débiles (25-200°C), intermedios(200-400°C) y fuertes (>400°C)[90,91].

En los soportes se pueden ver que se presentan los tres tipos de fuerza de acidez(fig. 3.8). En el sistema Al₂O₃ se pudo apreciar un mayor contenido de sitios ácidos débiles con respecto a todos los materiales con su máximo a 160 °C. Se observó en el soporte de AT₂ disminuyó la cantidad de sitios ácidos débiles con respecto al de Al₂O₃. La influencia de los materiales impregnados con ácido cítrico fue muy evidente, disminuyó la cantidad de sitios ácidos débiles y hubo una mayor contribución de los sitios ácidos intermedios, con respecto a los materiales que no tienen ácido cítrico, con su máximo a 320°C aproximadamente, esto debido posiblemente a la presencia de grupos OH de parte del ácido cítrico al impregnarlo en Al₂O₃ o AT₂. Con respecto a los sitios ácidos fuertes la contribución fue para los impregnados con ácido cítrico con su máximo a 490°C. También se puede observar dos picos a 750°C y 810°C en los soportes de AT₂ y AT₂CIT, que corresponden a sitios ácidos fuertes.

III.1.2 Catalizadores

III.1.2.1 Difraccion de rayos X (DRX)

En la figura 3.9 se muestran los difractogramas de los catalizadores de NiW/Al₂O₃, NiW/Al₂O₃CIT,NiW/AT₂ y NiW/AT₂CIT, con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

Figura 3.9. Difractograma de los catalizadores bimetálicos secos de NiW/Al₂O₃(a), NiW/Al₂O₃CIT(b), NiW/AT₂(c) y NiW/AT₂CIT(d).

La figura 3.9 presenta los difractogramas para los catalizadores NiW/Al₂O₃, NiW/Al₂O₃CIT, NiW/AT₂ y NiW/AT₂CIT donde se aprecian reflexiones en 30°, 44° y 65°. Estas corresponden a los soportes y no se detectaron otras señales correspondientes a las fases soportadas de W o de Ni. Por consiguiente estas fases podrían estar bajo la forma de cristales con tamaños menores a 5 nm. Esto sugiere una buena distribución de las especies de W.

La técnica de DRX para los catalizadores no permitió detectar cristales de WO_3 mayores a 3nm, esto podría sugerir una buena dispersión del W en los soportes.

III.1.2.2 Reflectancia difusa de Uv-vis (DRS Uv-vis)

Esta técnica permite obtener información sobre la coordinación tetraédrica u octaédrica, de los metales W y Ni soportados en los catalizadores antes de sulfuración. En la figura 3.10 se muestran los espectros de reflectancia difusa de los catalizadores secos de W/Al₂O₃, W/Al₂O₃CIT, W/AT₂, W/AT₂CIT para obtener las bandas de transferencia correspondientes de los materiales.

Figura 3.10. Espectros de Reflectancia difusa de Uv-Vis de los catalizadores monometálicos secos de $W/AI_2O_3(a)$, $W/AI_2O_3CIT(b)$, $W/AT_2(c)$ y $W/AT_2CIT(d)$, con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

Para el catalizador calcinado a 500°C (fig. 3.10a) se puede notar una banda de absorción entre 200 -280 nm con un máximo en 255 nm que no está presente en el óxido de Al₂O₃ puro. De lo anterior es notorio que el soporte de Al₂O₃ se ve fuertemente influenciado por el tungsteno incorporado al soporte. La banda con máximo a 255 nm está asociada a la transición de transferencia de carga de $O^{2-} \rightarrow W^{6+}$. La posición de W/Al₂O₃ con un máximo en 255 nm nos indica que las especies de WO_x están en mayor proporción en simetría tetraédrica [92,93]. Al sintetizar con citrato en W/Al₂O₃ (fig. 3.10b) se encontró una banda adicional a 310 nm, aunque no tiene suficiente resolución, correspondiente a las especies WO_x en simetría octaédrica [92,93]. Se obtuvieron en este último caso mayor cantidad de especies WO_x en simetría octaédrica , posiblemente por la influencia de la incorporación del ácido cítrico en la superficie del soporte.

En la figura 3.10c y 3.10d se puede notar para los catalizadores W/AT₂ y W/AT₂CIT que el metal de W no modifica considerablemente los espectros de los soportes de AT₂ y AT₂CIT, que tienen como máximos a 250 nm y 315 nm , dado que la transferencia de carga de O^{2^-} \rightarrow Ti⁴⁺ es muy parecida a la de $O^{2^-} \rightarrow W^{6+}$, debido a los orbitales vacíos de W que se encuentran en la banda de conducción de Ti[56]. Para el W se han encontrado bandas relacionadas a las especies tetraédricas y octaédricas entre 200-300 nm y 300-420 nm [92,93]. De lo anterior podemos decir que el titanio posiblemente provoca un aumento en las especies de W en coordinación octaédrica en el catalizador W/AT₂, y de la misma manera que en el catalizador de W/AT₂CIT. Sin embargo, se tiene que considerar con precaución debido a que la banda del soporte ocurre a longitudes onda parecida al metal de W[56]. Esto mismo aplica para los sistema NiW/AT₂ y NiW/AT₂CIT.

Por otro lado los espectros de W/soportados se trataron para obtener la energía de borde por el método reportado en la literatura [94, Apéndice B] y se presentan en la figura 3.11.

Figura 3.11. Energía de borde de los catalizadores monometálicos $W/Al_2O_3(a)$, $W/Al_2O_3CIT(b)$, $W/AT_2(c)$ y $W/AT_2CIT(d)$.

Catalizadores	Energía de borde(eV)
W/Al ₂ O ₃	3.85
W/Al ₂ O ₃ CIT	3.45
W/AT ₂	3.35
W/AT ₂ CIT	3.33

Tabla 3.3 Energías de borde de catalizadores monometálicos

La figura 3.11 muestra los resultados derivados del tratamiento para obtener las energías de borde de los catalizadores de W soportados, las especies de WO₄²⁻ se encuentran en los extremos, siendo estos los limites de valores posibles de energía de borde para las muestras. De lo anterior se puede decir que las especies de WO_x de mayor tamaño son las que se aproximan a la energía de borde de WO₃ y las de menor tamaño a WO₄²⁻. En la tabla 3.3 se presentan las energías de borde calculadas se encuentran entre 3.33–3.85 eV, estos valores corresponden a lo reportado en la literatura [92] y se relacionan con la transferencia de carga ligante-metal O²⁻ \rightarrow W⁺⁶ \rightarrow O².En el sistema W/Al₂O₃CIT disminuyó la energía de borde en un 11% con respecto al de W/Al₂O₃, esto podría deberse al efecto del ácido cítrico. Para el sistema W/AT₂CIT no se ve un cambio significativo, esto posiblemente por el efecto de TiO₂. De acuerdo a las energías de borde obtenidas, los materiales pueden clasificarse de mayor a menor tamaño de la siguiente manera:

 $W/AT_2CIT>W/AT_2>W/AI_2O_3CIT>W/AI_2O_3$

Disminución de tamaño WO_x

Por otra parte se obtuvieron la cantidad de próximos vecinos WO_x por el método reportado en la literatura [37], ya que se sabe que los catalizadores están fuertemente influenciados por la cantidad de próximos vecinos y el número de enlaces. La secuencia anterior nos ayudo a obtener la información cuantitativa del tamaño de agregados. La ecuación para el cálculo es la siguiente [37]:

$$Nw = 13.027 - 2.6533 * E$$

En la tabla 3.4 se muestra los valores obtenidos de próximos vecinos de W.

Catalizadores	Energía de borde(eV)	Nw
W/Al ₂ O ₃	3.85	2.81
W/A ₂ O ₃ CIT	3.45	3.87
W/AT ₂	3.35	4.13
W/AT ₂ CIT	3.33	4.19

Tabla 3.4. Número de próximos vecinos de catalizadores monometálicos

Se puede notar que el sistema W/AT₂CIT tiene alta cantidad de próximos vecinos, esto pudiera deberse a la mayor cantidad de especies octaédricas en este sistema y para el catalizador de W/AT₂ el comportamiento es similar. En el sistema W/Al₂O₃CIT se puede ver un aumento en la cantidad de próximos vecinos, esto pudiera deberse al efecto del ácido cítrico en Al₂O₃ que también se ve reflejado en la cantidad mayoritaria de especies octaédricas en comparación de W/Al₂O₃. Se obtuvieron en este último caso la cantidad más baja de próximos vecinos, provocada por la cantidad de especies tetraédricas mayoritaria en este sistema y lo que podría sugerir una mejor distribución de W en la superficie del soporte en comparación a toda la serie analizada.

Figura 3.12. Espectros de Reflectancia difusa de Uv-Vis de los catalizadores bimetálicos secos de NiW/Al₂O₃(a), NiW/Al₂O₃CIT(b), NiW/AT₂(c) y NiW/AT₂CIT(d), con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

La figura 3.12 muestra los catalizadores promovidos con Ni antes de sulfuración. En la figura 3.12 se pueden notar 4 regiones. La primera entre 200-280 nm que corresponde a la transferencia de carga $O^{2-} \rightarrow W^{6+}$ en simetría tetraédrica, la segunda entre 280-380 nm correspondiente a la transferencia de carga $O^{2-} \rightarrow W^{6+}$ en simetría octaédrica, la tercera región se encuentra entre 380-450 nm correspondiente a las especies octaédricas Ni²⁺ y por último la región entre 450-800 nm correspondientes a las especies tetraédricas Ni^{2+} [92,93,95,96]. Se puede ver que el catalizador de NiW/Al₂O₃ (fig. 3.12a) tiene cantidades parecidas de especies de W en simetría tetraédrica y octaédrica, mientras que en el catalizador de NiW/Al₂O₃CIT (fig. 3.12b) hay un mayor número de especies de W en simetría octaédrica en comparación con tetraédrica. En los catalizadores de NiW/AT₂ y NiW/AT₂CIT (fig. 3.12c y 3.12d) las especies de W en mayor cantidad son de simetría octaédrica. Por otro lado se puede observar la influencia de ácido cítrico en la formación de especies de Ni²⁺ de simetría tetraédrica con respecto a los que no tienen ácido cítrico, con máximos a 640 nm y 740 nm, no obstante la formación de Ni²⁺ de especies octaédricas es mayoritaria para toda la serie de catalizadores promovidos teniendo como máximo en 410 nm aproximadamente.

El aumento en la intensidad de las longitudes de onda indican la interacción de la incorporación de Ni con W produciendo Ni-W-O[97,98] el cual es precursor de las especies de Ni-W-S.

III.1.2.3 Espectroscopía Raman

En la figura 3.14 se muestra los espectros Raman de los catalizadores monométalicos W/Al_2O_3 , W/Al_2O_3CIT , W/AT_2 y W/AT_2CIT , con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

Figura 3.14.Espectros Raman de los catalizadores monometálicos secos de $W/Al_2O_3(a)$, $W/Al_2O_3CIT(b)$, $W/AT_2(c)$ y $W/AT_2CIT(d)$.

Se puede ver en la figura 3.14 que el catalizador de W/Al₂O₃ (fig. 3.14a) muestra picos entre 910-1000 cm⁻¹ y 860 cm⁻¹. Estos picos corresponde al estiramiento vibracional simétrico de las especies W-O-W y W=O [99,100], y esta ultima especie puede interaccionar con el soporte en simetría octaédrica o tetraédrica. También se puede apreciar en el catalizador W/Al₂O₃ que hay mayor homogeneidad de especies W=O en comparación con W-O-W. Para el catalizador sintetizado con citrato (fig. 3.14b) el comportamiento es similar , obteniéndose mayor homogeneidad de especies W=O que W-O-W. Asimismo se puede ver un hombro a 1050 cm⁻¹ en el catalizador impregnado con ácido cítrico, esta señal es de iones nitrato y es debido al tratamiento térmico que se les dio a estos catalizadores.

Para los catalizadores de W/AT₂ y W/AT₂CIT se utilizó el intervalo de 700-1100 cm⁻¹. Se encontró para los catalizadores de W/AT₂ y W/AT₂CIT (fig. 3.14c y 3.14d) los picos correspondientes a las especies W-O-W y W=O, siendo esta ultima especie la mayoritaria para los dos catalizadores. El intervalo entre 0-700 cm⁻¹ no se utilizó debido a que se ubican cinco picos características de TiO₂, cuatro picos de la fase anatasa (142,398,517, 639 cm⁻¹) y un pico de la fase rutilo (475 cm⁻¹). También se encontró un pico pequeño que aparece a 790cm⁻¹ posiblemente debido a la fase anatasa[55,101]. Por lo antes mencionado es claro que el rango entre 0-700 cm⁻¹ no es seguro usar para detectar oxoespecies de W(VI) depositados en la superficie de los soportes. Esta es la razón por el cual se muestran los espectros entre 700-1100 cm⁻¹.

La espectroscopia raman permitió obtener las intensidades correspondientes al estiramiento vibracional W-O-W y al estiramiento vibracional W=O relacionado con la dispersión de especies WO_x. Se puede ver en la figura 3.14 que la intensidades de especies W=O aumenta de menor a mayor en el siguiente orden: W/Al₂O₃<W/Al₂O₃CIT< W/AT₂ <W/AT₂CIT. De lo anterior se sugiere que el catalizador con mayor homogeneidad de especies W=O sería W/AT₂CIT. Además los catalizadores con ácido cítrico presentaron una banda relacionada a iones nitrato porque no se calcinaron. Los catalizadores con impregnación de ácido cítrico no presentaron bandas relacionadas a WO₃ (718 y 807 cm⁻¹) por lo que puede sugerirse buena dispersión de la fase W.

III.1.2.4 Desorción a temperatura programada de NH₃ (TPD-NH₃)

En la figura 3.15 y 3.16 se muestran los perfiles de TPD-NH₃ correspondientes a los catalizadores monometálicos y bimetálicos soportados en Al₂O₃,Al₂O₃CIT,AT₂ y AT₂CIT, con relación CIT/Ni=0.3 para los materiales con ácido cítrico. De la misma manera que en los soportes, se utilizaron los mismos intervalos para tipos de acidez que los indicados en la Fig. 3.8 para los soportes.

Figura 3.15. TPD-NH₃ de los catalizadores monometálicos secos W/Al₂O₃(a),W/Al₂O₃CIT(b), W/AT₂(c) y W/AT₂CIT(d).

En la figura 3.15 se presentan los TPD-NH₃ de los catalizadores de W soportados en Al₂O₃,Al₂O₃CIT,AT₂ y AT₂CIT antes de sulfuración. Se puede apreciar que el catalizador de W/Al₂O₃ (fig. 3.15a) tiene mayor número de sitios ácidos débiles en comparación con W/AT₂ (fig. 3.15c). El catalizador de W/AT₂ tiene mayor contenido de sitios ácidos intermedios y fuertes en comparación con W/Al₂O₃. La contribución de ácido cítrico en los materiales sigue siendo notorio, en los catalizadores impregnados con ácido cítrico se puede observar que la cantidad de ácidos débiles, intermedios y fuertes aumenta. El catalizador de W/Al₂O₃CIT (fig. 3.15b) tiene el mayor contenidos de sitios ácidos débiles, intermedios y fuertes en comparación con los de W/Al₂O₃, W/AT₂, W/AT₂CIT (fig. 3.15d). Los catalizadores tienen los tres tipos de acidez, los dos primeros picos , acidez débil(25-200°C) e intermedia (200-400°C), a acidez tipo bronsted, debido a la presencia de grupos O-H [102]. De manera análoga a lo reportado en la literatura, a temperaturas mayores de 400°C se obtiene acidez fuerte, relacionada con la acidez de tipo Lewis [103].

Figura 3.16. TPD-NH₃ de los catalizadores bimetálicos NiW/Al₂O₃(a),NiW/Al₂O₃CIT(b), NiW/AT₂(c) y NiW/AT₂CIT(d).

En la figura 3.16 se muestran los TPD-NH₃ de los catalizadores de NiW soportados en Al₂O₃,Al₂O₃CIT,AT₂ y AT₂CIT, con relación CIT/Ni=0.3 para los materiales con ácido cítrico. Se puede observar que la presencia de Ni en la superficie modifica la distribución de sitios, disminuyendo significativamente los sitios ácidos débiles en comparación con los no promovidos. Los catalizadores NiW/Al₂O₃ (fig. 3.16a) y NiW/AT₂ (fig. 3.16c) tienen la menor cantidad de sitios ácidos débiles, intermedios y fuertes. Los catalizadores de NiW/Al₂O₃CIT (fig. 3.16b) y NiW/AT₂CIT (fig. 3.16d) tiene mayor número de sitios ácidos débiles , intermedios y fuertes en comparación con los de NiW/Al₂O₃ y NiW/AT₂.

De la caracterización de TPD-NH₃ se pudo obtener la acidez débil, intermedia y fuerte de los materiales, en lo que se puede notar la influencia del ácido cítrico, promoviendo mayores cantidades de acidez intermedia que está relacionada con acidez de tipo bronsted promovido por los grupos O-H que el ácido cítrico este aportando.

III.1.2.5 Reducción a temperatura programada (TPR)

Catalizadores W/Al₂O₃, W/Al₂O₃CIT, W/AT₂, W/AT₂CIT

Los perfiles de TPR de los catalizadores monometálicos antes de sulfuración de W/Al₂O₃, W/Al₂O₃CIT, W/AT₂ y W/AT₂CIT se muestran en la figura 3.17 y 3.18, con relación CIT/Ni=0.3 para los materiales con ácido cítrico. Cabe resaltar que algunos perfiles de TPR

no se aprecian completamente en la curva de reducción a altas temperaturas a causa de las limitaciones del equipo.

Figura 3.17. TPR de los catalizadores monometálicos secos de W/Al₂O₃(a) y W/Al₂O₃CIT(b).

El perfil de TPR para el catalizador W/Al₂O₃(fig. 3.17a) mostró el inicio de reducción a partir de 437°C, se distingue un hombro entre 600-700°C y un máximo ubicado a 820°C. El catalizador de W/Al₂O₃CIT(fig. 3.17b) presentó su inicio de reducción a 406°C, un hombro entre 600-700°C y un pico principal a 807 °C. Se sabe de la literatura que el inicio de reducción podría deberse a la reducción de W superficial, el hombro entre 600-700°C debido a la reducción de W⁺⁶ \rightarrow W⁺⁴ de especies en coordinación octaédrica [104],mientras que el pico principal a 800°C aproximadamente, se podría atribuir a la reducción de W⁺⁶ \rightarrow W⁺⁴ \rightarrow W⁰ [105] de especies en coordinación tetraédrica[49] altamente dispersas en la superficie. Al incorporar ácido cítrico en la superficie se puede apreciar un desplazamiento a menores temperaturas de reducción, por lo que se sugiere menor interacción de W con el soporte[106].

Figura 3.18. TPR de los catalizadores monometálicos secos de W/AT₂ (a) y W/AT₂CIT(b).

Se observa en la figura 3.18 que los catalizadores de W/AT₂ (fig. 3.18a)y W/AT₂CIT(fig. 3.18b) tienen un pico a 752°C y 711°C respectivamente, relacionado con la reducción de

 W^{+6} → W^{+4} y el segundo pico de 841 °C y 816 °C para W/AT₂ y W/AT₂CIT respectivamente, se podría atribuir a la reducción de W^{+6} → W^{+4} → W^0 coordinado octaédricamente y altamente dispersa en la superficie. De la misma manera que en el caso de la materiales monometálicos sin óxido de titania los catalizadores impregnados con ácido cítrico tienen menores temperaturas de reducción.

Catalizadores NiW/Al₂O₃,NiW/Al₂O₃CIT,NiW/AT₂,NiW/AT₂CIT

Los perfiles de TPR de los catalizadores bimetálicos antes de sulfuración de NiW/Al₂O₃, NiW/Al₂O₃CIT, NiW/AT₂ y NiW/AT₂CIT se muestran en la figura 3.19 y 3.20, con relación CIT/Ni=0.3 para los materiales con ácido cítrico.

Figura 3.19. TPR de los catalizadores bimetálicos secos de NiW/Al₂O₃(a) y NiW/Al₂O₃CIT(b).

En la figura 3.19 se puede ver que los catalizadores bimetálicos de NiW/Al₂O₃(fig. 3.19a) y NiW/Al₂O₃CIT(fig. 3.19b) tienen dos picos adicionales entre 250-350 °C y 400-500°C en comparación con los catalizadores monometálicos. El primer pico está relacionado con la reducción de NiO altamente dispersado sobre la superficie, el segundo con la fase mixta NiO-WO₃ asociado con la actividad en HDS [49] y el tercer pico con la reducción de W⁺⁶ \rightarrow W⁺⁴ \rightarrow W⁰. Se puede notar que la incorporación de Ni en los catalizadores influye en la reducción de W desplazando a menores temperaturas. En el caso en particular del catalizador bimetálico impregnado con ácido cítrico se puede observar en la figura 3.19 un desplazamiento de los picos a temperaturas menores, de 350 y 530 °C para NiW/Al₂O₃ a 300 y 460 °C para NiW/Al₂O₃CIT correspondientes al primer y segundo pico respectivamente, comparado con el material sin ácido cítrico.

Figura 3.20. TPR de los catalizadores bimetálicos secos de NiW/AT₂ (a) y NiW/AT₂CIT(b).

En la figura 3.20 se puede ver que los catalizadores bimetálicos de NiW soportados en AT₂ (fig. 3.20a y 3.20b) tienen un comportamiento parecido en cuanto a la distribución de picos visto en Al₂O₃. En la figura 3.20 se puede observar también un desplazamiento a menores temperaturas en el catalizador con adición de ácido cítrico, de 400 y 500 °C para NiW/AT₂ a 280 y 420°C para NiW/AT₂CIT correspondientes al primer y segundo pico respectivamente. Además hay un incremento en la reducción en la fase NiO-WO₃ relacionado con la actividad catalítica en HDS.

La técnica de temperatura programada de reducción nos permitió encontrar diferencias en los catalizadores impregnados con ácido cítrico, en los que se destaca la disminución de temperatura de reducción como resultado de una interacción W-soporte moderado.

III.1.2.6 Espectroscopía fotoelectrónica de rayos X (XPS)

Catalizadores W/Al₂O₃, W/Al₂O₃CIT, W/AT₂, W/AT₂CIT sulfurados (relación CIT/Ni=0.3 para los materiales con ácido cítrico)

En la figura 3.21 se muestra el espectro XPS del catalizador de W/Al₂O₃ sulfurado a 400°C. Es notoria la presencia de varias especies de W debido a que no se definen completamente los dobletes para W 4f. Por tal motivo se realizó una descomposición del espectro, considerando las especies de W⁴⁺(como en WS₂),W⁵⁺(como en especies oxisulfuros, precursores del sulfuro correspondiente)y W⁶⁺(como en especies de tipo WO_x). De acuerdo con la literatura, las señales de W4f situadas en 35.4 y 37.6 eV corresponden a W⁶⁺ en su fase óxido de los niveles W4f_{7/2} y W4f_{5/2} respectivamente. Por otro lado, las señales situadas en 32.1 y 34.3 eV corresponden a W⁴⁺ en fase sulfuro de los niveles W4f_{7/2} y W4f_{5/2} [107,108]. Las señales situadas a 33.3 y 35.3 eV corresponden a especies de W parcialmente sulfuradas (WO_xS_y) de los niveles W4f_{7/2} y W4f_{5/2}[109].

Figura 3.21. Espectro fotoelectrónico del nivel W4f de W/Al₂O₃ sulfurado a 400°C.

Con base en una descomposición similar para los espectros W4f obtenidos para los catalizadores de W/Al₂O₃, W/Al₂O₃CIT, W/AT₂ y W/AT₂CIT frescos sulfurados a 400°C, se calcularon los porcentajes en concentraciones de cada tipo de especie. Los resultados se muestran en la tabla 3.5 y se indica el valor entre paréntesis al lado del máximo de cada pico.

Catalizadores	W4f _{7/2} eV	Especie
W/AL2O3	32.6(66%)	W ⁴⁺
	35.0(12%)	W ⁵⁺
	36.0(22%)	W ⁶⁺
W/AL2O3CIT	32.5(67%)	W ⁴⁺
	33.7(13%)	W ⁵⁺
	35.7(20%)	W ⁶⁺
W/AT2	32.5(64%)	W ⁴⁺
	35.8(36%)	W ⁶⁺
W/AT2CIT	32.3(70%)	W ⁴⁺
	35.5(30%)	W ⁶⁺

En la tabla 3.5 se puede apreciar los catalizadores de W/Al₂O_{3 y} W/Al₂O₃CIT tienen un grado de sulfuración similar con un ligero aumento en las especies WS₂ para el catalizador impregnado con ácido cítrico. En los catalizadores W/AT₂ y W/AT₂CIT no se aprecian especies de W parcialmente sulfuradas, este podría ser un efecto de la incorporación de Ti. Por otro lado el grado de sulfuración es mayor para el catalizador con ácido cítrico.

En la tabla 3.6 se muestran las relaciones atómicas S/W de los catalizadores monometálicos W/Al₂O₃, W/Al₂O₃CIT, W/AT₂ y W/AT₂CIT frescos sulfurados a 400°C.

Catalizadores	S/W
W/Al ₂ O ₃	1.77
W/Al ₂ O ₃ CIT	1.83
W/AT ₂	1.72
W/AT ₂ CIT	1.55

Tabla 3.6 Relaciones atómicas de los catalizadores monometálicos

De la tabla 3.6 se puede apreciar en los catalizadores de W/Al₂O₃ y W/Al₂O₃CIT que el grado de sulfuración para el impregnado con ácido cítrico aumenta en un 4 % . En el caso de los catalizadores de W/AT₂ y W/AT₂CIT presenta una ligera disminución en el grado de sulfuración para el material con ácido cítrico. El valor teórico de S/W es igual a 2, por lo tanto el grado de sulfuración que se obtuvo es incompleto, mostrando un rango de 75-90% de sulfuración y es acorde a lo reportado en la literatura para esta temperatura de sulfuración[110,111].

Catalizadores NiW/Al₂O₃,NiW/Al₂O₃CIT,NiW/AT₂,NiW/AT₂CIT sulfurados(relación CIT/ Ni=0.3 para los materiales con ácido cítrico)

En Figura 3.22 y 3.23 se muestran los espectros de XPS en la región de emisión del W4f y del Ni2p del sistema NiW/Al₂O₃ sulfurado fresco a 400°C.Análogamente que en los catalizadores monometálicos, se puede notar en los catalizadores bimetálicos señales de W4f situadas en 36.0 y 37.8 eV corresponden a W⁶⁺ en su fase óxido de los niveles W4f_{7/2} y W4f_{5/2} respectivamente,32.6 y 34.4 eV corresponden a W⁴⁺ en fase sulfuro de los niveles W4f_{7/2} y W4f_{5/2}; y señales situadas a 33.6 y 35.9 corresponden a especies de W parcialmente sulfuradas (WO_xS_y) de los niveles W4f_{7/2} y W4f_{5/2}. En la tabla 3.7 se puede notar que el catalizador NiW/Al₂O₃CIT tiene mayor grado de formación de especies WS₂ y una menor cantidad de formación de especies parcialmente sulfuradas comparado con el sistema NiW/Al₂O₃. En los catalizadores NiW/AT₂ y NiW/AT₂CIT se puede ver la influencia de la Titania, al no formar óxidos parcialmente sulfurados y el grado de formación de especies WS₂ disminuye ligeramente para el sistema con adición de ácido cítrico.

Figura 3.22. Espectro fotoelectrónico del nivel W4f de NiW/Al₂O₃ sulfurado a 400°C.

En la figura 3.23 se muestran el espectro de NiW/Al₂O₃ en la región de emisión de Ni2p_{3/2}. Se puede notar una señal situada a 855.2 eV, que se relaciona con la región de emisión de Ni para materiales en estado óxido como NiAl₂O₃,NiWO[112]. Para el caso de las especies sulfuros se puede ver una señal a 853.2 eV que corresponde a las especies NiS [107]. A partir de la tabla 3.7 se puede observar en los catalizadores de NiW/Al₂O₃ y NiW/Al₂O₃CIT, un menor contenido de Ni estado óxido y un mayor grado de sulfuración para el sistema con adición de ácido cítrico. En los catalizadores de NiW/AT₂ y NiW/AT₂CIT se puede apreciar que hay un menor grado de sulfuración de Ni, posiblemente porque el ácido cítrico esté interactuando parcialmente con Ni.

Figura 3.23. Espectro fotoelectrónico del nivel Ni2p de NiW/Al₂O₃ sulfurado a 400°C.

Para obtener información de la dispersión de los metales, se calcularon las relaciones atómicas. En la tabla 3.8 se puede observar que la cantidad de Ni expuesto no cambia significativamente en los materiales. En el caso de NiW/Al₂O₃ y NiW/Al₂O₃CIT hay un ligero aumento de los metales de W para el sistema con ácido cítrico, pero el aumento

promovido por el ácido cítrico se ve más notorio en NiW/AT₂CIT. En el grado de sulfuración(S/W+Ni), se puede ver que hay una ligera disminución en el sistema NiW/Al₂O₃ y NiW/Al₂O₃CIT, contrario a esto sucede en el sistema NiW/AT₂ y NiW/AT₂CIT que hay un aumento para el catalizador con ácido cítrico.

Catalizadores	W4F7/2	Especie	Ni2P3/2	Especie
NiW/Al ₂ O ₃	32.6(39%)	W ⁴⁺	853.2(30%)	NiS
	33.6(40%)	W ⁵⁺	855.2(70%)	NiO
	36.0(21%)	W ⁶⁺		
NiW/Al ₂ O ₃ CIT	32.5(67%)	W ⁴⁺	853.4(46%)	NiS
	33.6(17%)	W ⁵⁺	855.2(54%)	NiO
	35.7(16%)	W ⁶⁺		
NiW/AT ₂	32.5(71%)	W ⁴⁺	853.7(74%)	NiS
	35.5(29%)	W ⁶⁺	855.7(26%)	NiO
NiW/AT ₂ CIT	32.5(64%)	W ⁴⁺	853.9(58%)	NiS
	35.8(36%)	W ⁶⁺	855.8(42%)	NiO

Tabla 3.7. Energías de enlace de W4F_{7/2} y Ni2P_{3/2} para los catalizadores sulfurado a 400°C.

Tabla 3.8. Relaciones atómicas de los catalizadores bimetálicos

	S	W	Ni
catalizadores	$\overline{W + Ni}$	Soporte	Soporte
NiW/Al ₂ O ₃	1.73	0.06	0.027
NiW/Al ₂ O ₃ CIT	1.61	0.08	0.025
NiW/AT ₂	1.57	0.11	0.058
NiW/AT ₂ CIT	1.60	0.39	0.056

Los resultados de espectroscopia XPS nos sugirió que los catalizadores monometálicos al igual que los bimetálicos soportados en Al₂O₃ forman especies de tungsteno parcialmente sulfurados y en los sistemas soportados en óxidos mixtos no se ve la formación de estas especies de W. Los catalizadores impregnados con ácido cítrico tienen un mayor contenido de W superficial que interactúan moderadamente con el soporte y esto se ve reflejado en un mayor grado de sulfuración.

III.1.2.7 Microscopía electrónica en modo de transmisión en alta resolución(HRTEM)

En las figura 3.24 y 3.25 se presentan imágenes obtenidas mediante la técnica de HRTEM de las muestras NiW/AT₂ y NiW/AT₂CIT(CIT/Ni=0.3) sulfurados a 400°C respectivamente. En las imágenes obtenidas de los materiales, se puede ver la formación de laminillas de WS₂.

Figura 3.24. NiWS/AT₂

Figura 3.25. NiWS/AT₂CIT

En las imágenes 3.24 y 3.25 se puede observar que en el catalizador de NiWS/AT₂CIT existe mayor cantidad de cristales multilaminares y que estos tienen un mayor tamaño que aquellos observados en el catalizador NiWS/AT₂. Para cada catalizador se obtuvieron la longitud promedio y el número de apilamiento promedio provenientes de los cristales WS₂ vistos a lo largo de la dirección del plano basal. Los resultados se basaron en la observación y cuantificación de entre 250-400 cristales, provenientes de 10 micrografías por muestra. La distancia interplanar de las laminillas es de 0.6 para los catalizadores de NiW/AT₂ y NiW/AT₂CIT, estos valores se aproximan a los reportados en la literatura [113,114]. La impregnación de ácido cítrico no modificó este parámetro significativamente. La distribución estadística de la longitud y el apilamiento de las laminillas se presentan en las figuras 3.26 y 3.27.

Figura 3.27. Número de apilamientos.

El análisis de distribución permitió encontrar que el catalizador NiWS/AT₂ tiene una longitud promedio de 2.70 nm y para NiWS/AT₂CIT es de 2.85nm, estas longitudes son de especies WS₂ que están decorada en los bordes por Ni[115] y relacionados a la actividad catalítica. Con respecto a la distribución de los apilamientos se obtuvo para el catalizador de NiWS/AT₂ un promedio de 1.5 y para el de NiWS/AT₂CIT de 2. Además en el catalizador con ácido cítrico se puede notar un incremento cercano al 30 % y 75% para 2 y 3 apilamientos respectivamente. Considerando los resultados de caracterización de los materiales se puede decir que la adición de ácido cítrico en la superficie genero que el metal de W interaccione preferencialmente con el ácido cítrico cambiando la naturaleza del W y mejorando su dispersión. Los resultados de temperatura de reducción programada en los catalizadores impregnados con ácido cítrico mostró un desplazamiento a menores temperaturas, que se podría comprender indirectamente como una interacción metal-soporte moderada en comparación con los catalizadores sin ácido cítrico y como consecuencia, un mayor grado de sulfuración, esto también se pudo comprobar con la técnica de espectroscopía fotoelectrónica de rayos X, donde se muestra adicionalmente una mejor distribución de W en la superficie del soporte.

Por otro lado, el grado de apilamiento tiene un interés importante ya que está vinculado a la actividad catalítica en la HDS de 4,6-DMDBT por el impedimento estérico que generan los metilos en la ubicación 4 y 6. De acuerdo a la literatura [116] la fase Ni-W-S se orienta hacia la ruta de hidrogenación por medio de los bordes que están a los extremos del apilamiento, mientras que la ruta de desulfuración directa se encuentra en los bordes (figura 3.28).Se sabe que el catalizador impregnado con ácido cítrico promueve un mayor contenido de apilamiento de 2 o 3 laminas que posiblemente se verá reflejado en una mejor actividad catalítica en comparación con el sistema sin ácido cítrico.

Ni-W-S

Figura 3.28. Ruta de Hidrogenación y apilamientos

En resumen la técnica de microscopía electrónica en modo de trasmisión en alta resolución nos permitió encontrar la distribución de las longitudes de las laminillas y apilamientos de sulfuros de tungsteno decorados con Ni, donde se puede notar que la influencia del ácido cítrico al impregnar en el soporte, mejoro las propiedades del catalizador permitiendo una mejor distribución de los apilamientos y mayor longitud.

III.2 Resultados Catalíticos

III.2.1 Actividad catalítica

Los datos de reacción operando un reactor batch en tres fases (sólido ,líquido y gas) a regímenes donde controla la reacción se obtuvieron para los primeros 60 min, para asegurar obtener velocidades de reacción intrínseca. Se muestreó cada 15 min por una hora, 30 min por una hora y cada hora hasta llegar a 6 horas de reacción para determinar la conversión y así obtener la velocidad de reacción y selectividad del catalizador. Las velocidades de reacción inicial para la desaparición de 4,6-DMDBT para las muestras NiW/Al₂O₃CIT,NiW/AT₂,NiW/AT₂CIT se presentan en la figura 3.29.

Figura 3.29. Velocidades de reacción intrínsecas por mol de W R_0 (mol 4,6-DMDBT/mol W *s).

Podemos observar en la figura 3.29 que la actividad por gramo de catalizador de las muestras soportados en el óxido puro con o sin ácido cítrico es menor a las soportadas en el óxido mixto con o sin impregnación de ácido cítrico. El catalizador soportado en AT₂CIT presentó mejores propiedades catalíticas que los materiales soportados en Al₂O₃, Al₂O₃CIT y AT₂.La velocidad de reacción de NiW/AT₂CIT fue 34 % mayor aproximadamente comparado con NiW/Al₂O₃ y NiW/Al₂O₃CIT, y fue 17 % en NiW/AT₂. Este incremento puede ser atribuido a la interacción moderada metal-soporte que genero la adición de ácido cítrico, promoviendo así una mejor dispersión del W en este soporte. Lo anterior coincide con los resultados de XPS y HRTEM donde se vio mayor cantidad de W en la superficie, mayor grado de metales sulfurados y apilamientos de dos o tres laminillas que está vinculado a un grado mayor de hidrogenación, que es la ruta preferente de la HDS de 4,6-DMDBT.

Selectividad

En las figuras 3.30 y 3.31 se muestra el rendimiento y la selectividad del catalizador de NiW/AT₂CIT. Los valores se calcularon a baja conversión (10%) para estar en el régimen donde se controla la reacción. En este análisis tomaremos al 3,3-dimetil bifenil (3,3DMBF) para la ruta de desulfuración directa (DSD) y tetrahidro-dimetil dibenzotiofeno (THDMDBT), metil ciclo hexil tolueno (MCT) y metil biciclo hexil (MBCH) para la ruta de Hidrogenación (HID).

Figura 3.30. Rendimiento para la reacción de 4,6 DMDBT del catalizador NiW/AT₂CIT

Figura 3.31. Selectividad para la reacción de 4,6 DMDBT del catalizador NiW/AT₂CIT Se sabe que la hidrodesulfuración del 4,6-DMDBT ocurre principalmente por la ruta de hidrogenación (HID) y la ruta de desulfuración directa (DSD) se ve disminuida(fig.1.1). Esto está relacionado con la geometría de la molécula de 4,6-DMDBT que produce un impedimento estérico por los grupos metil en la ubicación 4 y 6 [117].

Tabla 3.9. Selectividad de catalizadore	es
---	----

Selectividad (%)			
Catalizador	DSD	HID	
NiW/Al ₂ O ₃	31	69	
NiW/Al ₂ O ₃ CIT	17	83	
NiW/AT ₂	25	75	
NiW/AT ₂ CIT	17	83	

Se puede apreciar de la tabla 3.9 que los catalizadores NiW/Al₂O₃CIT y NiW/AT₂CIT presentan el mismo comportamiento con aproximadamente un 83 % de productos de HID, mientras que los catalizadores de NiW/Al₂O₃ y NiW/AT₂ disminuyeron en 17 y 8%

respectivamente. Esto puede ser debido a que existe una mejora en la capacidad de la fase activa depositada en los soportes para crear una vacante asociada con un grupo SH y con un átomo de hidrogeno adsorbido a un átomo de W [55].

III.2.2 Efecto del ácido cítrico

En la tabla 3.10 se muestra la velocidad de reacción inicial de los catalizadores de NiW/AT₂CIT a diferentes relaciones molares $\frac{\text{Acido Citrico}}{\text{Ni}}$ (0.2,0.3,0.4,3).

Se puede observar en la tabla 3.10 que la distribución de la velocidad de reacción inicial del catalizador de NiW/AT₂CIT impregnado con ácido cítrico a diferentes relaciones molares (Ácido Cítrico/Ni) tiene cambios significativos. La disminución de actividad a concentraciones elevadas de ácido cítrico pueden ser debido a la modificación de cargas superficiales en el soporte, provocando un punto isoeléctrico menor al correspondiente de Al₂O₃ o AT₂ (P.I=7-8)[38,118], y de esta manera los iones de W⁶⁺ no se anclen adecuadamente. También al aumentar la concentración de ácido cítrico podría haber un efecto de precipitación del soporte formándose partículas pequeñas de Al₂O₃ o AT₂[119] que cubren parcialmente los metales(W,Ni) no dejándolos sulfurarse para crear vacantes de S.

Catalizador	Ácido Cítrico/Ni	R _o (molde4,6DMDBT/mol W*s)*10 ⁻⁵
NiW/AT ₂	0.2	1.3
NiW/AT ₂	0.3	4.0
NiW/AT ₂	0.4	0.3
NiW/AT ₂	3	0

Tabla 3.10. Velocidad de reacción NiW/AT₂CIT a diferentes relaciones molares ácido cítrico/Ni

En la tabla 3.10 se muestran la actividad catalítica de los catalizadores NiW/AT₂CIT a diferentes relaciones molares $\frac{\text{Ácido Cítrico}}{\text{Ni}}$ (0.2,0.3,0.4 y 3). Se puede notar que la actividad catalítica tiende a cero al aumentar la concentración de acido cítrico ($\frac{\text{Ácido Cítrico}}{\text{Ni}}$ = 3). Esto puede confirmar la posible modificación del punto isoeléctrico de la superficie a concentraciones elevadas de ácido cítrico y el efecto de precipitación del soporte.

III.2.3 Efecto de temperatura de sulfuración

En la figura 3.32 se muestra las velocidad de reacción intrínseca de los catalizadores de NiW/AT₂CIT a una relación molar $\frac{\text{Acido Citrico}}{\text{Ni}}$ =0.3 pero a diferentes temperaturas de sulfuración (350,400,450 °C)

Figura 3.32. Velocidad de reacción Vs temperatura de sulfuración

La temperatura de sulfuración está relacionada con el grado de sulfuración. Se sabe de la literatura que la sulfuración de Ni comienza desde temperatura ambiente y se completa a 400°C. La sulfuración del W es mucho más difícil en comparación con Mo, solo el 70 % se encuentra en estado de oxidación W^{+4} a 400°C, el otro 30 % se encuentra en un estado de oxidación W^{+6} y debido a una interacción fuerte entre el W y el soporte. Entre 400 y 500 °C, una cantidad de enlaces W-O-soporte se rompen por lo que se llega a una sulfuración del 88 % de W y por arriba de 500 °C la proporción de W varia ligeramente [111,112]. Se puede observar en la figura 3.32 que el efecto de la temperatura de sulfuración genera una grafica tipo volcán. El catalizador sulfurado a 350 °C tiene la velocidad de reacción más baja en comparación a las otras temperaturas esto puede estar relacionado al menor grado de sulfuración pero disminuye en comparación a 400°C, esta disminución en la actividad está relacionado con la cristalización de WS₂ que como consecuencia se tiene una menor dispersión y por lo tanto se verá afectado la actividad catalítica[120].

		A 7 % de
	Selectividad	conversión
Temperatura(°C)	DSD %	HID %
350	27	73
400	16	84
450	18	82

Tabla 3.11. Temperatura de sulfuración y selectividad

En la tabla 3.11 se muestra la selectividad a baja conversión del catalizador NiW/AT₂CIT Ácido Cítrico /Ni= 0.3 para las diferentes temperaturas. Se sabe que la ruta preferente del 4,6-DMDBT es la hidrogenación (HID) y que la ruta de desulfuración directa(DSD) disminuye, por lo que los resultados obtenidos de selectividad a diferentes temperaturas siguen esta relación. Se puede notar que la actividad catalítica está relacionada directamente con la selectividad.

En la figura 3.33 se muestra el porcentaje de desulfuración directa(DSD) y de hidrogenación(HID) contra la temperatura de sulfuración. Se puede ver también una distribución tipo volcán que está ligada al grado de sulfuración, el apilamiento de las láminas y a la cristalización de WS_2 . De acuerdo a las gráficas y la tabla de selectividad se puede inferir que la temperatura de 400°C es la temperatura que posiblemente genera un apilamiento y un grado menor de cristalinidad promoviendo mayor actividad catalítica.

Figura 3.33. Variación de selectividad en HDS vs temperatura de sulfuración

CAPÍTULO IV

IV.1 Discusión

En este trabajo se investigó acerca de los efectos producidos por la incorporación de ácido cítrico en el soporte de los catalizadores de NiW para la HDS de 4,6DMDBT. Se puede notar a partir de los resultados catalíticos que los catalizadores de NiW/Al₂O₃CIT y NiW/AT₂ presentaron menor actividad por gramo de catalizador que el catalizador de NiW/AT₂CIT. Esto indica que la incorporación de ácido cítrico en la superficie del soporte tiene un efecto favorable en el sistema NiW. Probablemente hay una mayor cantidad de fases activas disponibles y que estas fases están bien dispersas.

El análisis de F-N₂ permitió obtener propiedades superficiales de los soportes, donde se encontró que los soportes tienen propiedades texturales apropiados para catalizadores de HDS de cortes intermedios. El análisis de DRX permitió observar dos reflexiones para el soporte de Al₂O₃ que podrían corresponder a la fase y-Al₂O₃, mientras que en AT₂ no se pudieron observar fases segregadas de los óxidos puros lo que sugiere la presencia de estructuras amorfas o microcristalinas (<3nm;fuera de la resolución del equipo). También en los catalizadores de NiW/Al2O3, NiW/Al2O3CIT, NiW/AT2 y NiW/AT2CIT no se encontraron picos correspondientes a WO_3 , por lo que se puede sugerir buena dispersión del W. El análisis de FT-IR ayudó a determinar algunos cambios significativos sufridos en la superficie, producto de la incorporación del ácido cítrico. La descomposición gaussiana de los espectros FT-IR mostró que la incorporación del ácido cítrico modificó la distribución de los diferentes grupos hidroxilos superficiales (banda situada en 3750,3730 y 3690 cm⁻¹). Se observó que la incorporación de ácido cítrico en la superficie disminuyó la presencia de grupos OH básicos y neutros. Para el caso particular de AT₂CIT, la incorporación del ácido cítrico redujo significativamente la cantidad relativa de grupos OH de carácter ácido en comparación con Al₂O₃. Los espectros de reflectancia difusa de UV-visible del catalizador NiW/AT₂, NiW/AT₂CIT presentó una relación de intensidades de WO_x en coordinación octaédrica/ WO_x en coordinación tetraédrica mayor a la obtenida para el catalizador NiW/Al₂O₃CIT. Lo anterior sugiere mayor formación de especies WO_x de coordinación octaédrica, los cuales son considerados precursores de la especie activa a la HDS, WS₂.También se pudo obtener las energías de borde y la cantidad de próximos vecinos, encontrado que la energía de borde decrece en el siguiente orden W/Al₂O₃> W/Al₂O₃CIT> $W/AT_2 > W/AT_2CIT$ y la cantidad de próximos vecinos aumenta de la manera siguiente W/Al₂O₃ < W/Al₂O₃CIT < W/AT₂ < W/AT₂CIT. De lo anterior se puede decir que las especies más grandes de W son para el catalizador de W/AT₂CIT y que la mejor distribución de W en la superficie del soporte se obtuvo para el catalizador de W/Al₂O₃. La espectroscopía Raman permitió detectar la vibración de especies terminales W=O en los catalizadores de W/Al₂O₃CIT, W/AT₂ y W/AT₂CIT, con mayor intensidad W/Al_2O_3 , para el W/AT2CIT, relacionadas con las presencia de especies mono y politungstatos bien dispersos responsables de la actividad catalítica. Además los catalizadores no presentaron bandas relacionadas a WO₃ (718 y 807 cm⁻¹), lo que indica una alta dispersión de W en la superficie del soporte. La técnica de desorción a temperatura programada de amoníaco permitió encontrar que la presencia de ácido cítrico en los catalizadores monometálicos W/Al₂O₃CIT y W/AT₂CIT, se hizo notar promoviendo mayor cantidad de sitios ácidos intermedios y de sitios ácidos fuertes comparado con los catalizadores W/Al₂O₃ y W/AT₂.

En los catalizadores bimetálicos NiW/Al₂O₃CIT y NiW/AT₂CIT se puede ver la influencia del metal promotor Ni, disminuyendo los sitios ácidos fuertes, pero la presencia de ácido cítrico en la superficie promueve como en el caso de los catalizadores monometálicos un mayor contenido de sitios de tipo intermedio que está relacionado con acidez de tipo bronsted. La técnica de reducción a temperatura programada de los catalizadores monometálicos de W/Al₂O₃CIT y W/AT₂CIT muestra que disminuye la temperatura de reducción de W al incorporar en la superficie ácido cítrico comparados con sus respectivos sistema sin modificar W/Al₂O₃ y W/AT₂. El mismo efecto se pudo ver para los catalizadores bimetálicos de NiW/Al₂O₃CIT y NiW/AT₂CIT donde se pudo notar menores temperaturas de reducción y mayor consumo de hidrogeno. La técnica de XPS mostro que los catalizadores monometálicos promovidos por ácido cítrico W/Al₂O₃CIT y W/AT₂CIT tienen un mayor grado de sulfuración en comparación con W/Al₂O₃ y W/AT₂, además se pudo notar que en el sistema W/AT₂ y W/AT₂CIT no se encontraron W parcialmente sulfurados, esto podría atribuirse a TiO₂. Con respecto a los catalizadores bimetálicos, el catalizador de NiW/Al₂O₃CIT obtuvo un mayor grado de sulfuración en comparación con NiW/Al₂O₃. En el sistema NiW/AT₂CIT disminuyó ligeramente el grado de sulfuración, esto podría deberse a un efecto de la dispersión promovido por el ácido cítrico. Se obtuvieron las relaciones atómicas de los catalizadores donde hay un aumento en la cantidad de W superficial para los catalizadores modificados con ácido cítrico. La técnica de microscopía electrónica en modo de transmisión en alta resolución mostro en los sistemas de NiW/AT₂ y NiW/AT₂CIT que sus distancias interplanar de las laminillas de WS₂ son de 0.67 y 0.68 nm respectivamente, la longitud promedio de lámina es ligeramente mayor para el sistema NiW/AT₂CIT(2.85nm), esto también se pudo notar en DRS obteniéndose agregados más grandes de W para el sistema de W/AT₂CIT en comparación con W/AT₂, este resultado de longitud promedio de lámina confirma lo obtenido por DRX, donde no se pudo notar la presencia de cristales de WO₃ <3nm. El grado de apilamiento aumento en 30 y 75 % para 2 y 3 laminas en el sistema NiW/AT₂CIT comparado con NiW/AT₂ por influencia del ácido cítrico, esto podría deberse a un mayor grado de W expuesto en la superficie visto por XPS.

IV.2 Conclusiones

La incorporación del ácido cítrico sobre la superficie del soporte AT₂ previo la impregnación metálica de Ni y W, modificó la superficie catalítica producto de la interacción entre el ácido cítrico y los grupos -OH superficiales del soporte catalítico (acido, básico y neutro), debido probablemente a la formación de una capa de carbono entre la superficie y el metal soportado. Aunado a lo anterior, la disminución en la temperatura de reducción, el aumento del tamaño y apilamiento de la fase WS₂ y una mayor cantidad de W superficial sugiere que tal modificación superficial conlleva a una menor interacción metal-soporte que a su vez favorece ligeramente la actividad catalítica en la HDS de 4,6-DMDBT.

CAPÍTULO V

V.1 Referencias

- H. Topsoe, B.S. Clausen and F.E. Massot, "Hydrotreating Catalysis" Ed. Springer (1996).
- 2. R. Shafi, G.J. Hutchings, Catal. Today 59 (2000) 423–442.
- 3. M.J. Girgis, B.C. Gates, Ind. Eng. Chem. Res. 30 (1991) 2021–2058.
- 4. T. Kabe, A. Ishihara, Q. Zang, Appl. Catal. A 97 (1993) L1–L9.
- 5. V. Meille, E. Schulz, M. Lemaire, M. Vrinat, J. Catal. 170 (1997) 29–36.
- 6. M.V. Landau, Catal. Today 36 (1997) 393–429.
- H. Topsoe, B.S. Clausen, F.E. Massoth, in: J.R. Anderson, M. Boudart (Eds.), Hydrotreating Catalysis-science and Technology, vol. 11, Springer Verlag, Berlin, (1996).
- 8. B.C. Gates, H. Topsoe, Polyhedron 16 (1997) 3213–3217.
- 9. K.G. Knudsen, B.H. Cooper, H. Topsoe, Appl. Catal. A: Gen. 189 (1999) 205–215.
- F. Bataille, J.L. Leniberton, P. Michanet, G. Perot, M. Vrinai, M. Lemaire, E. Schulz, M. Breysse, S. Kaszlelan, J. Catal. 191 (2000) 409–422.
- 11. G. Perot, Catal. Today 86 (2003) 111–128.
- 12. P. Michaud, J.L. Lemberton, G. Perot, Appl. Catal. A: Gen. 169 (1998) 343-353
- 13. Y. Saih, M. Nagata, T. Funamoto, Y. Masuyama, K. Segawa, Appl. Catal. A: Gen. 295 (2005)11-22.
- 14. Meille V, Schulz E, Lemarie M, Vrinat M, Appl. Catal. A, 187(1999)179-186.
- 15. Knudsen KG, Cooper BH, Topsøe H., Appl Catal A: Gen.189(1999) 205-215.
- 16. Kabe T, Aoyama Y, Wang D, Ishihara A, Qian W, Hosoya M, Appl. Catal. A: Gen. 209 (2001) 237-247.
- 17. Xiang Li, Anjie Wang, Marina Egorova, Roel Prins, J. Catal, 250(2007) 283-293.
- 18. M. Concepción Barrera, Tesis Doctoral UAMI, 2006.
- S. Dzwigaj, C. Louis, M. Breysse, M. Cattenot, V. Bellière, C. Geantet, M. Vrinat, P. Blanchard, E. Payen, S. Inoue, H. Kudo, Y. Yoshimura, Appl Catal B: Environmental, 41(2003) 181-191.
- 20. C. Arrouvel, M. Breysse, H. Toulhoat, P. Raybaud, J. Catal, 232(2005) 161-178.
- 21. Jakob Kibsgaard, Bjerne S. Clausen, Henrik Topsøe, Erik Lægsgaard, Jeppe V. Lauritsen, Flemming Besenbacher, J. Catal, 263(2009) 98-103.
- 22. Y. Ji, P. Afanasiev, M. Vrinat, Wenzhao Li, Can Li, Appl Catal A: General, 257(2004)157-164.
- 23. S.K. Maity, M.S. Rana, S.K. Bej, J. Ancheyta-Juárez, G. Murali Dhar , T.S.R. Prasada Rao, Appl Catal A: Gen, 205(2001) 215-225.

- 24. M. Breysse, C. Geantet, P. Afanasiev, J. Blanchard, M. Vrinat, Catal. Today, 130 (2008) 3-13.
- 25. Mingfeng Li, Huifeng Li, Feng Jiang, Yang Chu, Hong Nie, Fuel, 88(2009) 1281-1285.
- E. Rodríguez-Castellón, A. Jiménez-López, D. Eliche-Quesada, Fuel, 87 (2008) 1195-1206.
- 27. B.N.Srinivas, S.K.Maity, V.V.D.N.Prasad, M.S.Rana, Manoj Kumar, G.Murali Dhar, T.S.R. Prasada Rao, Studies in Surface Science and Catal., 113(1998)579-590.
- 28. Mohan S. Rana, J. Ancheyta, S.K. Maity, P. Rayo, Catal Today, 109(2005) 61-68.
- 29. Jolanta R. Grzechowiak, Iwona Wereszczako-Zielinska, Karolina Mrozinska, Catal Today, 119(2007) 23-30.
- Víctor Santes, Javier Herbert, María Teresa Cortez, René Zárate, Leonardo Díaz, Prakash Narayana Swamy, Mimoun Aouine, Michel Vrinat, Appl Catal A: Gen, 281(2005) 121-128.
- 31. M.P. Borque, A. López-Agudo, E. Olguin, M. Vrinat, L. Cedeñoc, J. Ramírez, Appl Catal A: Gen. 180(1999)53-61.
- 32. Dengqian Zhang, Aijun Duan, Zhen Zhao, Guofu Wan, Zhenyong Gao, Guiyuan Jiang, Kebin Chi, Keng H. Chuang, Catal Today, 149 (2010) 62-68.
- 33. S. Damyanova, L. Petrov, M.A. Centeno, P. Grange, Appl Catal A: Gen, 224(2002) 271-284.
- 34. P. Afanasiev, Catal. Comm., 9(2008)734-739.
- 35. B.C. Gates amd J.R. Katzer "Chemyistry of Catalytic processes" Ed.Mc. Graw hill (1989).
- 36. E. Altamirano S. Tesis Doctorado UAMI,2005.
- 37. J.N. Diaz de Leon Tesis Maestria UAMI,2007.
- 38. J.A. Tavizon Pozos Tesis de Maestria UAMI,2011.
- 39. J. Escobar Aguilar Tesis de Doctorado UAMI,2001.
- 40. Czanderma, A.W, Ramachandra C.N., Rao C.N:R and Honing, J.M, Trans. Faraday Soc. 48 (1958) 1069.
- 41. S. Matsuda, A. Kato, Appl Catal 8 (1983) 149-165.
- 42. J. A. Montoya de la Fuente. Tesis Doctorado UAMI,1996.
- 43. Bonhommme-Coury, L Lequeux, N Moussotte, S. and Bosch, P., J. of sol-gel science and technology, 2 (1994)371-375.
- 44. Karakonstantis L., Bourikas K., Lycourghiotis A.; J. Catal 162(1996) 295-305.
- 45. Karakonstantis L., Matralis H., Kordulis C., Lycourghiotis A. ; J. Catal 162(1996)306-319.
- 46. Ouafi D., Mauge F., Payen E., Grimblot J.; Catal Today 4(1988) 23-37.
- 47. Reinhoudt H. R., Crezee E., Van Langeveld A. D., Kooyman P. J., Van Veen J. A. R., Moulijn J. A. ; J. Catal 196 (2000) 315-329.
- 48. Mangnus P. J., Bos A., Moulijn J. A. ; Journal of Catalysis 146(1994) 437-448.
- 49. Scheffer B., Molhoeck P., Moulijn J. A. ; Appl. Catal 46(1989) 11-30.
- 50. Thèse doctorat de Roussel Martial, Université de Poitiers, 2002
- 51. Ramirez J., Gutiérrez-Alejandre A. ; Catal Today 43(1998) 123-133.

- 52. Duchet J.-C., Lavalley J.-C., Ouafi D. ; Catal Today 4(1988) 97-116.
- Koranyi T. I., Dobrovolszky M., Koltai T. ; Fuel Processing Technology 61(1999)55-71.
- 54. Aijun Duan, Catal. Today 140 (2009) 187–191.
- 55. J.Ramirez, G. Macias, L. Cedeño, A. Gutierrez-Alejandre, R Cuevas, P. castillo, Catal today 98(2004) 19-30.
- 56. Ramirez J, Gutierrrez-Alejandre A, Catal today 43(1998)123-133.
- 57. Ramirez J, Gutierrez-Alejandre A, J. Catal today 170(1997)108-122.
- 58. Voorhoeve R. J. H., Stuiver J. C. M. ; J. Catal 23(1971) 243-252.
- 59. Chianelli R.R., Daage M. ; Stud. Surf. Sci. Catal., 50(1989) 1.
- 60. Eijbouts S., Heineman J.L., Eljerman H.W. ; Appl. Catal., 105(1993) 69-82.
- 61. Toulhoat H., Kasztelan S. ; Proc. 9th Int. Congress Catalysis, Ottawa, I(1988) 152.
- 62. Lauritsen J.V., Helveg S., Lægsgaard E., Stensgaard I., Clausen B.S., Topsøe H., Besenbacher F. ; J. Catal., 197(2001) 1-5.
- 63. Payen E., Kasztelan S., Grimblot J., Bonnelle J. P. ; Catal Today 4(1988) 57-70.
- 64. Reinhoudt H. R., Van der Meer Y., Van der Kraan A. M., Van Langeveld A. D., Moulijn J. A. ; Fuel Processing Technology, 61(1999) 43-54.
- 65. Ng K.T., Hercules D.M.; The Journal of Physical Chemistry, 80(1976) 19.
- 66. Kabe T., Qian W., Funato A., Okoshi Y., Ishihara A. ; Phys. Chem., 1(1999)921-927.
- 67. H. Kraus, R. Prins, J. Catal. 170 (1997) 20-28.
- M. Sun, T. Burgi, R. cattaneo, D. Van Langeveld, R. Prins, J. Catal. 201 (2001)258-269.
- 69. Kishan, L. Coulier, V.H.J. de Beer, J.A.R. van Veen, J.W. Niemantsverdriet, J. Catal. 196(2000)180-189.
- M.A. Lélias, P.J. Kooyman, L. Mariey, L. Oliviero, A. Travert, J. van Gestel, J.Catal. 267(2009)14-23.
- 71. M. Sun, D. Nicosia, R. Prins, Catal. Today 86 (2003) 173-189.
- 72. Li, H., Li, M., Chu, Y., Liu, F. y. Nie, H. Appl. Catalysis A: Gen. 375, (2010) 215.
- 73. D. Zuo, M. Vrinat , H. Nie, F. Maugé, Y. Shi, M. Lacroix, D. Li Cat.Today 93 (2004) 751–760.
- 74. J.C Vedrine, A. Auroux. J. Catal. 59 (1979) 248.
- 75. L.M. Parker, D.M. Bibby, R.H. Meinhlod. Zeolites. 6 (1986) 384.
- 76. S.Bhatia, J.Beltramini, D.D.Do. Catal Today. 7(3) (1990)362.
- 77. F.E. Massoth. Journal of catalysis. 36 (1975) 164.
- 78. V.H.J. de Beer, C.Bevelander, T.H.M. van Sin Fiet, P.G.A.J. Werter, C.H. Amberg. J. catal. 43 (1976) 68.
- 79. Quantacrom corporation "Gas sorption system manual" Ed.Spinger(1987)
- 80. S.R. Yoganarasimhan, C.N.R. Rao, Trans. Farad 3 (1962) 1579-1589.
- 81. P.Tarte, spectrochim. Acta, 23A(1967)2127.
- 82. G.Busca, V. Lorenzelli, Gramis, R. Illey. Lagmuir 9(1993) 1492.
- 83. S. Carre, B. Tapin, N.S. Gnep, R. Revel, P. Magnoux, Appl. Catal. A: Gen. 372 (2010) 26-33.
- Gentry, S. J., Hurst, N. W., and Jones, A., J.Chem. Sot. Faraday Trans. I 75 (1979)1688.

- 85. Knozinger, H., and Ratnasamy, P., Catal. Rev.Sci. Eng. 17(1987) 31.
- 86. Yu Fan , Han Xiao , Gang Shi , Haiyan Liu , Ying Qian , Tinghai Wang , Guangbi Gong , Xiaojun Bao , J. Catal 279 (2011) 27–35.
- 87. Nino Rinaldi , Usman , Khalida Al-Dalama , Takeshi Kubota , Yasuaki Okamoto , Applied Catal A: General 360 (2009) 130–136.
- 88. H. Li, M. Li, Y. Chu, F. Liu, H. Nie, Applied Catal A, General 403 (2011) 75-82.
- Addax Gutierrez-Alejandre , Jorge Ramirez , Guido Busca, Catalysis Letters 56 (1998) 29–33.
- 90. D.S. Maciver, H.H. Tobin and R.T. Barth, J. Catal. 2 (1963) 465.
- 91. U.A. Sedran and N.S. Figoli, Appl. Catal. 19 (1965) 317.
- 92. A.A. Gutiérrez, J. Ramírez, G. Busca, Catal. Lett. 56 (1998) 29.
- 93. A.A. Gutiérrez, J. Ramírez, G. Busca, Langmuir 14 (1998) 630.
- 94. Journal of catalysis, 151(1995)470-474.
- 95. S. Damyanova, A. Spojakina, K. Jiratova, Appl. Catal. A: Gen. 125 (1995) 257.
- 96. A. Spojakina, P.L. Damyanova, Appl. Catal. 56 (1989) 163.
- 97. C.J. Song, C. Kwak, S.H. Moon, Catal. Today 74 (2002) 193.
- 98. P. Atanasova, T. Halachev, Appl. Catal. A: Gen. 108 (1994) 123.
- 99. J. Aveston, Inorg. Chem. 3 (1964) 981.
- 100. M.A. Vurman, I.E. Wachs, A.M. Hirt, J. Phys. Chem. 95 (1991) 9928.
- 101. A. Scholz, B. Schnyder, A. Wokaun, J. Mol. Catal. A Chem. 138 (1999) 249.
- 102. R. Huirache-Acuña, B. Pawelec , E. Rivera-Muñoz , R. Nava , J. Espino , J.L.G. Fierro, Applied Catal B: Environmental 92 (2009) 168-184.
- 103. P. Selvam, S.K. Mohapatra, Micropor. Mesoporous Mater. 73 (2004) 137.
- 104. D.C. Vermaire, P.C. van Berge, J. Catal. 116 (1989) 309.
- 105. Cruz, J., Avalos-Borja, M., López Cordero, R., Bañales, M.A., Fierro, J.L.G., Palacios, J.M., López Agudo, A., Appl. Cat. A 224 (2002) 97-110.
- 106. K.D. Dobson, A.J. McQuillan, Spectrochim. Acta Part A 55 (1999) 1395.
- 107. D. Zou, M. Vrinat, H. Nie, F. Mauge, Y. Shi, M. Lacroix, D. Li, Catal. Today 93 (2004) 751.
- 108. A. Spojakinaa, R. Palchevaa, K. Jiratovab, G. Tyulieva, L. Petrova, Catal. Lett. 104(2005)45.
- 109. L. Coulier, G. Kishan, J.A.R. van Veen, J. Niemantsverdriet, J. Phys. Chem, B 106 (2002) 5897.
- 110. Reinhoudt H. R., Crezee E., Van Langeveld A. D., Kooyman P. J., Van Veen J. A. R., Moulijn J. A. ; J. Catal 196 (2000) 315-329.
- 111. Breysse M., Cattenot M., Decamp T., Frety R. ; Catal Today 4 (1988)39-55.
- 112. H.R. Reinhoudt, E. Crezee, A.D. van Langeveld, P.J. Kooyman, J.A.R. van Veen, J.A. Moulijn, J. Catal. 196 (2000) 315-329.
- 113. M. Vrinat, M.Breysse, C. Geantet, J. Ramirez, F. Massoth, Catal. Letters 26(1994) 25-35.
- 114. E.Payen, Rhubaut, S. Kastelan, O. Poulet, J. Grimblot, J. Catal 147 (1994) 123-132.
- 115. Reinhoudt H. R., Van Langeveld A. D., Kooyman P. J. ; J. Catal 179(1998) 443-450.

- 116. F. Besenbacher, M. Brorson, B.S. Clausen, S. Helveg, B. Hinnemann, J. Kibsgaard et al., Catal. Today, 130 (2008) 86.
- 117. G.Perot, Catal. Today 86 (2003) 111-128.
- 118. Lina Wu, Yudong Huang, Li Liu, Linghui Meng , Powder Technology 203 (2010) 477–481.
- 119. DeCanio, E. C., Edwards, J. C., Scalzo, T. R., Storm, D. A., and Bruno, J. W., J. Catal. 132(1991) 498.
- 120. E.J.M. Hensen , Y. van der Meer b, J.A.R. van Veen a, J.W. Niemantsverdriet, Applied Catal A: General 322 (2007) 16–32.
Apéndice

Apéndice A

Deconvolución

La integral de deconvolución (Ec.1)utiliza información de la ecuación de continuidad (g[t]), para calcular la salida de un sistema con entrada arbitraria.

$$y(t) = \int_0^\infty g(t)u(t-\tau)d\tau$$
 Ec.1

El punto de partida es una función pulso que se va denotar como p(t), es una función cuya duración es "T" y su altura es 1/T, de tal modo que se obtiene una área unitaria.

Figura 1 Descripcion grafica del impulso.

Por lo tanto la definición de p(t) es la siguiente:

$$p(t) = \begin{cases} \frac{1}{T} & 0 \le t \le T \\ 0 & otro \ caso \end{cases}$$
 Ec.2

Se supone que se conoce la respuesta a ese impulso determinado , a esa respuesta se denota como q(t).

Figura 2 Descripcion grafica de la respuesta del impulso.

Se tiene que saber que cuando $T \to 0$ la función $p(t) \to \delta(t)$ y $q(t) \to g(t)$.

Por otro lado la propiedades de suma ,resta, multiplicación y división se pueden efectuar para la función de p(t), por ejemplo sumarle o restarle a la funcion una determinada cantidad $(p(t - \tau))$ o dividirle $(p(\frac{t-\tau}{3}))$, y como el sistema e invariable con el tiempo la respuesta va ser parecida, solo que con las modificaciones de resta y división que se efectuaron dentro de la función $(q(t - \tau) y q(\frac{t-\tau}{3}))$.

Para un caso en particular como una función arbitraria podemos hacer lo siguiente:

Se divide la función u(t).

Figura 3 Ejemplo de un sistema arbitrario

La definición de p(t) se modifica multiplicando por T, y por lo tanto tenemos un pulso de altura 1.

$$Tp(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & otro \ caso \end{cases}$$
 Ec.3

Se aproxima la primera sección, obteniéndose lo siguiente :

$$Tp(t)u(0)$$
 Ec.4

Para la segunda sección seria lo siguiente:

$$Tp(t-T)u(T)$$
Ec.5

Para la tercera sección seria lo siguiente:

$$Tp(t-2T)u(T)$$
 Ec.6

se aproxima todo la función u(t), y en general si sumamos todas las contribuciones tenemos la función u(t)*, y podemos escribir su definición :

$$u(t)^* = \sum_{k=0}^{\infty} Tp(t - kT)u(kT)$$
 Ec.7

La salida es la suma de las contribuciones individuales y por lo tanto podemos aproximar la salida y su definición es la siguiente:

$$y(t)^* = \sum_{k=0}^{\infty} Tq(t - kT)u(kT)$$
 Ec.8

Se hace el límite de T-->0 para la función $y(t)^*$ y también sabemos que q(t) tiende a g(t) por lo tanto tendremos la siguiente función:

$$y(t) = \int_0^\infty g(t - \tau) u(\tau) d\tau$$
 Ec.9

y si aplicamos un cambio en el argumento de la función tenemos la integral deconvolución:

$$y(t) = \int_0^\infty g(t)u(t-\tau)d\tau$$
 Ec.10

Entonces la deconvolución calcula la salida del sistema , dividiendo la entrada en pequeñas contribuciones, separadas en el tiempo, y son pequeños impulsos que están

ponderados o multiplicados por la amplitud de u(t) en cada uno de esos infinitesimal pequeños saltos en el tiempo.

En la siguiente grafica se muestra la forma en que se deconvolucionaron las graficas para la región de grupos OH .

Figura 4 Deconvolución de un soporte en región de grupos OH.

Apéndice B

Energía de borde

Mediante la técnica de reflectancia difusa se puede determinar el grado de interconexión entre los tetraedros u octaedros característicos del material en cuestión calculando el borde de absorción. La energía necesaria para promover un electrón de la banda de valencia a la banda de conducción es el borde de absorción o energía de borde (E_b). Esta energía aumenta a medida que los cristalitos se hacen más pequeños. La obtención de la energía de borde nos puede indicar el grado de dispersión del metal coordinado. Las posiciones de los bordes de absorción se determinaron para las transiciones permitidas, se traza una línea recta ajustada a través de la subida de baja energía en los de gráficos de $[F(R_{\infty}) * hv]^2$ vs hv, donde $F(R_{\infty})$ es la funcion de Kubelka-Munk para una muestra infinitamente gruesa y hv es la energía del fotón incidente.

Figura 1 Energía de borde del catalizador monometálico W/AT₂

ACTA DE EXAMEN DE GRADO

Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA

MODIFICACION SUPERFICIAL MEDIANTE LA ADICION DE ACIDO CITRICO EN CATALIZADORES NIWS SOPORTADOS EN ALUMINATITANIA (AT2) PARA LA HIDRODESULFURACION DE 4,6-DIMETIL DIBENZOTIOFENO

En México, D.F., se presentaron a las 11:00 horas del día 28 del mes de agosto del año 2012 en la Unidad Iztapalapa de la Universidad Autónoma Metropolitana, los suscritos miembros del jurado:

DR. JOSE ANTONIO DE LOS REYES HEREDIA DRA. NANCY COROMOTO MARTIN GUAREGUA DRA. MARIA ANTONIA CORTES JACOME DR. JOSE GILBERTO CORDOBA HERRERA No. 00076 Matricula: 210383143

CARLOS EDUARDO SANTOLALLA VARGAS

REVISÓ

ALUMNO

Bajo la Presidencia del primero y con carácter de Secretario el último, se reunieron para proceder al Examen de Grado cuya denominación aparece al margen, para la obtención del grado de:

MAESTRO EN CIENCIAS (INGENIERIA QUIMICA)

DE: CARLOS EDUARDO SANTOLALLA VARGAS

y de acuerdo con el artículo 78 fracción III del Reglamento de Estudios Superiores de la Universidad Autónoma Metropolitana, los miembros del jurado

resolvieron:

LIC. JULIO CESAR DE LARA ISASSI DIRECTOR DE SISTEMAS ESCOLARES

Acto continuo, el presidente del jurado comunicó al interesado el resultado de la evaluación y, en caso aprobatorio, le fue tomada la protesta.

DIRECTOR DE LA DIVISIÓN DE CBI DR. JOSE ANJONIO DE LOS REYES HEREDIA

PRESIDENTE DR. JOSE ANTOHO DE LOS REYES HEREDIA

VOCAL

مرجع المريمة في المريمة المريمية المريمة عن معني ومعني ومنه التي وقيته منه في يقطرها مستارية مكتبي مراد الريم مرجع المريمة في في المريمية المريمية مع مريمة المد معني ومنه التي وقيته منه في يعام المريمة المريمة في المريمية

الكريم المارية المراجع المسلم المراجع المسلمين المراجع مسلم المواجع على المراجع المراجع المراجع المراجع المراجع المراجع المراجع

이 옷 옷을 즐겨 주세요. 가지 않는 것

이지 사람의 사람의 사람의 소리는 것은 눈가 많았다.

والمراجع المراجع والمراجع المراجع والمراجع والمترجع والمتعاد المتشوق والمتعاد فتستشط ووشوته معينا والمراجع

김 아이들 것은 아이들을 가지 않는 것이 같다.

na distribute calenda data an dialemaa atawa di china ta'u concentrative a anema ka concentrative di serie di c

DRA. MARIA ANTONIA CORTES JACOME

DR. JOSE GILBERTO CORDOBA HERRERA